
Available at:
http://hdl.handle.net/2078.1/157009

[Downloaded 2019/04/19 at 07:28:07]

"Heuristics for exact nonnegative matrix factorization"

Vandaele, Arnaud ; Gillis, Nicolas ; Glineur, François ; Tuyttens, Daniel

Abstract

The exact nonnegative matrix factorization (exact NMF) problem is the following:
given an m-by-n nonnegative matrix X and a factorization rank r, find, if possible,
an m-by-r nonnegative matrix W and an r-by-n nonnegative matrix H such that
X = WH. In this paper, we propose two heuristics for exact NMF, one inspired
from simulated annealing and the other from the greedy randomized adaptive
search procedure. We show that these two heuristics are able to compute exact
nonnegative factorizations for several classes of nonnegative matrices (namely,
linear Euclidean distance matrices, slack matrices, unique-disjointness matrices,
and randomly generated matrices) and as such demonstrate their superiority over
standard multi-start strategies. We also consider a hybridization between these
two heuristics that allows us to combine the advantages of both methods. Finally,
we discuss the use of these heuristics to gain insight on the behavior of the
nonnegative rank, i.e., the minimum factoriza...

Document type : Document de travail (Working Paper)

Référence bibliographique

Vandaele, Arnaud ; Gillis, Nicolas ; Glineur, François ; Tuyttens, Daniel. Heuristics for exact
nonnegative matrix factorization. CORE DISCUSSION PAPER ; 2015/06 (2015) 25 pages

2015/6

■

Heuristics for Exact Nonnegative Matrix Factorization

Arnaud Vandaele, Nicolas Gillis, François Glineur and Daniel
Tuyttens

CORE
Voie du Roman Pays 34, L1.03.01
B-1348 Louvain-la-Neuve, Belgium.
Tel (32 10) 47 43 04
Fax (32 10) 47 43 01
E-mail: immaq-library@uclouvain.be
http://www.uclouvain.be/en-44508.html	

Heuristics for Exact Nonnegative Matrix Factorization

Arnaud Vandaele · Nicolas Gillis · François Glineur ·
Daniel Tuyttens

Abstract The exact nonnegative matrix factorization (exact NMF) problem is the following: given an m-by-n
nonnegative matrix X and a factorization rank r, find, if possible, an m-by-r nonnegative matrix W and an
r-by-n nonnegative matrix H such that X = WH. In this paper, we propose two heuristics for exact NMF,
one inspired from simulated annealing and the other from the greedy randomized adaptive search procedure.
We show that these two heuristics are able to compute exact nonnegative factorizations for several classes of
nonnegative matrices (namely, linear Euclidean distance matrices, slack matrices, unique-disjointness matrices,
and randomly generated matrices) and as such demonstrate their superiority over standard multi-start strategies.
We also consider a hybridization between these two heuristics that allows us to combine the advantages of both
methods. Finally, we discuss the use of these heuristics to gain insight on the behavior of the nonnegative rank,
i.e., the minimum factorization rank such that an exact NMF exists. In particular, we disprove a conjecture
on the nonnegative rank of a Kronecker product, propose a new upper bound on the extension complexity of
generic n-gons and conjecture the exact value of (i) the extension complexity of regular n-gons and (ii) the
nonnegative rank of a submatrix of the slack matrix of the correlation polytope.

Keywords nonnegative matrix factorization · exact nonnegative matrix factorization · heuristics · simulated
annealing · hybridization · nonnegative rank · linear Euclidean distance matrices · slack matrices · extension
complexity.

1 Introduction

Nonnegative matrix factorization (NMF) is the problem of finding good approximations of a given nonnegative
matrix as a low-rank product of two nonnegative matrices. This linear dimensionality reduction technique has
been used very successfully for a large variety of machine learning and data mining tasks, including text mining
and image processing [35]. Formally, given a nonnegative matrix X ∈ Rm×n+ and a factorization rank r, NMF
looks for two nonnegative matrices W ∈ Rm×r+ and H ∈ Rr×n+ such that X ≈ WH. Despite the fact that
NMF is NP-hard in general [46], it has been used successfully in many practical situations. A large number of
dedicated nonlinear local optimization schemes have been developed to compute good factorizations [11], e.g.,
to try identifying good local minima of the following nonconvex optimization problem

min
W∈Rm×r,H∈Rr×n

||X −WH||2F such that W ≥ 0 and H ≥ 0.

A. Vandaele · N. Gillis · D. Tuyttens
Department of Mathematics and Operational Research, Faculté Polytechnique, Université de Mons, Rue de Houdain 9, 7000 Mons,
Belgium. E-mail: {arnaud.vandaele,nicolas.gillis,daniel.tuyttens}@umons.ac.be

F. Glineur
Center for Operations Research and Econometrics, Université catholique de Louvain, Voie du Roman Pays, 34, B-1348 Louvain-
La-Neuve, Belgium;
ICTEAM Institute, Université catholique de Louvain, B-1348 Louvain-La-Neuve, Belgium.
E-mail: francois.glineur@uclouvain.be

adepireux
Texte tapé à la machine
CORE DISCUSSION PAPER2015/6

adepireux
Texte tapé à la machine

adepireux
Texte tapé à la machine

adepireux
Texte tapé à la machine

2 Arnaud Vandaele et al.

Nearly all NMF algorithms are iterative: at each step, they aim to improve the current solution. In practice, these
algorithms are usually initialized randomly, or with some ad hoc strategies; see, e.g., [8,19] and the references
therein.

Comparatively, much less attention has been given in the literature to the development of heuristic algorithms
aimed at finding better local minima of the NMF approximation problem. In this paper, we tackle the problem
of computing high quality local minima for the NMF problem. In particular, our focus is on finding exact
nonnegative factorizations, that is, computing nonnegative factors W and H such that X = WH holds exactly,
a problem we will refer to as exact NMF. The minimum factorization rank for which such an exact NMF exists
is called the nonnegative rank of X and is denoted rank+(X) [12].

1.1 Motivating Applications

For machine learning and data mining applications, it typically does not make sense to look for exact NMF’s
because the data is usually contaminated with noise. However, several other applications are closely related to
exact NMF and the nonnegative rank, including the following.

– Computing the minimum biclique cover number of a bipartite graph. Let G = (V = V1∪V2, E) be a bipartite
graph with V1 = {s1, s2, . . . , sm}, V2 = {t1, t2, . . . , tn} and E ⊆ V1 × V2. A complete bipartite subgraph of
G, referred to as a biclique, is a subgraph G′ = (V ′1 ∪ V ′2 , E′) with V ′1 ⊆ V1, V ′2 ⊆ V2 and E′ ⊆ E such that
E′ = V ′1 ×V ′2 , that is, all vertices in V ′1 and V ′2 are connected. The minimum biclique cover number bc(G) of
G is the minimum number of bicliques needed to cover all edges in G. Let XG ∈ {0, 1}m×n be the biadjacency
matrix of the graph, that is, XG(i, j) = 1 for all pairs (i, j) such that (si, tj) ∈ E. A biclique of G corresponds
to a nonzero combinatorial rectangle in the biadjacency matrix XG. Given an exact NMF of the biadjacency
matrix XG = WH =

∑
kW (:, k)H(k, :), the nonzero pattern of each rank-one factor W (:, k)H(k, :) must

correspond to a biclique. In fact, because W and H are nonnegative, XG(i, j) = 0 ⇒ W (i, k)H(k, j) = 0
for all k. Moreover, the union of the bicliques corresponding to the rank-one factors must cover G since
XG = WH. Therefore,

bc(G) ≤ rank+(XG),

and computing an exact NMF of XG provides an upper bound for the minimum biclique cover of G.
Conversely, a minimum biclique cover of G provides a lower bound for the nonnegative rank of XG, which is
referred to as the rectangle covering bound and is denoted rc(XG) = bc(G) ≤ rank+(XG); see [15] and the
references therein.

– Computing the extension complexity of polyhedra. Given a polytope P, an extension (or lift, or extended
formulation) of P is a higher-dimensional polytope Q for which there exists a linear projection π such that
π(Q) = P. If the number of facets of P is large (possibly growing exponentially with the dimension k),
a crucial question in combinatorial optimization is whether there exists an extension with a small number
of facets (ideally bounded by a polynomial in the dimension k), in which case a linear program over P
can solved much more effectively using an equivalent formulation over Q. The minimum number of facets
appearing in any extension of P is called the extension complexity of P. In [48], Yannakakis proved that the
extension complexity of a polytope P is equal to the nonnegative rank of its slack matrix SP (see Section 2
for a definition of the slack matrix of a polytope). It is also worth mentioning that any exact NMF of SP
provides an explicit extension for P. This result has been extensively used recently to prove bounds on the
extension complexity of well-known polytopes; see [13,31,26] and the references therein. For example, it was
shown very recently that the perfect matching polytope admits no polynomial-size extension [42], answering
a long-standing open question in combinatorial optimization.

– Conjecturing new theoretical results on the nonnegative rank, or disproving them. As any exact NMF of a
nonnegative matrix provides an upper bound on its nonnegative rank, one can use this technique to find
counter-examples to conjectures dealing with the nonnegative rank of matrices, or strengthen our belief that
some conjectures are correct. For example, Beasly and Laffey [3] developed some lower bounding techniques
for the nonnegative rank of n-by-n linear Euclidean distance matrices (see Section 3 for more details) and
conjectured that these rank-three matrices have nonnegative rank n. Using a standard NMF algorithm

Heuristics for Exact Nonnegative Matrix Factorization 3

combined with a simple multi-start heuristic, Gillis and Glineur [22] found a counterexample: the 6-by-
6 linear Euclidean distance matrix M(i, j) = (i − j)2 (1 ≤ i, j ≤ 6) has nonnegative rank five, which
disproved the conjecture and motivated the development of stronger lower bounds for the nonnegative rank
of such matrices. Along the same line, Hrubeš [27] developed some new upper bounding techniques for the
nonnegative rank of such matrices. In Section 6, we discuss several examples where the use of exact NMF
algorithms allows us to gain insight on the nonnegative rank.

Other problems closely related to nonnegative rank and exact NMF computations arise in communication
complexity [37], probability [7] and computational geometry [22]; see also, e.g., [19] and the references therein.

1.2 Computational Complexity

Given an m-by-n nonnegative matrix X, Vavasis [46] proved that checking whether rank(X) = rank+(X) is
NP-hard. Therefore, unless P = NP , no algorithm can decide whether rank(X) = rank+(X) using a number
of arithmetic operations bounded by a polynomial in m, n and rank(X). Nevertheless, Arora et al. [1] showed
that checking whether a nonnegative matrix admits an exact rank-r NMF can be done in time polynomial in
m and n (i.e., considering the factorization rank r fixed). This result relies on a clever reformulation of the
exact NMF problem for an m × n matrix as a system of O(mn) fixed-degree polynomial equalities involving
O(r22r) variables. This, combined with the fact that a system of k polynomial inequalities up to degree d and
in p variables can be solved in O((kd)p) operations, shows that checking the existence of an exact rank-r NMF

can be done with total complexity O((mn)r
22r).

This complexity was later improved by Moitra [38] to O((mn)r
2

). Unfortunately, because they rely on
quantifier elimination, these results do not translate in practical algorithms, even when dealing with very small
matrices. For example, we were unable to compute a rank-three NMF of a 4-by-4 matrix (which is actually the
first non-trivial case since rank(X) = 2⇔ rank+(X) = 2 [45,12]) using either the built-in polynomial equation
solver of Mathematica (which runs out of memory after performing a large number of operations) or the qepcad
software [6] dedicated to quantifier elimination.

It is therefore not clear whether these theory-oriented complexity results can prove useful to perform exact
NMF, even for small-scale matrices, which prompted us to introduce the use of heuristics to tackle the problem.

1.3 Contribution and Outline of the Paper

The paper is organized as follows. Section 2 lists the classes of nonnegative matrices on which we benchmark
exact NMF algorithms, and provides a description of the corresponding applications. Section 3 presents two
multi-start strategies, and compares their combination with several initializations strategies and state-of-the-art
NMF algorithms. This allows us to select an NMF algorithm (that is, a method to locally improve a current
solution) and initialization strategies for the rest of the paper. Section 4 introduces two heuristics dedicated
to exact NMF (SA and RBR) along with a hybridization. Section 5 compares these heuristics, showing that
they outperform multi-start strategies. In particular, RBR performs remarkably well and is able to identify
exact NMF’s very efficiently for several classes of matrices, while SA and the hybridization strategy are able to
compute an exact NMF for all considered matrices. Section 5 also discusses the limitations of these approaches,
which are unable to compute exact NMF’s for large and difficult matrices (as expected by the computational
complexity of the problem). Finally, Section 6 discusses the use of these heuristics to better understand the non-
negative rank. In particular, we propose new conjectures for the nonnegative rank of (i) the Kronecker product
of two nonnegative matrices, (ii) the slack matrices of regular and generic n-gons, and (iii) a submatrix of the
slack matrix of the correlation polytope.

