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Asymptotics for Toeplitz determinants: perturbation of

symbols with a gap

Christophe Charlier∗ and Tom Claeys∗

January 19, 2015

Abstract

We study the determinants of Toeplitz matrices as the size of the matrices tends
to infinity, in the particular case where the symbol has two jump discontinuities and
tends to zero on an arc of the unit circle at a sufficiently fast rate. We generalize an
asymptotic expansion by Widom [22], which was known for symbols supported on
an arc. We highlight applications of our results in the Circular Unitary Ensemble
and in the study of Fredholm determinants associated to the sine kernel.

1 Introduction

We consider Toeplitz determinants of the form

Dn(f) = det(fj−k)j,k=0,...,n−1, fj =
1

2π

∫ 2π

0
f(eiθ)e−ijθdθ, (1.1)

where the symbol f is given by

f(eiθ) = eW (eiθ) ×

{
1, for −θ0 ≤ θ ≤ θ0,

s, for θ0 < θ < 2π − θ0,
(1.2)

and fk is the k-th Fourier coefficient of f . The symbol depends on the parameters
s ∈ [0, 1] and θ0 ∈ (0, π), and on a function W (z) which we assume to be analytic in a
neighbourhood of the unit circle. In the simplest case where W (z) = 0, f is piecewise
constant with jump discontinuities at e±iθ0 .

For s ∈ [0, 1] and θ0 ∈ (0, π) fixed, the large n asymptotic behavior for the Toeplitz
determinants Dn(f) = Dn(s, θ0,W ) is well understood. For s = 0, the symbol is
supported on the arc γ = {eiθ : −θ0 ≤ θ ≤ θ0}. If f is positive on γ and symmetric,
f(eiθ) = f(e−iθ), we have the following asymptotics due to Widom [22],

lnDn (s = 0, θ0,W ) = n2 ln sin
θ0

2
+ nW̃0 −

1

4
lnn

+

∞∑
k=1

kW̃kW̃−k −
1

4
ln cos

θ0

2
+

1

12
ln 2 + 3ζ ′(−1) + o(1), as n→∞, (1.3)
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where W̃k is the k-th Fourier coefficient of W̃ , defined by

W̃ (eiθ) = W (e2i arcsin(sin
θ0
2

sin θ
2

)), (1.4)

and where ζ is the Riemann ζ-function. For W = 0, it was shown in [17, 18] that this
result holds not only for 0 < θ0 < π fixed, but also if θ0 approaches π slowly enough
such that n(π − θ0) is large. The error term in (1.3) then becomes O(n−1(π − θ0)−1).

On the other end of the parameter range for s, we have s = 1: here the symbol is
smooth and we have the Szegő asymptotics

lnDn (s = 1, θ0,W ) = nW0 +
∞∑
k=1

kWkW−k + o(1), as n→∞. (1.5)

For 0 < s < 1, f has two jump discontinuities which are special cases of Fisher-Hartwig
(FH) singularities. FH singularities are generally characterized by two parameters: α,
which describes a root-type singularity, and β, which describes a jump discontinuity.
Our symbol f has Fisher-Hartwig singularities at e±iθ0 with parameters α = 0 (which
means that there are no root-type singularities) and β = ∓ 1

2πi log s. Asymptotics for
Toeplitz determinants with Fisher-Hartwig singularities have been studied by many
authors [15, 23, 2, 3, 4, 14, 8, 9]. Applied to our symbol f , the results from, e.g., [8]
imply that, for s ∈ (0, 1) fixed, i.e. independent of n, we have

lnDn (s, θ0,W ) = nW0 +
(ln s)2

2π2
lnn+

ln(2 sin θ0)

2π2

+
ln s

π

+∞∑
k=1

(Wk +W−k) sin(kθ0) +

+∞∑
k=1

kWkW−k

+ 2 ln

(
G

(
1 +

ln s

2πi

)
G

(
1− ln s

2πi

))
+ o(1), (1.6)

as n→∞, where G is Barnes’ G-function.
If we let s tend to 0, the jump discontinuities of f turn into endpoints of the support

of f , and f transforms from a Fisher-Hartwig symbol to an arc-supported symbol on
[−θ0, θ0]. Nevertheless, letting s→ 0 in (1.6), we do not recover the Widom asymptotics
(1.3). This means that a non-trivial critical transition in the asymptotic behavior for
Dn(s, θ0,W ) takes place as s→ 0. In this paper, we show that the Widom asymptotics
(1.3) extend to the case where s 6= 0 but s = s(n)→ 0 sufficiently rapidly as n→∞.

Theorem 1.1 Let θ0 ∈ (0, π) and define

xc = −2 ln tan
θ0

4
. (1.7)

Let f be of the form (1.2) with W analytic in a neighbourhood of the unit circle. As
n→∞ and simultaneously s→ 0 in such a way that 0 ≤ s ≤ e−xcn, we have

lnDn(s, θ0,W ) = lnDn(0, θ0,W ) + o(1). (1.8)

The error term o(1) is uniform for 0 ≤ s ≤ e−xcn and ε ≤ θ0 ≤ π − ε, ε > 0, and can
be specified as

o(1) = O(n−1/2excns). (1.9)
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Figure 1: As n → ∞, lnDn(s, θ0,W ) follows Widom asymptotics for s = 0, Fisher-
Hartwig asymptotics for s ∈ (0, 1) fixed, and Szegő asymptotics for s = 1. Theorem
1.1 implies that the Widom asymptotics remain valid as n → ∞ with s = s(n) below
the curve s = e−xcn. As n → ∞ with s = s(n) above the curve, a different type of
asymptotic behavior is expected.

In addition, the result extends to the case where θ0 approaches π at a sufficiently slow
rate: (1.8) holds for ε < θ0 < π − M

n with M sufficiently large and 0 ≤ s ≤ e−xcn, with
the error term given by

o(1) = O((π − θ0)1/2n−1/2enxcs). (1.10)

Remark 1.2 We believe the bound s ≤ e−xcn is sharp: as n → ∞, s → 0 with
s > e−xcn, the asymptotic behavior for lnDn(s, θ0,W ) is expected to be described in
terms of elliptic θ-functions. For a heuristic discussion, see Section 5.4.

Remark 1.3 If f is positive on γ and even in θ, the asymptotics for lnDn(0, θ0,W ) in
(1.8) are given by (1.3). The perturbative result (1.8) is valid for general analytic W ,
even if the positivity and symmetry conditions needed for the Widom asymptotics do
not hold. Note that the error term o(1) = O((π−θ0)1/2n−1/2enxcs) in (1.8) improves as
θ0 approaches π. This is reasonable since the perturbation of the arc-supported symbol
then takes place on a shrinking arc near −1. For our proof, it is however crucial that
n(π − θ0) is sufficiently large.

Application 1: the Circular Unitary Ensemble

Consider the Circular Unitary Ensemble (CUE) which is the set of unitary n × n
matrices with the Haar measure. The eigenvalues eiθ1 , . . . , eiθn in this ensemble have
the joint probability distribution

1

(2π)nn!

∏
1≤j<k≤n

|eiθj − eiθk |2
n∏
j=1

dθj , θ1, . . . , θn ∈ [0, 2π). (1.11)
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Define the random variable X = Xθ0 as the number of eigenvalues of a CUE matrix on
the arc γ = {eiθ : −θ0 ≤ θ ≤ θ0}. The average value of Xθ0 is given by

En(Xθ0) =
θ0

π
n. (1.12)

Define the moment generating function

Fn(λ) = En(eλXθ0 ). (1.13)

By (1.11), we can write this as

Fn(λ) =
1

(2π)nn!

∫
[0,2π]n

∏
1≤j<k≤n

|eiθj − eiθk |2eλXθ0
n∏
j=1

dθj (1.14)

=
1

(2π)nn!

