
Available at:
http://hdl.handle.net/2078.1/157885

[Downloaded 2019/04/19 at 06:25:23]

"RFID authentication and time-memory trade-offs"

Carpent, Xavier

Abstract

RFID is a technology that allows identification and authentication of objects or
persons through the use of wireless communication between tags and readers.
RFID Tags are small devices that are comprised of an antenna (for receiving/
transmitting data) and a chip. Although exceptions exist (e.g. passports, etc.),
tags are generally inexpensive and moderately powerful in terms of computation.
Due to the high requirements (secure authentication, respect of privacy, speed
of authentication, etc.) and specific constraints (asymetric system, inexpensive
tags, wireless communication, etc.), there are many challenges in RFID security.
Mostly two have been studied in this thesis: ultralightweight authentication
(authentication protocols dedicated to extremely low-end tags where classical
crypto is deemed too expensive) and the complexity/privacy tradeoff (protecting
privacy makes the task of readers very time-consuming). In the former, our results
are mostly cryptanalytic (almost all ultralig...

Document type : Thèse (Dissertation)

Référence bibliographique

Carpent, Xavier. RFID authentication and time-memory trade-offs. Prom. : Avoine, Gildas

RFID Authentication
and Time-Memory Trade-offs

Xavier Carpent

Thesis submitted in partial fulfillment of the requirements

for the Degree of Doctor in Engineering Sciences

March 18, 2015

Institute of Information and Communication Technologies,

Electronics and Applied Mathematics (ICTEAM)

Louvain School of Engineering (EPL)

Université catholique de Louvain (UCL)

Louvain-la-Neuve

Belgium

Examining board

Prof. Gildas Avoine, Supervisor UCL, Belgium
Prof. Olivier Periera, Secretary UCL, Belgium
Prof. Olivier Markowitch ULB, Belgium
Prof. Bart Preneel KUL, Belgium
Dr. Philippe Oechslin EPFL, Switzerland
Prof. Peter Van Roy, Chair UCL/, Belgium

Abstract

Two areas have been explored during this thesis: RFID authentication, and cryptanalytic time-
memory tradeoffs.

Radio Frequency IDentification (or RFID) is a technology that allows identification and authen-
tication of objects or persons through the use of wireless communication between tags and readers.
RFID Tags are small devices that are comprised of an antenna (for receiving/transmitting data)
and a chip. Although exceptions exist (e.g. passports, etc.), tags are generally inexpensive and
moderately powerful in terms of computation, and most of the time rely on the electro-magnetic
field provided by the reader for energy supply. Readers on the other hand are more expensive
devices that have a computational power comparable to a PC. The RFID technology is very
widespread nowadays, and it continues to grow rapidly. However, due to the high requirements
(secure authentication, respect of privacy, speed of authentication, etc.) and specific constraints
(asymmetric system, inexpensive tags, wireless communication, etc.), there are many challenges
regarding its security. Mostly two have been studied in this thesis: ultralightweight authentication
(authentication protocols dedicated to extremely low-end tags where classical crypto is deemed
too expensive) and the complexity/privacy tradeoff (protecting privacy makes the task of read-
ers very time-consuming). In the former, our results are mostly cryptanalytic, and in the latter
where, it seems, no perfect solution exists, our results are mainly analytical and comparative (the
OSK/AO protocol in particular achieves good privacy protection with reasonable complexity, and
uses cryptanalytic time-memory tradeoffs that is the focus of the second part of the thesis).

A cryptanalytic time-memory tradeoff is a generic tool to carry out brute force search for the
pre-image of a one-way function efficiently. It forms a compromise between the online exhaustive
search (no precomputation, searching through all the possibilities) and the lookup table (all pos-
sibilities precomputed and stored, and then looking up when needed) approaches. In the former,
no precomputation or memory is required, but the search is expensive, and in the latter, precom-
putation and storage are expensive, but the search is nearly instant. In time-memory tradeoffs,
precomputation is expensive, but both storage and online search time are reasonable. In this thesis,
ways to improve the performance of existing techniques have been explored, among which finger-
prints (in which stored information is slightly different than in classical time-memory tradeoffs,
which results in a speedup in the online phase), storage optimization (which reduce the storage
of time-memory tradeoffs), and interleaving (which is a way to accommodate the technique to
non-uniformly distributed input).

3

4

Contents

1 Introduction 11
1.1 RFID in a Nutshell . 11

1.1.1 System Model . 11
1.1.2 Threats in RFID . 12
1.1.3 Challenges in RFID Authentication . 13

1.2 Results on RFID Authentication . 14
1.3 Introduction to Cryptanalytic Time-Memory Trade-offs 15

1.3.1 Motivation . 15
1.3.2 Variants and Adaptations . 16

1.4 Results on Time-Memory Trade-offs . 16
1.5 Plan of the Manuscript . 17

2 Ultralightweight Authentication 19
2.1 Ultralightweight Protocols . 20

2.1.1 Tag Capabilities . 20
2.1.2 Attack Model . 20
2.1.3 SASI, a Typical Ultralightweight Protocol 21

2.2 Statistics on the State of the Art . 29
2.3 Common Flaws . 31

2.3.1 Linearity and T-functions . 31
2.3.2 Biased Output . 32
2.3.3 Rotations . 33
2.3.4 Message Composition . 34
2.3.5 Knowledge Accumulation . 34
2.3.6 Desynchronization . 35
2.3.7 Vulnerability to Systematic Black-box Attacks 35

2.4 Dubious Proofs of Security . 38
2.4.1 Randomness Tests . 38
2.4.2 BAN and GNY Logic . 40
2.4.3 Other Approaches . 41

2.5 Weaknesses in Recent Protocols . 41
2.5.1 Bilal and Martin . 41
2.5.2 Jeon and Yoon . 42
2.5.3 Ling and Shen . 44

2.6 Ultralightweight Building Blocks . 44
2.7 Conclusion . 45

3 Complexity and Privacy 47
3.1 Preliminaries . 47
3.2 Protocols with Limited Privacy . 49
3.3 Protocols with Shared Secrets . 50

3.3.1 Tree-based and Group-based Protocols . 50
3.3.2 Cheon, Hong, and Tsudik’s Protocol . 51
3.3.3 Alomair, Clark, Cuellar, and Poovendran’s Protocol 55

5

6 Contents

3.3.4 Discussion . 57
3.4 Protocols Based on Hash-Chains . 57

3.4.1 OSK Protocol . 57
3.4.2 OSK/AO Protocol . 58
3.4.3 OSK/BF Protocol . 59
3.4.4 O-RAP Protocol . 60
3.4.5 Discussion . 61

3.5 Counter-Based Protocols . 61
3.5.1 YA-TRAP Family . 61
3.5.2 Discussion . 63

3.6 Comparison . 63
3.7 Conclusion . 66

4 The OSK/AO Protocol 67
4.1 Ohkubo, Suzuki, and Kinoshita’s Protocol . 67

4.1.1 Description . 67
4.1.2 Real-life Applications . 69

4.2 OSK/AO . 70
4.2.1 Description . 70
4.2.2 Analysis . 70
4.2.3 Algorithms . 71

4.3 Experiments and Comparison . 73
4.3.1 Environment . 73
4.3.2 Parameters and Functions . 74
4.3.3 Precomputation of the Tables . 74
4.3.4 Experiments . 75

4.4 Conclusion . 75

5 Rainbow Tables with Fingerprints 77
5.1 Background on Cryptanalytic Time-Memory Trade-offs 77

5.1.1 Hellman Tables . 77
5.1.2 Rainbow Tables . 78
5.1.3 Main Results on Rainbow Tables . 80

5.2 Fingerprints . 80
5.2.1 Rationale . 81
5.2.2 Description . 81

5.3 Analysis . 82
5.4 Algorithm for Finding Optimal Configurations . 86

5.4.1 Hill Climbing . 86
5.4.2 Application to Checkpoint Functions . 87

5.5 Theoretical and Experimental Results . 88
5.5.1 Theoretical Results . 88
5.5.2 Experimental Validation . 89

5.6 Conclusion . 90

6 Rainbow Tables Optimal Storage 91
6.1 Bound for Endpoint Storage . 91
6.2 Decomposition of the Endpoints in Prefix and Suffix 92

6.2.1 Description . 92
6.2.2 Analysis and Optimality . 93

6.3 Compressed Delta Encoding of the Endpoints . 94
6.3.1 Description . 94
6.3.2 Analysis and Optimality . 94
6.3.3 Example . 95

6.4 Compressing the Startpoints . 96
6.5 Experiments and Comparison . 97

Contents 7

6.5.1 Choice of the L Parameter . 97
6.5.2 Measure of the Gain . 97

6.6 Conclusion . 99

7 Interleaving for Non-Uniform Input Distribution 101
7.1 Introduction . 101
7.2 Interleaving . 102

7.2.1 Description . 102
7.2.2 Analysis . 103

7.3 Order of Visit . 106
7.3.1 Discussion . 106
7.3.2 Analysis . 106

7.4 Input Set Partition and Memory Allocation . 109
7.4.1 Input Set Partition . 109
7.4.2 Memory Allocation . 109

7.5 Results . 109
7.6 Conclusion . 111

8 Conclusion 113

8 Contents

List of Publications

[20] Gildas Avoine and Xavier Carpent and Benjamin Martin. Strong Authentication and Strong
Integrity (SASI) is not that Strong. In S.B. Ors Yalcin, editor, Workshop on RFID Security
– RFIDSec’10, volume 6370 of Lecture Notes in Computer Science, pages 50–64, Istanbul,
Turkey, June 2010. Springer.

[21] Gildas Avoine, Xavier Carpent, and Benjamin Martin. Privacy-friendly synchronized ul-
tralightweight authentication protocols in the storm. Journal of Network and Computer
Applications, 35(2):826–843, February 2012.

[16] Gildas Avoine and Xavier Carpent. Yet another ultralightweight authentication protocol
that is broken. In Workshop on RFID Security – RFIDSec’12, Nijmegen, Netherlands, June
2012.

[12] Gildas Avoine, Muhammed Ali Bingol, Xavier Carpent, and Suleyman Kardas. Deploying
OSK on low-resource mobile devices. In Workshop on RFID Security – RFIDSec’13, Graz,
Austria, July 2013.

[13] Gildas Avoine, Muhammed Ali Bingol, Xavier Carpent, and Siddika Berna Ors Yalcin.
Privacy-friendly authentication in RFID systems: On sub-linear protocols based on symmetric-
key cryptography. IEEE Transactions on Mobile Computing, 12(10):2037–2049, October
2013.

[17] Gildas Avoine and Xavier Carpent. Optimal Storage for Rainbow Tables. In Sukwoo
Kim and Seok-Yeol Kang, editors, International Conference on Information Security and
Cryptology – ICISC 2013, Seoul, Korea, November 2013.

[19] Gildas Avoine and Xavier Carpent and Julio Hernandez-Castro. Pitfalls in Ultralightweight
Authentication Protocol Designs. IEEE Transactions on Mobile Computing. (submitted)

[14] Gildas Avoine and Adrien Bourgeois and Xavier Carpent. Analysis of Rainbow Tables with
Fingerprints. Financial Cryptography and Data Security – FC’15. (submitted)

[18] Gildas Avoine and Xavier Carpent. Interleaving Cryptanalytic Time-memory Trade-offs on
Non-Uniform Distributions. ACM Symposium on Information, Computer and Communica-
tion Security – ASIACCS’15. (submitted)

9

10 Contents

Chapter 1

Introduction

This first chapter is an introduction to the two topics addressed in this thesis: RFID authenti-
cation and cryptanalytic time-memory trade-offs. Section 1.1 presents an introduction to Radio
Frequency Identification (RFID), its characteristics, and its challenges. Section 1.3 presents a short
introduction on Time-Memory Trade-offs (TMTO). Sections 1.2 and 1.4 present what was inves-
tigated and what was achieved in this thesis in the two subjects. Finally, Section 1.5 presents the
plan of the rest of this thesis.

