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Abstract

Although promising for many electronic applications, further understanding of
carbon nanotubes systems are required for practical designs. A difficulty currently
hindering further development in this field is the considerable degradation of
transport properties in a single-wall carbon nanotube (SWCNT) when it is
subjected to ambient conditions or functionalized. Double-wall carbon nanotubes
(DWCNT) could solve this problem, by allowing the outer tube to be functionalized
while the inner tube would retain a pristine structure and it's promising electronic
properties. However, our understanding of interactions between the tubes and
their consequences on the system's electronic properties is stillincomplete. In this
presentation, we investigate those interactions using density-functional theory
(DFT) calculations. In particular, we investigate separately the effects of structural
deformations, Fermi energy realignment and electronic orbital overlap on the
band structure of DWCNT. The e...
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Electronic properties of double-walled carbon nanotubes (DWNT)
Why study DWNT? and the effect of functionalization
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the para configuration
(AE=-1.51 eV/pair on graphene).

In these calculations, we used :
* the local density approximation (LDA)
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