∫
[0,2π]n

∏
1≤j<k≤n

|eiθj − eiθk |2
n∏
j=1

eλχγ(eiθ0 )dθj , (1.15)

with χγ the characteristic function of the arc γ. But using the standard multiple
integral representation for Toeplitz determinants, we obtain

Fn(λ) = enλDn(s = e−λ, θ0,W = 0). (1.16)

This is an identity for any λ ≥ 0. The moment generating function Fn(λ) at large
positive values of λ contains statistical information about large deviations where Xθ0 is
much bigger than its average value. As an illustration, a rough estimate of the integral
in (1.15) gives us the inequality

Probn [Xθ0 ≥ p] ≤ e−pλF (λ) = e(n−p)λDn(e−λ, θ0, 0), (1.17)

which holds for any λ ≥ 0 and p ∈ {0, 1, . . . , n}. Theorem 1.1 gives asymptotics for
Dn(e−λ, θ0, 0) for λ ≥ nxc. For large n, the minimum of the right hand side of (1.17)
in the range λ ≥ nxc is attained near

λ = nxc = −2n ln tan
θ0

4
. (1.18)

Substituting this value for λ and the asymptotic behavior for Dn(e−nxc , θ0, 0), we obtain

Probn [Xθ0 ≥ p] ≤
(

tan
θ0

4

)−2n2+2pn(
sin

θ0

2

)n2

× n−1/4

(
cos

θ0

2

)−1/4

21/12e3ζ′(−1)(1 + o(1)), n→∞. (1.19)

For typical values of p ∼ θ0
π n, and even more generally for p < (1− c)n with

c =
ln sin θ0

2

2 ln tan θ0
4

, (1.20)

this estimate does not give any useful information since the right hand side is large for
large n. We do get non-trivial information for large deviations from the typical value.
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If we let p = n− ω(n), we have

Probn [Xθ0 ≥ p] ≤
(

tan
θ0

4

)−2nω(n)(
sin

θ0

2

)n2

× n−1/4

(
cos

θ0

2

)−1/4

21/12e3ζ′(−1)(1 + o(1)), (1.21)

as n → ∞, and the right hand side decays whenever ω(n) < cn. If ω(n) = o(n) as
n→∞, we observe that the probability to have at least n−ω(n) eigenvalues on γ can
be estimated by

Probn [Xθ0 ≥ n− ω(n)] = O(n−1/4en
2φ(θ0)−2nω(n) ln tan

θ0
4 ), as n→∞, (1.22)

where the rate function φ is given by φ(θ0) = ln sin θ0
2 . Note that this is not a large

deviation principle since we only have an asymptotic upper bound for the left hand
side of (1.22). A more detailed analysis of the moment generating function F (λ) may
lead to better estimates, but it is not our aim to proceed in this direction.

Application 2: sine kernel determinants

In the double scaling limit where n → ∞ and θ0 approaches π at rate O(1/n), the
Toeplitz determinant Dn(s, θ0, 0) converges to the Fredholm determinant of the oper-
ator 1 − (1 − s)Ky, where Ky is the integral operator acting on (−y, y) with kernel
sinπ(x−t)
π(x−t) : we have [10, formulas (236)-(241)]

lim
n→∞

Dn(s, θ0 = π(1− 2y

n
), 0) = det(1− (1− s)Ky), (1.23)

where the operator Ky is defined by

(Kyg)(x) =

∫ y

−y

sinπ(x− t)
π(x− t)

g(t)dt. (1.24)

Asymptotics for the right hand side of (1.23) have been studied by Dyson [13], see also
[10] for a historical review; the double scaling limit where y → ∞ and simultaneously

s→ 0 appears to be subtle. As y →∞, s→ 0 in such a way that s ≤ e−
2
π
y, with

c =
1

12
ln 2 + 3ζ ′(−1), (1.25)

we have

ln det(1− (1− s)Ky) = −π
2y2

2
− 1

4
lnπy + c+ o(1). (1.26)

Except for s = 0, (1.26) had not been proved rigorously until the recent paper [6],

where double scaling asymptotics were obtained both for s ≤ e−
2
π
y and for s > e−

2
π
y.

The value of the constant (1.25) was also proved in [6].
As a consequence of our Theorem 1.1, we re-derive (1.26) and (1.25). Indeed, by

(1.3), (1.8), and (1.10), we have

lnDn(s, π(1− 2y

n
), 0) = n2 ln cos

πy

n
− 1

4
lnn− 1

4
ln sin

πy

n
+c+O(

y1/2

n
enxcs)+O(y−1),
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(1.27)

with the error term uniform for n, y large, y1/2/n small, and

s ≤ e−xcn = e2n ln tan
θ0
4 = e2n ln tan(π4−

πy
2n ). (1.28)

The right hand side of (1.28) can be written as e−
2
π
y
(
1 +O(y2n−1)

)
for n, y large and

y2/n small.

Now, let us choose an arbitrary small function ε(y) > 0 and assume s ≤ (1− ε(y))e−
2
π
y.

Then for n sufficiently large, i.e. for n >> y2/ε(y), (1.28) holds, and letting n→∞ in
(1.27), we obtain

lim
n→∞

lnDn(s, π(1− 2y

n
), 0) = −π

2y2

2
− 1

4
lnπy + c+O(y−1), (1.29)

for large y. We thus re-derive (1.26) in the double scaling limit where y →∞, s→ 0 in

such a way that s ≤ (1 − ε(y))e−
2
π
y, and we confirm the value of the constant (1.25),

using different methods than in [6].

In [6], the double scaling asymptotics y → ∞, s → 0 such that s ≥ e−
2
π
y have also

been considered, and asymptotics for det(1− (1− s)Ky) in terms of elliptic θ-functions
were obtained. This is consistent with Remark 1.2 and the discussion in Section 5.4.

Outline

In Section 2, we will derive identities which express d
ds lnDn(s, θ0,W ) in terms of or-

thogonal polynomials on the unit circle. In Section 3, we will study an equilibrium
problem which is crucial to obtain asymptotics for the orthogonal polynomials. In Sec-
tion 4, we will obtain asymptotics for the orthogonal polynomials as the degree tends
to infinity, via the Riemann-Hilbert (RH) method. An important novel feature in the
RH analysis is the construction of a modified Bessel parametrix compared to Bessel
parametrices that appeared in the literature before. This modification is needed be-
cause s 6= 0. The asymptotics for the orthogonal polynomials will lead us towards large
n asymptotics for d

ds lnDn(s, θ0,W ). Integrating the differential identity will complete
the proof of Theorem 1.1 in Section 5 for θ0 fixed. In addition, we explain how the
proof can be extended to the case where θ0 → π at a sufficiently slow rate.

2 Differential identities for Toeplitz determinants

In this section, we derive an identity for d
ds lnDn(s, θ0,W ) in terms of orthogonal poly-

nomials on the unit circle. Define φj , φ̂j , j = 0, 1, 2, . . . as the family of orthogonal
polynomials on the unit circle characterized by

1

2π

∫ 2π

0
φk(e

iθ)φ̂m(e−iθ)f(eiθ)dθ = δkm, ∀k,m ∈ N, (2.1)

where the degree of φj , φ̂j is j, and their leading coefficients χj are equal and positive.

For general weight functions f(eiθ), it is a standard fact that φn, φ̂n exist and are
unique if Dn(f), Dn+1(f) 6= 0 and that they are given by the determinantal formulas
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[21]

φn(z) =
1√

DnDn+1

∣∣∣∣∣∣∣∣∣∣∣

f0 f−1 f−2 · · · f−n
f1 f0 f−1 · · · f−n+1
...

...
...

. . .
...

fn−1 fn−2 fn−3 · · · f−1

1 z z2 · · · zn

∣∣∣∣∣∣∣∣∣∣∣
, (2.2)

and

φ̂n(z) =
1√

DnDn+1

∣∣∣∣∣∣∣∣∣
f0 f−1 f−2 · · · f−n+1 1
f1 f0 f−1 · · · f−n+2 z
...