1.1 RFID in a Nutshell

RFID is a technology that allows small inexpensive devices, the RFID tags, to communicate wire-
lessly using radio waves with RFID readers, for the purpose of identification of persons and objects
carrying them. The RFID tag consists of a chip for computation and storage of information, and
an antenna used for communicating with a reader. Some high-end RFID tags have a battery and
decent computational capabilities (active tags), but the vast majority of tags are very cheap and
limited, and rely on the electromagnetic field of the reader for power (passive tags). The field is
modulated by the tag’s chip and reflected to the reader for identification.

The RFID technology has been around since the 70’s [61], but has started to be truly ubiq-
uitous in the early 2000’s (with the creation of the Auto-ID center and the publication of the
EPCGlobal [77] standard). Nowadays, RFID is used in a variety of industrial and every-day appli-
cations (See Figure 1.1): goods tracking, animal identification, access control, public transporta-
tion, wireless payment, passports, etc. All things considered and despite its numerous benefits,
the deployment of RFID has been relatively slow. Some issues include practicability (although
not impossible, it is hard for RFID to work with water and metal), cost (to put it bluntly, it is
impractical to rely on tags that cost as much or nearly as much as the items they are attached to),
and security. This last point in particular, along with other considerations, is the focus of the first
part of this thesis (Chapters 2 and 3).

1.1.1 System Model

In the rest of this manuscript, the following model is used for describing identification and authen-
tication protocols. An RFID system consists of three main entities [187]: a tag, a reader, and a
back-end system.

The tag (or transponder) is attached to an object or person, and is uniquely identifiable in the
RFID system. Characteristics such as computational power, storage capabilities, or communication
distance, strongly vary with price and usage, but are usually very limited.

A reader (or transceiver) communicates with RFID tags in order to perform identification and
authentication. As stated earlier, they provide most of the power used by a tag, and usually have
much larger computational capabilities. Depending on the protocol used, they may perform heavy
computation, such as cryptographic calculation, on behalf of the tag.

The back-end system (or database) stores records associated with the content of the tags. In
the physical world, it is usually connected to many readers in an RFID system. However most

11

12 Chapter 1. Introduction

(a) RFID tag used for animal identi-
fication [credits: Sandstein/Creative
Commons].

(b) RFID tag used for product track-
ing [public domain].

(c) A very small RFID tag [public
domain].

(d) RFID tag inside an ID-1 card for
access control at the UCL [credits:
http://www.uclouvain.be/].

(e) An RFID reader for Oyster cards,
used in public transportation in Lon-
don [credits: Tom Page/Creative
Commons].

(f) A Belgian biometric passport
with an RFID tag inside [public do-
main].

Figure 1.1: Pictures of RFID tags and readers in different settings.

DB Reader

"Reader"

Tags

Figure 1.2: Architecture of an RFID system, as modeled in this thesis.

analyses assume that the communication channel between a reader and the back-end system is
secure, to the point that the reader and the database are considered only one entity.

Figure 1.2 is a schematized depiction of an RFID system, as modeled in this thesis.
In the following, a protocol is defined as being a set of rules to exchange data between a reader

and a tag. In identification protocols, a reader merely determines the identity of a tag (and its
carrier), whereas in authentication protocols, a tag proves its identity to a reader (and vice-versa in
mutual authentication protocols) using cryptographic tools. The former are used in applications
where identity theft is irrelevant such as supply-chain tracking and animal identification. The
latter (which usually require more potent tags) are used in applications requiring security such as
passports, public transportation, wireless payments or access control.

1.1.2 Threats in RFID

In the context of the analysis of authentication protocols, the attacker may be of two different
types: an active or a passive attacker. A passive attacker, or eavesdropper, may only witness the
data transmitted between a tag and a reader. An active one may, in addition, tamper with the

http://www.uclouvain.be/

1.1. RFID in a Nutshell 13

data, or interrupt its transmission. In some situations, it is also relevant to consider adversaries
able to “compromise” a tag in order to reveal its secrets. This is however considered relatively
difficult to achieve, and only applicable when the benefit is worth the effort (see Chapter 3).

Attacks against RFID systems can be divided roughly into four categories: denial of service,
impersonation, information leakage, and malicious traceability. Other threat classifications ex-
ist [62, 175, 139], but these attack types constitute a solid summary of the capabilities and goals
of an attacker.

Denial of Service (DoS) is an attack that occurs when an adversary attempts to prevent the
application to function properly. In the framework of RFID, besides obvious physical harm to
readers, tags, cables and other assets, this may be achieved using various techniques such as using
blocker tags [111], using RFID jammers and zappers, introducing electromagnetic noise on the
channel, etc. Electronic DoS attacks are extremely difficult to avoid, but are usually not taken into
account in the security analysis of authentication protocols. This is due to the fact that they are
often applicable regardless of protocol details. Some types of DoS attacks are due to weaknesses
in the protocol design, though. For instance, desynchronization attacks in stateful protocols make
further authentication of a tag-reader pair impossible (see Section 2.3.6). In this specific case,
other attacks are sometimes possible after a tag-reader pair has been desynchronized. This kind
of DoS attacks must be taken into account in the analysis of authentication protocols.

Impersonation consists in being authenticated as someone else without being authorized to do
so. This can be achieved by replay attacks, for instance, or any other weakness in the protocol,
including those that allow an attacker to acquire knowledge of the secret of a tag (also known as
key recovery). The attacker can then disguise an expensive product into a cheap one, or gain access
to restricted areas for instance. Relay attacks may also make an attacker impersonate a tag, but in
security analyses done in this thesis, we are not concerned with such attacks. These require very
specific protocols named distance bounding protocols and are the focus of other works (Hancke and
Kuhn’s solution [94] is an early and famous example).

Information leakage is a scenario in which an attacker gains information deemed private on the
product or the tag holder. For instance, an attacker could get sensitive data of a user, such as his
social security number, his address, etc. The attacker could for instance acquire the identity of
a user’s personal belongings, in order to spot a potential robbery victim. Other possible reasons
are political, industrial, or personal espionage, blackmailing, etc. Information leakage is usually
prevented by mapping a real product or person ID in the database to an anonymous ID in the tag,
which only the database can pair.

Malicious traceability has somewhat less dangerous consequences, but it is also the hardest
problem to deal with. It consists in tracing a tag (and its holder) and therefore violating the
user’s location privacy (in space and time). This can be performed if the attacker is able to find
a correlation between authentication sessions of a tag. This is especially hard to prevent, because
the response of the tag must change with each session and have negligible correlation with previous
(and future) responses. Many privacy models have been proposed [113, 184, 181, 99, 24], but two
characteristics are usually required: indistinguishability [149] (or untraceability [9]), and forward
security [149] (or forward untraceability [9]). Untraceability is the fact that an adversary is not able
to tell two tags apart, given a set of authentication sessions of these tags. Forward untraceability
is the fact that an adversary acquiring the secret of a tag is not able to trace past authentication
sessions of that tag.

1.1.3 Challenges in RFID Authentication

Tag Cost

As mentioned earlier, tag cost plays a critical role in the massive deployment of RFID. Although
some sensitive applications use relatively expensive tags (e.g. passports), some others require tags
to be extremely cheap (e.g. tracking of relatively cheap products, disposable tags, etc.) but still
provide some acceptable level of security. The main drivers of cost in tags is the presence of a
battery, power requirements, and the size of a chip (measured in gate equivalents). Providing
security and ensuring privacy for such constrained devices is a real challenge, and is the focus of a
significant part of the research community.

14 Chapter 1. Introduction

Privacy

The recent advent of ubiquitous technologies has raised an important concern for citizens: the
need to protect their privacy. So far, this wish was mostly ignored by industry, but national
and international regulation authorities, as the European Commission recently published some
guidelines to enforce customers’ privacy in RFID systems: “Privacy by design” is the way to be
followed as stated in EC Recommendation of 12.5.2009. Research on privacy is an active domain
but there is still a wide gap between theory and everyday life’s applications. Filling this gap
requires academia to design protocols and algorithms that fit the real life constraints.

In order to analyze the privacy of authentication protocols, many models are available in the
literature [113, 184, 181, 99, 24]. In this thesis, most of the discussions regarding malicious trace-
ability attacks fit in the model of Juels and Weis [113], which is based on Avoine’s seminal work [9].
This model is relatively simple and intuitive, and although it lacks the power of expressivity of
more evolved ones (such as Vaudenay’s [184] or Avoine, Coisel and Martin’s [24]), it is sufficient
to understand the attacks and protocol characteristics discussed in this manuscript1.

The model of Juels and Weis defines privacy with the following game. First, an adversary
interacts with the system (querying tags, readers, eavesdropping communications, etc.). She then
chooses two tags T0 and T1. A bit b ∈ {0, 1} is chosen randomly and unknowingly to her, and
she interacts with the system again except Tb. After a while, she must guess whether b = 0 or 1.
The system is deemed private if there exists no adversary capable of winning with a probability
non-negligibly higher than 1/2. The more powerful property of forward privacy (defined in [113]
as well, and intuitively introduced in [149]) is ensured if an adversary, having acquired the secret
of a tag, is not able to trace past authentication sessions of that tag.

Speed of Authentication

Most RFID applications require the authentication of a tag to be done relatively quickly. A fluid
and seamless flow of customers in mass public transportation is a typical example of this necessity.
This requires the computation on both sides to be relatively quick, and the communication in
both directions to be relatively short. Although the readers are much more powerful than tags,
depending on the specific protocol readers may need to perform much more computation. Such
applications also require authentication protocols that scale well when there is a large number of
tags registered in the system.

RFID Authentication protocols usually start with an identification phase, where the reader
acquires the identity of a tag. It then looks up secret data linked with it, and uses that data
to verify the claim of the prover2, or use the data provided by the prover to both identify and
authenticate it at the same time. If privacy is a requirement, and if only symmetric-key encryption
is used, the identification phase may be very time-consuming, especially in large systems.

1.2 Results on RFID Authentication

Work on RFID authentication described in this thesis essentially focused on two problematics.
The first is the analysis of so-called “ultralightweight protocols.” As mentioned in Section 1.1.3,

there is a need for protocols that provide secure and privacy-friendly authentication in systems
where tags have extremely little computational power. While symmetric-key cryptography is usu-
ally considered acceptable for tags in the intermediate price range, and the more expensive public-
key cryptography is only usable on high-end tags such as passports, the lower tier of tags have
to rely on something simpler. In response to that, many protocols have been proposed to provide
authentication using only a handful of very basic operations (such as XORs, modular additions,
rotations, etc.). These protocols, dubbed “ultralightweight,” are however relatively weak, and none
of them today can be regarded as sufficiently secure to be used in practice.

1In particular, the model of Juels and Weis is not capable of pinpointing precise levels of privacy. However, no
formal proof of privacy is done in this thesis.

2In the context of RFID, the terminology used is “tags” and “readers”, but authentication protocols are not
specific to the technology, and the terminology “prover” (the one that provides proof, the tag) and “verifier’ (the
one that verifies and authenticates, the reader) is used in broader contexts. In this thesis, the two terminologies are
used interchangeably.

1.3. Introduction to Cryptanalytic Time-Memory Trade-offs 15

Many of these protocols have been analyzed in this thesis, and some of them broken. The
article [20] contains the cryptanalysis of SASI, an early ultralightweight protocol notable for be-
ing the first of its kind to use rotations. A survey [21] has then been done on ultralightweight
authentication protocols of the time as well as attacks on them, and an application of the attack
in [20] to the Yeh-Lo-Winata protocol. [16] presents the cryptanalysis of several ultralightweight
authentication protocols. Finally, [19] is a discussion on the situation in the field and typical design
weaknesses of ultralightweight protocols, and it advocates a change in the way these protocols are
designed. The important results are presented in Chapter 2.