To summarize, the main contributions of the paper are threefold:

– Design of two heuristics for exact NMF, along with a hybridization strategy, that outperform multi-start
strategies. To the best of our knowledge, the only heuristic algorithms previously designed for NMF were
developed in [29,30,28] and focused only on the (approximate) NMF problem, and not its exact counterpart.

4 Arnaud Vandaele et al.

– Comparison of these heuristics with two simple multi-start strategies on several classes of nonnegative matri-
ces for which exact factorizations are relevant for applications. This is to the best of our knowledge the first
time exact NMF algorithms are benchmarked on this type of nonnegative matrices (previous work focused
on randomly generated matrices, or on machine learning data sets for which exactness of the factorization
is not relevant).

– Several examples of the concrete use of these heuristics to address open theoretical questions related to the
nonnegative rank.

The code and data sets used in the paper have been made available online at

https://sites.google.com/site/exactnmf

We hope that the promising results showed by the methods introduced in this paper will motivate researchers
to further develop even faster and more effective heuristics for exact NMF.

2 Benchmark Nonnegative Matrices for Exact NMF

Throughout the paper, we will compare exact NMF algorithms on the following nonnegative matrices (see
Table 1):

– Linear Euclidean Distance Matrices. Given a set of real numbers ai for 1 ≤ i ≤ n, a linear Euclidean distance
matrices (EDM) is defined as

Xa(i, j) = (ai − aj)2 for 1 ≤ i ≤ n and 1 ≤ j ≤ n.

If at least three entries of a ∈ Rn are distinct, then rank(M) = 3. However, the nonnegative rank of linear
EDM’s can be arbitrarily large: in fact, it was proved in [3] that, if the entries of a are distinct,

rank+(Xa) ≥ min

{
k
∣∣∣ (k

bk/2c

)
≥ n

}
≥ log2(n).

The lower bound was later improved in [22]. A subclass of linear EDM’s are the following

X[n](i, j) = (i− j)2 for 1 ≤ i ≤ n and 1 ≤ j ≤ n,

for which it was proved in [27, Th.1] that

rank+(X[2n]) ≤ rank+(X[n]) + 2.

If n is a power of two, we therefore have rank+(X[n]) ≤ 2 log2(n) since rank+(X[2]) = 2. Combining this
upper bound with the lower bound from [22] allows us to determine the nonnegative rank for these matrices
up to n = 16; see Table 1. However, as we will see later on, it is non-trivial to compute exact NMF for these
matrices.

– Slack Matrices. The slack matrix of a polytope P with m facets and n vertices is defined as the m × n
nonnegative matrix SP whose (i, j)th entry SP(i, j) is equal to the slack of the jth vertex with respect to
the ith facet. Formally, given the list of n vertices vj (1 ≤ j ≤ n) and a facet description of the polytope
P = {x ∈ Rk | A(i, :)x ≥ bi for 1 ≤ i ≤ m}, we have that

SP(i, j) = A(i, :)vj − b(i) ≥ 0 for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

As recalled in the Introduction, the nonnegative rank of the slack matrix of P is equal to the extension
complexity of P. In this paper, we use slack matrices of several well-known classes of polytopes; see Table 1.

Heuristics for Exact Nonnegative Matrix Factorization 5

– Unique-Disjointness Matrices. A unique-disjointness (UDISJ) matrix Xn ∈ {0, 1}2
n×2n of order n is a matrix

whose rows and columns are indexed by all vectors in a, b ∈ {0, 1}n and which satisfies

Xn(a, b) =

1 if aT b = 0,
0 if aT b = 1,
? otherwise,

where ? means that the corresponding entry can take any (nonnegative) value. UDISJ matrices have been
successfully used to prove lower bounds on the extension complexity of polytopes, because their sparsity
pattern can be found in submatrices of several interesting slack matrices; see, e.g., [32] and the references
therein. Note that UDISJ matrices also often appear in the communication complexity literature1. Many of
the best lower bounds for UDISJ matrices are based on the rectangle covering bound (see Section 1), and the
class of matrices we consider here is built on a similar principle (we choose not to use the UDISJ matrices
themselves as their nonnegative rank is not known exactly).
Given r rank-one binary (combinatorial) rectangles wkh

T
k ∈ {0, 1}2

n×2n (1 ≤ k ≤ r) covering Xn, we define

Yn =

r∑
k=1

wkh
T
k ∈ {0, 1, . . . , r}2

n×2n .

Matrix Yn features the same sparsity pattern as Xn (that is, Yn(i, j) 6= 0 ⇔ Xn(i, j) 6= 0 for all i, j). We
can verify that rank(Yn) = r and since these matrices clearly admit a rank-r NMF, we can conclude that
rank+(Yn) = r, and we will use those matrices Yn for our benchmark; see Table 1.

Table 1 Nonnegative matrices used to compare exact NMF heuristics.

m n rank(X) rank+(X) Abreviation
6 6 3 5 LEDM6

Linear EDM’s 8 8 3 6 LEDM8
X(i, j) = (i− j)2, 12 12 3 7 LEDM12

for 1 ≤ i ≤ m, 1 ≤ j ≤ n 16 16 3 8 LEDM16
32 32 3 10∗ LEDM32

Slack Matrix of the Hexagon 6 6 3 5 6-G
Slack Matrix of the Heptagon 7 7 3 6 7-G
Slack Matrix of the Octagon 8 8 3 6 8-G
Slack Matrix of the Nonagon 9 9 3 7 9-G

Slack Matrix of the Hexadecagon 16 16 3 8 12-G
Slack Matrix of the 32-gon 32 32 3 10 32-G

Slack Matrix of the dodecahedron 20 12 4 9 20-D
Slack Matrix of the 24-cell 24 24 5 12∗ 24-C

UDISJ (n = 4) 16 16 9 9 UDISJ4
UDISJ (n = 5) 32 32 18 18 UDISJ5
UDISJ (n = 6) 64 64 27 27 UDISJ6

Randomly generated Matrices: X = WH
density = 0.1 50 50 10 10 RND1
density = 0.3 50 50 10 10 RND3

The symbol ∗ means that the exact value of the nonnegative rank is still unknown, i.e., the best known lower bound does not
match the best known upper bound. (For LEDM 32, the best lower bound is 9 while for 24-C it is 10.) However, after running our
heuristics extensively on these matrices, we believe that all values of the nonnegative ranks appearing in this table are correct.

– Randomly Generated Matrices. It is standard in the NMF literature to use randomly generated matrices
to compare algorithms (see, e.g., [34]), with the nice feature that the resulting nonnegative rank of these
matrices can be specified. For example, generating each entry of W ∈ Rm×r and H ∈ Rr×n uniformly
at random in the interval [0,1] and computing X = WH generates, with probability one, a nonnegative
matrix X such that rank(X) = rank+(X) = r. In this paper, we have generated such matrices of dimensions
50-by-50 with nonnegative rank 10. More precisely, matrix W is generated as follows:

1 Bob is given a, Alice b, and they have to decide whether aT b 6= 0 while minimizing the number of bits exchanged; see [37] for
more details.

6 Arnaud Vandaele et al.

(i) generate W such that each column of the 50-by-10 matrix W has exactly one non-zero entry whose
location is randomly chosen and its value is picked uniformly at random in the interval [0,1] (this ensures
each rank-one factor to be non-zero), and

(ii) add a sparse uniformly distributed (in the interval [0,1]) random update to W , with prespecified density
d (i.e. apply W = W + sprand(50,10,d))

We use d = 0.1 and 0.3 as specified in Table 1. Matrix H is generated in the same way. It turns out that
these nonnegative products WH are relatively easy to factorize: in fact, most initializations lead most NMF
algorithms to an exact NMF. Hence these matrices are not very useful to compare exact NMF heuristics ;
nevertheless we include them in our comparisons to illustrate this fact.

3 Designing Heuristics: Key Ingredients and Multi-Start Examples

Before presenting our proposed heuristics, we explore two multi-start strategies (Section 3.1). This allows us to
discuss some key aspects for comparing and designing such heuristics. There are four main building blocks for
our proposed heuristics:

– the initialization strategy (Section 3.2),
– the main algorithm, i.e. the heuristic constructing exact NMF’s after applying the initialization strategy,

which relies on a local NMF algorithm (Section 3.1 for the multi-start strategies, and Section 4 for our two
proposed heuristics),

– the NMF algorithm used to improve solutions locally (Section 3.3),
– a final refinement step that will try to further improve the output of the main algorithm as far as possible

(ideally, until an exact NMF is found); see the description Algorithm FR, which also relies on the local NMF
algorithm.

This final refinement procedure will be applied to all solutions generated by the heuristics. In this paper,
we use a tolerance for the relative error equal to 10−6, that is, we will assume that an exact NMF (W,H) of X

is found as soon as ‖X−WH‖F
‖X‖F ≤ 10−6. Algorithm FR runs a local NMF algorithm as long as the relative error

decreases at least by a predefined factor α after every period of ∆t seconds, otherwise it stops and returns the
current solution. We set the parameters to the following rather conservative values: ∆t = 1 second (which is
quite large for small matrices2) and α = 0.99; see Appendix A for some additional numerical results comparing
different values for ∆t and α.

Algorithm FR Final Refinement(X,W,H,α,∆t)

Input: X ∈ Rm×n+ , W ∈ Rm×r+ , H ∈ Rr×n+ , 0 < α < 1, ∆t.

1: i = 1, e0 = +∞, e1 = ‖X −WH‖F /‖X‖F .
2: while ei < αei−1 and ei > 10−6 do
3: i← i+ 1.
4: [W,H]← AlgoNMF(X,W,H,∆t). % See Section 3.3
5: ei ← ‖X −WH‖F /‖X‖F .
6: end while
7: return W ∈ Rm×r+ , H ∈ Rr×n+ , relative error ei.

Figure 1 shows how these blocks are arranged in our design of heuristics. Since it will not be practical to
display results for all possible combinations of heuristics (there will be five in total), NMF algorithms (five) and
initializations (five), along with the different tuning parameters, another goal of this section is to select, for the
rest of the paper, reasonable values for the parameters of a good multi-start heuristic, along with an efficient
local improvement algorithm and initialization strategy that performs well on most examples.

2 For example, for a 50-by-50 matrix and r = 10, running standard multiplicative updates for one second allows to perform about
10000 iterations on a standard laptop.

Heuristics for Exact Nonnegative Matrix Factorization 7

Fig. 1 Representation of the stream of the exchange of information between the different building blocks of our exact NMF
heuristics. An arrow represent the transfer of a solution.

Remark 1 (Are our exact NMF’s really exact?) At this point, it is important to insist on the fact that all
the numerical experiments performed in this paper are with floating point arithmetic. Hence, we consider a
factorization exact if the relative error ‖X −WH‖F /‖X‖F is smaller than some threshold (we choose 10−6) so
that the computed factorizations are not exact but high precision solutions. It is interesting to point out that all
the solutions that we computed with relative error smaller than 10−6 could be further improved with additional
iterations of Algorithm FR to 10−16 (which is the smallest possible using the standard Matlab precision). Note
that it is an open question whether the nonnegative rank over the rationals equals the nonnegative rank over
the reals; see, e.g., the discussion in [46]. Note that they were recently shown to be different for the semidefinite
rank, a generalization of the nonnegative rank [25]; see [14] for more details.

3.1 Two Multi-Start Heuristics

In this section we propose two multi-start heuristics (Sections 3.1.1 and 3.1.2).

3.1.1 Multi-Start 1

The simplest multi-start strategy one can think of is to restart Algorithm FR with many different initial matrices
until an exact NMF is obtained; see Algorithm MS1. Note that this heuristic is the one used in [22] to compute
exact NMF of linear EDM’s. Note also that, in view of Figure 1, MS1 corresponds to a heuristic which is an
‘empty box’ that transfers directly the solution from ‘Initializations’ to ‘Final refinement’.

Algorithm MS1 Multi-Start 1(X, r, α,∆t)

Input: X ∈ Rm×n+ , r < min(m,n), 0 < α < 1, ∆t, tol = 10−6.

1: (W0, H0)← random initialization(m,n, r). % See Section 3.2
2: [W,H, e]← Final Refinement(X,W0, H0, α,∆t).

3.1.2 Multi-Start 2

Applying Algorithm FR until convergence is useless when the error does not converge to zero, that is, when
(W,H) converges to a local minimum with error strictly larger than zero. The idea behind Algorithm MS2 is
to keep the pairs (W,H) with the best potential to obtaining an exact NMF, and therefore avoiding waste of
computational time. The way we proceed is to generate K different random initializations, apply N iterations
of an NMF algorithm to each pair and only apply Algorithm FR to the pair (W,H) with the smallest residual
error among those. This heuristic can also be found in [8]. Moreover, note that MS1 is a particular case of MS2
with K = 1.

8 Arnaud Vandaele et al.

Algorithm MS2 Multi-Start 2(X, r, α,∆t,K,N)

Input: X ∈ Rm×n+ , r < min(m,n), 0 < α < 1, ∆t, K, N , tol = 10−6.