...
...

. . .
...

...
fn fn−1 fn−2 · · · f1 zn

∣∣∣∣∣∣∣∣∣ , (2.3)

where Dn = Dn(f) is the Toeplitz determinant defined in (1.1), and where fk is, as
before, the k-th Fourier coefficient of f . If f(eiθ) is positive, Dn(f) > 0 for all n ∈ N and
the OPs are well-defined. For complex f , existence and uniqueness of the orthogonal
polynomials is not guaranteed for any n. For f given in (1.2), it will follow from our
analysis that they are well-defined for n sufficiently large and 0 ≤ s ≤ e−xcn. If W = 0,
the symbol f is even in θ and positive, which implies that φ̂k = φk = φk.

From (2.2), we see that the leading coefficient χn of φn is equal to

χn = χn(s, θ0,W ) =

√
Dn(s, θ0,W )

Dn+1(s, θ0,W )
.

We can thus express Dn(s, θ0,W ) in terms of the leading coefficients of the OPs if
D0, D1, . . . , Dn 6= 0:

Dn(s, θ0,W ) =

n−1∏
j=0

χ−2
j . (2.4)

To obtain an asymptotic formula for Dn(s, θ0,W ) from this formula, we would need
information about all OPs of degree 0 up to n − 1. To circumvent this problem, we
derive differential identities for lnDn(s, θ0,W ).

2.1 Differential identity for general W

For general sufficiently smooth symbols f(z; s) depending on a parameter s, there exists
an identity for the logarithmic derivative ofDn(f) with respect to s: ifDn−1, Dn, Dn+1 6=
0, we have [9, Proposition 3.3]

∂s lnDn(s, θ0,W ) =
1

2πi

∫
S1

z−n
[
Y −1(z)Y ′(z)

]
21
∂sf(z, s)dz,

where S1 is the unit circle in the complex plane, ′ = d
dz , ∂s = d

ds , and

Y (z) =

 χ−1
n φn(z) χ−1

n

∫
S1

φn(w)

w − z
f(w)

2πiwn
dw

−χn−1z
n−1φ̂n−1(z−1) −χn−1

∫
S1

φ̂n−1(w)

w − z
f(w)

2πiw
dw

 . (2.5)

7



For our symbol given by (1.2), this formula reduces to

∂s lnDn(s, θ0,W ) =
1

2πi

∫
γc
z−n

[
Y −1(z)Y ′(z)

]
21
eW (z)dz, (2.6)

where γc = S1 \ γ.

2.2 Differential identity for W = 0

If W = 0, the integral at the right hand side of (2.6) can be simplified. Although
(2.6) will be sufficient for the proof of Theorem 1.1, we will show here how to simplify
the differential identity if W = 0. This will allow us to give a more elegant proof of
Theorem 1.1 in this case.

Proposition 2.1 Let Dn(s, θ0, 0) be the Toeplitz determinant with symbol (1.2) in the
case where W (eiθ) = 0. We have the following differential identity for lnDn:

∂s lnDn(s, θ0, 0) = −2n
∂sχn
χn

+
2(1− s)

π
Im
(
φn(eiθ0)∂sφn(eiθ0)

)
. (2.7)

Proof. Taking the logarithm of both sides in (2.4), and then differentiating with
respect to s, we get

∂s lnDn(s, θ0, 0) = −2

n−1∑
j=0

∂sχj
χj

.

On the other hand, by (2.1),

1

2π

∫ 2π

0
∂s

(
φj(e

iθ)φj(eiθ)
)
f(eiθ)dθ = 2

∂sχj
χj

,

and this gives

∂s lnDn(s, θ0, 0) = − 1

2π

∫ 2π

0
∂s

n−1∑
j=0

φj(e
iθ)φj(eiθ)

 f(eiθ)dθ. (2.8)

Here we can use the Christoffel-Darboux formula (see e.g. [21, 8] for a proof of it):

n−1∑
j=0

φj(z)φj(z
−1) = −nφn(z)φn(z−1) + z

(
φn(z−1)φ′n(z)−

(
φn(z−1)

)′
φn(z)

)
.

Substituting this into (2.8), we obtain

∂s lnDn(s, θ0, 0) = 2n
∂sχn
χn

− 1

2π

∫ 2π

0

d

ds

[
eiθ
(
φn(e−iθ)φ′n(eiθ)−

(
φn(z−1)

)′∣∣∣
z=eiθ

φn(eiθ)
)]
f(eiθ)dθ

= 2n
∂sχn
χn

+ I1 + I2 + I3 + I4, (2.9)
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where

I1 = − 1

2π

∫ 2π

0
eiθ∂s

(
φn(e−iθ)

)
φ′n(eiθ)f(eiθ)dθ, (2.10)

I2 = − 1

2π

∫ 2π

0
eiθφn(e−iθ)∂s

(
φ′n(eiθ)

)
f(eiθ)dθ, (2.11)

I3 =
1

2π

∫ 2π

0
eiθ∂s

((
φn(z−1)

)′∣∣∣
z=eiθ

)
φn(eiθ)f(eiθ)dθ, (2.12)

I4 =
1

2π

∫ 2π

0
eiθ
(
φn(z−1)

)′∣∣∣
z=eiθ

∂sφn(eiθ)f(eiθ)dθ. (2.13)

From the orthogonality relation (2.1), we easily get

I2 = I3 = −n∂sχn
χn

. (2.14)

The computation of I1 and I4 is slightly more involved. Using (1.2), we have

I1 = − 1

2πi

∫ 2π

0

d

ds

(
φn(e−iθ)

) d

dθ

(
φn(eiθ)

)
dθ

+
1− s
2πi

∫ 2π−θ0

θ0

∂s

(
φn(e−iθ)

) d

dθ

(
φn(eiθ)

)
dθ. (2.15)

Integrating by parts and then using orthogonality, we obtain

I1 =
1− s
2πi

[
∂s

(
φn(e−iθ)

)
φn(eiθ)

]2π−θ0

θ0
+

1

2πi

∫ 2π

0
φn(eiθ)∂s

d

dθ

(
φn(e−iθ)

)
f(eiθ)dθ

=
1− s
2πi

[
∂s

(
φn(e−iθ)

)
φn(eiθ)

]2π−θ0

θ0
− n∂sχn

χn
. (2.16)

In the same way, we show that

I4 =
1

2π

∫ 2π

0
eiθ
(
φn(z−1)

)′∣∣∣
z=eiθ

∂sφn(eiθ)f(eiθ)dθ

= −1− s
2πi

[
φn(e−iθ)∂sφn(eiθ)

]2π−θ0

θ0
− n∂sχn

χn
.

(2.17)

Summing up (2.14), (2.16), and (2.17), and using the fact that φn = φn if W = 0, we
get the result. 2

As a consequence of Proposition 2.1 and (2.5), we can express the right hand side
of (2.7) in terms of Y = Y (n) given by (2.5):

Corollary 2.2 We have

∂s lnDn(s, θ0, 0) = n∂s lnY12(0) +
2(1− s)

π
Im

(
Y11(eiθ0)√
Y12(0)

∂s

(
Y11(eiθ0)√
Y12(0)

))
. (2.18)

Proof. By (2.5), we have

Y12(0) = χ−2
n , Y11(eiθ0) = χ−1

n φn(eiθ0).

Substituting this into (2.7), we get (2.18). 2
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Integrating both sides from 0 to s0 in (2.6) or (2.7), we obtain

lnDn(s0, θ0,W )− lnDn(0, θ0,W ) =

∫ s0

0
[∂s lnDn(s, θ0,W )] ds. (2.19)

In order to obtain asymptotics for lnDn(s0, θ0,W ), we need large n asymptotics for
the right-hand side of (2.6) and (2.7) uniformly for 0 ≤ s ≤ s0.