Many of these protocols have been analyzed in this thesis, and some of them broken. A
first article [20] contains the cryptanalysis of SASI, an early ultralightweight protocol notable for
being the first of its kind to use rotations. A survey [21] has then been done on ultralightweight
authentication protocols of the time as well as attacks on them, and it presents an application of
the attack in [20] to the Yeh-Lo-Winata protocol. Several ultralightweight authentication protocols
were then cryptanalyzed in [16]. Finally, a discussion on the situation in the field and typical design
weaknesses of ultralightweight protocols was done in [19], advocating a change in the way these
protocols are designed. The important results are presented in Chapter 2.

The second problematic is the scalability of privacy-friendly authentication protocols in systems
with many tags. As mentioned in Section 1.1.3, respecting privacy and ensuring a quick identifi-
cation of tags in the reader are two somewhat contradictory goals. Indeed, if privacy is a concern,
no information sent by the tag should be correlated with its identity from an attacker’s point of
view. On the other hand, such a restriction hinders the identification of the tag on the reader side.
Designing a protocol that supports both aspects is quite challenging and many interesting partial
solutions have been proposed.

Some of these solutions are analyzed in this work. A survey and comparison of existing solutions
was first done in [13], along with attacks on some of them. The best solution according to this
study, OSK/AO, has then been further analyzed and implemented in practice in [12]. This protocol
uses cryptanalytic time-memory trade-offs to accelerate the authentication, a topic that is the focus
of the second part of this thesis. The problematic of the complexity of the identification phase of
private authentication protocols is studied in Chapter 3, and the OSK/AO protocol in Chapter 4

1.3 Introduction to Cryptanalytic Time-Memory Trade-offs

Cryptanalytic time-memory trade-offs are a tool to make brute-force attacks on hash functions or
ciphers more practical. As their name suggest, they consist in a trade-off between online time and
required memory to invert a one-way function. They were first introduced by Hellman in 1980 [97],
and were later refined and improved. Time-memory trade-offs have been used in many practical
attacks such as against A5/1 (used for GSM communications) in 2000 [48], or other stream ciphers
like LILI-128 in 2002 [169].

1.3.1 Motivation

A fundamental problem in cryptanalysis is finding the preimage of a given output of a one-way
function. A simple method is applying the function to all possible inputs until finding the expected
value. Such an exhaustive search requires N operations in the worst case to find a preimage, where
N is the size of the input space. This becomes impractical when N is large.

The other extreme is to first construct a look-up table including all the preimage values. After-
wards, finding a preimage is done via a table look-up operation which requires a negligible amount
of time. The precomputation process however requires an effort equal to an exhaustive search,
but is to be performed only once. Although this method is quite fast during the online search
phase, it may require prohibitively large amounts of memory for large problems. The comparison
of exhaustive search and exhaustive storage methods is depicted in Table 1.1.

Time-memory trade-offs are an intermediate solution to this problem. They consist in an offline
precomputation phase, and an online search phase, and require some memory. The more memory
is dedicated to the trade-off, the faster the search phase. The memory required is typically much
smaller than for exhaustive storage, and the online phase is on average typically much faster than

16 Chapter 1. Introduction

Table 1.1: Comparison of exhaustive search and table look-up methods (average case, cryptographic
operations only).

Exhaustive search Exhaustive storage
Precomputation 0 N

Average Online computation N/2 0
Memory (storage) 0 N

for exhaustive search. The precomputation phase however is more expensive than for the exhaustive
storage solution. A TMTO is relevant when the online phase is performed many times, when the
precomputation phase is carried out by a more powerful entity than the online phase, or when the
window of opportunity for the attack is short, but there is a sizeable preparation time (“Lunchtime
attack”).

1.3.2 Variants and Adaptations

Arguably, the most important of the algorithmic improvements to the Hellman method [97] is the
rainbow tables, introduced by Oechslin in [147]. Rainbow tables have been illustrated by the very
efficient cracking of Windows LM Hash passwords in 2003 [147] or Unix passwords (using FPGA)
in 2005 [138]. Although comparing different trade-off algorithms is not trivial, and the results
strongly depend on the parameters, rainbow tables have been shown to be superior to other trade-
off algorithms in most situations [121]. Distinguished points (attributed to Rivest in 1982 [70]) is
another improvement over the Hellman method, but evidence shows they are slower in practice
than rainbow tables [147, 121].

Although they were not investigated in this thesis, these variations are also relevant to the
study of time-memory trade-offs.

Hellman’s technique is designed to invert random functions. Fiat and Naor provide in [82] a
construction for inverting any function, at the price of a less efficient trade-off. De, Trevisan and
Tulsiani propose in [68] a similar construction for inverting any function on a fraction of their input.
They also suggest using time-memory trade-offs for distinguishing the output of pseudorandom
generators from random.

Time-memory trade-offs have also been applied to stream cipher independently by Babbage
in [31] and Golić in [86]. These trade-offs are call time-memory-data trade-offs, because the number
of bits of data (the keystream) is another parameter. Biryukov and Shamir improve in [47] the
efficiency of this attack on stream ciphers by combining the Babbage/Golić and the Hellman
techniques. Finally, Biryukov, Mukhopadhyay and Sarkar generalize these different approaches
in [46], and propose a way to use Hellman’s technique on block ciphers with multiple data.

In [38], Barkan, Biham, and Shamir showed that the performance of existing time-memory
trade-offs can not be improved by more than a logarithmic factor.

1.4 Results on Time-Memory Trade-offs

Cryptanalytic time-memory trade-offs (TMTO) can be improved in many ways. Improving rainbow
tables specifically was the focus of this thesis.

The first improvement is the use of fingerprints. It is a generalization of two former improve-
ments on rainbow tables, the checkpoints, and the truncated endpoints. This generalization allows
to analyze these two improvements jointly, which makes it possible to find optimal configurations
in a systematic way. Rainbow tables with fingerprint in optimal configuration are about twice as
fast (in the online phase) as classical rainbow tables on typical problem sizes. This technique is
described and analyzed in Chapter 5 of this thesis.

The second improvement regards storage. Storage is extremely important in time-memory
trade-offs, as more efficient storage translates directly into a faster search. This aspect was
studied [17] by providing a lower bound on rainbow tables storage, and a new technique called

1.5. Plan of the Manuscript 17

compressed delta encoding was introduced to reach this bound. These results are presented in
Chapter 6.

Finally, the third improvement is called interleaving, and aims at providing a solution when
deadling with non-uniformly distributed input. Passwords (which are a typical target of TMTO)
are for instance not chosen randomly by users. Interleaving is described and analyzed in Chapter 7.

1.5 Plan of the Manuscript

Chapter 2 presents the discussion on the ultralightweight protocols, the situation in the field, their
weaknesses, and attacks on some of them. Chapter 3 presents an overview of the problematic of
scalability for privacy-friendly authentication protocols. Chapter 4 studies one of them, OSK/AO in
detail, and its implementation in practice. Chapter 5 is a description and analysis of the fingerprints
for the rainbow table method. Chapter 6 presents the discussion on storage in rainbow tables, and
introduces and analyses compressed delta encoding. Chapter 7 discusses the interleaving technique.
Finally, Chapter 8 concludes this manuscript by summarizing the work considered in this thesis,
along with perspectives of future works in the areas that were investigated.

18 Chapter 1. Introduction

Chapter 2

Ultralightweight Authentication

Articles related to this chapter

[20] Gildas Avoine and Xavier Carpent and Benjamin Martin. Strong Authentication and
Strong Integrity (SASI) is not that Strong. In S.B. Ors Yalcin, editor, Workshop on
RFID Security – RFIDSec’10, volume 6370 of Lecture Notes in Computer Science, pages
50–64, Istanbul, Turkey, June 2010. Springer.

[21] Gildas Avoine, Xavier Carpent, and Benjamin Martin. Privacy-friendly synchronized ul-
tralightweight authentication protocols in the storm. Journal of Network and Computer
Applications, 35(2):826–843, February 2012.

[16] Gildas Avoine and Xavier Carpent. Yet another ultralightweight authentication protocol
that is broken. In Workshop on RFID Security – RFIDSec’12, Nijmegen, Netherlands,
June 2012.

[19] Gildas Avoine and Xavier Carpent and Julio Hernandez-Castro. Pitfalls in Ultra-
lightweight Authentication Protocol Designs. IEEE Transactions on Mobile Computing.
(submitted)

RFID authentication is a very active and challenging research topic. It has strong requirements
such as security of course, but also privacy, and yet very strong constraints such as powerful
adversaries and very constrained devices. This last point in particular is the focus of a significant
part of the research community, and has spawned hundreds of papers [11]. Indeed, there is a strong
incentive to build very cheap RFID tags that still provide some level of security. Such tags can
not contain a battery, must make do with very few logic gates, and must be able to complete an
authentication in very little time. In response to that, a number of protocols that rely on extremely
simple operations have been created. Such protocols have been named “ultralightweight,” a term
coined by Chien in [64]. They can be broadly defined as protocols that are aimed at requiring
about 1.5K GE (gate equivalents) or less, relying on only very simple operations on the tag’s side,
and willing to accept compromises to offer some security level. This includes, in particular, most
of the authentication protocols aimed at passive and inexpensive RFID tags. As one might expect,
most of the ultralightweight protocols are usually very weak, and are typically broken very quickly.

In this thesis, work done on ultralightweight protocols was mostly cryptanalytical. This chapter
presents a few attacks on these protocols1, and an analysis of their general weaknesses. Its structure
is the following. In Section 2.1, a general description of ultralightweight protocols is given, and a
typical protocol, SASI, is presented (along with an attack on it). In Section 2.2, a brief state of
the art is presented in the form of statistics. The most typical mistakes found in ultralightweight

1Not all the attacks that were found as part of this thesis are presented in this chapter for the sake of brevity.
However, the general weaknesses exploited by these attacks are part of the discussions in Sections 2.3 and 2.4

19

20 Chapter 2. Ultralightweight Authentication

protocols are presented in Section 2.3. In Section 2.4, the problematic of dubious security proofs is
mentioned along with reasons why they are usually flawed. In Section 2.5, some recent proposals
are discussed, with attacks and comments on them based on the discussions from Sections 2.3
and 2.4. Section 2.6 presents a few facts on general-purpose lightweight building blocks. The
chapter is concluded in Section 2.7.

2.1 Ultralightweight Protocols

2.1.1 Tag Capabilities

The cost of tags plays a critical role in the ubiquitous deployment of RFID systems. In order to
keep their price low, tags must be very simple and use very little energy. Typical figures are a price
of 5 to 10 cents, and about 5–10 K logical gate equivalents (GE’s) per tag, among which only 250–
3000 are devoted to security [64]. By comparison, best implementations of AES require roughly
3400 gate equivalents [79], and hash functions MD5 and SHA-256 respectively require roughly 8K
and 11K logical gate equivalents [52]. It is possible to use classical cryptographic primitives such
as block ciphers and hash functions on higher-end tags, but the ultra low-cost class is the focus of
this chapter.

These constraints have prompted the community to create authentication protocols that require
very little computation on the tag side, often relying on extremely lightweight primitives such as
logical AND/OR/XOR, modular addition, rotations, etc.

A typical counter-argument for the need of such protocols is that, with the improvement of
technology and the large-scale deployment of RFID, the price of tags (even those capable of solid
cryptography) will be driven down. However, the problematic remains whole because there is
always going to be a market for cheaper devices.

