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What limits calculations to this system size is the need in current implementations
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Abstract 
Density-functional theory (DFT) is currently the ab initio method most widely used to predict electronic energy levels of new molecules. However,  approximations intrinsic to the theory limit the 
accuracy of calculated energy levels to about ±0.5 eV. More efficient theoretical design of molecules and polymers of interest to photovoltaic applications could be achieved if more precise methods 
were available. The G0W0 approach is an ab initio method that provides such an enhanced precision, with predicted energy levels accurate to about ±0.05 eV. However, such calculations are currently 
prohibitive for systems with more than a few tens of electrons, thus limiting their use in the photovoltaic community. What limits calculations to this system size is the need in current implementations 
to invert the dielectric matrix and the need to carry out summations over conduction bands. This poster presents a strategy to avoid both of these bottlenecks.

 Introduction  
Using ab initio calculations to guide synthesis:

Problematic example : C60 
!

Nc ≈ 10Nv = 1200  &  300 000 planes waves	

!

!
{φc, εc} ⇒ 9 Gb RAM  & days of CPU time

Solution to bottleneck 1  
Sternheimer equation 

Idea : transform      into a linear equation problem...	

!
!
!
!
!
!
!
!
!
!
!
!
!
!

Implementation of solution	

1) H is sparse  ⇒  iterative method	


2) H - εv ± ω can be singular ⇒ SQMR instead of CG

Eliminating 

DFT ⇤ {�n, ⌅n} ⇤ P̂ (⇤) ⇤ Ŵ (⇤) ⇤ �SEX(⌅e) (68)
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Ĥ � ⌅v ± ⇤
|⇥⇥�v⌃

(70)
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(Sternheimer’s equation) 

         is 10 000 x 10 000 in planewave basis	

!
!

     ⇒ 1,5 Gb RAM  &  days CPU time

Conclusion   
•  DFT calculations are useful for sorting a large 
group of candidate polymers. 	

•  Further refinement of calculations using G0W0 
would be desirable, but unwieldy with current 
implementations due to 2 bottlenecks :	


1.  The sum over conduction states	

2.  The inversion of the dielectric matrix  	


•  We assess these bottlenecks using :	

3.  Sternheimer’s equation	

4.  Lanczos algorithm	


•  and obtain a 6-fold increase in speed 

PCE = VocJscFF
1000W /m2

PCBM

polymer

~0.15eV

Voc

Assessing the efficiency of a polymer before 
synthesis requires precise calculations of the Voc, 
which requires precise calculation of the HOMO 
and LUMO energies of the polymer.	

!

Ab initio methods can do this:	

• DFT : fastest, but accurate enough?	

• G0W0 : more accurate, but unwieldy.

 DFT accuracy 
Is it accurate enough for polymer design? 

Methodology :	

• B3LYP functional	

• Gaussian 03/09 code 
   6-311g(d)/6-311g(2d) basis set	

• 29 polymers (mostly push-pull type)

Comparison between DFT and 
experimental energy levels 

0.36 eV

σ=0.19 eV

0.50 eV

σ=0.25 eV

The G0W0 method 
DFT levels offer quick sorting of candidate 
polymers.	

Further refinement is still desirable given the 
ressources and time required to synthetise a new 
polymer. 	

G0W0 can provide such results
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Figure 3.1: Hartree-Fock (HF, magenta diamonds), DFT-LDA (red circles) and
GW (black square) calculated (y-axis) versus photoemission experimental (x-
axis) band-gaps.

Its validity depends in this case also on a right choice of the starting 0-iteration
point. This is normally taken to be the Kohn-Sham electronic structure, which
is the simplest and best guess for an electronic structure to start with. The 0-
iteration guess for the self-energy is hence taken to be the exchange-correlation
functional of DFT, �̃0

M(r1, r2, ⇥) = vxc(r1)�(r1, r2).
The most striking evidence of the validity of the G0W 0 approximation and all

this approach is provided by Fig. 3.1. Here we report the GW calculated values
(ordinate) of the band-gaps in several systems, from metals to semiconductors
and insulators, compared to the values measured in photoemission (abscissa).
We remark the well known underestimation of DFT (in LDA or GGA approxi-
mation). It is evident that the GW approximation results lye much more along
the diagonal, thus systematically improving upon DFT. Hartee-Fock band-gaps
sistematically overestimate the experimental values.

3.6 Many-body GW e�ects on graphene

We have seen that the GW approximation typically provides band-gaps in
very good agreement with ARPES experiments in systems like simple semi-
conductors and insulators. Let’s see how GW works on an atypical system
such as graphene. Graphene is a single layer/sheet of graphite, so that it
has a flat 2D atomic honeycomb hexagonal lattice atomic structure. In the
tight-binding formalism, the graphene 2D honeycomb lattice structure gives
rise to a semimetal, that is a semiconductor with zero band gap occurring at
the K point in the Brillouin zone and a cone-like linear band-dispersion at
low energy. This part is usually described by a massless Weyl fermions dis-

Accuracy of DFT and G0W0

T̂ + V̂ext + V̂xc( ) φi = ε i
DFT φi

In G0W0, DFT eigenstates and eigenvalues are used 
as a starting point :

They are then corrected to first order in 
perturbation theory using the GW exchange-
correlation operator Σ(⍵) : 

ε i
G0W0 ≈ ε i

DFT + φi Σ̂(ε i
G0W0 )− V̂xc φi

The expectation value of Σ(⍵) being :
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where   is the coulomb operator and where :v̂

    : bottleneck #1 : sum over conduction states	

    : bottleneck #2 : inversion of the dielectric matrix	
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Solution to bottleneck 2  
Lanczos algorithm 

Usually,         is expressed in a planewave basis.	

Here, we decrease the size of the matrix by 
constructing a basis that automatically focuses on 
the relevant subspace :

 ̂ε(ω )

 
φ0 ,ε̂(ω ) φ0 ,ε̂

2 (ω ) φ0 ,...,ε̂
N (ω ) φ0{ }

and then orthonormalize it to obtain the Lanczos 
basis :

l0 (ω ) , l1(ω ) , l2 (ω ) ,..., lN (ω ){ }
which is substantially smaller than a planewave basis 
of equivalent accuracy. 

Example : silane

Conventional 
implementation

Present 
implementation

6000 x 6000 200 x 200

   N 3000 -

   CPU time ~48h ~8h
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