To obtain large n asymptotics for Y , we will use the following RH characterization
[16]: Y (z) = Y (n)(z) is the unique 2 × 2 matrix-valued function which satisfies the
following properties.

RH problem for Y

(a) Y : C \ S1 → C2×2 is analytic.

(b) Y has the following jumps:

Y+(z) = Y−(z)

(
1 z−nf(z)
0 1

)
, for z ∈ S1 \

{
z0 = eiθ0 , z0 = e−iθ0

}
,

where Y+(z) (Y−(z)) denotes the limit as z is approached from the inside (outside)
of the unit circle.

(c) Y (z) =
(
I +O(z−1)

)(zn 0
0 z−n

)
as z →∞.

(d) As z tends to z0 or z tends to z0, Y behaves as

Y (z) =

(
O(1) O(ln |z − z0|)
O(1) O(ln |z − z0|)

)
as z → z0,

Y (z) =

(
O(1) O(ln |z − z0|)
O(1) O(ln |z − z0|)

)
as z → z0.

3 Equilibrium measures

It will be convenient to introduce a new parameter x ∈ R+ ∪ {+∞} defined by

s = e−xn, (3.1)

such that f can be written as f(eiθ) = eW (eiθ)e−nV (eiθ), where

V (eiθ) =

{
0, for eiθ ∈ γ,
x, for eiθ ∈ S1 \ γ.

(3.2)

An important ingredient for the large n analysis of the orthogonal polynomials and the
RH problem for Y is the following minimization problem: find the measure µ = µ(x)

which minimizes∫∫
log |z − s|−1dµ(z)dµ(s) +

∫
V (z)dµ(z) (3.3)

among all Borel probability measures on the unit circle S1.
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This measure, which is unique and absolutely continuous with respect to the Lebesgue
measure, is called the equilibrium measure, is denoted dµ(x) = u(x)(eiθ)dθ, and its sup-
port is denoted J (x). The equilibrium measure µ = µ(x) and its support J = J (x)

are uniquely determined by the following Euler-Lagrange variational conditions [1, 20]:
there exists a real constant ` = `(x) such that

2

∫ π

−π
log |z − eiθ|dµ(eiθ)− V (z) + ` = 0, for z ∈ J, (3.4)

2

∫ π

−π
log |z − eiθ|dµ(eiθ)− V (z) + ` ≤ 0, for z ∈ S1 \ J. (3.5)

The support and density of the equilibrium measure can be computed explicitly.

Proposition 3.1 (a) For x = +∞, the support of the equilibrium measure and its
density are given by

J = J (∞) = γ, u(eiθ) = u(∞)(eiθ) =
1

2π

√
cos θ + 1

cos θ − cos θ0
. (3.6)

The constant ` = `(∞) in the variational conditions (3.4)-(3.5) is given by

`(∞) = 2 ln sin
θ0

2
, (3.7)

and the variational inequality (3.5) is strict for z ∈ S1 \ γ.

(b) Let xc be given by (1.7). For x ≥ xc, we have the same result as for x = +∞:

J = γ , u(eiθ) = u(∞)(eiθ), ` = `(∞). (3.8)

Moreover, the variational inequality (3.5) is strict for z ∈ S1 \ γ if x 6= xc; if
x = xc, it is strict for z ∈ S1 \ (γ ∪ {−1}), and there is equality for z = −1.

(c) For 0 < x < xc, the support of µ consists of two disjoint arcs: we have

J = {eiθ : θ ∈ [−θ0, θ0] ∪ [π − θ1, π + θ1]}, (3.9)

where θ1 = θ1(x) ∈ (0, π − θ0) is the unique solution of

2

∫
[−θ0,θ0]∪[π−θ1,π+θ1]

log

∣∣∣∣1 + eiθ

1− eiθ

∣∣∣∣u(eiθ)dθ = x, (3.10)

and the density is given by

u(eiθ) =
1

2π

√
cos θ + cos θ1

cos θ − cos θ0
. (3.11)

The constant ` is given by

` = −
∫ 1

0

1

s

(
1−

√
s2 + 2 cos(θ1)s+ 1

s2 − 2 cos(θ0)s+ 1

)
ds, (3.12)

and the variational inequality (3.5) is strict for z ∈ S1 \ J .
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Remark 3.2 Although part (c) of the proposition is not needed for the proof of The-
orem 1.1, we present it here for completeness and to support the heuristic arguments
in Section 5.4, where we will discuss asymptotics for Dn if x < xc.

Proof. Note first that the equation (3.10) has indeed a unique solution θ1 for x < xc,
since the function

θ1 7→ 2

∫
[−θ0,θ0]∪[π−θ1,π+θ1]

log

∣∣∣∣1 + eiθ

1− eiθ

∣∣∣∣u(eiθ)dθ

decreases as a function of θ1 ∈ (0, π − θ0), and is bijective from (0, π − θ0) to (0, xc).

The equilibrium measure µ is uniquely characterized by the conditions (3.4)-(3.5),
which means that it is sufficient for us to show that the measure µ defined in cases (a),
(b), and (c) satisfy these variational conditions. To do so, consider the function

f(z) = 2

∫
log |z − eiθ|dµ(x)(eiθ). (3.13)

If we define θ1 > 0 as the unique solution of (3.10) if x < xc, and if we let θ1 = 0 for
x ≥ xc, we have

f(eiα) =
1

π

∫
[−θ0,θ0]∪[π−θ1,π+θ1]

log |eiα − eiθ|
√

cos θ + cos θ1

cos θ − cos θ0
dθ. (3.14)

The derivative d
dαf(eiα) can be written as a contour integral

d

dα
f(eiα) = − 1

2πi

∫
Σ

1

ξ

ξ + eiα

ξ − eiα

(
(ξ − z1)(ξ − z1)

(ξ − z0)(ξ − z0)

)1/2

dξ, z1 = eiθ1 , (3.15)

where the square root is analytic off J and tends to 1 as ξ →∞, and where the contour
Σ consists of one (if x ≥ xc) or two (if x < xc) counterclockwise oriented circles around
the arc(s) of J . If eiα ∈ S1 \J , the contour has to be chosen sufficiently small such that
eiα lies in the exterior of Σ.

If eiα ∈ J , a residue calculation shows that d
dαf(eiα) = 0. If eiα ∈ S1 \ J on the

other hand, we have

d

dα
f(eiα) =


√

cos θ1+cosα
cos θ0−cosα , if θ0 < α < π − θ1,

−
√

cos θ1+cosα
cos θ0−cosα , if π + θ1 < α < 2π − θ0.

(3.16)

It follows that f(eiα) is constant on [−θ0, θ0] ∪ [π − θ1, π + θ1], and that it achieves its
maximum on [π − θ1, π + θ1] (i.e. at π if x ≥ xc). We have

f(eiα) = f(1), for −θ0 ≤ α ≤ θ0, (3.17)

f(eiα) = f(−1), for π − θ1 ≤ α ≤ π + θ1, (3.18)

f(eiα) < f(−1), for α /∈ [π − θ1, π + θ1]. (3.19)

If we show that

f(1) = −`, f(−1) < f(1) + x, for x > xc, (3.20)

f(1) = −`, f(−1) = f(1) + x, for x ≤ xc, (3.21)
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then (3.17)-(3.19) imply the Euler-Lagrange conditions (3.4)-(3.5).
For the case x ≥ xc, using (3.16), we obtain after a straightforward calculation,

f(−1)− f(1) = f(eiπ)− f(eiθ0) =

∫ π

θ0

√
1 + cos θ

cos θ0 − cos θ
dθ = −2 ln tan

θ0

4
= xc ≤ x,

which proves the inequality in (3.20), and the fact that there is equality at −1 if x = xc.
Moreover, using an other residue calculation, we get

f(1) =

∫ 1

0
f ′(s)ds =

∫ 1

0

1

s

(
1− 1 + s√

s2 − 2 cos(θ0)s+ 1

)
ds = −2 log sin

θ0

2
= −`(∞).