2.1.2 Attack Model

Ultralightweight authentication protocols must primarily ensure that neither an impersonation
attack, nor a key-recovery attack (even partial-recovery) is feasible. Protocol analyses usually
consider the Dolev-Yao model [73], namely a model where the adversary is powerful but not
almighty: the adversary cannot guess random numbers chosen in a sufficiently large space, she
cannot decrypt or create valid ciphertexts without the correct secret, and she cannot retrieve
private keys from public information. However, she can easily communicate with both a tag or a
reader, eavesdrop communications in both directions, or perform relay attacks (possibly modifying
the messages). This last point is often a source of confusion in ultralightweight proposals, which
treat active attackers as being more powerful than eavesdroppers, despite some active attacks being
in fact not harder than eavesdropping. Skimming (communicating directly with a tag or a reader)
and relay attacks are examples of active attacks that are relatively easy to do, possibly more so
than eavesdropping (see for instance the libnfc library [130]).

Ultralightweight authentication protocols usually also attempt to ensure privacy. The privacy
property is commonly defined in authentication protocols as the inability for an adversary to track a
prover. Privacy is consequently also called untraceability and is represented by an experiment where
two interactions prover–verifier are provided to the adversary, and the latter must recognize which
one was produced by his target (previously queried – possibly with restrictions – during a learning
phase). Several untraceability models exist, with different experiments. The most widely used
models are due to Juels and Weis [113], Vaudenay [184], Deursen, Mauw, and Radomirovic [181],
Hermans, Pashalidis, Vercauteren, and Preneel [99], and Avoine, Coisel, and Martin [24]. It is
today strongly advised to use such a well-established model instead of ad hoc ones. A comparison
of existing models was done by Coisel and Martin [65].

Designing a privacy-friendly authentication protocol is a difficult question. While a classi-
cal challenge-response protocol (where the identity of the prover is not sent in the clear on the
channel) seems to be privacy-friendly at first sight, it suffers from a linear complexity search (see
Chapter 3) and does not ensure forward-privacy: if the prover is compromised, the privacy of the
past interactions is no longer ensured. The latter issue can be mitigated by updating the key, but
desynchronization attacks must be prevented in such a case. Vaudenay actually demonstrated that

2.1. Ultralightweight Protocols 21

only public-key cryptography can ensure the highest attainable privacy level [183]. Ultralightweight
authentication protocols do not necessarily target the highest privacy level, though.

2.1.3 SASI, a Typical Ultralightweight Protocol

The SASI (Strong Authentication and Strong Integrity) protocol was introduced by Chien in [64].
It is one of the early proposals in the field, and arguably one of the most famous ones2. It is also
quite representative of the general pattern followed by most other ultralightweight protocols. This
section presents a description of the SASI protocol along with the details of an attack on it.

Description and Attacks

SASI, like many in the ultralightweight family, is a stateful mutual authentication protocol. Each
tag keeps a state that changes whenever it is successfully authenticated. Reader authentication is
therefore necessary for the tag to know when to update its state.

Each tag has a secret static identifier ID, two secret keys K1 and K2, and a pseudonym IDS3.
The pseudonym is used to identify tags efficiently while keeping a certain degree of privacy (see
Section 3.2 for a discussion on the subject). The keys K1 and K2 as well as the pseudonym IDS
are all updated when the tag is authenticated.

The SASI protocol relies on logical OR (∨), logical XOR (⊕), modular addition (+), and the
rotation Rot(x, y). The latter operation is defined as a circular left-shift of x of r(y) bits, where:

r : [0, 2L − 1]→ [0, L− 1].

Several types of rotations can be used with SASI, especially the modular rotation, that is
r(y) = y mod L, and Hamming weight rotation, with r(y) = H(y) mod L, whereH is the Hamming
weight function. In the latter, the modulus is there to fold the case where H(y) = L back to a
number in [0, L− 1] (a rotation of L bits is the same as a rotation of 0 bits). Note that r was not
precisely defined in [64], and it was pointed out in [173] that the rotation intended to be used in
the original version of the protocol is the Hamming-weight one. The modular version was analyzed
and attacked in [100].

The protocol definition is as follows. The reader initiates the authentication by sending a hello
message to the tag, which answers its current index-pseudonym IDS. At that point, the reader
uses the index-pseudonym to find an entry in its internal database with ID, K1 and K2. It then
produces two nonces n1 and n2, and computes A, B, and C, and sends these three values to the
tag. The values A, B and C are defined as:

A = IDS ⊕K1 ⊕ n1 (S-A)

B = (IDS ∨K2) + n2 (S-B)

C = (K1 ⊕ K̄2) + (K̄1 ⊕K2) (S-C)

where K̄1 and K̄2 are intermediate secret values defined as:

K̄1 = Rot(K1 ⊕ n2,K1)

K̄2 = Rot(K2 ⊕ n1,K2)

When the tag receives the message A||B||C, it extracts the nonces n1 and n2 using:

n1 = A⊕ IDS ⊕K1

n2 = B − (IDS ∨K2)

It then computes K̄1, K̄2, and C̃ = (K1 ⊕ K̄2) + (K̄1 ⊕ K2). If C and C̃ are equal, the tag
authenticates the reader, and computes the message D to send it to the reader:

D = (K̄2 + ID)⊕ ((K1 ⊕K2) ∨ K̄1). (S-D)

2As of August 2014, Chien’s paper [64] is the most cited one among the list given in Table 2.3
3In fact, it also stores backup versions of these values as a defense mechanism against desynchronization attack.

The protocol is simplified in that regard in this section for clarity reasons. See 2.3.6 for a discussion on the subject.

22 Chapter 2. Ultralightweight Authentication

Upon reception of D, the reader computes its local version D̃, compares it with D, and if they
match, it authenticates the tag.

In the updating stage, the tag updates its key and its index-pseudonym using:

IDS = (IDS + ID)⊕ n2 ⊕ K̄1 (S-IDS)

K1 = K̄1

K2 = K̄2

The update process of the reader is the same.

The protocol is depicted in Figure 2.1.

R T

hello−−−−−−−−−−−−−−−→
IDS←−−−−−−−−−−−−−−−

Identify T
Pick n1, n2

Compute A,B,C
A||B||C−−−−−−−−−−−−−−−→

Retrieve n1, n2

Authenticate R
Compute D
Update IDS,K

D←−−−−−−−−−−−−−−−
Authenticate T
Update IDS,K

A = IDS ⊕K1 ⊕ n1

B = (IDS ∨K2) + n2

K̄1 = Rot(K1 ⊕ n2,K1)

K̄2 = Rot(K2 ⊕ n1,K2)

C = (K1 ⊕ K̄2) + (K̄1 ⊕K2)

D = (K̄2 + ID)⊕ ((K1 ⊕K2) ∨ K̄1)

IDSnext = (IDS + ID)⊕ n2 ⊕ K̄1

Knext
1 = K̄1

Knext
2 = K̄2

Figure 2.1: The SASI protocol

SASI has been the subject of several attacks. The first to be published was a traceability
attack by Phan [161]. An elaborate key-recovery attack has also been conceived as part of this
thesis (see [20]). The latter is described below.

Preliminary Tools

This section analyzes in detail the mechanics of the addition, in order to have a framework for
equations mixing additions and bitwise operations like logical OR and XOR. Two subproblems are
then presented that are useful in the attack of SASI, but that might be used for other purposes as
well.

2.1. Ultralightweight Protocols 23

Notations and Definitions

In the following, [x]i denotes the bit at position i in x. In particular, [x]0 is the least significant bit
(LSB) of x, and [x]L−1 its most significant bit (MSB). By convention, [x]i = 0 when i > dlog2(x)e.
The “i-th bit of x,” refers to [x]i. The following notation is used for the carry of the addition, and
the borrow of the subtraction, respectively:

C(a, b, i) denotes the carry at bit i of the sum of a and b, and

B(a, b, i) denotes the borrow at bit i of the difference of a and b.

Using this notation, the result of the addition of numbers a and b at bit i is written as:

[a+ b]i = [a]i ⊕ [b]i ⊕ C(a, b, i− 1). (2.1)

Likewise, the difference of two numbers a and b at bit i is written as:

[a− b]i = [a]i ⊕ [b]i ⊕ B(a, b, i− 1). (2.2)

The carry of two numbers a and b at bit index i is computed as:

C(a, b, i) = ([a]i ∧ [b]i) ∨
[
([a]i ∨ [b]i) ∧ C(a, b, i− 1)

]
, (2.3)

with the convention that C(x, y, i) = 0 if i < 0, for any x and y. Indeed, there is a carry at bit i
either if the bits i of both operands are 1, or if at least one of them is 1 while there is a carry at
bit i− 1. This is no different of the way a computer performs addition.

Similarly, B(a, b, i) is the borrow of the subtraction of b to a at bit i, and is computed as:

B(a, b, i) = ([a]i ∧ [b]i) ∨
[
([a]i ⊕ [b]i) ∧ B(a, b, i− 1)

]
, (2.4)

with the same convention, that is, B(x, y, i) = 0 if i < 0, for any x and y. Again, there is a borrow
at bit i if either a is 0 and b is 1, or if they are equal but there is a borrow at bit i− 1.

Modular Addition

If the + operator is defined as modular addition, as often in cryptography, extra care is needed.
Namely, when a ≡ b (mod N), that does not necessarily mean that [a]i = [b]i. Indeed, even
though 4 ≡ 1 (mod 3), [4]0 = 0 6= [1]0 = 1. Recall that [4]0 denotes the bit at index 0 in
its base two representation (its LSB). What is true, however, is that if a ≡ b (mod N), then
a mod N = b mod N , hence [a mod N]i = [b mod N]i ∀ i ≥ 0.

In the particular case of N = 2L, if a ≡ b (mod N), then [a]i = [b]i if i < L. Indeed, when N
is a power of two, computing the remainder is similar to dropping all the bits above L.

In the practical subproblems discussed below, addition modulo 2L is used, and bit indices are
smaller than L, so we do not refer to this issue later on.

First Subproblem

This first subproblem is stated as follows.

Problem 1. Given a and [a+ x]i, guess [x]i.

Equation (2.1), which yields:

[x]i = [a]i ⊕ [a+ x]i ⊕ C(a, x, i− 1).

Both [a]i and [a + x]i are known, but the carry is unknown. Using Equation (2.3) yields the two
following cases. When [a]k = 1:

C(a, x, k) = ([a]k ∧ [x]k) ∨
[
([a]k ⊕ [x]k) ∧ C(a, x, k − 1)

]
= [x]k ∨

(
[x]k ∧ C(a, x, k − 1)

)
= [x]k ∨ C(a, x, k − 1)

24 Chapter 2. Ultralightweight Authentication

Table 2.1: Possible outputs of C(a, x, k) and their probability, given a.

[a]k C(a, x, k) Pr(C(a, x, k) = 1)
0 [x]k ∧ C(a, x, k − 1) 1

2 · Pr(C(a, x, k − 1) = 1)
1 [x]k ∨ C(a, x, k − 1) 1− 1

2 · Pr(C(a, x, k − 1) = 0)

Table 2.2: Possible outputs of B(a, b ∨ u, k) and their probability, given a, b.

[a]k [b]k B(a, b ∨ u, k) Pr(B(a, b ∨ u, k) = 1)
0 0 [u]k ∨ B(a, b ∨ u, k − 1) 1− 1

2 · Pr(B(a, b ∨ u, k − 1) = 0)
0 1 1 1
1 0 [u]k ∧ B(a, b ∨ u, k − 1) 1

2 · Pr(B(a, b ∨ u, k − 1) = 1)
1 1 B(a, b ∨ u, k − 1) Pr(B(a, b ∨ u, k − 1) = 1)

Likewise, when [a]k = 0:

C(a, x, k) = ([a]k ∧ [x]k) ∨
[
([a]k ⊕ [x]k) ∧ C(a, x, k − 1)

]
= [x]k ∧ C(a, x, k − 1)

If the distribution of x is known (in the case of nonces it is uniform), the probability of [x]k being
0 or 1 is computable, and thus the probability of C(a, x, i− 1) being 0 or 1 as well.