1: e = 1.
2: for i = 1→ K do
3: (W̃ , H̃)← random initialization(m,n, r). % See Section 3.2
4: [W̃ , H̃]← AlgoNMF(X, W̃ , H̃,N). % See Section 3.3
5: ẽ = ‖X − W̃ H̃‖F /‖X‖F .
6: if ẽ < e then
7: (W,H)← (W̃ , H̃).
8: e← ẽ.
9: end if

10: end for
11: [W,H]← Final Refinement(X,W,H,α,∆t).

3.1.3 Comparing the Multi-Start Heuristics

Table 2 gives the computational results for the two multi-start heuristics with different parameters for MS2
(namely, N = 20, 40 and K = 100, 200). Throughout the paper (unless stated otherwise), the settings are the
following:

– We use the same randomly generated initial matrices to obtain a fair comparison between the different runs
(and for the results to be reproducible). In order to do so, we will control the random number generator of
Matlab as follows: it is initialized with the value 1 (that is, we execute rng(1)) and after each outer loop
of the heuristics (for example, after step 2 of MS1 and MS2), it is increased by one (that is, we execute
rng(i+1) where i is the number of iterations performed so far).

– We perform at most 100 runs of each heuristic. In order to reduce the computational time of the numerical
experiments, we stop testing a given heuristic as soon as (at least) five exact NMF’s for a given nonnegative
matrix have been found (this condition being checked after every ten runs).

– The tables display the number of exact NMF’s found out of the number of runs performed (for example,
6/10 means that the algorithm found six exact NMF’s out of ten runs). They also display in brackets the
average time in seconds needed to compute a single exact NMF. The best results in terms of average running
time are underlined, and the best heuristics in term of robustness (i.e. proportion of exact factorizations
found) are in bold; see the caption of Table 2 for more details.

We refer the reader to Section 3.3 for the local search NMF algorithm selected and to Section 3.2 for the
initialization strategy of matrices W and H. All tests are preformed using Matlab on a PC Intel CORE i5-4570
CPU @3.2GHz × 4 7.7Go RAM.

We observe in Table 2 that MS2 performs better than MS1, while the variants of MS2 perform similarly.
Note that the computational times are rather similar: the reason is that the considered matrices are rather small
and performing N iterations of the NMF algorithm is therefore relatively quick. In the remainder of the paper,
we will use the parameters K = 200 and N = 20 for MS2 as it offers a good compromise between proportion of
exact NMF’s found and total computational time.

It is interesting to note that

– For randomly generated matrices, as already anticipated in Section 2, all heuristics are able to identify an
exact NMF for all runs.

– For some linear EDM’s (LEDM12 to LEDM32) and slack matrices (16-G to 24-C), no multi-start strategy is
able to identify an exact NMF. This observation is the main motivation to develop more efficient heuristics
for exact NMF: we had to run MS1 for several hours (which means thousands of initializations) to find an
exact NMF of 24-C (slack matrix of the 24-cell).

Heuristics for Exact Nonnegative Matrix Factorization 9

Table 2 Comparison of the multi-start heuristics. (The ratio x/y means that x exact NMF’s have been found out of y runs of
the heuristic, while the number in brackets is the average running time for a heuristic to find a single exact NMF. Underlined: (i)
the best heuristic in terms of average running time to compute a single exact NMF, and (ii) any heuristic whose running time to
compute an exact NMF is at most 10% away from the best heuristic. In bold: (i) the best heuristic in terms of number of exact
NMF’s found out of a given number of runs, and (ii) any heuristic which is at most 10% away from the best heuristic.)

MS1 MS2(100,20) MS2(200,20) MS2(100,40) MS2(200,40)
LEDM6 5/80 (35) 9/20 (4.7) 7/10 (3.2) 11/20 (4.4) 9/10 (3.2)
LEDM8 0/100 (∼) 6/50 (29.2) 6/40 (20) 5/50 (35.8) 6/40 (37)
LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 8/30 (6.6) 10/10 (1.6) 10/10 (1.8) 10/10 (1.9) 10/10 (2.9)
7-G 8/20 (4.1) 9/10 (1.9) 10/10 (2.2) 9/10 (2.3) 10/10 (3)
8-G 5/60 (23.3) 6/10 (3.2) 9/10 (2.3) 9/10 (2.3) 10/10 (3)
9-G 7/40 (10.6) 7/10 (2.8) 6/10 (4.2) 6/10 (4.1) 8/10 (4.2)
16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 6/10 (2.4) 10/10 (1.8) 10/10 (2.1) 10/10 (2.2) 10/10 (3.4)
UDISJ5 5/30 (12.2) 5/30 (30.1) 5/30 (36.4) 9/20 (14.9) 5/10 (24.2)
UDISJ6 2/100 (119.5) 0/100 (∼) 0/100 (∼) 1/100 (1211.9) 0/100 (∼)
RND1 10/10 (1.1) 10/10 (1.9) 10/10 (2.3) 10/10 (2.6) 10/10 (4.1)
RND3 10/10 (1.1) 10/10 (2) 10/10 (2.4) 10/10 (2.5) 10/10 (4)

3.2 Selecting an Initialization Strategy

In this section, we describe several random initialization strategies. The most widely used strategy is to generate
each entry of the initial W and H factors uniformly at random in the interval [0,1], a strategy which we refer to
as RNDCUBE. As we will see, RNDCUBE performs rather poorly, and we propose a new very effective random
initialization strategy which allows to explore the search domain in a much better way. In fact, the issue with
generating each entry of W and H uniformly at random in the interval [0,1] is that it only generates dense
matrices, while it is well-known that

(i) exact NMF solutions usually have many zero entries (see, e.g., the discussion in [20]), and
(ii) the boundary of the feasible domain only contains sparse matrices ; hence generating only dense initial

matrices starts the exploration relatively far away from that boundary where solutions are in general located.

The sparsest possible way to generate initial matrices with nonzero rank-one factors is the following: we
generate W and H so that each column or each row has a single non-zero entry (whose position is chosen at
random). This leads to four possible initializations denoted SPARSEij: i = 0 (resp. j = 0) means that W (resp.
H) has a single non-zero entry by row, and i = 1 (resp. j = 1) means that W (resp. H) has a single non-zero
entry by column.

Table 3 reports the numerical results. As explained above, RNDCUBE does not perform as well as the sparse
initialization strategies (for example, it is not able to find an exact NMF of LEDM8 while all other initialization
strategies are). SPARSE11 has on average the best results and we will therefore select it as the initialization
strategy for MS2 for the remainder of the paper.

3.3 Selecting an NMF Algorithm

In order to design heuristics for exact NMF, a local search heuristic is needed to improve a given solution (i.e.
pair of factors W and H) locally. Most NMF algorithms could potentially be used: in fact, most NMF algorithms
are local search heuristic based on standard nonlinear optimization schemes. In this section, we compare the
following state-of-the-art NMF algorithms in order to assess their performances for computing exact NMF’s:

1. (MU) The multiplicative updates (MU) algorithm of [35,36].

10 Arnaud Vandaele et al.

Table 3 Comparison of the different initialization strategies combined with multi-start 2.

sparse 00 sparse 10 sparse 01 sparse 11 rndcube
LEDM6 5/100 (54.8) 5/90 (50.6) 8/10 (2.7) 7/10 (3.2) 6/60 (25.1)
LEDM8 4/100 (113.3) 3/100 (133.5) 6/30 (23.5) 6/40 (20) 0/100 (∼)
LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.7) 10/10 (1.9) 10/10 (2.1) 10/10 (1.8) 10/10 (2)
7-G 10/10 (1.9) 7/10 (2.9) 10/10 (2.2) 10/10 (2.2) 10/10 (1.9)
8-G 6/10 (4.1) 6/10 (3.8) 9/10 (2.5) 9/10 (2.3) 5/30 (16.7)
9-G 8/20 (6.3) 5/30 (16.1) 5/10 (4.9) 6/10 (4.2) 5/40 (23.3)
16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 10/10 (2.2) 10/10 (2.1) 10/10 (2.3) 10/10 (2.1) 10/10 (2.1)
UDISJ5 7/20 (17.1) 6/20 (20.4) 6/30 (30.5) 5/30 (36.4) 7/20 (16.5)
UDISJ6 2/100 (465.9) 5/80 (146.3) 1/100 (921.8) 0/100 (∼) 0/100 (∼)
RND1 10/10 (2.3) 10/10 (2.4) 10/10 (2.8) 10/10 (2.3) 10/10 (2.1)
RND3 10/10 (2.5) 10/10 (2.3) 10/10 (2.2) 10/10 (2.4) 10/10 (2.3)

2. (A-MU) The accelerated MU from [21].
3. (HALS) The hierarchical alternating least squares (HALS) algorithm from [10,9].
4. (A-HALS) The accelerated HALS from [21].
5. (ANLS) The alternating nonnegative least squares algorithm of [34], which alternatively optimizes W and
H exactly using a block-pivot active set method; see also [33].

The code of the first four algorithms is available at https://sites.google.com/site/nicolasgillis/. The
code of ANLS was obtained from http://www.cc.gatech.edu/~hpark/.

The convergence speeds of these NMF algorithms were previously compared on real-world image and doc-
ument data sets, and A-HALS was shown to perform the best in most cases. However, in this paper, we are
interested in finding exact NMF’s of relatively small matrices. Our goal in this section is therefore to identify
which algorithm is the best at identifying exact NMF’s of such matrices when used as a subroutine for MS2;
see Table 4. HALS and A-HALS perform on average the best in terms of number of exact NMF’s found (note
that A-HALS is not much faster than HALS because the parameter ∆t was set to a rather large value, hence
both algorithms are able to converge within the alloted time). ANLS performs rather poorly because it runs
into numerical problems for rank-deficient factors W (and/or H), which appear as solutions of exact NMF’s of
nonnegative matrices X with rank+(X) > rank(X) [22]. MU and A-MU also perform poorly: because of their
multiplicative nature, they cannot deal very well with sparse solutions3; see, e.g., the discussion in [21].

In light of these results, we select A-HALS as the NMF algorithm for the remainder of the paper.

4 Two Heuristics for NMF

In this section, we propose two heuristics for NMF, along with a hybridization strategy.

4.1 Simulated Annealing

The first heuristic we propose follows the widely used simulated annealing framework [41]; see Algorithm SA
which we briefly describe here. As for the multi-start heuristics, SA first generates an initial solution (W,H).

3 Note that we used the variants of MU and A-MU proposed [21] where zero entries of W and H are replaced with a small
positive number (we used 10−16) so that they can modify zero entries, and a subsequence is guaranteed to converge to a stationary
point [44].

Heuristics for Exact Nonnegative Matrix Factorization 11

Table 4 Comparison of NMF algorithms combined with multi-start 2.

ANLS MU A-MU HALS A-HALS
LEDM6 0/100 (∼) 0/100 (∼) 0/100 (∼) 8/10 (2.8) 7/10 (3.2)
LEDM8 0/100 (∼) 0/100 (∼) 0/100 (∼) 5/30 (20.8) 6/40 (20)
LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 10/10 (2.1) 10/10 (1.8)
7-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 10/10 (2.1) 10/10 (2.2)
8-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 9/10 (2.4) 9/10 (2.3)
9-G 0/100 (∼) 1/100 (405.3) 5/70 (134.2) 5/10 (5.4) 6/10 (4.2)
16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 10/10 (13) 0/100 (∼) 0/100 (∼) 10/10 (2.4) 10/10 (2.1)
UDISJ5 5/100 (778.7) 0/100 (∼) 0/100 (∼) 5/40 (58.5) 5/30 (36.4)
UDISJ6 0/100 (∼) 0/100 (∼) 0/100 (∼) 1/100 (1105.4) 0/100 (∼)
RND1 5/20 (71.6) 3/100 (472.5) 5/10 (33.2) 10/10 (2.8) 10/10 (2.3)
RND3 10/10 (27.5) 8/20 (161.6) 7/10 (49.1) 10/10 (2.8) 10/10 (2.4)

SA will then explore the neighborhood of this initial solution in a random fashion in the hope to find a better
solution. A solution in the neighborhood will be computed by repeating K times the following steps:

– select a small subset J of J rank-one factors W (:,J)H(J , :) at random, that is, generate randomly J ⊂
{1, 2, . . . , r} such that |J | = J ,

– reinitialize these rank-one factors randomly (see Section 3.2),
– improve the corresponding solution locally (we will use N iterations of A-HALS; see Section 3.3), and
– decide whether to keep the refined neighboring solution depending on its error and on the current tem-

perature, see step 14 of Algorithm SA (the higher the temperature, the more likely it is for a solution to
be accepted as the next iterate). Note that a solution whose error is smaller than the error of the current
solution is always kept. Hence an important characteristic of SA is that it allows for solutions with higher
errors to be explored (although the probability for this to happen goes to zero as the temperature decreases).

The procedure is repeated several times for several temperatures (from T0 to Tend with 20 loga-rithmically-
spaced intermediate values). We use the following values for the parameters: initialization SPARSE10, T0 = 0.1
for the initial temperature (this means for example that the initial temperature allows for a solution with relative
error 10% higher than the current solution to be accepted with probability e−1 ≈ 1/3), Tend = 10−4 for the
final temperature (this means for example that the final temperature allows for a solution with relative error
0.1% higher than the current solution to be accepted with probability e−1 ≈ 1/3), J = 2, N = 100 and K = 50;
see Appendix B for numerical experiments for different values of the parameters. It is important to point out
that the initialization procedure is crucial: in fact, SPARSE10 allows to compute exact NMF for all considered
matrices while RNDCUBE fails to do so and is much slower to compute exact NMF’s; see Appendix B.