This proves the equality in (3.20). For 0 < x < xc, by (3.16),

f(−1)− f(1) = f(ei(π−θ1))− f(eiθ0) =

∫ π−θ1

θ0

√
cos θ1 + cos θ

cos θ0 − cos θ
dθ = x,

by definition of f and θ1, and

f(1) =

∫ 1

0

1

s

(
1−

√
s2 + 2 cos(θ1)s+ 1

s2 − 2 cos(θ0)s+ 1

)
ds = −`.

This completes the proof. 2

4 Riemann-Hilbert analysis for x ≥ xc

We will now perform an asymptotic analysis of the RH problem for Y as n→∞ with
x ≥ xc. Our analysis uses the Deift/Zhou steepest descent method [7, 11, 12] and shows
many similarities with the analysis done in [17] for s = 0 (or x = +∞). An important
difference is that we need to modify the Bessel parametrices around the points z0, z0,
see Section 4.4 below.

4.1 First transformation Y → T

We define g by

g(z) =

∫ θ0

−θ0
log(z − eiθ)dµ(∞)(eiθ). (4.1)

Below we write µ = µ(∞), u = u(∞), and ` = `(∞). We have that eg is analytic for
z ∈ C \ γ, and by the Euler-Lagrange variational conditions (3.4)-(3.5), we also have

g+(z) + g−(z)− log(z)− iπ + ` = 0, for z ∈ γ \ {z0, z0}, (4.2)

2g(z)− log(z)− iπ + ` < 0, for z ∈ S1 \ γ, (4.3)

g′+(z)− g′−(z) = −2π

z
u(z), for z ∈ γ \ {z0, z0}. (4.4)

Define

T (z) = e
nπi
2
σ3e

n`
2
σ3Y (z)e−ng(z)σ3e−

n`
2
σ3e−

nπi
2
σ3 . (4.5)

Then it is straightforward to check that T satisfies the following conditions.
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RH problem for T

(a) T : C \ S1 → C2×2 is analytic.

(b) T satisfies the jump relation

T+(z) = T−(z)JT (z), on S1 \ {z0, z0} , (4.6)

with

JT (z) =

(
e−n(g+(z)−g−(z)) (−1)nz−ne−nV (z)en`en(g+(z)+g−(z))eW (z)

0 en(g+(z)−g−(z))

)
.

(c) T (z) = I +O(z−1) as z →∞.

(d) As z → z0 = eiθ0 or z → z0 = e−iθ0 , we have

T (z) =

(
O(1) O(ln |z − z0|)
O(1) O(ln |z − z0|)

)
, as z → z0,

T (z) =

(
O(1) O(ln |z − z0|)
O(1) O(ln |z − z0|)

)
, as z → z0.

We define

φ(z) = 2g(z)− log z − iπ + `, (4.7)

so that eφ is analytic in a neighborhood of γ with the exception of γ itself. For z ∈
γ \ {z0, z0}, we have

φ+(z) = (g+(z) + g−(z)− log z − iπ + `) + (g+(z)− g−(z)) (4.8)

= g+(z)− g−(z), (4.9)

by (4.2). But g+(z0) = g−(z0), and integrating (4.4) between z0 and z, and then
substituting it into (4.8), we obtain

φ+(z) = −2π

∫ z

z0

u(ξ)

ξ
dξ. (4.10)

Analytically continuing the left and right hand side, we obtain

φ(z) =

∫ z

z0

ξ + 1

((ξ − z0)(ξ − z0))1/2

dξ

ξ
, (4.11)

where the branch cut of the square root is chosen on γ. It is now convenient to express
JT in terms of φ:

JT (z) =



(
e−nφ+(z) eW (z)

0 e−nφ−(z)

)
, z ∈ γ \ {z0, z0},(

1 e−nxenφ(z)eW (z)

0 1

)
, z ∈ S1 \ γ.
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z0

γγ+ γ−γc

z0

Figure 2: The jump contour for S.

4.2 Second transformation T → S

We can factorize JT on γ as follows:(
e−nφ+(z) eW (z)

0 e−nφ−(z)

)
=

(
1 0

e−nφ−(z)e−W (z) 1

)
×
(

0 eW (z)

−e−W (z) 0

)(
1 0

e−nφ+(z)e−W (z) 1

)
. (4.12)

Using this factorization, we can split the jump on γ into three different jumps on a
lens-shaped oriented contour, see Figure 2. It is important that the jump contour lies
in the region where W is analytic. Denote by γ+ and γ− the lenses around γ on the
|z| < 1 side and the |z| > 1 side respectively. Define

S(z) =



T (z)

(
1 0

−e−nφ(z)e−W (z) 1

)
, |z| < 1, z inside the lenses around γ,

T (z)

(
1 0

e−nφ(z)e−W (z) 1

)
, |z| > 1, z inside the lenses around γ,

T (z), z outside the lenses.

(4.13)

Then S solves the following RH problem.

RH problem for S

(a) S : C \ (S1 ∪ γ− ∪ γ+)→ C2×2 is analytic.

(b) S satisfies the jump relations

S+(z) = S−(z)JS(z), for z ∈ S1 ∪ γ− ∪ γ+, (4.14)

where S+ (S−) denotes the boundary value from the left (right) of the contour,
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and where

JS(z) =



(
1 e−nxenφ(z)eW (z)

0 1

)
, for z ∈ S1 \ γ,(

0 e−W (z)

−e−W (z) 0

)
, for z ∈ γ \ {z0, z0},(

1 0

e−nφ(z)e−W (z) 1

)
, for z ∈ γ+ ∪ γ−.

(4.15)

(c) S(z) = I +O(z−1) as z →∞.

(d) As z → z0 = eiθ0 or z → z0 = e−iθ0 , we have

S(z) = O(ln |z − z0|), S(z) = O(ln |z − z0|). (4.16)

By (4.7) and (4.3), we observe that the jump matrices for S converge to the iden-
tity matrix on S1 \ γ as n → ∞, except at −1 if x = xc. On γ+ ∪ γ−, one shows
that Reφ(z) > 0 and consequently the jump matrices for S also converge to the
identity matrix on γ+ ∪ γ−. The convergence of the jump matrices is point-wise in
z and breaks down as z approaches z0, z0, and also as z approaches −1 if x = xc.
Therefore, we will need to construct approximations to S for large n in different
regions of the complex plane: local parametrices will be constructed in small disks
D(z0, r), D(z0, r), D(−1, r) surrounding z0, z0,−1, and a global parametrix will be con-
structed in C \ (D(z0, r) ∪D(z0, r) ∪D(−1, r)).

4.3 Global parametrix

Ignoring the exponentially small jumps for S and small neighborhoods of z0, z0, −1, we
are led to the following RH problem:

RH problem for P (∞)

(a) P (∞) : C \ γ → C2×2 is analytic.

(b) P (∞) has the jump

P
(∞)
+ (z) = P

(∞)
− (z)

(
0 eW (z)

−e−W (z) 0

)
, z ∈ γ \ {z0, z0}. (4.17)

(c) P (∞)(z) = I +O(z−1) as z →∞.

(d) As z → z0 or z → z0, we have

P (∞)(z) = O(|z − z0|−1/4), P (∞)(z) = O(|z − z0|−1/4). (4.18)

The solution of this RHP is explicitly given by

P (∞)(z) = eh∞σ3
(

1
2

(
β(z) + β−1(z)

)
− 1

2i

(
β(z)− β−1(z)

)
1
2i

(
β(z)− β−1(z)

)
1
2

(
β(z) + β−1(z)

) ) e−h(z)σ3 , (4.19)
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γc

γ+
γ

γ−
z0

∂D(z0, r)

Figure 3: The jump contour for P .

where β(z) =
(
z−z0
z−z0

)1/4
is analytic in C \ γ and β(z) → 1 as z → ∞, where h∞ =

limz→∞ h(z), and

h(z) =
((z − z0)(z − z0))1/2

2πi

∫
γ

W (ξ)

((ξ − z0)(ξ − z0))
1/2
+

1

ξ − z
dξ, (4.20)

with ((z − z0)(z − z0))1/2 analytic off γ. Note that h is analytic in C \γ, bounded near
z0, z0, and ∞, and that it satisfies the jump relation

h+(z) + h−(z) = W (z), z ∈ γ \ {z0, z0}.