In the general case, the actual values taken by [x]i are unknown, although some information
may be gained. That information can be used to guess a possible value for it, which will be correct
with a given computable probability. Assuming uniform distribution for x, the possible outputs
and their probability of occurring are depicted in Table 2.1.

The output is [x]i = [a]i ⊕ [a + x]i if Pr(C(a, x, i − 1) = 1) < 1
2 , and [x]i = [a]i ⊕ [a + x]i ⊕ 1

otherwise. The probability of guessing right is computable given the distribution of x.

Second Subproblem

This second subproblem is stated as follows.

Problem 2. Given a, b, and the relation a = (b ∨ u) + x, find [x]i for a given i (u is unknown).

From Equation (2.2) yields:

[x]i = [a− (b ∨ u)]i = [a]i ⊕ [b ∨ u]i ⊕ B(a, b ∨ u, i− 1),

with [a]i known. Furthermore, if [b]i = 1, then [b ∨ u]i = 1, and if not, there is a 50% chance of
guessing the right bit (assuming uniform distribution for u). As for the borrow B(a, b ∨ u, i − 1),
Equation (2.4) may be used in the same fashion as in the previous subproblem. If [b]k = 1,

B(a, b ∨ u, k) = ([a]k ∧ ([b]k ∨ [u]k)) ∨
[
([a]k ⊕ ([b]k ∨ [u]k)) ∧ B(a, b ∨ u, k − 1)

]
= [a]k ∨

(
[a]k ∧ B(a, b ∨ u, k − 1)

)
= [a]k ∨ B(a, b ∨ u, k − 1)

Otherwise, if [b]k = 0:

B(a, b ∨ u, k) = ([a]k ∧ ([b]k ∨ [u]k)) ∨
[
([a]k ⊕ ([b]k ∨ [u]k)) ∧ B(a, b ∨ u, k − 1)

]
= ([a]k ∧ [u]k) ∨

[
([a]k ⊕ [u]k) ∧ B(a, b ∨ u, k − 1)

]
Again, the actual values taken by [x]i are unknown, but it is possible to make a good guess
with computable probability. Assuming uniform distribution for u, the possible outputs and their
probability of occurring are depicted in Table 2.2.

2.1. Ultralightweight Protocols 25

Full-disclosure Attack

Attack Outline In this attack scenario, the adversary considered is passive and can therefore
only eavesdrop the communications between a reader and a tag, i.e. the messages A, B, C and D,
and IDS. It is also assumed that the channel between the reader and its database is secure.

The attack is a full-disclosure of the tag’s secret ID. It is probabilistic in the sense that the
adversary is never 100% sure of the ID recovered. However she can be as close as she wants to this
certainty, as long as she has more protocol runs to listen to. It is not dependent of the definition
of the rotation, though its efficiency is.

The idea is to build a progressive knowledge on ID with the information computed from public
quantities. Each information gain requires three consecutive successful authentications, but other
successful authentications can exist between each information gain.

In order to carry out the attack, it is first needed to compute the least significant bit (LSB)
of ID, as described in the “Attack Initialization” section. Once the LSB is retrieved, the attack
described in the “Attack Details” section reveals the remaining bits of ID.

Attack Initialization The aim here is to recover the LSB of ID. Therefore, only the case i = 0
matters, where the modular addition (+) and bitwise XOR (⊕) are the same LSB-wise. Recall
that [x]i denotes the i-th bit of x.

Lemma 1. If [IDS]0 = 1 and [B]0 ⊕ [C]0 ⊕ [D]0 ⊕ [IDSnext]0 = 1, then

[ID]0 = [B]0 ⊕ [IDSnext]0 ⊕ 1.

Proof. The message (S-B) at the LSB is:

[B]0 = ([IDS]0 ∨ [K2]0)⊕ [n2]0.

Since [IDS]0 = 1, we have that [n2]0 = [B]0 ⊕ 1, no matter [K2]0. Moreover, from message
definitions (S-B), (S-C), (S-D), and (S-IDS), the following relations are true at the LSB:

[B]0 = 1⊕ [n2]0

[C]0 = [K1]0 ⊕ [K2]0 ⊕ [K̄1]0 ⊕ [K̄2]0 (2.5)

[D]0 = [K̄2]0 ⊕ [ID]0 ⊕ (([K1]0 ⊕ [K2]0) ∨ [K̄1]0) (2.6)

[IDSnext]0 = [IDS]0 ⊕ [ID]0 ⊕ [n2]0 ⊕ [K̄1]0

Hence,

[B]0 ⊕ [C]0 ⊕ [D]0 ⊕ [IDSnext]0 = [K1]0 ⊕ [K2]0 ⊕ (([K1]0 ⊕ [K2]0) ∨ [K̄1]0).

Since [B]0 ⊕ [C]0 ⊕ [D]0 ⊕ [IDSnext]0 = 1, it is impossible that [K̄1]0 = 0. Therefore, [K̄1]0 = 1
and:

[B]0 ⊕ [C]0 ⊕ [D]0 ⊕ [IDSnext]0 = [K1]0 ⊕ [K2]0 ⊕ 1.

Now that those two quantities are known, [K̄2]0 may be computed using (2.5):

[K̄2]0 = [B]0 ⊕ [D]0 ⊕ [IDSnext]0.

The latter equation is then used in (2.6):

[D]0 = [K̄2]0 ⊕ [ID]0 ⊕ (([K1]0 ⊕ [K2]0) ∨ [K̄1]0)

= [B]0 ⊕ [D]0 ⊕ [IDSnext]0 ⊕ [ID]0 ⊕ 1.

A quantity is said to have a uniform distribution if every element of its domain is equally likely
to be instantiated. It is quite easy to see that public quantities IDS, A, B, C, and D have uniform
distribution, since their computation involves either a bitwise XOR, or a modular addition with a

26 Chapter 2. Ultralightweight Authentication

nonce or with a key (keys also have uniform distributions because they are also updated using a
bitwise XOR with a nonce). The domain of these quantities is [0, 2L−1], and hence they also have
“bitwise” uniform distribution in the sense that every bit has an equal probability to be a zero or
a one.

Getting the LSB of ID requires two bits to be equal to 1. Since quantities taken into account
for this observation have bitwise uniform distribution, the probability of occurrence is 1

4 . The
number of runs needed for this observation has a geometric distribution of average four. The result
is quite similar to the one in [161], except that here the adversary knows for sure when conditions
are met, because they only involve public quantities.

In fact, the attack could be generalized to an arbitrary bit index, but this would need conditions
of which probabilities of occurrence decrease exponentially with the position of that bit index.
Instead, a much more efficient attack to retrieve [ID]i when i > 0 is described in the next section.

Attack Details It is assumed in the following that the adversary has executed the initial part
of the attack, and that she knows [ID]0.

At the LSB, (S-IDS) becomes:

[IDS(n+1)]0 = [IDS(n)]0 ⊕ [ID]0 ⊕ [n
(n)
2]0 ⊕ [K̄1

(n)
]0. (2.7)

When [IDS(n)]0 = 1, [n
(n)
2]0 is known by computing [B(n)]0 ⊕ [IDS(n)]0. Thus, Equation (2.7)

yields:

[K̄1
(n)

]0 = [ID]0 ⊕ [B(n)]0 ⊕ [IDS(n+1)]0.

The next round, according to the key updating process K
(n+1)
1 = K̄1

(n)
, [K

(n+1)
1]0 is known.

Furthermore, if again [IDS(n+1)]0 = 1, then [n
(n+1)
2]0 = [B(n+1)]0 ⊕ [IDS(n+1)]0. Therefore,

[K
(n+1)
1 ⊕ n(n+1)

2]0 is known. So, since K̄1
(n+1)

= Rot(K
(n+1)
1 ⊕ n(n+1)

2 ,K
(n+1)
1),

[K
(n+1)
1 ⊕ n(n+1)

2]0 = [K̄1
(n+1)

]
r(K

(n+1)
1)

.

Recall from the protocol description that r denotes the function used in the rotation operation. In

most cases, r(K
(n+1)
1) is not known (only its LSB is). We can write, assuming K1 has a uniform

statistical distribution,

Pr(r(K
(n+1)
1) = i) = pr(i) ∀ i ∈ [0, L− 1],

where pr is the probability distribution function of r. For instance, in the case of modular rotation,
r(x) = x mod L, and pr(x) = 1

L , and in the case of Hamming weight rotation, r(x) = H(x), and

pr(x) =
(Lx)
2L

. So, with probability pr(i), [K̄1
(n+1)

]i is known. This result is used in (S-IDS):

[ID + IDS(n+1)]i = [IDS(n+2)]i ⊕ [n
(n+1)
2]i ⊕ [K̄1

(n+1)
]i︸ ︷︷ ︸

[K
(n+1)
1 ⊕n(n+1)

2]0

.

The computation of [n
(n+1)
2]i has already been discussed in the “Second Subproblem” section.

Finally, [ID + IDS(n+1)]i and IDS(n+1) are known (with a certain probability), but this does
not necessarily mean that [ID]i is. However, some information on [ID]i can be recovered using
results from the “First Subproblem” Section. Finally, a value for [ID]i is obtained with a given
probability, which is quantified in the next section.

An outline of the attack can be seen in Algorithm 1.
In order to provide a more intuitive description of the attack, consider the following game.

Having a slightly biased coin, the goal is to know what side of this coin has the highest probability
of appearing. It may be tossed as many times as wanted, but the idea is to have a good probability
of guessing the right side, while minimizing the number of tosses. The smaller the bias is, the
harder it is to tell whether it is heads or tails that is the most favorable side. Indeed if the bias is,
for instance, 75% for heads and 25% for tails, as little as 20 tosses are sufficient to win the game

2.1. Ultralightweight Protocols 27

Algorithm 1 Outline of the attack. (1) refers to the “First Subproblem” section, and (2) to the
“Second Subproblem” section. Note that the “computed” [Knext

1]0 is on the attacker side, and
that the actual [Knext

1]0 is unknown. For clarity reasons, there is no difference of notation between
computed (or guessed) values and real ones.

Execute the traceability attack to get [ID]0
repeat

if [IDS]0 = 1 then
if the previous [K1]0 was known (i.e. previous [IDS]0 was 1) then

Compute n2 probabilistically (2)
Compute ID probabilistically given IDS and IDS + ID (1)
for all i ∈ [1, L− 1] do

Update the knowledge of [ID]i with the advantages of (1) and (2) and pr(i)
end for

end if
Compute [Knext

1]0 = [ID]0 ⊕ [B]0 ⊕ [IDSnext]0
end if

until all the bits of ID are found with satisfactory probability

with overwhelming probability. However, if the bias turns out to be 50.01% for heads, and 49.99%
for tails, a lot more of them are needed.

This is exactly the idea of convergence of the attack, except that the biased side of L − 1
independent coins are the objective, and that each toss has a different “weight”. Indeed only a
little bit of information is gained, and only when [IDS]0 = 1 for two consecutive runs. Moreover,
each information gain has to be weighted with pr(i), the information on n2, and the information
on ID given ID + IDS.

Theoretical Analysis of the Attack

The optimal strategy for the “update of knowledge” in the attack is analyzed hereafter. It cor-
responds to giving what conclusion may be drawn given the set of observations and by linking
these observations with the probability of guessing the right ID. It is an application of Bayesian
inference.

Suppose that an oracle is available, which has a secret bit b and a set of 0 ≤ qk ≤ 1 that,
upon query, outputs a bit bk and a value qk such that Pr(bk = b) = qk. It is assumed that
Pr(b = 0) = Pr(b = 1) = 1

2 , that all the outputs are independent, and that qk ≥ 1
2 , without loss

of generality. Indeed, if one guess is such that qk <
1
2 , then it would be equivalent to output the

opposite bit with complementary probability 1− qk > 1
2 .