4.2 Rank-by-Rank Heuristic

The second heuristic tries to construct recursively an exact NMF (W,H) of X as follows (see Algorithm RBR):

– at the first step (k = 1), an optimal rank-one NMF (W1, H1) of X is computed. This can be done for example
using the truncated singular value decomposition using the Perron-Frobenius and Eckart-Young theorems.

– At the kth step (2 ≤ k ≤ r), a rank-k NMF solution is generated combining the rank-(k − 1) NMF solution
(Wk−1, Hk−1) computed at the (k − 1)th step with an additional rank-one factor randomly generated. This
solution is then locally improve using N steps of an NMF algorithm. This procedure is repeated K times
and the best solution is kept; see Algorithm getRankPlusOne.

12 Arnaud Vandaele et al.

Algorithm SA Simulated Annealing(X, r, α,∆t, T0, Tend, β,K,N, J, tol)

Input: X ∈ Rm×n+ , r < min(m,n), 0 < α < 1, T0, Tend, 0 < β < 1, K, N , J , tol.
1: (W,H)← random initialization(m,n, r). % See Section 3.2

2: e← ‖X−WH‖F
‖X‖F

.

3: emin ← e.
4: T ← T0
5: while T > Tend do
6: for i = 1→ K do
7: (W̃ , H̃)← (W,H).
8: J ← pick randomly J indices in {1, 2, . . . , r}.
9: (W̃ (:,J), H̃(J , :))← random initialization(m,n, J).

10: [W̃ , H̃]← AlgoNMF(X, W̃ , H̃,N).

11: ẽ← ‖X−W̃ H̃‖F
‖X‖F

.

12: ∆← ẽ− e.
13: % U [0, 1] is the uniform distribution in [0, 1] (rand in Matlab)

14: if U [0, 1] < exp
(
−∆
T

)
then

15: W ← W̃ , H ← H̃, e← ẽ.
16: if e < emin then
17: emin ← e.
18: (Wmin, Hmin)← (W̃ , H̃).
19: end if
20: if emin < tol then
21: T = Tend; break.
22: end if
23: end if
24: end for
25: T ← βT .
26: end while
27: Return [Wmin, Hmin].

Algorithm RBR Rank-by-Rank Heuristic(X, r, α,∆t,K,N)

Input: X ∈ Rm×n+ , r < min(m,n), 0 < α < 1, ∆t, K, N .
1: [w1, σ1, h1]← svds(X, 1). % See svds function of Matlab
2: (W1, H1)←

(
|w1| , σ1

∣∣hT1 ∣∣) % This is an optimal nonnegative rank-one approximation of X
3: for k = 2→ r do
4: [Wk, Hk]← getRankPlusOne(X,Wk−1, Hk−1,K,N).
5: end for

RBR will turn out to be a powerful exact NMF heuristic for some classes of matrices (such as slack matrices).
We will use SPARSE10 for the initialization, K = 10 and N = 50 which seem to be a good compromise; see

Appendix C for tests of differents values.

4.3 Hybridization

When designing heuristics, a standard technique consists in using hybridization, that is, to combine several
heuristics. For example, instead of refining the solution computed by RBR with the final refinement step, it is
possible to call Simulated Annealing instead; in other words, we propose to initialize SA with RBR. We refer
to this heuristic as ‘Hybrid’.

5 Numerical Experiments: Comparing Exact NMF Heuristics

In this section, we compare MS1, MS2, SA, RBR and Hybrid, with a maximimum number of 1000 runs, and
stop the execution of an heuristic when 100 exact NMF’s were found (checking this condition every 50 runs);
see Table 5.

Heuristics for Exact Nonnegative Matrix Factorization 13

Algorithm getRankPlusOne getRankPlusOne(X,W,H,K,N)

Input: X ∈ Rm×n+ , W ∈ Rm×k−1
+ , H ∈ Rk−1×n

+ , K, N .
1: emin ← 1.
2: for j = 1→ K do

3:
(
W̃ (:, 1 : k − 1), H̃(1 : k − 1, :)

)
← (W,H).

4:
(
W̃ (:, k), H̃(k, :)

)
← random initialization(m,n, 1).

5: [W̃ , H̃]← AlgoNMF(X, W̃ , H̃,N).

6: ẽ← ‖X−W̃ H̃‖F
‖X‖F

7: if ẽ < emin then
8: emin ← ẽ, Wmin ← W̃ , Hmin ← H̃.
9: end if

10: end for
11: Return [Wmin, Hmin].

Table 5 Comparison of the different heuristics: MS1 and MS2 (Section 3.1), SA (Section 4.1), RBR (Section 4.2) and Hybrid
(Section 4.3).

MS1 MS2 SA RBR Hybrid
LEDM6 40/1000 (53.5) 112/150 (3.1) 100/100 (19.6) 100/100 (1.4) 100/100 (19)
LEDM8 0/1000 (∼) 107/600 (27.1) 100/100 (60.9) 100/100 (16.7) 148/150 (63.6)
LEDM12 0/1000 (∼) 0/1000 (∼) 119/200 (42.9) 107/650 (15.1) 103/150 (36.9)
LEDM16 0/1000 (∼) 0/1000 (∼) 100/250 (118.3) 100/550 (29.1) 121/250 (104.2)
LEDM32 0/1000 (∼) 0/1000 (∼) 14/1000 (2592.9) 0/1000 (∼) 28/1000 (1370.9)

6-G 108/700 (12.1) 100/100 (2.1) 100/100 (1.2) 100/100 (1.4) 100/100 (1.5)
7-G 104/350 (5.8) 100/100 (2.2) 100/100 (4.2) 100/100 (1.5) 100/100 (4.4)
8-G 61/1000 (32.2) 129/200 (3.8) 100/100 (15.4) 100/100 (1.5) 100/100 (15.3)
9-G 104/700 (12.8) 117/200 (4.6) 100/100 (22.9) 100/100 (1.6) 100/100 (23.2)
16-G 0/1000 (∼) 0/1000 (∼) 102/350 (91.6) 143/150 (1.9) 118/150 (34.2)
32-G 0/1000 (∼) 0/1000 (∼) 31/1000 (1086.8) 107/250 (6.6) 105/300 (97)
20-D 1/1000 (2021.1) 21/1000 (160.9) 100/100 (7.8) 129/150 (2.3) 100/100 (5.6)
24-C 0/1000 (∼) 0/1000 (∼) 100/100 (3.1) 119/200 (4.1) 100/100 (4.4)

UDISJ4 102/250 (4) 100/100 (2.4) 100/100 (1.2) 100/100 (1.9) 100/100 (1.9)
UDISJ5 104/850 (17.4) 102/500 (38) 100/100 (2.8) 100/100 (4.9) 100/100 (5.2)
UDISJ6 7/1000 (337.1) 8/1000 (1594.7) 100/100 (7.8) 112/450 (66.4) 100/100 (18.5)
RND1 148/150 (1.1) 100/100 (2.8) 100/100 (1.1) 100/100 (2.2) 100/100 (2.2)
RND3 100/100 (1.1) 100/100 (2.8) 100/100 (1.1) 100/100 (2.2) 100/100 (2.2)

As already pointed out, the multi-start heuristics perform rather poorly and are not able to compute even
a single exact NMF in many cases. We observe that

– RBR is able to compute an exact NMF for all matrices but LEDM32, while SA and Hybrid are able to find
an exact NMF for all matrices.

– In terms of robustness, Hybrid is the best as it is able to compute on average the most exact NMF’s for a
fixed number of runs.

– In terms of running times, RBR is on average the fastest, while Hybrid is comparatively much slower.

Therefore, in practice, we would recommend to first run RBR as it computes, in many cases, exact NMF’s
the fastest. Moreover, for some matrices (e.g., slack matrices of regular n-gons), it is very robust. Then, when
RBR fails, we would recommend to run Hybrid because of its robustness: although it is slower, it is in general
more likely to find exact NMF’s.

5.1 Limits of the Heuristics for Exact NMF

Computing exact NMF’s becomes more challenging when the dimensions and the nonnegative rank of the ma-
trix increases, as the computational complexity of the problem depends on these dimensions (see the discussion
in Section 1.2). To illustrate the limitations of the use of heuristics to find exact NMF’s, Table 6 reports the

14 Arnaud Vandaele et al.

computational results for larger slack matrices of regular n-gons.

Table 6

Hybrid
110-G 14/1000 (12050.3)
120-G 12/1000 (15556.4)
130-G 12/1000 (16462.7)
140-G 15/1000 (14002.6)
150-G 5/1000 (49277)
160-G 1/1000 (144803.1)
170-G 0/1000 (∼)

Moreover, for LEDM of size 48-by-48 or larger, and for slack matrices of regular n-gons with n ≥ 170, none
of our heuristics is able to find a single exact NMF’s out of 1000 runs.

6 Using Exact NMF Heuristics for New Insights on the Nonnegative Rank

In this section, we describe four important open questions related to the nonnegative rank, and show how
computing exact NMF’s of small matrices can help gain insights about them.

6.1 Kronecker Product of Two Nonnegative Matrices

In a recent Dagsthul seminar [2], participants came up with the following conjecture: given two nonnegative
matrices A and B, the nonnegative rank of their Kronecker product is equal to the product of their nonnegative
ranks, that is,

rank+(A⊗B) = rank+(A) rank+(B).

Note that this results holds for the usual rank, and that it is easy to show that rank+(A⊗B) ≤ rank+(A) rank+(B)
(see also [47] for a short discussion). Hamza Fawzy used the multi-start strategy MS1 to come up with the fol-
lowing counter example:

A =

1 0 1 a
0 1 0 1− a
0 0 1 1− a
1 1 0 a

 ,

where a = 3/8 from [5] for which rank+(A) = 4 and rank+(A ⊗ A) = 15. One may therefore wonder whether
the following is true

rank+(A⊗B) ≥ rank+(A) rank+(B)− 1 ?

It turns out that it is also incorrect. In fact, we have found a 4-by-4 nonnegative matrix A with rank 3 and
nonnegative rank 4 such that rank+(A⊗A) = 12 :

A =

1 + a 1− a 1− a 1 + a
1− a 1 + a 1 + a 1− a
1 + a 1 + a 1− a 1− a
1− a 1− a 1 + a 1 + a

 ,

where a =
√

2−0.9. Geometrically, the matrix A is the (generalized) slack matrix of a pair of polytopes, namely
two nested squares: the rows of A correspond to the edges of the outer square and its columns to the vertices
of the inner square; see [18] for more details. For

√
2 − 1 < a ≤ 1, rank+(A) = 4. However, for a = 1 (which

corresponds to the slack matrix of the square, that is, the regular 4-gon), rank+(A ⊗ A) = 16. Decreasing a

Heuristics for Exact Nonnegative Matrix Factorization 15

sufficiently while keepig a >
√

2 − 1 allows to decrease rank+(A ⊗ A) to 12 while keeping rank+(A) = 4. The
intuition behind this example is the following: decreasing a leaves more space between the two squares although
no triangle fits between the two (hence rank+(A) = 4). However, this makes the search space of the exact NMF
problem for A⊗A much larger, leading to the existence of an exact NMF with smaller rank.

How the nonnegative rank of the Kronecker product between two matrices relates with their nonnegative
ranks remains an open question. This is an important open question, and, as illustrated above, exact NMF
algorithms are useful tools to address such questions. In light of the above example, a new conjecture could be
the following:

Conjecture 1. For any nonnegative matrix A,

rank+(A⊗A) ≥ rank+(A) rank(A).

6.2 Slack Matrices of Regular n-gons

As explained in the introduction, the nonnegative rank of the slack matrix Xn of the regular n-gon is equal
to its extension complexity, that is, to the minimum number of facets a higher dimensional polytope requires
to represent it after a linear projection. It can be shown that rank+(Xn) ≥ dlog2(2n+ 2)e [23]. Ben-Tal and
Nemirovski [4] gave an extension of regular n-gons when n is a power of two (n = 2k for some k) with
2 log2(n) + 4 facets. They used this construction to approximate the circle with regular n-gons which allowed
them to approximate second-order cone programs with linear programs. Another construction for arbitrary n
was proposed in [17] showing that rank+(Xn) ≤ d2 log2(n)e. However, the exact value of rank+(Xn) is unknown
(except for small n; see below).

We have run the Hybrid heuristic on these matrices for all n ≤ 78 and observe the following:

Conjecture 2. The nonnegative rank of the slack matrix Xn of the regular n-gon is given by

rank+(Xn) =

{
2k − 1 for 2k−1 < n ≤ 2k−1 + 2k−2,

2k for 2k−1 + 2k−2 < n ≤ 2k.

Note that the conjecture is known to be true for n ≤ 9 as it matches a lower bound based on the rectangle
covering bound improved with additional rank constraints from [39].