Using these properties, it is straightforward to verify that P (∞) solves the above RH
problem.

4.4 Local parametrix near z0

We want to construct a function P defined in D(z0, r) satisfying the following RH
conditions.

RH problem for P

(a) P : D(z0, r) \ (S1 ∪ γ+ ∪ γ−)→ C2×2 is analytic.

(b) For z on the contour shown in Figure 3, P satisfies the jump conditions

P+(z) = P−(z)

(
0 eW (z)

−e−W (z) 0

)
, on γ \ {z0, z0},

P+(z) = P−(z)

(
1 en(φ(z)−x)eW (z)

0 1

)
, on γc,

P+(z) = P−(z)

(
1 0

e−nφ(z)e−W (z) 1

)
, on γ− ∪ γ+.

(4.21)

(c) For z ∈ ∂D(z0, r), we have

P (z) =
(
I +O(n−1)

)
P (∞)(z), as n→∞. (4.22)
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(d) As z tend to z0, the behaviour of P is

P (z) = O(ln |z − z0|). (4.23)

4.4.1 Bessel model RH problem

We will construct P in terms of a model RH problem for which the solution is con-
structed using Bessel functions. Consider the following model RH problem:

RH problem for Ψ

(a) Ψ : C \ ΣΨ → C2×2 is analytic, where ΣΨ = R− ∪ {xe±
2π
3
i : x ∈ R+}, with the

orientation from ∞ towards 0 for the three half-lines.

(b) Ψ satisfies the jump conditions

Ψ+(ζ) = Ψ−(ζ)

(
0 1
−1 0

)
, ζ ∈ R−,

Ψ+(ζ) = Ψ−(ζ)

(
1 0
1 1

)
, ζ ∈ {xe

2π
3
i : x ∈ R+},

Ψ+(ζ) = Ψ−(ζ)

(
1 0
1 1

)
, ζ ∈ {xe−

2π
3
i : x ∈ R+}.

(c) Ψ(ζ) =
(

2πζ
1
2

)−σ3
2 1√

2

(
1 i
i 1

)(
I +O(ζ−

1
2 )
)
e2ζ

1
2 σ3 , as ζ →∞, ζ /∈ ΣΨ.

(d) As ζ tend to 0, the behaviour of Ψ(ζ) is

Ψ(ζ) = O(ln |ζ|). (4.24)

This model RH problem is well-known and it can be solved explicitly using Bessel
functions, see e.g. [19, 17]. The unique solution to this RH problem is given by

Ψ(ζ) =



(
I0(2ζ

1
2 ) i

πK0(2ζ
1
2 )

2πiζ
1
2 I ′0(2ζ

1
2 ) −2ζ

1
2K ′0(2ζ

1
2 )

)
, | arg ζ| < 2π

3 , 1
2H

(1)
0 (2(−ζ)

1
2 ) 1

2H
(2)
0 (2(−ζ)

1
2 )

πζ
1
2

(
H

(1)
0

)′
(2(−ζ)

1
2 ) πζ

1
2

(
H

(2)
0

)′
(2(−ζ)

1
2 )

 , 2π
3 < arg ζ < π, 1

2H
(2)
0 (2(−ζ)

1
2 ) −1

2H
(1)
0 (2(−ζ)

1
2 )

−πζ
1
2

(
H

(2)
0

)′
(2(−ζ)

1
2 ) πζ

1
2

(
H

(1)
0

)′
(2(−ζ)

1
2 )

 , −π < arg ζ < −2π
3 ,

(4.25)

where H
(1)
0 and H

(2)
0 are the Hankel functions of the first and second kind, and I0 and

K0 are the modified Bessel functions of the first and second kind.

4.4.2 Modification of the model RH problem

We will use a conformal map which maps the curves γ−, γ, γ+ in the vicinity of z0 to
(part of) the jump contour for Ψ. This is similar to the construction in [17], which
corresponds to the case s = 0. If s = 0, P has no jump on γc (see Figure 3), and the
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2π
3

0

Σ
Ψ̂

Figure 4: The jump contour for Ψ̂.

model RH problem fits perfectly to construct the local parametrix P . In our situation
however, P does have a jump on γc, and for this reason we need to modify the model
RH problem. A different but similar construction was done in [6].

Define Ψ̂ by

Ψ̂(ζ) = (I +A(ζ)) Ψ(ζ), (4.26)

where A is given by

A(ζ) = e−nxF (ζ)

(
0 − 1

2πi ln(−ζ)
0 0

)
F−1(z), (4.27)

with the branch cut of ln(−ζ) on R+ and with imaginary part between 0 and 2π, and
with F defined by

F (ζ) =



Ψ(ζ)

(
1 − 1

2πi ln ζ
0 1

)
| arg ζ| < 2π

3 ,

Ψ(ζ)

(
1 0
1 1

)(
1 − 1

2πi ln ζ
0 1

)
2π
3 < arg ζ < π,

Ψ(z)

(
1 0
−1 1

)(
1 − 1

2πi ln ζ
0 1

)
−π < arg ζ < −2π

3 .

(4.28)

It is easy to check that F is an entire function. Ψ̂ is analytic in C \ Σ
Ψ̂

, with Σ
Ψ̂

as
shown in Figure 4. On Σ

Ψ̂
, it has the jump relations

Ψ̂+(ζ) = Ψ̂−(ζ)

(
0 1
−1 0

)
, on R−,

Ψ̂+(ζ) = Ψ̂−(ζ)

(
1 e−nx

0 1

)
, on R+,

Ψ̂+(ζ) = Ψ̂−(ζ)

(
1 0
1 1

)
, on

{
xe

2π
3
i : x ∈ R+

}
,

Ψ̂+(ζ) = Ψ̂−(ζ)

(
1 0
1 1

)
, on

{
xe−

2π
3
i : x ∈ R+

}
.

(4.29)
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4.4.3 Construction of the local parametrix

We construct P as follows,

P (z) = E(z)Ψ̂(n2ζ(z))e−
n
2
φ(z)σ3e−

1
2
W (z)σ3 , (4.30)

where E is an analytic function in D(z0, r), and where ζ(z) = 1
16φ(z)2. By (4.11), we

have that ζ(z) is a conformal map near z0, and that ζ(z0) = 0. Moreover, ζ maps
γ ∩ D(z0, r) to part of the real line. We now fix the lens-shaped contours γ− and γ+

by requiring that ζ(γ− ∪ γ+) ⊂ Σ
Ψ̂

.
For any analytic function E, we have that P defined in (4.30) satisfies conditions (a),

(b), and (d) of the RH problem for P . Indeed, P is analytic in D(z0, r)\(γ∪γ+∪γ−∪γc)
by construction, and by (4.30) and (4.29), it is straightforward to verify that the jump
condition (4.21) holds. The logarithmic behavior (4.23) of P near z0 follows from the
logarithmic behavior (4.24) together with the definition (4.26)-(4.27) of Ψ̂. If we define
E(z) by

E(z) = P (∞)(z)e
1
2
W (z)σ3 1√

2

(
1 −i
−i 1

)(
1

2
nπφ(z)

)σ3
2

,

we have in addition the matching condition (4.22) for P . Using the jump relation for
P (∞), it is easily verified that E is analytic near z0. This completes the construction
of the local parametrix near z0.