For convenience, O denotes the observations, that is the event corresponding to observing the
set of bits bk. the following sets are also defined:

S0 = {k ∈ [1, N] | bk = 0}, and

S1 = {k ∈ [1, N] | bk = 1}.

If N = |S0|+ |S1| outputs of the oracle are observed, then:

Pr(O|b = 0) =
∏
k∈S0

qk
∏
k∈S1

(1− qk) (2.8)

Pr(O|b = 1) =
∏
k∈S0

(1− qk)
∏
k∈S1

qk (2.9)

28 Chapter 2. Ultralightweight Authentication

Using Bayes’ rule :

Pr(b = 0|O) =
Pr(b = 0 ∩O)

Pr(O)

=
Pr(O|b = 0) · Pr(b = 0)

Pr(O|b = 0) · Pr(b = 0) + Pr(O|b = 1) · Pr(b = 1)

=
Pr(O|b = 0)

Pr(O|b = 0) + Pr(O|b = 1)

since events b = 0 and b = 1 are equiprobable. Equations (2.8) and (2.9) yield:

Pr(b = 0|O) =

∏
k∈S0

qk
∏
k∈S1

(1− qk)∏
k∈S0

qk
∏
k∈S1

(1− qk) +
∏
k∈S0

(1− qk)
∏
k∈S1

qk

=
1

1 +
∏
k∈S0

1−qk
qk

∏
k∈S1

qk
1−qk

(2.10)

An equivalent but more convenient way of seeing this is the following. Instead of outputting
probabilities qk, the oracle can output advantages ak such that |Pr(bk = b)− Pr(bk 6= b)| = ak.
Put differently,ak = |2qk − 1|. In this scenario, Equation (2.10) becomes:

Pr(b = 0|O) =
1

1 +
∏
k∈S0

1−ak
1+ak

∏
k∈S1

1+ak
1−ak

(2.11)

Recall from Algorithm 1 that the information on each bit of ID is weighted using:

• pr(i),

• the trust level on [ID]i given [ID + IDS]i (subproblem 1),

• the trust level on [n2]i (subproblem 2).

Indeed, each guess on the i-th bit of ID is correct if:

• the guessed rotation is the correct one,

• the guess of [ID]i given [ID + IDS]i is correct,

• the guess at [n2]i is correct.

The probability of correctness for the rotation is simply pr(i), and the probability of correctness for
the two subproblems (the level of trust or advantage on the quantities n2 and ID) is computable,
given public messages, as seen in Sections 2.1.3 and 2.1.3. If independence between these advantages
is assumed, then one just has to multiply them to obtain an advantage ak related to the i-th bit
on the k-th run. Using Equation (2.11), a total probability on the value of a bit of ID can be
computed, given a certain amount of information materialized by the guesses and advantages on
these guesses on that bit. Hence, for every iteration of the attack, a little bit of information is
gained, that is quantified by one term of one of the products in Equation 2.11. Once satisfactory,
the success probability for each individual bit can be computed using Equation 2.11.

Both theoretically and experimentally (see original paper [20]) that the average advantages for
the first and second subproblems are respectively roughly 1

2 and 1
3 . This is particularly important

for the second subproblem, where simply knowing IDS and B yields roughly one third of n2.

Recall from Section 2.1.3 that to execute the inner part of the attack and thus bring information,
it is required that [IDS]0 = 1 for two consecutive runs. Since IDS has a uniform distribution, this
will occurs with probability 1

4 . The average number of runs needed is thus multiplied by four.

2.2. Statistics on the State of the Art 29

Optimizations and Experimentations

Some optimizations that improve in practice the efficiency of the attack presented in Section 2.1.3
are presented in this section.

The idea is that it is somewhat wasteful to only use [ID]0 while more and more knowledge on
ID is revealed along the attack. Progressive knowledge on ID can not only help solving the first
subproblem ([ID]i from IDS and [ID+ IDS]i), but it can also be used as a base, instead of [ID]0
only.

This especially helps with the Hamming-weight rotations where the most and least significant
bits are hard to guess using [ID]0 only (because pr(i) is very small for small or big i).

Experiments have been carried out with the two definitions of the rotation and the number of
bits correctly guessed on average have been observed. When this number is close to L, it means
that the whole ID can be recovered with good probability, and when it is close to L

2 = 48, it
means that the outputted guessed ID is not better than if guessed at random. Figure 2.2 shows
the evolution of the quality of the ID recovered (when applying the optimization) with respect to
N , the number of observed runs4.

214 215 216 217 218 219
48

64

80

96

N

H(x) mod L

x mod L

Figure 2.2: Average number of bits correctly guessed in ID when the adversary observes N runs,
for the two usual rotations (optimization applied).

Other optimizations may also be applied, such as the following. The adversary does not know
K1 in whole, but she does know [K1]0, and for instance in the case of modular rotation, she knows
the parity of it, and thus she can reduce the possibilities from L down to L

2 , which improves
the advantage per sample quite a bit. She could also reuse old authentication sessions when she
has better knowledge of ID. These methods were not taken into account in the experiments for
Figure 2.2. The point is that the number of runs needed to achieve overwhelming probability could
be further reduced, but the first optimization alone is enough to make the attack practical.

2.2 Statistics on the State of the Art

This section presents a few facts on the state of the art of ultralightweight protocols.

Table 2.3 presents a list of most prominent ultralightweight authentication protocols, and the
first attack on each of them, when applicable. It also shows the date of publication of each article
and highlights the time in months elapsed between the publication of a protocol and the publication
of an attack on it. What is considered to be a “first attack” is the chronologically first traceability
or disclosure attack that targets the specific construction of a protocol (desynchronization attacks
were discarded because, although important, they do not target specific protocol weaknesses but

4These results were obtained on an average of roughly 500 experiments conducted with a simulated SASI initiated
with random secrets.

30 Chapter 2. Ultralightweight Authentication

rather general issues in their structure). The dates, both for protocols and attacks, are taken to
be the earliest after becoming public (e.g., eprint or date of conference over proceedings).

Table 2.3: List of ultralightweight protocols, the first attack on them, and the relevant dates.

Protocol Paper Pub. Date First Attack First Attack Date Months
LMAP [155] 07-2006 [129] 05-2007 10
M2AP [156] 09-2006 [129] 05-2007 8
EMAP [154] 11-2006 [127] 04-2007 5
SLMAP [128] 10-2007 [103] 05-2009 19

SASI [64] 12-2007 [161] 06-2008 6
Qingling-Yiju-Yonghua [163] 8-2008 [153] 7-2009 11

Gossamer [157] 09-2008 N/A N/A N/A
LMAP++ [126] 09-2008 [33] 04-2011 31

David-Prasad [67] 06-2009 [101] 06-2010 12
Lee-Hsieh-You-Chen [122] 08-2009 [158] 02-2010 6

Yeh-Lo-Winata [191] 02-2010 [159] 10-2010 8
Eghdamian-Samsudin [76] 11-2011 [16] 06-2012 7

RPAP [143] 10-2011 [16] 06-2012 8
NRS [81] 11-2011 [3] 12-2013 25
LPP [78] 12-2011 [3] 12-2013 24

PUMAP [40] 3-2012 [16] 06-2012 3
DIDRFID/SIDRFID [124] 5-2012 [16] 06-2012 1

RAPP [176] 5-2012 [16] 06-2012 1
Improved LMAP+ [92] 5-2012 [16] 06-2012 1

RIPTA-DA [84] 7-2012 [32] 7-2013 12
Pang-Li-He-Alramadhan-Wang [152] 3-2013 [2] 12-2013 9

DT [75] 5-2013 [34] 06-2013 1
RAPLT [109] 10-2013 [19] 11-2013∗ 1∗

UMAP [43] 9-2013 [19] 11-2013∗ 2∗

Ling-Shen [133] 11-2013 [19] 02-2014∗ 3∗

LPCP [85] 11-2013 [2] 12-2013 1
∗ Date when the attack was found, not published. Numbers omitted in the discussions below for fairness.

Figure 2.3 shows the distribution of the time required for the publication of an attack, based
on data from Table 2.3. Although there are many factors influencing the data, it is clear that the
time for publication of a serious attack is extremely short. The average number of months required
is about 9.55. Half of the protocols are broken within 8 months, and most of them within a year.

Note that depending on the journal or conference, it takes significant time to publish an attack
on a protocol. A minimal estimation is that at least three to four months are required from finished
research to publication. Generally, it might also take time for the proceedings to become available.
Note finally that some of these protocols have been published in relatively low-visibility venues,
which has definitely helped increase their life expectancy. It is probably safe to assume that on
average, a typical ultralightweight protocol is broken in under four months following its publication.

In most cases, these protocols repeat time and again the same typical mistakes, and no progress
is achieved. Many proposals present striking similarities with existing protocols, and often have
the exact same flaws, or even worse ones. Sometimes, hash functions or ciphers are used alongside
usual ultralightweight operations such as XOR, additions, rotations, etc. (an example is presented
in Section 2.5). This makes the protocol basically not less expensive than a classical challenge-
response, which is no longer ultralightweight, and sometimes weaker. Moreover, there are typically
one to three papers presenting attacks on each protocol, and again they often exploit the same

5Gossamer was discarded in these calculations since no attack has been published on it yet to the best of our
knowledge. There is, however, an existing desynchronization attack (see [174] and [192]), but it is related to the
structure of Gossamer, not its operations, and the two papers propose different fixes to the problem.

2.3. Common Flaws 31

1-4 5-8 9-12 13-16 17-20 21-24 25-28 29-32
Months to be broken

0

2

4

6

8

10

N
u
m

b
e
r

o
f

p
ro

to
co

ls

Figure 2.3: Histogram of the time for ultralightweight protocols to be broken.

typical weaknesses.

2.3 Common Flaws

2.3.1 Linearity and T-functions

The same definition of T -functions as proposed by Klimov and Shamir in [118] are used here: A
T -function is a mapping from n-bit words to n-bit words in which for each 0 ≤ i < n, the bit i
in any output word depends only on bits 0, 1, ..., i of any input word. This concept is very useful
because all the boolean operations and most of the numeric operations in modern processors are
T-functions. Additionally, the composition of T -functions results also in a T -function.

These have many nice properties, but almost by definition also a quite undesirable one: they
achieve very poor levels of diffusion. By definition, in a T -function it is not possible that all output
bits depend on all input bits, which is the ideal scenario for security purposes. This is particularly
dangerous in cryptographic applications, lightweight or otherwise. The only reasonable way to
address this shortcoming is by combining these operations with other which do not exhibit this
characteristic. But unfortunately many designers do not follow this simple combination rule, and
have proposed schemes entirely based on T -functions which are doomed to fail.

Some common mistakes found in the UMAP family of protocols are discussed hereafter. These
were pioneer proposals in many ways but they incurred in what, with the hindsight gained after
more than 8 years of research in the area, now looks like quite elementary mistakes. As an example,
the LMAP protocol (presented in [155]) is pictured in Figure 2.4 and discussed below.

As can be seen in Figure 2.4, this early protocol is composed exclusively of T -functions (modular
addition, ⊕, ∨). This seriously limits its security due to their poor diffusion characteristics. Not
only the message generation is marred by this, but it also affects the key update phase. This same
pitfall is present in all members of the UMAP protocol family. The quick appearance of multiple
attacks like those of [36, 35, 129] is, in retrospect, harldy surprising. Despite this, recent proposals
continue to rely heavily and carelessly on T -functions.

Not only T -functions but also linearity6 should be avoided, or at least dealt with carefully in
cryptographic protocols. If a protocol or primitive is linear, it always accepts a better (and in most
cases much better) attack than exhaustive key search. Not to mention linear cryptanalysis attacks.
This, of course, flagrantly violates one of the basic design principles of every cryptographic design,
hence the reasoning behind avoiding linearity at any price, as it constitutes a vulnerability in itself.