For all slack matrices with4 3 ≤ n ≤ 78, Hybrid was able to compute at least one exact NMF matching
the nonnegative rank given in Conjecture 2, while it was never able to compute a single exact NMF with a
smaller nonnegative rank (out of 1000 runs). Figure 2 displays the number of exact NMF’s found out of 1000
initializations of Hybrid for the nonnegative rank given in Conjecture 2.

It is interesting and quite natural to observe that, as n increases, Hybrid meets more and more difficulty
to compute an exact NMF of these slack matrices. This illustrates the limits of heuristics to solve exact NMF
problems for larger (and difficult) matrices; see also Section 5.1.

6.3 Generic n-gons

A generic n-gon is an n-gon for which the vertices were generated randomly5. It is known that the nonnegative
rank of the slack matrices Xn of generic n-gons satisfy

√
2n ≤ rank+(Xn) ≤

⌈
6n

7

⌉
.

4 Because it requires a rather high computational cost for larger n, we stopped testing the conjecture at n = 78. In fact, running
this experiment on a regular laptop took about two weeks.

5 The exact definition given in [17] is the following: ‘a polygon in R2 is generic if the coordinates of its vertices are distinct and
form a set that is algebraically independent over the rationals’.

16 Arnaud Vandaele et al.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

700

800

900

1000

n

#
 e

x
a

c
t

N
M

F
’s

 f
o

u
n

d
 o

u
t

o
f

1
0

0
0

 r
u

n
s
 o

f
H

y
b

ri
d

Fig. 2 Number of exact NMF found out of 1000 runs of Hybrid on regular n-gons and for the nonnegative rank given in Conjecture 2.

The lower bound is due to [17], while the upper bound is generic for any n-gon and is due to Shitov [43] (it was
also proved using different arguments in [40]). An important question is to characterize the growth of the the
nonnegative rank of these slack matrices: is it proportional to

√
n, n or something in between [24] ?

As n increases, it becomes more and more difficult to generate generic n-gons (because it is likely that a
newly generated point belongs to the convex hull of the previously generated points). Therefore we used the
following procedure. We generate random n-gons whose vertices lie on the unit circle. To obtain polygons whose
vertices are relatively well separated form the convex hull generated by the other vertices6, we subdivide the
circle into n disjoint arcs of the same length. Then, each arc is divided into four parts of the same length and
we only generate one point randomly into the two middle parts (uniformly distributed). This ensures the angles
between any two data points to be larger than π

n . Then, for each n, we generate ten such random n-gons and
run Hybrid with 1000 runs. Table 7 reports the minimum and maximum number of exact NMF’s found among
these ten matrices.

6 As a vertex gets closer and closer to the convex hull generated by the other vertices, it becomes numerically harder and harder
to decide whether or not it belongs to the convex hull.

H
eu

ristics
fo

r
E

x
a
ct

N
o
n

n
eg

a
tiv

e
M

a
trix

F
a
cto

riza
tio

n
1
7

Table 7 Nonnegative rank of random n-gons on the circle: for a given n, the table reports the minimum and maximum number of exact NMF’s found by Hybrid out of
1000 runs on ten such n-gons.

r/n 6 7 8 9 10 11 12 13 14 15 16 17
4
5 [0,0] [0,0]
6 [1000,1000] [463,1000] [0,0] [0,0]
7 [754,897] [160,353] [0,0] [0,0]
8 [743,873] [351,443] [25,48] [0,0] [0,0]
9 [787,858] [401,546] [148,190] [10,19] [0,0] [0,0] [0,0]
10 [692,862] [580,665] [242,389] [63,111] [5,19] [0,1] [0,0]
11 [833,902] [533,726] [385,540] [150,247] [9,82] [5,14]
12 [734,874] [643,766] [442,631] [138,365] [107,204]
13 [671,824] [375,674] [405,517]
14 [610,830] [583,734]
15 [721,829]

18 Arnaud Vandaele et al.

These results suggests for example that generic 12-gons have extension complexity equal to 9 –which also
suggests that all 12-gons have extension complexity smaller than 9. More generally, these results lead us to the
following conjecture

Conjecture 3. The nonnegative rank of the slack matrix Sn of any n-gon is bounded above by
⌊
n+6
2

⌋
where

bxc is the largest integer smaller than x, that is,

rank+(Sn) ≤
⌊
n+ 6

2

⌋
,

and equality holds for 5 ≤ n ≤ 15.

Another open question is the following: For n fixed, are the nonnegative ranks of the slack matrices of all
generic n-gons equal to one another? These experiments suggest that the answer is positive for n ≤ 15: in
fact, in all cases we observe that either no exact NMF is found for the ten randomly generated matrices, or
at least some are found for all of them. For n = 16, it is less clear whether this is true: we were only able to
compute a rank-10 exact NMF for two of the generated matrices. This might be because these matrices are not
fully generic, or because, for n ≥ 16, generic n-gons might have different extension complexities, or because our
heuristic fails to compute the exact NMF of such instances. We leave the investigation of these issues for further
research.

The validity of conjecture 3 would imply the following.

Corollary (of Conjecture 3). The nonnegative rank of any rank-3 nonnegative matrix X satisfies

rank+(X) ≤
⌊

min(m,n) + 6

2

⌋
.

Sketch of proof. According to the geometric interpretation of NMF detailed in [22], an exact NMF problem
for a nonnegative rank-three matrix X can be equivalently seen as a nested polygon problem: the matrix X
corresponds to the slack of the n vertices of a inner polygon with respect to the m edges of a outer polygon, and
the goal is not find a polytope (potentially of higher dimension) that lies in between the two given polygons.
The worst-case scenario happens when the inner and outer polytopes coincide, that is, when the matrix X
corresponds to the slack matrix of the outer polygon (see Section 2). Hence, replacing the n vertices of the inner
polygon by the m vertices of the outer polygon can only increase the nonnegative rank of the corresponding
matrix (hence Conjecture 3 would apply). Moreover, transposing the matrix X amounts to taking the polar
of the polygons which interchanges the roles of the inner and outer polygons. Hence the nonnegative rank of
a rank-3 nonnegative X is smaller than the largest nonnegative rank among slack matrices of min(m,n)-gons.
We refer the reader to [43] for more details.

6.4 Extension Complexity of the Correlation Polytope

The convex hull of all n×n rank-one matrices is called the correlation polytope, and we denote the slack matrix
COR(n). It was proved in [16] that there exists a positive constant C for which rank+(COR(n)) ≥ 2Cn. This
result was improved in [32] where it is shown that rank+(COR(n)) ≥ 1.5n.

Let us define the following 2n × 2n matrix, a special instance of UDISJ matrices (see Section 2), for which
rows and columns are indexed by vectors a, b ∈ {0, 1}n and such that

Mn(a, b) =
(
1− |aT b|

)2
.

The matrix Mn is a submatrix of the slack matrix of the correlation polytope [16]. For n = 3, 4, 5, 6, Hybrid was
not able to compute any exact NMF with r = 2n − 1 after 1000 runs. This suggests the following conjecture.

Heuristics for Exact Nonnegative Matrix Factorization 19

Conjecture 4. The submatrix Mn of the slack matrix of the correlation polytope has full nonnegative rank,
that is,

rank+(Mn) = 2n.

This would imply that rank+(COR(n)) ≥ 2n.

(Note that the rank of Mn is equal to n(n+1)
2 + 1 for n ≤ 11. For higher n, the matrix is too large to fit in

memory.)

7 Conclusion and Further Research

We have proposed two new heuristics along with a hybridization for exact nonnegative matrix factorization,
and demonstrated that they outperform simpler multi-start strategies when benchmarked on a variety of non-
negative matrices relevant for applications. On the way we proposed a novel efficient initialization strategy, and
observed that HALS and A-HALS were suitable as local NMF algorithms when performing exact NMF.

Future research includes the development of new and more efficient heuristics. Also, heuristics can be sensitive
to their parameters, especially for matrices for which it is difficult to compute an exact NMF. Hence potential
future work also includes fine-tuning the parameters depending on the problem at hand (size of the matrix,
difficulty of the corresponding NMF problem, etc.).

The heuristics presented here can readily be applied to find good local minimum for the approximate NMF
problem (that is, to computeWH ≈ X), which is particularly useful for real-world applications such as document
classification and hyperspectral unmixing. Therefore, it would be an interesting direction for further research
to fine-tune and compare heuristics in this context.

So far, we have tested our algorithms on a limited number of nonnegative matrices. It would be good in
the future to have a larger library of nonnegative matrices at our disposal, in order to better understand the
behavior of the heuristics. With that goal in mind, we will keep our library updated on https://sites.google.

com/site/exactnmf and welcome submission of nonnegative matrices, especially those for which computing an
exact factorization is still a challenge.

Finally, it is important to recall that, strictly speaking, factorizations presented in this paper were not exact,
because they were only computed up to machine precision; see Remark 1. It would therefore also be useful to
develop some rounding strategies to transform a high accuracy solution (e.g., 10−16 precision) into an exact
NMF, when possible. (This was for example done manually for the example of Section 6.1 where rank+(A) = 4
and rank+(A⊗A) = 12.)

References

1. Arora, S., Ge, R., Kannan, R., Moitra, A.: Computing a nonnegative matrix factorization – provably. In: Proceedings of the
44th symposium on Theory of Computing, STOC ’12, pp. 145–162 (2012)

2. Beasely, L., Lee, T., Klauck, H., Theis, D.: Dagstuhl report 13082: Communication complexity, linear optimization, and lower
bounds for the nonnegative rank of matrices (2013). arXiv:1305.4147

3. Beasley, L., Laffey, T.: Real rank versus nonnegative rank. Linear Algebra and its Applications 431(12), 2330–2335 (2009)
4. Ben-Tal, A., Nemirovski, A.: On polyhedral approximations of the second-order cone. Mathematics of Operations Research

26(2), 193–205 (2001)
5. Bocci, C., Carlini, E., Rapallo, F.: Perturbation of matrices and nonnegative rank with a view toward statistical models. SIAM

J. on Matrix Analysis and Applications 32(4), 1500–1512 (2011)
6. Brown, C.W.: Qepcad b: a program for computing with semi-algebraic sets using cads. ACM SIGSAM Bulletin 37(4), 97–108

(2003)
7. Carlini, E., Rapallo, F.: Probability matrices, non-negative rank, and parameterization of mixture models. Linear Algebra and

its Applications 433, 424–432 (2010)
8. Cichocki, A., Amari, S., Zdunek, R., Phan, A.: Non-negative Matrix and Tensor Factorizations: Applications to Exploratory

Multi-way Data Analysis and Blind Source Separation. Wiley-Blackwell (2009)
9. Cichocki, A., Phan, A.H.: Fast local algorithms for large scale Nonnegative Matrix and Tensor Factorizations. IEICE Trans.

on Fundamentals of Electronics Vol. E92-A No.3, 708–721 (2009)
10. Cichocki, A., Zdunek, R., Amari, S.: Hierarchical ALS Algorithms for Nonnegative Matrix and 3D Tensor Factorization. In:

Lecture Notes in Computer Science, Springer, pp. 169–176 (2007)

20 Arnaud Vandaele et al.

11. Cichocki, A., Zdunek, R., Phan, A.H., Amari, S.i.: Nonnegative matrix and tensor factorizations: applications to exploratory
multi-way data analysis and blind source separation. John Wiley & Sons (2009)

12. Cohen, J., Rothblum, U.: Nonnegative ranks, Decompositions and Factorization of Nonnegative Matrices. Linear Algebra and
its Applications 190, 149–168 (1993)

13. Conforti, M., Cornujols, G., Zambelli, G.: Extended formulations in combinatorial optimization. 4OR: A Quarterly Journal of
Operations Research 10(1), 1–48 (2010)

14. Fawzi, H., Gouveia, J., Parrilo, P., Robinson, R., Thomas, R.: Positive semidefinite rank (2014). arXiv:1407.4095
15. Fiorini, S., Kaibel, V., Pashkovich, K., Theis, D.: Combinatorial bounds on nonnegative rank and extended formulations.

Discrete Mathematics 313(1), 67–83 (2013)
16. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H., de Wolf, R.: Linear vs. semidefinite extended formulations: exponential separation

and strong lower bounds. In: Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pp. 95–106.
ACM (2012)

17. Fiorini, S., Rothvoss, T., Tiwary, H.: Extended formulations for polygons. Discrete & Computational Geometry 48(3), 658–668
(2012)

18. Gillis, N.: Sparse and unique nonnegative matrix factorization through data preprocessing. Journal of Machine Learning
Research 13(Nov), 3349–3386 (2012)

19. Gillis, N.: The why and how of nonnegative matrix factorization. In: J. Suykens, M. Signoretto, A. Argyriou (eds.) Regulariza-
tion, Optimization, Kernels, and Support Vector Machines. Chapman & Hall/CRC, Machine Learning and Pattern Recognition
Series (2014)

20. Gillis, N., Glineur, F.: Using underapproximations for sparse nonnegative matrix factorization. Pattern Recognition 43(4),
1676–1687 (2010)

21. Gillis, N., Glineur, F.: Accelerated multiplicative updates and hierarchical ALS algorithms for nonnegative matrix factorization.
Neural Computation 24(4), 1085–1105 (2012)

22. Gillis, N., Glineur, F.: On the geometric interpretation of the nonnegative rank. Linear Algebra and its Applications 437(11),
2685–2712 (2012)

23. Goemans, M.: Smallest compact formulation for the permutahedron (2009). http://math.mit.edu/~goemans/PAPERS/

permutahedron.pdf

24. Gouveia, J.: Personnal comunication (2014)
25. Gouveia, J., Fawzi, H., Robinson, R.: Rational and real positive semidefinite rank can be different (2014). arXiv:1404.4864
26. Gouveia, J., Parrilo, P., Thomas, R.: Lifts of convex sets and cone factorizations. Mathematics of Operations Research 38(2),

248–264 (2013)
27. Hrubeš, P.: On the nonnegative rank of distance matrices. Information Processing Letters 112(11), 457–461 (2012)
28. Janecek, A., Tan, Y.: Iterative improvement of the multiplicative update NMF algorithm using nature-inspired optimization.

