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Abstract

GOWO corrections to DFT band structures are a popular way to go beyond the
accuracy DFT is able to provide. However, the calculation of such corrections
with the ABINIT code is currently prohibitive for systems with more than a few
hundreds of electrons. What limits the calculations to this system size is the need
in the current implementation to invert the dielectric matrix and to carry out some
summation over conduction bands. This poster presents a strategy to avoid both
of these limitations for the screened-exchange contribution to the self-energy.
In ABINIT’s implementation, the dielectric matrix is expressed in a plane wave
basis, which needs to be relatively big to properly describe the matrix. This poster
explains how a Lanczos basis can be generated to substantially reduce the size of
the matrix. Also, the number of conduction bands needed to reach convergence
in the summation is usually an order of magnitude bigger than the number of
valence bands. Here, the calculation o...
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Abstract

GoWo corrections to DFT band structures are a popular way to go beyond the accuracy DFT is able to provide. However, the calculation of such corrections with the ABINIT code is currently
prohibitive for systems with more than a few hundreds of electrons.What limits the calculations to this system size is the need in the current implementation to invert the dielectric matrix and to carry
out some summations over conduction bands.This poster presents a strategy to avoid both of these limitations for the screened-exchange contribution to the self-energy (2°%%). In ABINIT’s
implementation, the dielectric matrix is expressed in a plane wave basis, which needs to be relatively big to properly describe the matrix. This poster explains how a Lanczos basis can be generated to
substantially reduce the size of the matrix.Also, the number of conduction bands needed to reach convergence in the summation is usually an order of magnitude bigger than the number of valence
bands. Here, the calculation of all the conduction states is avoided by reformulating the summation into a linear equation problem (Sternheimer equation), which also substantially reduces the

computation time.
Method, part 2:

Solution to bottleneck | Lanczos algorithm

Introduction
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Power series version of screened exchange :
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We approximate quasiparticles states (P and energies €, by

Implementation of solution
Kohn-Sham states and energies :

Applying tridiagonal operator m times gives schematically :

|) H is sparse = iterative method
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I ’\ Bottleneck 2 : dielectric matrix inversion

Mmax

Poles of G(w) | [Poles of W(W)

To obtain W(W), one usually invert the dielectric matrix :
W(w) =0+ 9P (w)W(w)

= (1 — 9P(w))W(w) = é(w)W(w) = 0

Constructing a kmax X kmax tridiagonal matrix costs the same

To obtain a first order estimate of quasiparticle energies :
as iterating Mmax = kmax - | times the power series.
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But a T matrix of kmax dimensions contains a more precise

estimate of 2°X than a power series with Mmax = Kmax - 1.
Screened exchange
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s Problematic example : C¢o again Keeping kmax finite but letting mmax = 00, we have :
In our work, only screened exchange is implemented oo
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Method part | . €' = 1,5 Gb RAM & days CPU time
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Which converges a lot faster :

SternhEimer equatiOn Solution to bottlenecl( 2 o {Convergence of screened exchange contribution to HOMO energy of silane
Bottleneck | : sum over conduction states ldea : Use geometrical serie to express matrix inversion... e .« o
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Problematic example : Ceo

Nc = [ONy =
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1200 & ecut =30 Ha = mpw = 300 000

v m=0

Problem : convergence slow...

Convergence of screened exchange contribution to HOMO energy of silane
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Conclusion

20

- >°EX(&e) implemented without {¢p., €} and without
substantial time spent on matrix inversion.

- Preconditionning in SYMMLQ causes 6x increase of speed
In organic systems.

- Lanczos method is dramatically faster that power method.
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