This may be clear to most members of the cryptography community, but seems less obvious
for some of the designers of lightweight protocols. Most people know that some of the common
bitwise operations are linear, but many seem to forget that permutations in general and rotations
(for more security implications of the rotation operation, please see Section 2.3.3) in particular are

6Here the term linearity is used to abstract the characteristic that small input changes produce small, bounded
output changes, and should be seen as opposite to non-linearity or to the avalanche effect property, where minimal
input changes produce an avalanche of changes in the output. In that sense, a hash function is highly non-linear
and ⊕ is linear. Modular addition, on the other hand, is not considered linear in Z2 because of the carry bit, though
it admits good linear approximations.

32 Chapter 2. Ultralightweight Authentication

R T

hello−−−−−−−−−−−−−−−−−−→
IDS←−−−−−−−−−−−−−−−−−−

Identify T
Pick n1, n2

Compute A,B,C
A||B||C−−−−−−−−−−−−−−−−−−→

Retrieve n1, n2

Authenticate R
Compute D
Update IDS,K

D←−−−−−−−−−−−−−−−−−−
Authenticate T
Update IDS,K

A = IDS ⊕K1 ⊕ n1

B = (IDS ∨K2) + n1

C = IDS +K3 + n2

D = (IDS + ID)⊕ n1 ⊕ n2

IDS(n+1) = (IDS(n) + (n
(n)
2 ⊕K(n)

4))⊕ ID

K
(n+1)
1 = K

(n)
1 ⊕ n(n)

2 ⊕ (K
(n)
3 + ID)

K
(n+1)
2 = K

(n)
2 ⊕ n(n)

2 ⊕ (K
(n)
4 + ID)

K
(n+1)
3 = (K

(n)
3 ⊕ n(n)

1) + (K
(n)
1 ⊕ ID)

K
(n+1)
4 = (K

(n)
4 ⊕ n(n)

1) + (K
(n)
2 ⊕ ID)

Figure 2.4: The LMAP protocol.

also linear operations, so one should not base the security of a protocol on those operations alone,
because the composition of linear operations is also linear.

Nonlinearity needs to be injected at some stage of the design, or otherwise the protocol remains
linear overall and, consequently, very insecure. Despite this, many examples of designers disregard-
ing this basic policy may be found in the literature. Particularly notable and common examples
are the many proposals whose security seems to be based almost exclusively in the use of Cyclic
Redundancy Codes (CRCs) that many authors seem to forget are also linear and, as such, offer
very little security if at all.

This is excusable to a certain extend in proposals that want to be compliant with the EPC-C1-
G2 standard recommendations, but then the security claims of the proposed protocols should be
adjusted down accordingly. CRCs are linear and they should under no circumstances be employed
in cryptography. For a further example of this, see Section 2.4.2.

As an additional example of how pervasive this mistake is, the papers [85] and [152] are good
very recent illustrations of this common failure. Not surprisingly they were both quickly dismantled
in [2].

2.3.2 Biased Output

Another important weakness of many lightweight schemes proposed in the last years is that some of
the operations used have a biased output, a feature that in many cases lead to additional security
vulnerabilities. This is typical of boolean functions such as OR (∨) and AND (∧), where x ∨ y
and x∧ y have, for unbiased random values of x and y, heavily (75%) biased outputs, respectively,
towards 1 and 0. This can constitute a security weaknesses because these two boolean functions
leak information for both of their arguments. For example, if xi ∨ yi = 0, then xi = yi = 0, which

2.3. Common Flaws 33

0 16 32 48 64 80 96
r(y)

0.00

0.02

0.04

0.06

0.08

Pr
ob

ab
ili

ty

Uniform
Hamming

Figure 2.5: Distribution of probability of r(y) for the modular and Hamming weight rotations,
with y a uniform random variable and L = 96.

discloses both the inputs. This happens roughly 25% of the times (similarly with AND, of course).
This could be more than enough to, after seeing some exchanges, be able to completely recover
all the inputs. An additional undesirable property derived from these highly biased outputs is the
possibility of message insertion. For instance, imagine that one of the exchanged messages, used
for synchronization or authentication purposes, is the result of one of this biased operators. Then,
an attacker can easily impersonate it with a high probability, so it is a very bad idea to use it
for authentication purposes, as proposed in many protocols. LMAP, for instance, has the message
B = (IDS∨K2)+n1, a typical construction that has been seen in this or similar forms many times
later. The issue here is that B is very biased and thus can be impersonated with high probability
even for an attacker who does not know any of the secrets K2 or n1. Even more worryingly, as
the value of B is public (it is exchanged in the open), the attacker can use B − 1 as a very good
approximation to the secret n1 (on average, 75% of the bits are correct), and this approximation
can be used later in other parts of the protocol to approximate the secret.

2.3.3 Rotations

Rotations have been used for a long time in cryptography. Modern block ciphers and hash functions
still mostly rely on ARX (addition, rotation, XOR) designs. Rotations are extremely cheap to
implement, and they bring diffusion, which complements nicely the addition and the XOR (which
exhibit poor diffusion properties, as shown in Section 2.3.1). Fixed-amount rotations are typically
used in ARX designs, but data-dependent rotations, as first featured in the RC5 block cipher [165],
also exist.

The SASI [64] protocol was the first ultralightweight authentication protocol to feature data-
dependent rotations as far as we know. Since then, most ultralightweight protocols have used them,
and in many cases they are the weak spot for ad-hoc attacks. Two types of rotations are typically
used in these protocols: modular rotations (as used in RC5) and Hamming weight rotations. In the
following, Rot(x, y) denotes the rotation operation, in accordance with the literature. The rotation
consists in a circular left shift of x by r(y) positions, where r(y) = y mod L for modular rotations,
and r(y) = H(y) for Hamming weight rotations.

One thing to bear in mind is that a rotation is a permutation and is therefore linear, inheriting
all the pitfalls commented in Section 2.3.1.

The most important shortcoming with data-dependent rotations is that there are only L possible
outputs (where L is the size in bits of the input). Moreover, the distribution of these outputs is
known a priori. The modulo operation has a uniform distribution over uniform input, and the
Hamming weight has binomial distribution B(L, 1/2) over uniform input. Figure 2.5 shows the
distribution of probability of r(y) for the two rotations, with y a uniform random variable and with
L = 967.

Modular rotations have a maximal entropy (log2 L = 6.58 bits), since each shift is equiprobable.
This minimizes the advantage of the adversary for guessing the output. Nevertheless, they are quite
probable to behave like the identity operation (probability of 1/L). This has led to many attacks,

7This is the value that is typically used in the literature for key lengths.

34 Chapter 2. Ultralightweight Authentication

whether when the attacker assumes this blindly (as the desynchronization attack on PUMAP
in [16]) or when she is able to verify it (as the traceability attack on modular SASI in [100]).

Hamming weight rotations have worse entropy (e.g. 4.34 bits in the case of L = 96) than
modular rotations. In particular, the three-sigma rule implies that, for instance in the case of
L = 96, the number of bits rotated is between 33 and 63 in 99.7% of cases. It is therefore even
easier for an attacker to guess the output of a rotation. However, Hamming weight rotations
virtually never behave like the identity.

Another promising tool to attack schemes using rotations and additions is “Mod n cryptanaly-
sis” [116]. Although it has never been applied in the cryptanalysis of an ultralightweight protocol,
it has, on the other hand, been used to successfully attack block ciphers such as RC5P [114] (a
variant of RC5 where xors are replaced with modular additions) and M6 [104] (a family of ciphers
proposed for use with the he IEEE1394 FireWire stand), which use the same kind of operations as
ultralightweight protocols.

2.3.4 Message Composition

Securely designing the messages exchanged over an ultralightweight protocol is a difficult open
problem. Keeping the secrets exchanged as secure as possible against any leakage is indeed a big
challenge, particularly in such constrained environments. As a general rule of thumb, it seems that
the deeper these secrets are into the message, the better.

There is a light parallelism here between being deep inside the message expression and the
operation of repeated rounds in a block cipher.

In general, it seems that the outer the secret you want to protect, the easier it is for the attacker
to recover it. For instance, in LMAP, the key update phase is defined by

IDS(n+1) = (IDS(n) + (n
(n)
2 ⊕K(n)

4))⊕ ID. (2.12)

The ID, the secret that the whole protocol is designed to protect, is in the outermost part of the
message or, alternatively at the root of the operations tree. This quite frequent feature heuristically
leads to major leakage of secret bits, as the rest of the message the ID is combined with is far from
being perfectly random, particularly with the usual constraints in GE, time and power consumption
imposed unto these ultralightweight protocols.

There are many more examples that exhibit transgressions to this rule of thumb for minimizing
secret leakage, even within the most recent proposals. Consider for instance this message of the
RAPP protocol [176]:

C = Per(n1 ⊕K1, n1 ⊕K3)⊕ ID. (2.13)

The ID is again at the out most position of the message construction. This would have no serious
consequences if the rest of the message was perfectly random (as in a One Time Pad), but this
is not the case here. Any reasonable alternative, like putting the secret ID in an inner position,
would be at least slightly better, as for example in C = Per(n1 ⊕K1, ID ⊕ n1 ⊕K3).

2.3.5 Knowledge Accumulation

Knowledge Accumulation of a Static Secret

If partial leakage of a static secret occurs in a round of a protocol, there is an obvious traceability
issue. Indeed, it becomes possible for an attacker to correlate two leaked traces of an eavesdropped
exchange. A typical example is recovering the least significant bit of the static identifier (see for
instance [161], the first traceability attack on SASI).

More importantly, an attacker is sometimes able to recover the full static secret after a few
rounds. Indeed, she can combine the different observations using Bayesian inference. An example
of such an attack was the full cryptanalysis of SASI [20].

Key Updating

One of the initial goals of synchronized protocols is to provide forward privacy. Forward privacy is
a stronger notion than privacy. Simply put, a protocol is said to be forward private if an attacker,

2.3. Common Flaws 35

having recovered the internal state of a tag, is not able to recognize the tag in past interaction
traces. For a more formal definition, see [149]. Forward privacy cannot be achieved in a protocol if
the secrets used in the exchange are all static. Indeed, if the attacker knows the secrets of a tag at
some point, it also knows them in the past, since the secret does not change in the tag’s lifetime.
Therefore, she can recompute the messages sent by a tag in previous interactions, and recognize
it easily. Note that a changing secret is required for forward privacy, but it does not guarantee
it (indeed, there are many synchronized protocols that are not private, and therefore not forward
private).

A positive side effect, and possibly the main advantage of changing the secrets is that it is
conceivably harder to obtain the full secret at any given time, if only a partial leakage is obtained
at every authentication round. It seems to be a good feature as it is intuitively harder to hit a
“moving target” that a static one, akin to the internal state of a stream cipher.

Synchronized protocols however have the issue of being susceptible to desynchronization attacks.

2.3.6 Desynchronization

Desynchronization attacks are active attacks. They are studied here despite some ultralightweight
protocols not claiming resistance against active attackers, only against passive ones. Nevertheless,
as pointed out in Section 2.1.2, active attacks are particularly relevant in the considered context.
In any case, most authors aim to achieve resilience against active attacks, including some defense
against desynchronization.

Desynchronization generally occurs when an active attacker is able to stop the prover and/or
the verifier to engage in further successful executions of the protocol. It is generally achieved by
tricking the prover, the verifier, or both, into believing that a successful authentication session
has taken place, thus updating internal counters and variables in an asynchronous way. Common
implementations of this attack involve sending specially crafted messages to make only one of the
involved parties reach an irreversible state from which it will not be capable of communicating in
the future with other parties.

Many ultralightweight authentication protocols have been shown to be vulnerable to attacks of
this kind. A widespread defense mechanism consists in storing the last pseudonym used, together
with the current one, and use the former if the latter fails (as first suggested in LMAP [155],
by using a flag that is activated when an authentication session terminates abnormally). This
approach however modifies the behavior of the protocol, which opens the door to other attacks
such as timing attacks [22]. Moreover, it comes with the cost of storing an extra copy of the state,
which is relatively expensive in terms of area. Although not exactly flawed, this solution is not
perfect.