In: Seventh International Conference on Natural Computation, vol. 3, pp. 1668–1672 (2011)
29. Janecek, A., Tan, Y.: Swarm intelligence for non-negative matrix factorization. International Journal of Swarm Intelligence

Research 2(4), 12–34 (2011)
30. Janecek, A., Tan, Y.: Using population based algorithms for initializing nonnegative matrix factorization. Advances in Swarm

Intelligence pp. 307–316 (2011)
31. Kaibel, V.: Extended Formulations in Combinatorial Optimization. Optima 85, 2–7 (2011)
32. Kaibel, V., Weltge, S.: A short proof that the extension complexity of the correlation polytope grows exponentially (2013).

arXiv:1307.3543
33. Kim, J., He, Y., Park, H.: Algorithms for nonnegative matrix and tensor factorizations: A unified view based on block coordinate

descent framework. Journal of Global Optimization 58(2), 285–319 (2014)
34. Kim, J., Park, H.: Fast nonnegative matrix factorization: An active-set-like method and comparisons. SIAM J. on Scientific

Computing 33(6), 3261–3281 (2011)
35. Lee, D., Seung, H.: Learning the Parts of Objects by Nonnegative Matrix Factorization. Nature 401, 788–791 (1999)
36. Lee, D., Seung, H.: Algorithms for Non-negative Matrix Factorization. In Advances in Neural Information Processing 13 (2001)
37. Lee, T., Shraibman, A.: Lower bounds in communication complexity. Now Publishers Inc. (2009)
38. Moitra, A.: An almost optimal algorithm for computing nonnegative rank. In: Proc. of the 24th Annual ACM-SIAM Symp. on

Discrete Algorithms (SODA ’13), pp. 1454–1464 (2013)
39. Oelze, M., Vandaele, A., Weltge, S.: Computing the extension complexities of all 4-dimensional 0/1-polytopes (2014).

arXiv:1406.4895
40. Padrol, A., Pfeifle, J.: Polygons as slices of higher-dimensional polytopes (2014). arXiv:1404.2443
41. Pirlot, M.: General local search methods. European Journal of Operational Research 92(3), 493–511 (1996)
42. Rothvoss, T.: The matching polytope has exponential extension complexity (2013). arXiv:1311.2369
43. Shitov, Y.: An upper bound for nonnegative rank. Journal of Combinatorial Theory, Series A 122, 126–132 (2014)
44. Takahashi, N., Hibi, R.: Global convergence of modified multiplicative updates for nonnegative matrix factorization. Compu-

tational Optimization and Applications 57(2), 417–440 (2014)
45. Thomas, L.: Rank factorization of nonnegative matrices. SIAM Review 16(3), 393–394 (1974)
46. Vavasis, S.: On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization 20(3), 1364–1377 (2009)
47. Watson, T.: Sampling versus unambiguous nondeterminism in communication complexity (2014). http://www.cs.toronto.

edu/~thomasw/papers/nnr.pdf

48. Yannakakis, M.: Expressing Combinatorial Optimization Problems by Linear Programs. Journal of Computer and System
Sciences 43(3), 441–466 (1991)

Heuristics for Exact Nonnegative Matrix Factorization 21

A Sensitivity to the Parameters α and ∆t

In this section, we show some numerical results to stress out that the heuristics are not too sensitive (in terms of number of exact
NMF’s found) to the parameters α and ∆t of the local search heuristic (Algorithm FR), as long as they are chosen sufficiently
large; see Tables 8 and 9. This is the reason why we selected the rather conservative values of α = 0.99 and ∆t = 1 in this paper.

Table 8 Comparison of different values of α with ∆t = 1 combined with multi-start 2.

α = 0.9999 α = 0.99 α = 0.9 α = 0.5
LEDM6 8/10 (2.6) 7/10 (3.2) 8/10 (2.8) 8/10 (2.1)
LEDM8 5/30 (28.8) 6/40 (20) 5/30 (17.1) 5/30 (16.1)
LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.7) 10/10 (1.8) 10/10 (2.1) 10/10 (2)
7-G 10/10 (1.8) 10/10 (2.2) 10/10 (2.2) 10/10 (2.1)
8-G 9/10 (2.4) 9/10 (2.3) 9/10 (2.3) 9/10 (2.3)
9-G 5/10 (4.7) 6/10 (4.2) 5/10 (4.8) 5/10 (4.7)
16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 10/10 (2.4) 10/10 (2.1) 10/10 (2.4) 10/10 (2.4)
UDISJ5 6/20 (23.1) 5/30 (36.4) 6/40 (40.6) 3/100 (179.3)
UDISJ6 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
RND1 10/10 (2.2) 10/10 (2.3) 10/10 (2.6) 10/10 (2.5)
RND3 10/10 (2.7) 10/10 (2.4) 10/10 (2.2) 10/10 (2.7)

Table 9 Comparison of different values of ∆t with α = 0.99 combined with multi-start 2.

∆t = 0.001 ∆t = 0.01 ∆t = 0.05 ∆t = 0.1 ∆t = 1 ∆t = 2
LEDM6 8/10 (1.5) 7/10 (1.7) 8/10 (1.5) 8/10 (1.5) 7/10 (3.2) 8/10 (4.4)
LEDM8 5/50 (12.6) 5/50 (13) 5/30 (8.6) 5/30 (9.8) 6/40 (20) 5/30 (33.4)
LEDM12 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM16 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.2) 10/10 (1.1) 10/10 (1.1) 10/10 (1.2) 10/10 (1.8) 10/10 (3.1)
7-G 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.3) 10/10 (2.2) 10/10 (3.1)
8-G 9/10 (1.4) 9/10 (1.4) 9/10 (1.4) 9/10 (1.4) 9/10 (2.3) 9/10 (3.5)
9-G 6/10 (2.3) 5/10 (2.7) 5/10 (2.7) 5/10 (2.8) 6/10 (4.2) 5/10 (8.4)
16-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
32-G 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
20-D 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
24-C 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

UDISJ4 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.6) 10/10 (2.1) 10/10 (3.4)
UDISJ5 1/100 (606.2) 1/100 (614.9) 4/100 (153.6) 2/100 (306.3) 5/30 (36.4) 5/20 (37.5)
UDISJ6 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)
RND1 10/10 (1.9) 10/10 (1.8) 10/10 (1.9) 10/10 (1.9) 10/10 (2.3) 10/10 (3.8)
RND3 10/10 (1.9) 10/10 (1.8) 10/10 (1.9) 10/10 (1.9) 10/10 (2.4) 10/10 (3.8)

In practice however, it would be good to start the heuristics with smaller values for α and ∆t and increase them progressively
if the heuristic fails to identify exact NMF’s: for easily factorizable matrices (such as the randomly generated ones) it does not
make sense to choose large parameters, while for difficult matrices choosing α and ∆t too small does not allow the heuristics to
find exact NMF’s because convergence of NMF algorithms can, in some cases, be too slow.

22 Arnaud Vandaele et al.

B Parameters for Simulated Annealing

Table 10 shows the performance of SA for different initialization strategies described in Section 3.2 (for T0 = 0.1, Tend = 10−4,
J = 2, N = 100 and K = 50): it appears that SPARSE10 works on average the best hence we keep this initialization for SA. In
particular, it is interesting to notice that SPARSE10 is able to compute exact NMF’s of 32-G while the other initializations have
much more difficulties (only SPARSE00 finds one exact NMF).

Table 10 Comparison of the different initialization strategies combined with SA.

sparse 00 sparse 10 sparse 01 sparse 11 rndcube
LEDM6 10/10 (19.5) 10/10 (17) 10/10 (20.4) 10/10 (16.5) 10/10 (19.4)
LEDM8 10/10 (57.9) 10/10 (44.8) 10/10 (59) 9/10 (49.9) 10/10 (63.3)
LEDM12 9/10 (26.5) 6/10 (30) 11/20 (45.1) 8/10 (28) 10/20 (51)
LEDM16 7/20 (125.9) 11/20 (65.6) 5/10 (99.2) 6/20 (112.8) 6/20 (132.6)
LEDM32 5/90 (711.7) 3/100 (1016.9) 1/100 (3728.4) 2/100 (1447.5) 0/100 (∼)

6-G 10/10 (1.2) 10/10 (1.2) 10/10 (1.1) 10/10 (1.3) 10/10 (1.2)
7-G 10/10 (3.5) 10/10 (3.5) 9/10 (72.5) 10/10 (3.4) 10/10 (3.5)
8-G 10/10 (17.2) 10/10 (13.8) 10/10 (19.6) 10/10 (15.9) 10/10 (16.1)
9-G 10/10 (22.7) 10/10 (21.3) 10/10 (23) 10/10 (18) 10/10 (24.1)
16-G 6/20 (87.6) 8/20 (61.4) 7/40 (150.4) 5/60 (287.7) 6/40 (182.7)
32-G 0/100 (∼) 3/100 (999.5) 0/100 (∼) 0/100 (∼) 0/100 (∼)
20-D 10/10 (7.5) 10/10 (4.2) 10/10 (8.1) 10/10 (10) 10/10 (8)
24-C 10/10 (4.4) 10/10 (3.6) 10/10 (3.1) 10/10 (4.5) 10/10 (3.7)

UDISJ4 10/10 (1.2) 10/10 (1.2) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)
UDISJ5 10/10 (2.9) 10/10 (2.3) 10/10 (3) 10/10 (2.7) 10/10 (3.8)
UDISJ6 10/10 (8.3) 10/10 (8.1) 10/10 (52.4) 10/10 (13.5) 10/10 (43.9)
RND1 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)
RND3 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)

Table 11 shows the performance for different values of Tend (for J = 2, N = 100 and K = 50): it appears that the value
Tend = 10−4 for the final temperature works well.

Table 11 Performance of Simulated Annealing for different values of Tend (J = 2, N = 100 and K = 50).

Tend = 10−2 Tend = 10−3 Tend = 10−4 Tend = 10−5 Tend = 10−6

LEDM6 10/10 (17.8) 10/10 (19) 10/10 (17) 10/10 (12.3) 10/10 (13.6)
LEDM8 10/10 (54.5) 10/10 (57) 10/10 (44.8) 10/10 (62.3) 9/10 (49.1)
LEDM12 6/60 (225.4) 6/20 (63.9) 6/10 (30) 5/10 (33) 7/10 (29.4)
LEDM16 5/100 (488.7) 5/50 (223) 11/20 (65.6) 5/10 (84.1) 6/20 (100.1)
LEDM32 0/100 (∼) 0/100 (∼) 3/100 (1016.9) 0/100 (∼) 2/100 (1561)

6-G 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.2)
7-G 10/10 (3.9) 10/10 (3.8) 10/10 (3.5) 10/10 (3.9) 10/10 (4.2)
8-G 10/10 (16.5) 10/10 (17.4) 10/10 (13.8) 10/10 (11.4) 10/10 (13.4)
9-G 10/10 (21) 10/10 (17.2) 10/10 (21.3) 10/10 (12.7) 10/10 (15.8)
16-G 5/80 (352.4) 6/20 (66.3) 8/20 (61.4) 6/30 (97.4) 6/10 (23.7)
32-G 0/100 (∼) 0/100 (∼) 3/100 (999.5) 3/100 (931.3) 2/100 (1331.3)
20-D 10/10 (4.1) 10/10 (5.9) 10/10 (4.2) 10/10 (7.6) 10/10 (5.2)
24-C 10/10 (3.9) 10/10 (2.1) 10/10 (3.6) 10/10 (2.9) 10/10 (2.7)

UDISJ4 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.1) 10/10 (1.2)
UDISJ5 10/10 (2.3) 10/10 (2.4) 10/10 (2.3) 10/10 (2.5) 10/10 (2.3)
UDISJ6 10/10 (9) 10/10 (9.4) 10/10 (8.1) 10/10 (7.7) 10/10 (8.6)
RND1 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)
RND3 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)

Table 12 shows the performance for different values of N and K, for Tend = 10−4 and J = 2. It seems that K = 50 and
N = 100 is a good compromise between number of exact NMF’s found and computational time.

Table 13 shows the performance for different values of J (for Tend = 10−4, K = 50 and N = 100), and shows that J = 2
performs the best.