4.5 Local parametrix near z0

Once the local parametrix near z0 constructed, the local parametrix near z0 is easy
to construct. Define for z ∈ D(z0, r), P (z) = P (z), where P (z) refers to the local
parametrix constructed near z0. Then, P satisfies the following RH conditions.

RH problem for P

(a) P : D(z0, r) \ (S1 ∪ γ+ ∪ γ−)→ C2×2 is analytic.

(b) For z ∈ D(z0, r) and z on the jump contour, P satisfies the jump conditions

P+(z) = P−(z)

(
0 eW (z)

−e−W (z) 0

)
, on γ \ {z0, z0},

P+(z) = P−(z)

(
1 en(φ(z)−x)eW (z)

0 1

)
, on γc,

P+(z) = P−(z)

(
1 0

e−nφ(z)e−W (z) 1

)
, on γ− ∪ γ+.

(c) For z ∈ ∂D(z0, r), we have

P (z) =
(
I +O(n−1)

)
P (∞)(z), as n→∞. (4.31)

(d) As z tend to z0, the behaviour of P is

P (z) = O(ln |z − z0|).
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4.6 Local parametrix near −1

For x > xc + δ, the jump matrix for S converges exponentially fast to the identity
matrix as n → ∞ near −1. However, as x approaches xc, the convergence becomes
slower, and for x = xc, the jump matrix for S does not converge to I any longer.
Therefore, we need to construct a local parametrix near −1. This construction can be
done for any x ≥ xc but is only necessary when x is close to xc. The local parametrix
should satisfy the following conditions.

RH problem for P

(a) P : D(−1, r) \ S1 → C2×2 is analytic.

(b) P has the jump

P+(z) = P−(z)

(
1 en(φ(z)−x)eW (z)

0 1

)
, z ∈ S1 ∩D(−1, r). (4.32)

(c) For z ∈ ∂D(−1, r), we have

P (z) = (I + o(1))P (∞)(z), as n→∞. (4.33)

The solution of this RHP is given by

P (z) = P (∞)(z)

(
1 h̃(z)
0 1

)
, (4.34)

with h̃(z) =
1

2πi

∫
S1∩D(−1,r)

en(φ(s)−x)eW (s)

s− z
ds. Using the fact that φ(s) − xc has a

double zero at s = 1, it is straightforward to verify that

h̃(z) = O(n−1/2en(xc−x)), for z ∈ ∂D(−1, r), as n→∞, (4.35)

and this implies the matching condition (4.33).
Note that we use the same notation P for the different local parametrices defined

in D(z0, r), D(z0, r), and D(−1, r).

4.7 Final transformation S 7→ R

Define

R(z) =

{
S(z)P (∞)(z)−1, z ∈ C \ (D(z0, r) ∪D(z0, r) ∪D(−1, r)),

S(z)P (z)−1, z ∈ D(z0, r) ∪D(z0, r) ∪D(−1, r).
(4.36)

P was constructed in such a way that it has exactly the same jump relations as S in
D(z0, r)∪D(z0, r)∪D(−1, r), and as a consequence R has no jumps at all inside those
disks. Moreover, from the local behaviour of S and P near z0, z0 and −1, it follows
that R is analytic at these three points. We have the following RH problem for R:
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z0

z0

−1

ΣR

Figure 5: The jump contour for R.

RH problem for R

(a) R : C \ ΣR → C2×2 is analytic, with ΣR as in Figure 5.

(b) R satisfies the jump conditions:

R+(z) = R−(z)
(
I +O(n−1)

)
, for z ∈ ∂D(z0, r) ∪ ∂D(z0, r),

R+(z) = R−(z)
(
I +O(n−

1
2 en(xc−x))

)
, for z ∈ ∂D(−1, r),

R+(z) = R−(z)(I +O(e−cn)), c > 0 for z elsewhere on ΣR.

(c) R(z) = I +O(z−1) as z →∞.

As n → ∞ with s ≤ e−xcn, it follows from the standard theory for small-norm RH
problems that

R(z) = I+O(n−
1
2 en(xc−x))+O(n−1), R′(z) = O(n−

1
2 en(xc−x))+O(n−1), (4.37)

uniformly for z ∈ C \ ΣR. By a more detailed analysis of Cauchy operators associated
to the RH problem for R, one obtains in addition that

∂xR(z) = O(n1/2en(xc−x)). (4.38)

The latter estimate is not really needed for the proof of Theorem 1.1, but will be needed
in our alternative proof if W = 0, see Section 5.2. Since s = e−xn, it follows that

∂sR(z) = −e
xn

n
∂xR(z) = O(n−1/2enxc). (4.39)

5 Asymptotics for Dn(s, θ0,W )

We will now complete the proof of Theorem 1.1 using the results from the previous
sections. We first do this for general analytic W in the case where ε < θ0 < π − ε for
some ε > 0. Afterwards we will explain how the proof can be somewhat simplified if
W = 0, and we will show how it can be extended to the case where θ0 approaches π at
a sufficiently slow rate.
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5.1 Proof of Theorem 1.1 for ε < θ0 < π − ε

By inverting the transformations Y 7→ T 7→ S 7→ R, we obtain an expression for R in
terms of Y , involving the parametrices P and P (∞). For z ∈ γc ∩ (D(z0, r)∪D(z0, r)∪
D(−1, r)), we have

Y±(z) = e−
nπi
2
σ3e−

n`
2
σ3R(z)P±(z)eng(z)σ3e

n`
2
σ3e

nπi
2
σ3 , (5.1)

and for z ∈ γc \ (D(z0, r) ∪D(z0, r) ∪D(−1, r)),

Y±(z) = e−
nπi
2
σ3e−

n`
2
σ3R±(z)P (∞)(z)eng(z)σ3e

n`
2
σ3e

nπi
2
σ3 . (5.2)

It follows that

[
Y −1(z)Y ′(z)

]
21

=

{
(−1)ne2ng(z)en`A1(z), z ∈ γc ∩ (D(z0, r) ∪D(z0, r) ∪D(−1, r)),

(−1)ne2ng(z)en`A2(z), z ∈ γc \ (D(z0, r) ∪D(z0, r) ∪D(−1, r)),

(5.3)

where

A1(z) =
[
P−1(z)R−1(z)R′(z)P (z) + P−1(z)P ′(z)

]
21
, (5.4)

A2(z) =
[
P (∞)−1

(z)R−1(z)R′(z)P (∞)(z) + P (∞)−1
(z)P (∞)′(z)

]
21
. (5.5)

Note that the boundary values of A1(z) and A2(z) as z is approached from the inside
and the outside of the unit circle are the same. For z ∈ D(−1, r), the local parametrix
P is given by (4.34), and one verifies that the formulas for A1 and A2 coincide in this
case.

Substituting (5.3) in the differential identity (2.6), we find

∂s lnDn(s, θ0,W ) = I1 + I2, (5.6)

where

I1 =
1

2πi

∫
γc1

z−ne2ng(z)en`A1(z)eW (z)dz,

I2 =
1

2πi

∫
γc2

z−ne2ng(z)en`A2(z)eW (z)dz,

with γc1 = γc ∩ (D(z0, r) ∪D(z0, r)) and γc2 = γc \ (D(z0, r) ∪D(z0, r)).
Now we need to know how I1 and I2 behave for large n and s ≤ e−xcn. For A2, we

note that P (∞) does not depend on n, and that R and R′ are uniformly bounded by
(4.37). This implies that A2(z) is uniformly bounded on γc2 for large n. For A1, we need
to take a closer look at the construction of P near z0 and z0, but it is straightforward
to show that P (z) = O(n), P−1(z) = O(n), and P ′(z) = O(n2) for z ∈ γc1. We get

|I1| = O

(
n3

∫
[θ0,θ0+r]∪[2π−θ0−r,2π−θ0]

∣∣∣e2ng(eiα)+n`
∣∣∣ dα) ,

|I2| = O
(∫ 2π−θ0−r

θ0+r

∣∣∣e2ng(eiα)+n`
∣∣∣ dα) ,
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as n→∞ with s ≤ e−xcn. The function 2g(z) + `− xc is always negative on γc except
that it has a zero of order two at z = −1. Therefore we obtain after a straightforward
analysis that

|I1| = O
(
en(xc−C)

)
, C > 0, (5.7)

|I2| = O(n−1/2enxc), (5.8)

as n→∞, s ≤ e−xcn.
If we integrate (5.6) from 0 up to s = e−xn ≤ e−xcn, we finally obtain the desired

estimate

lnDn(s, θ0,W )− lnDn(0, θ0,W ) =

∫ s

0
(I1 + I2)ds′ = O(n−1/2e−n(x−xc)).