Heuristics for Exact Nonnegative Matrix Factorization 23

Table 12 Performance of Simulated Annealing for different values of K and N (Tend = 10−4 and J = 2).

K = 10 K = 20
N = 10 N = 50 N = 100 N = 10 N = 50 N = 100

LEDM6 6/10 (3.1) 10/10 (3.1) 10/10 (4.9) 8/10 (2.8) 10/10 (5) 10/10 (8.7)
LEDM8 7/20 (53.1) 7/10 (45) 8/10 (48) 9/10 (49) 10/10 (48) 10/10 (49.8)
LEDM12 5/80 (47.2) 7/20 (13.2) 5/30 (40.8) 5/30 (21.6) 5/10 (12.7) 6/10 (18.4)
LEDM16 5/70 (98.1) 5/50 (115.4) 5/80 (184.6) 5/30 (76.7) 6/30 (93.9) 5/20 (91.2)
LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.6) 10/10 (2.5) 10/10 (1.2) 10/10 (2) 10/10 (3.4) 10/10 (1.2)
7-G 7/10 (2.7) 10/10 (3) 10/10 (2.4) 9/10 (2.4) 10/10 (4.7) 10/10 (3.8)
8-G 10/10 (1.6) 10/10 (3.1) 10/10 (4.8) 10/10 (2.1) 10/10 (5) 10/10 (7.3)
9-G 8/10 (2.3) 7/10 (5.1) 10/10 (5.5) 8/10 (3) 10/10 (5.5) 10/10 (9.9)
16-G 5/30 (15.1) 7/60 (38.8) 5/40 (56.5) 5/30 (18.7) 6/20 (21.7) 5/20 (46)
32-G 1/100 (410.7) 0/100 (∼) 1/100 (895.7) 0/100 (∼) 2/100 (458.4) 2/100 (740)
20-D 6/10 (3.5) 8/10 (4.8) 9/10 (4.9) 5/10 (5.7) 7/10 (9.3) 9/10 (6.4)
24-C 8/10 (2.5) 9/10 (4.9) 10/10 (2.9) 8/10 (3.3) 8/10 (9.6) 9/10 (4.4)

UDISJ4 10/10 (1.7) 10/10 (1.3) 10/10 (1.2) 10/10 (2.4) 10/10 (1.4) 10/10 (1.2)
UDISJ5 10/10 (3.9) 10/10 (13.7) 10/10 (2.7) 10/10 (6.8) 10/10 (26.3) 10/10 (3.5)
UDISJ6 9/10 (6.9) 10/10 (22.9) 10/10 (7.1) 10/10 (11.4) 10/10 (42.3) 10/10 (8.8)
RND1 10/10 (1.9) 10/10 (1.3) 10/10 (1.1) 10/10 (2.7) 10/10 (1.3) 10/10 (1.1)
RND3 10/10 (1.9) 10/10 (1.1) 10/10 (1.1) 10/10 (2.7) 10/10 (1.1) 10/10 (1.1)

K = 50 K = 100
N = 10 N = 50 N = 100 N = 10 N = 50 N = 100

LEDM6 8/10 (4.6) 10/10 (11.1) 10/10 (17) 10/10 (5.9) 10/10 (19) 10/10 (38.4)
LEDM8 9/10 (44) 9/10 (59.4) 10/10 (44.8) 9/10 (49.4) 10/10 (62.1) 10/10 (71.5)
LEDM12 6/20 (15.4) 6/10 (23) 6/10 (30) 5/20 (31.5) 7/10 (33.8) 9/10 (55.9)
LEDM16 7/60 (103.5) 5/20 (100.9) 11/20 (65.6) 6/40 (116.4) 7/10 (81.2) 6/10 (156)
LEDM32 0/100 (∼) 3/100 (706.4) 3/100 (1016.9) 1/100 (1318) 5/70 (571.8) 5/70 (1049)

6-G 10/10 (3.5) 10/10 (2.7) 10/10 (1.2) 10/10 (5.4) 10/10 (3.9) 10/10 (1.2)
7-G 10/10 (3.7) 10/10 (9.3) 10/10 (3.5) 10/10 (5.9) 10/10 (18.2) 10/10 (4.5)
8-G 10/10 (3.8) 10/10 (11) 10/10 (13.8) 10/10 (5.9) 10/10 (21.1) 10/10 (28)
9-G 9/10 (4.4) 10/10 (11.8) 10/10 (21.3) 9/10 (7.1) 10/10 (23.3) 10/10 (42.4)
16-G 6/20 (16.3) 9/20 (31.5) 8/20 (61.4) 10/20 (14.4) 9/20 (58.7) 8/10 (63.6)
32-G 2/100 (341.1) 3/100 (606.6) 3/100 (999.5) 3/100 (330.4) 5/60 (405.1) 5/40 (522.4)
20-D 10/10 (4.4) 10/10 (14.3) 10/10 (4.2) 9/10 (8.4) 10/10 (27.7) 10/10 (11.8)
24-C 10/10 (5) 10/10 (17.1) 10/10 (3.6) 10/10 (8.7) 10/10 (30.5) 10/10 (4.2)

UDISJ4 10/10 (4.4) 10/10 (1.3) 10/10 (1.2) 10/10 (7.4) 10/10 (1.4) 10/10 (1.2)
UDISJ5 10/10 (15.5) 10/10 (55.6) 10/10 (2.3) 10/10 (28.6) 10/10 (98.7) 10/10 (3.5)
UDISJ6 10/10 (27.4) 10/10 (63.5) 10/10 (8.1) 10/10 (48.5) 10/10 (131.5) 10/10 (11.3)
RND1 10/10 (5.1) 10/10 (1.3) 10/10 (1.1) 10/10 (8.5) 10/10 (1.3) 10/10 (1.1)
RND3 10/10 (5.1) 10/10 (1.1) 10/10 (1.1) 10/10 (8.5) 10/10 (1.1) 10/10 (1.1)

Table 13 Performance of Simulated Annealing for different values of J (Tend = 10−4, K = 50 and N = 100).

|J | = 1 |J | = 2 |J | = 3 |J | = 4
LEDM6 10/10 (20.5) 10/10 (17) 10/10 (20.3) 10/10 (19.4)
LEDM8 10/10 (54.4) 10/10 (44.8) 10/10 (64.4) 10/10 (61.3)
LEDM12 10/10 (25) 6/10 (30) 5/10 (50.3) 7/20 (67.7)
LEDM16 5/10 (100.9) 11/20 (65.6) 7/20 (115.1) 6/20 (99.4)
LEDM32 1/100 (3655.9) 3/100 (1016.9) 1/100 (3688) 2/100 (1798)

6-G 10/10 (1.2) 10/10 (1.2) 10/10 (1.2) 10/10 (1.2)
7-G 10/10 (2.2) 10/10 (3.5) 10/10 (5.1) 10/10 (10.4)
8-G 10/10 (17.5) 10/10 (13.8) 10/10 (16.5) 10/10 (20.4)
9-G 10/10 (19.5) 10/10 (21.3) 10/10 (22.8) 10/10 (23.5)
16-G 6/10 (44.5) 8/20 (61.4) 5/20 (108.2) 6/60 (268.2)
32-G 5/90 (613.1) 3/100 (999.5) 0/100 (∼) 1/100 (3377)
20-D 9/10 (8) 10/10 (4.2) 10/10 (8.6) 10/10 (19.8)
24-C 10/10 (4) 10/10 (3.6) 10/10 (4.8) 10/10 (6.5)

UDISJ4 10/10 (1.3) 10/10 (1.2) 10/10 (1.2) 10/10 (1.2)
UDISJ5 10/10 (3.7) 10/10 (2.3) 10/10 (2.8) 10/10 (3)
UDISJ6 10/10 (11) 10/10 (8.1) 10/10 (6.8) 10/10 (8.1)
RND1 10/10 (1.1) 10/10 (1.1) 10/10 (1.2) 10/10 (1.1)
RND3 10/10 (1.1) 10/10 (1.1) 10/10 (1.1) 10/10 (1.1)

C Parameters for the Rank-by-Rank Heuristic

Table 14 shows the performance of RBR for the different initialization strategies (for N = 100 and K = 50): SPARSE10 works on
average the best. As for SA, it allows to compute exact NMF’s of 32-G (6/10) while all other initializations fail.

Table 15 gives the results for several values of the parameters K and N . It is interesting to observe that when K gets larger,
the heuristic performs rather poorly in some cases (e.g., for the UDISJ6 matrix). The reason is that when K increases, the heuristic
tends to generate similar solutions: the ones obtained with Algorithm getRankPlusOne initialized with the best solution that can
be obtained by combining the rank-(k − 1) solution with a rank-one one. In other words, the search domain that can be explored
by RBR is reduced when K increases.

24 Arnaud Vandaele et al.

Table 14 Comparison of the different initialization strategies combined with RBR.

sparse 00 sparse 10 sparse 01 sparse 11 rndcube
LEDM6 10/10 (1.4) 10/10 (1.4) 10/10 (1.4) 10/10 (1.4) 10/10 (1.4)
LEDM8 10/10 (14.6) 10/10 (15.8) 10/10 (12.3) 10/10 (20.3) 10/10 (11.7)
LEDM12 5/30 (14.8) 7/30 (10.1) 6/20 (7.8) 7/30 (10.3) 5/20 (9.4)
LEDM16 5/50 (40.4) 5/30 (29.5) 6/40 (31.5) 5/30 (29.5) 6/10 (17.9)
LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.4) 10/10 (1.4) 10/10 (1.4) 10/10 (1.4) 10/10 (1.4)
7-G 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.5)
8-G 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.5) 10/10 (1.5)
9-G 10/10 (1.6) 10/10 (1.6) 10/10 (1.6) 10/10 (1.6) 10/10 (1.6)
16-G 10/10 (1.8) 10/10 (1.8) 9/10 (2.1) 5/10 (4.3) 6/20 (8.1)
32-G 7/20 (8.4) 8/20 (7.1) 5/40 (26.7) 7/20 (9.4) 1/100 (421.1)
20-D 8/10 (2.5) 9/10 (2.1) 10/10 (1.9) 9/10 (2.2) 8/10 (2.3)
24-C 7/10 (3.4) 8/10 (2.9) 8/10 (2.9) 8/10 (3) 12/20 (4.1)

UDISJ4 10/10 (1.9) 10/10 (1.9) 10/10 (1.9) 10/10 (1.9) 8/10 (2.3)
UDISJ5 10/10 (5) 10/10 (4.8) 10/10 (4.9) 10/10 (4.9) 9/10 (5.5)
UDISJ6 6/20 (57.5) 6/40 (116.8) 7/10 (23.7) 8/10 (21) 5/30 (106)
RND1 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2)
RND3 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2)

Table 15 Performance of the Rank-by-Rank heuristic for different values of K and N .

K = 1 K = 10
N = 10 N = 50 N = 100 N = 10 N = 50 N = 100

LEDM6 8/30 (6.7) 7/10 (2) 5/10 (3.2) 10/10 (1.2) 10/10 (1.4) 10/10 (1.7)
LEDM8 6/10 (19.4) 8/20 (13.6) 6/10 (9.8) 10/10 (38.5) 10/10 (15.8) 10/10 (13.1)
LEDM12 5/50 (27.8) 5/20 (10.2) 7/20 (6.2) 5/80 (33.8) 7/30 (10.1) 10/10 (2.2)
LEDM16 0/100 (∼) 5/60 (59.1) 5/40 (37.2) 5/100 (73.8) 5/30 (29.5) 6/40 (36.4)
LEDM32 1/100 (545.3) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 5/10 (3.1) 5/10 (2.8) 6/20 (4) 10/10 (1.2) 10/10 (1.4) 10/10 (1.7)
7-G 12/20 (2.4) 7/10 (2) 6/10 (2.1) 10/10 (1.2) 10/10 (1.5) 10/10 (1.9)
8-G 10/10 (1.1) 10/10 (1.1) 10/10 (1.2) 10/10 (1.2) 10/10 (1.5) 10/10 (1.9)
9-G 5/10 (3.3) 11/20 (2.8) 6/10 (2.6) 10/10 (1.2) 10/10 (1.6) 10/10 (2.2)
16-G 5/70 (29.7) 6/30 (10.2) 5/50 (24.3) 8/10 (1.8) 10/10 (1.8) 10/10 (2.4)
32-G 1/100 (316.6) 2/100 (153.4) 5/100 (61.2) 7/30 (9.8) 8/20 (7.1) 11/20 (6.8)
20-D 7/20 (4.9) 5/30 (11.5) 8/30 (6.4) 10/10 (1.3) 9/10 (2.1) 8/10 (3.4)
24-C 5/70 (28.1) 7/20 (3.9) 5/50 (15.1) 6/10 (2.9) 8/10 (2.9) 8/10 (4.6)

UDISJ4 9/10 (1.3) 9/10 (1.3) 9/10 (1.4) 10/10 (1.3) 10/10 (1.9) 9/10 (3)
UDISJ5 8/10 (1.8) 9/10 (1.7) 6/10 (3.2) 10/10 (2.1) 10/10 (4.8) 10/10 (8.4)
UDISJ6 7/10 (2.6) 7/10 (4) 13/20 (6.9) 7/20 (15.1) 6/40 (116.8) 7/30 (149.7)
RND1 10/10 (1.1) 10/10 (1.2) 10/10 (1.3) 10/10 (1.3) 10/10 (2.2) 10/10 (3.1)
RND3 10/10 (1.1) 10/10 (1.2) 10/10 (1.3) 10/10 (1.3) 10/10 (2.2) 10/10 (3.1)

K = 50 K = 100
N = 10 N = 50 N = 100 N = 10 N = 50 N = 100

LEDM6 10/10 (1.4) 10/10 (2.7) 10/10 (4.1) 10/10 (1.9) 10/10 (4.4) 10/10 (7.7)
LEDM8 10/10 (20.8) 10/10 (16) 10/10 (28.8) 10/10 (19.2) 10/10 (16.5) 10/10 (34.7)
LEDM12 6/50 (21.2) 9/20 (10.1) 10/10 (6.2) 6/40 (22) 6/10 (11.7) 10/10 (12.3)
LEDM16 5/50 (44.2) 7/50 (53.2) 5/50 (98.7) 6/20 (27.1) 5/70 (139.3) 6/70 (197.6)
LEDM32 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.4) 10/10 (2.7) 10/10 (4.1) 10/10 (1.9) 10/10 (4.3) 10/10 (7.6)
7-G 10/10 (1.6) 10/10 (3.2) 10/10 (5) 10/10 (2.1) 10/10 (5.4) 10/10 (9.6)
8-G 10/10 (1.6) 10/10 (3.2) 10/10 (5.1) 10/10 (2.1) 10/10 (5.4) 10/10 (9.7)
9-G 10/10 (1.7) 10/10 (3.8) 10/10 (6.2) 10/10 (2.4) 10/10 (6.6) 10/10 (12)
16-G 10/10 (1.9) 10/10 (4.5) 10/10 (7.5) 10/10 (2.7) 10/10 (8) 10/10 (14.9)
32-G 5/20 (14.4) 7/10 (9.3) 10/10 (10.8) 6/50 (39.4) 9/10 (12.8) 10/10 (21.7)
20-D 10/10 (2) 8/10 (6.4) 9/10 (9.7) 10/10 (3) 9/10 (10.3) 5/10 (34.7)
24-C 9/20 (6.9) 10/10 (7.6) 9/10 (14.7) 7/20 (13.5) 10/10 (13.8) 9/10 (29.8)

UDISJ4 10/10 (2) 10/10 (5.1) 8/10 (10.9) 10/10 (3) 10/10 (9) 7/40 (98.6)
UDISJ5 8/10 (7) 10/10 (19.9) 10/10 (35.8) 5/10 (20.4) 10/10 (38.2) 10/10 (74.8)
UDISJ6 5/40 (156.2) 0/100 (∼) 0/100 (∼) 5/40 (293.2) 0/100 (∼) 0/100 (∼)
RND1 10/10 (2.4) 10/10 (6.4) 10/10 (12.2) 10/10 (3.7) 10/10 (12.4) 10/10 (22.4)
RND3 10/10 (2.4) 10/10 (6.4) 10/10 (12.3) 10/10 (3.7) 10/10 (12.4) 10/10 (22.3)

D Initialization for the Hybridization

Again the best initialization strategy is SPARSE10. However, it is interesting to note that Hybrid is less sensitive to initialization
than SA and RBR. In fact, except for 32-G with RNDCUBE and LEDM32 with SPARSE01, it was able to compute exact NMF’s
in all situations. In other words, Hybrid is a more robust strategy than RBR and SA although it is computationally more expensive
on average.

Heuristics for Exact Nonnegative Matrix Factorization 25

Table 16 Comparison of the different initialization strategies combined with the hybridization between RBR and SA.

sparse 00 sparse 10 sparse 01 sparse 11 rndcube
LEDM6 10/10 (20.1) 10/10 (20.4) 10/10 (20.2) 10/10 (20) 10/10 (20.1)
LEDM8 10/10 (59.7) 10/10 (59.2) 10/10 (53) 10/10 (65.9) 10/10 (61.6)
LEDM12 7/10 (36) 5/10 (50.8) 5/10 (51) 7/10 (36.7) 8/10 (31.2)
LEDM16 5/10 (102.6) 8/20 (103.1) 11/20 (91.3) 5/10 (69.8) 7/10 (74.5)
LEDM32 4/100 (946.2) 2/100 (1851.1) 1/100 (3796.3) 0/100 (∼) 0/100 (∼)

6-G 10/10 (1.5) 10/10 (1.4) 10/10 (1.5) 10/10 (1.5) 10/10 (1.4)
7-G 10/10 (4.5) 10/10 (3.1) 10/10 (2.5) 10/10 (3.5) 10/10 (3.1)
8-G 10/10 (14.7) 10/10 (13.4) 10/10 (19.4) 10/10 (20.2) 10/10 (19.2)
9-G 10/10 (22.9) 10/10 (22) 10/10 (23.8) 10/10 (24.1) 10/10 (23.9)
16-G 10/10 (26.4) 7/10 (36.7) 8/10 (34.6) 6/10 (45.6) 5/20 (109.3)
32-G 5/10 (67.4) 5/10 (66.9) 6/30 (176.6) 6/40 (235.9) 0/100 (∼)
20-D 10/10 (10.1) 10/10 (4.4) 10/10 (10.3) 10/10 (6.7) 10/10 (5.7)
24-C 10/10 (2.7) 10/10 (5.6) 10/10 (3.1) 10/10 (4.1) 10/10 (2.9)

UDISJ4 10/10 (1.9) 10/10 (1.9) 10/10 (1.9) 10/10 (1.9) 10/10 (1.9)
UDISJ5 10/10 (5.1) 10/10 (5) 10/10 (5.3) 10/10 (5.3) 10/10 (5.8)
UDISJ6 10/10 (18.6) 10/10 (21.2) 10/10 (19.3) 10/10 (17.2) 10/10 (21.4)
RND1 10/10 (2.2) 10/10 (2.2) 10/10 (2.3) 10/10 (2.2) 10/10 (2.2)
RND3 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2) 10/10 (2.2)

Recent titles
CORE Discussion Papers

2014/34 Tanguy KEGELART and Mathieu VAN VYVE. A conic optimization approach for SKU

rationalization.
2014/35 Ulrike KORNEK, Kei LESSMANN and Henry TULKENS. Transferable and non transferable

utility implementations of coalitional stability in integrated assessment models.
2014/36 Ibrahim ABADA, Andreas EHRENMANN and Yves SMEERS. Endogenizing long-term

contracts in gas market models.
2014/37 Julio DAVILA. Output externalities on total factor productivity.
2014/38 Diane PIERRET. Systemic risk and the solvency-liquidity nexus of banks.
2014/39 Paul BELLEFLAMME and Julien JACQMIN. An economic appraisal of MOOC platforms:

business models and impacts on higher education.
2014/40 Marie-Louise LEROUX, Pierre PESTIEAU and Grégory PONTHIERE. Longévité

différentielle et redistribution: enjeux théoriques et empiriques.
2014/41 Chiara CANTA, Pierre PESTIEAU and Emmanuel THIBAULT. Long term care and capital

accumulation: the impact of the State, the market and the family.
2014/42 Gilles GRANDJEAN, Marco MANTOVANI, Ana MAULEON and Vincent

VANNETELBOSCH. Whom are you talking with ? An experiment on credibility and
communication structure.

2014/43 Julio DAVILA. The rationality of expectations formation.
2014/44 Florian MAYNERIS, Sandra PONCET and Tao ZHANG. The cleaning effect of minimum

wages. Minimum wages, firm dynamics and aggregate productivity in China.
2014/45 Thierry BRECHET, Natali HRITONENKOVA and Yuri YATSENKO. Domestic

environmental policy and international cooperation for global commons.
2014/46 Mathieu PARENTI, Philip USHCHEV and Jacques-François THISSE. Toward a theory of

monopolistic competition.
2014/47 Takatoshi TABUCHI, Jacques-François THISSE and Xiwei ZHU. Does technological progress

affect the location of economic activity?
2014/48 Paul CASTANEDA DOWER, Victor GINSBURGH and Shlomo WEBER. Colonial legacy,

linguistic disenfranchisement and the civil conflict in Sri Lanka.
2014/49 Victor GINSBURGH, Jacques MELITZ and Farid TOUBAL. Foreign language learnings: An

econometric analysis.
2014/50 Koen DECANCQ and Dirk NEUMANN. Does the choice of well-being measure matter

empirically? An illustration with German data.
2014/51 François MANIQUET. Social ordering functions.
2014/52 Ivar EKELAND and Maurice QUEYRANNE. Optimal pits and optimal transportation.
2014/53 Luc BAUWENS, Manuela BRAIONE and Giuseppe STORTI. Forecasting comparison of long

term component dynamic models for realized covariance matrices.
2014/54 François MANIQUET and Philippe MONGIN. Judgment aggregation theory can entail new

social choice results.
2014/55 Pasquale AVELLA, Maurizio BOCCIA and Laurence A. WOLSEY. Single-period cutting

planes for inventory routing problems.
2014/56 Jean-Pierre FLORENS and Sébastien VAN BELLEGEM. Instrumental variable estimation in

functional linear models.
2014/57 Abdelrahaman ALY and Mathieu VAN VYVE. Securely solving classical networks flow

problems.
2014/58 Henry TULKENS. Internal vs. core coalitional stability in the environmental externality game:

A reconciliation.
2014/59 Manuela BRAIONE and Nicolas K. SCHOLTES. Construction of Value-at-Risk forecasts

under different distributional assumptions within a BEKK framework.
2014/60 Jörg BREITUNG and Christian M. HAFNER. A simple model for now-casting volatility series.
2014/61 Timo TERASVIRTA and Yukai YANG. Linearity and misspecification tests for vector smooth

transition regression models.

Recent titles
CORE Discussion Papers - continued

2014/62 Timo TERASVIRTA and Yukai YANG. Specification, estimation and evaluation of vector

smooth transition autoregressive models with applications.
2014/63 Axel GAUTIER and Nicolas PETIT. Optimal enforcement of competition policy: the

commitments procedure under uncertainty.
2014/64 Sébastien BROOS and Axel GAUTIER. Competing one-way essential complements: the

forgotten side of net neutrality.
2014/65 Jean HINDRIKS and Yukihiro NISHIMURA. On the timing of tax and investment in fiscal

competition models.
2014/66 Jean HINDRIKS and Guillaume LAMY. Back to school, back to segregation?
2014/67 François MANIQUET et Dirk NEUMANN. Echelles d'équivalence du temps de travail:

évaluation de l'impôt sur le revenu en Belgique à la lumière de l'éthique de la responsabilité.
2015/1 Yurii NESTEROV and Vladimir SHIKHMAN. Algorithm of Price Adjustment for Market

Equilibrium.
2015/2 Claude d’ASPREMONT and Rodolphe DOS SANTOS FERREIRA. Oligopolistic vs.

monopolistic competition: Do intersectoral effects matter?
2015/3 Yuuri NESTEROV. Complexity bounds for primal-dual methods minimizing the model of

objective function.
2015/4 Hassène AISSI, A. Ridha MAHJOUB, S. Thomas MCCORMICK and Maurice QUEYRANNE.

Strongly polynomial bounds for multiobjective and parametric global minimum cuts in graphs
and hypergraphs.

2015/5 Marc FLEURBAEY and François MANIQUET. Optimal taxation theory and principles of
fairness.

2015/6 Arnaud VANDAELE, Nicolas GILLIS, François GLINEUR and Daniel TUYTTENS.
Heuristics for exact nonnegative matrix factorization.

Books

W. GAERTNER and E. SCHOKKAERT (2012), Empirical Social Choice. Cambridge University Press.
L. BAUWENS, Ch. HAFNER and S. LAURENT (2012), Handbook of Volatility Models and their

Applications. Wiley.
J-C. PRAGER and J. THISSE (2012), Economic Geography and the Unequal Development of Regions.

Routledge.
M. FLEURBAEY and F. MANIQUET (2012), Equality of Opportunity: The Economics of Responsibility.

World Scientific.
J. HINDRIKS (2012), Gestion publique. De Boeck.
M. FUJITA and J.F. THISSE (2013), Economics of Agglomeration: Cities, Industrial Location, and

Globalization. (2nd edition). Cambridge University Press.
J. HINDRIKS and G.D. MYLES (2013). Intermediate Public Economics. (2nd edition). MIT Press.
J. HINDRIKS, G.D. MYLES and N. HASHIMZADE (2013). Solutions Manual to Accompany Intermediate

Public Economics. (2nd edition). MIT Press.
J. HINDRIKS (2015). Quel avenir pour nos pensions ? Les grands défis de la réforme des pensions. De

Boeck.

CORE Lecture Series

R. AMIR (2002), Supermodularity and Complementarity in Economics.
R. WEISMANTEL (2006), Lectures on Mixed Nonlinear Programming.
A. SHAPIRO (2010), Stochastic Programming: Modeling and Theory.

	1_cover2015_6
	2_address
	3_article
	4_backcover2015_6