5.2 Alternative proof of Theorem 1.1 if W = 0, s = o(n1/2e−nxc)

In the case where W = 0, there is an alternative approach to prove Theorem 1.1: we
can use the differential identity (2.18) instead of (2.6). This does not make the proof
much shorter, but it has the advantage that no integrals have to be estimated, and
that we only need information about Y at the points 0 and z0, instead of on the entire
curve γc. The objects in the differential identity can be computed more explicitly in
this case by the following result.

Proposition 5.1 Let W = 0. As n→∞ with x > xc, we have

Y12(0) = e−n`
[
sin

θ0

2
+O(n−1/2)

]
, (5.9)

∂s lnY12(0) = O(n−1/2enxc), (5.10)

Y11(z0) = e−
n`
2 O(n1/2). (5.11)

Proof. Using (5.2) and the expressions g(0) = πi and P
(∞)
12 (0) = sin θ0

2 (if W = 0),
we get the result for Y12(0).

For ∂s lnY12(0), we have

∂s lnY12(0) =
∂s

(
R11(0)P

(∞)
12 (0) +R12(0)P

(∞)
22 (0)

)
R11(0)P

(∞)
12 (0) +R12(0)P

(∞)
22 (0)

. (5.12)

By (4.39), this yields (5.10).
For the rest of this proof, we assume that |z| < 1 and that z lies outside of the

lenses and in D(z0, r). Then we have by (5.1),

Y11(z) = eng(z) [R11(z)P11(z) +R12(z)P21(z)] . (5.13)

By (4.1) and (4.2), we can show that

g(z0) = − `
2

+ i
θ0 + π

2
.

On the other hand, by (4.25), as z → z0 for fixed n, we have

Ψ11(n2ζ(z)) = 1 +O(z − z0), Ψ21(n2ζ(z)) = O(z − z0).
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This implies, by (4.26), that

Pj1(z0) = Ej1(z0)(1 +O(e−nx))e−
n
2
φ(z0), as n→∞.

Since φ(z0) = 0, we have Pj1(z0) = O(
√
n), j = 1, 2, and

Y11(z0) = e
n
(
− `

2
+i

θ0+π
2

)
(P11(z0) +O (1)) = e−

n`
2 O(n1/2),

as n→∞. 2

By Proposition 5.1 and (2.18), we have

n∂s lnY12(0) = O(n1/2enxc), (5.14)

2(1− s)
π

Im

(
Y11(eiθ0)√
Y12(0)

∂s

(
Y11(eiθ0)√
Y12(0)

))
= O(n), (5.15)

as n→∞. Therefore, using (2.19), we get

lnDn(s, θ0, 0) = lnDn(0, θ0, 0) +

∫ s

0
O(n1/2enxc)ds′

= lnDn(0, θ0, 0) +O(n1/2e−n(x−xc)),

and we rederive Theorem 1.1 with a slightly worse error term which is only small if
s = o(n1/2e−nxc).

5.3 Extension to the case where θ0 depends on n

The RH analysis done in the previous section is valid as n → ∞ with ε < θ0 < π − ε
and ε > 0 independent of n. If θ0 = θ0(n) depends on n and approaches π as n→∞,
the arc γ grows and the gap (eiθ0 , ei(2π−θ0)) closes. Similarly to [17], we will show here
that the RH analysis carried out before remains valid as long as n(π − θ0) is large.

A first problem in the RH analysis is that we need to allow the radius r = r(n) of
the disks D(z0, r), D(−1, r), and D(z0, r) to depend on n (or on θ0) in order to prevent
the disks to overlap. For instance, we can keep the disks separated from each other if
we let r(θ0) = δ(π − θ0), with δ > 0 a sufficiently small but fixed number. Then the
local parametrices near z0, z0,−1 can be constructed in exactly the same way as before.
However, in order to make the asymptotic analysis work, it is crucial that the jump
matrix for R tend to I uniformly as n→∞ on the n-dependent jump contour. Recall
that the jump matrix for R is given by

JR(z) =

{
P (z)P (∞)(z)−1, z ∈ ∂D(z0, r) ∪ ∂D(z0, r) ∪ ∂D(−1, r),

P (∞)(z)JS(z)P (∞)(z)−1, z ∈ ΣR \ (∂D(z0, r) ∪ ∂D(z0, r) ∪ ∂D(−1, r)) ,

(5.16)

where JS denotes the jump matrix for S given in (4.15).
The first thing to notice is that h(z), defined in (4.20), and β(z), defined right before

(4.20), are uniformly bounded on the jump contour ΣR. This implies that P (∞)(z) is
uniformly bounded for z ∈ ΣR. Next, by (4.11), we have

|φ(z)| ≥ C sin(π − θ0), z ∈ ΣR, (5.17)
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for a constant C > 0 independent of z and θ0. By (4.15), this already implies that the
jump matrix JR is I + O(n−1(π − θ0)−1) on ΣR, except on the three circles around
z0, z0, and −1. On ∂D(z0, r) and ∂D(z0, r), we have

JR(z) = P (z)P (∞)(z)−1 = P (∞)(z)
(
I +O(n−1φ(z)−1)

)
P (∞)(z)−1 (5.18)

= I +O(n−1(π − θ)−1). (5.19)

Finally, on ∂D(−1, r), by (4.34), we have

JR(z) = P (z)P (∞)(z)−1 = I +O(h̃(z)) = I +O(n−1/2e−n(x−xc)). (5.20)

It follows from these considerations that

JR(z)− I = O(n−1(π − θ0)−1) +O(n−1/2e−n(x−xc)), as n→∞,

with θ0 approaching π sufficiently slowly such that n(π−θ0)→ +∞. By the small-norm
theory for RH problems, it follows that

R(z) = I +O
(
n−1(π − θ0)−1

)
+O(n−1/2e−n(x−xc)), (5.21)

and

R′(z) = O
(
n−1(π − θ0)−1

)
+O(n−1/2e−n(x−xc)), (5.22)

as n→∞, n(π − θ0)→ +∞. The proof of Theorem 1.1 can now be completed in the
same way as before, where the estimate (5.7) remains valid, (5.8) becomes

|I2| = O((π − θ0)1/2n−1/2enxc),

and we obtain the error term (1.10).

5.4 Heuristic discussion of the asymptotics for s > e−xcn

As n → ∞ with s = e−xn > e−(xc−δ)n, δ > 0, it is expected that the behavior of
the Toeplitz determinants Dn(s, θ0,W ) is very different from the behavior described in
Theorem 1.1. As shown in Proposition 3.1, the equilibrium measure is then supported
on two disjoint arcs. In the RH analysis, that means that the RH problem for the
global parametrix P (∞) will become more involved. It is well understood that P (∞)

can then be constructed using elliptic θ-functions, see e.g. [5, 11, 12]. For this reason
and because of the analogy with the Fredholm determinants of the sine kernel discussed
in Section 1, we expect that the asymptotic behavior of the Toeplitz determinants will
also involve elliptic θ-functions, and will be oscillatory. A transition between the Widom
asymptotics (1.3) and the Fisher-Hartwig asymptotics (1.6) should become visible here.
A rigorous analysis is delicate, and we plan to come back to this in a future publication.
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