Desynchronization protection in ultralightweight authentication protocols is relatively poorly
studied on its own, and in any case caution is recommended when analyzing the security against
such attacks.

An example of two classical desynchronization attacks can be found in [172]. Desynchronization
can be considered as a type of Denial of Service attack, and as most DoS attacks, it does not admit
an easy, ideal solution.

2.3.7 Vulnerability to Systematic Black-box Attacks

Tango Attack

The Tango Attack was first introduced in [101] and [159], and later employed in [39]. Its concept
is extremely simple, but it is notable for being one of the very few systematic black-box attacks
that can be applied to many different ultralightweight authentication protocols.

It could also be seen as a new tool to analyze lightweight protocols, and thus helpful in the
design of more secure future proposals. The Tango attack is successful against other lightweight
protocols, apart from those it was shown to break in the literature. This is a direct consequence
of designers not having strict constraints on the resources needed for an adequate (i.e. highly
nonlinear) mixture of the internal secret values in the message composition. This makes it hard
to avoid leaking some secret bits in every session. The Tango is an attack that aims to obtain a

36 Chapter 2. Ultralightweight Authentication

Figure 2.6: A genetic tango attack against the DavidPrasad RFID ultralightweight authentication
protocol, from [39]. Plots represent the number of bits recovered with respect to the number of
eavesdropped sessions.

full disclosure of all secrets that the protocol is designed to conceal. It is a passive attack that
generally only needs to eavesdrop a small number of (possibly consecutive) authentication sessions,
as shown in Figure 2.6. This is a very realistic attack scenario. The Tango attack is a simple,
yet powerful technique of cryptanalysis which is based on the computation and full exploitation of
multiple approximations to said secret values, using Hamming distances and the representation of
variables in an n-dimensional space.

Its first use was against the David and Prasad protocol [67], and it emerged as a passive (i.e.
completely realistic in the underlying security model) and extremely efficient attack to fully recover
the secret key values K1 and K2 and the static identifier of the tag ID.

The attack is divided into two main phases: 1) Selection of good approximations; and 2)
Combination of these good approximations for disclosing Ki or ID. The two phases are briefly
described hereafter.

Phase 1: The attack exploits the leakage of secret information over the insecure radio channel
due to fact that exchanged messages are derived from secret values by using relatively simple
(i.e. not highly nonlinear) operations only. This is why the attacker can find and succeed in
using multiple simple combinations of the exchanged public messages f(A,B,D,E, F) as good
approximations for the secrets Ki or ID. In weak protocols, public exchanged messages do not
hide these secret values well enough. From all the set of approximations, the adversary is interested
on those that are systematically closer (on average) to the target secret value. That is, those for
which the Hamming distance between an approximation Z and the value X deviates from the
expected value 48, so either H(Z,X) < 48 or H(Z,X) > 48 significantly.

Phase 2: The basic idea at this stage of the attack is to combine multiple approximations
obtained in different sessions, to construct a global one which is highly correlated with the secret
values (i.e. keys Ki and static identifier ID). This can be done in a number of different ways and
forms, but for instance in the case of the David-Prasad protocol, even a simplistic approach works
quite nicely.

The procedure is the following: for each authentication session eavesdropped, a number of
good approximations to the secret values is computed, and then stored as rows of three different
matrices. After eavesdropping a given number of sessions, the global values are computed simply
by repeatedly adding each of the columns of the matrices, and returning a 0 if the total number of
ones in the said column is below a given threshold, or a 1 otherwise. The simplest way to obtain a
final value is to select the majority value in each column of this matrix. One can quickly sum all
the rows to obtain a final vector. Then, if the value in a column of this vector is greater than half
of the number of approximations times the number of eavesdropped sessions, a 1 is conjectured in
that column, or a 0 otherwise.

In the case of the David-Prasad protocol, this easy and efficient way of combining approxi-
mations works surprisingly well for producing accurate global approximations to all three secret
values after eavesdropping a relatively small number of authentication sessions. Results are power-
ful enough to consider the protocol completely broken, as after observing only 5 or 10 sessions, an
attacker can guess about 80 out of 96 bits of the keys and static identifier, as shown in Figure 2.6.
The remaining ones can be easily identified by an offline brute force search, or by eavesdropping
more sessions. These results contradict the security properties claimed in [67].

2.3. Common Flaws 37

After conducting the attack, the adversary is able to retrieve all the secret information shared
between the tag and the server, so she can trivially bypass any authentication mechanisms (i.e.
tag and reader authentication) and impersonate the tag in the future, or just clone it. Confidential
information is put at risk and tag’s answers can be tracked even though two random numbers
are used in each session. A desynchronization attack against the tag (or the sever) is also quite
straightforward, since the adversary can generate any desired valid synchronization messages.

In [39], a technique to automatically find new good approximations based on the use of genetic
programming is described. This further automates the whole Tango attacks, and makes it suitable
for testing new proposals in a black-box manner.

Heuristic Simulation Attacks

The concept behind heuristic simulation attacks, again one of the few general-purpose published
attacks against ultralightweight protocols, is very simple: To infer all or part of the secrets used
in a protocol by extracting information from the proximity between the exchanged messages in a
real protocol run and those generated by an approximation to the secrets.

These attacks generally start from a randomly generated set of secret values. Then, by applying
some heuristic techniques (like simulated annealing) it tries to approximate the true value of the
secrets. For that it employs a fitness function that is generally a function of the distance between
generated messages and the eavesdropped ones.

Different degrees of success in this approximation could lead to a key recovery attack (when
this works well and recovers multiple secret bits) or to a traceability attack (when only some parts
of the secrets can be recovered). Of course, a number of different heuristic techniques can be used
ranging from hill climbing or simulated annealing to genetic algorithms. The fitness function is
generally a measure of the distance between two sets of messages, but can be quite more complex,
like weighing some messages more than others, etc.

The first application of this approach was in [102, 103], which presented a traceability attack
against SLMAP [128]. Authors showed a new metaheuristic-based traceability attack on SLMAP
and analyzed its implications. The main interest of their approach is that it is a complete black-box
technique that does not make any assumptions on the components of the underlying protocol and
can thus be easily generalized to analyze many other proposals.

The main idea behind this approach is to transform the cryptanalysis of a security protocol
into a search problem, where a large number of different search metaheuristics can be applied. In
general, during this search one tries to find which are the secret state values (keys, nonces, etc.)
of some subset of the parties involved in the protocol.

This could be done in various ways, but the most natural approach is to measure the cost of the
tentative set of secret values by the proximity of the messages produced by these tentative solutions
to the real public messages generated and exchanged during the actual protocol execution.

Most cryptographic protocols should exchange one or more messages to accomplish their in-
tended objective(s) (authentication, key exchange, key agreement, etc.), and in the vast majority
of cases these messages are sent via an insecure or public channel that can be easily snooped.

In this attack model, the cryptanalyst generally tries to infer the secret values that the two
parties intend to hide by exploiting the knowledge of the exchanged messages. In a robust, secure,
well-designed cryptographic protocol, even states that are very close to the real state should not
produce messages that are very close (for any useful distance definition) of the real public messages.

This should be done, typically, by means of a careful design and message construction based on
the use of some highly-nonlinear cryptographic primitives such as block ciphers or hash functions.

Unfortunately, new proposals in the field of lightweight cryptography, which are intended to-
wards very computationally constrained environments (such as low-cost RFID systems) cannot use
classical cryptographic primitives.

Then, for this search problem, a number of metaheuristic techniques can be used to minimize
the distance between the candidate and the real exchanged messages. In [103], the authors used a
Simulated Annealing technique, which is a metaheuristic technique that is extremely efficient and
has some ability to avoid becoming quickly trapped in local minima.

With this, the next IDS can be predicted with sufficient accuracy despite not knowing the
protocol secrets, and hence to mount a successful traceability attack. One important characteristic

38 Chapter 2. Ultralightweight Authentication

of their attack is that it was successful after eavesdropping only one authentication session, which
is a very economic requirement compared with those of other passive attacks.

The general traceability attack algorithm is described in Algorithm 2.

Algorithm 2 Metaheuristic traceability attack against SLMAP.

Snoop an SLMAP run
Known← IDSn, A,B,C,D
repeat k times

Start a Simulated Annealing to minimize fS
Run SLMAP over the Known values
Compute approximation for IDSn+1 and store in ListIDS

end
MajIDS ← majority vector of ListIDS
Get IDS0 and IDS1, candidate values for IDSn+1

ρ0 ← correlation between MajIDS and IDS0

ρ1 ← correlation between MajIDS and IDS1

if ρ0 > ρ1 then
output 0

else
output 1

end if

This attack is efficient and effective, with a quite high success probability (around 95%) for a
number of trials k = 50 as shown in Table 2.4.

Both attacks are quite simple, powerful, and attractive due to their generality and black-box
potential.

New ultralightweight protocol proposals could benefit strongly to be tested against both attacks
before publication, in order to avoid major pitfalls.

Resilience against both attacks does of course not prove that the security of the new protocol is
foolproof, but at least will offer guarantees that the scheme has avoided some of the trivial security
weaknesses that plague most of current proposals.

2.4 Dubious Proofs of Security

This section discusses some of the many dubious security proofs that different authors have used
over the years in an attempt to prove the security of their proposals.

2.4.1 Randomness Tests

As shown in Figure 2.5, one of the first proposals in this area, LMAP, tried to prove some degree
of security by verifying that the exchanged messages looked random enough. For that, multiple
sessions of the protocol were run and the exchanged messages recorded and later analyzed with
different randomness test batteries such as the well-known ENT [185], Diehard [135] and NIST [167].

The results were indeed impressive, with the messages used for running the protocol passing
all tests with flying colors. However, this does not prove any security level, as LMAP (depicted
in Figure 2.4) was broken shortly afterwards. This simple methodological approach presents a
number of limitations. First, the most obvious one is that two fresh random numbers generated
by the reader, n1 and n2, are injected into the messages, and this makes it hardly surprising that
some of the exchanged messages, that are combined with these two random messages, look random.
Randomness might appear, then, not as a consequence of a well designed protocol but just as a
result of employing these sources of randomness repeatedly during message composition. Consider
this artificial, very simple, and Trivially Weak authentication protocol, depicted in Figure 2.7.

It is clear that, in this case, an attacker can trivially recover the values of all secrets involved

2.4. Dubious Proofs of Security 39

Table 2.4: Attacks results for 20 runs, after observing 1 auth. session, from [103].

Exp. Good Approx. Bad Approx. Correct bits Corr. Rand. Corr. Exp. Result
1 46 4 60 0.23591 -0.00532 Success
2 37 13 60 0.24760 -0.08020 Success
3 36 14 53 0.10418 0.02094 Success
4 39 11 56 0.13681 -0.01610 Success
5 44 6 59 0.22518 -0.03496 Success
6 34 16 53 0.10919 -0.12903 Success
7 41 9 56 0.17157 0.12330 Success
8 43 7 62 0.29247 0.08456 Success
9 45 5 60 0.24967 -0.06447 Success
10 42 8 58 0.19593 0.19375 Success
11 44 6 58 0.21009 0.09940 Success
12 35 15 53 0.10707 -0.11736 Success
13 38 12 53 0.09923 -0.02172 Success
14 47 3 61 0.026238 -0.04895 Success
15 35 15 53 0.10629 0.14811 Fail
16 47 3 66 0.36751 -0.16724 Success
17 44 6 59 0.21093 0.03115 Success
18 39 11 55 0.14885 0.08340 Success
19 31 19 52 0.10013 -0.01543 Success
20 39 11 58 0.20798 0.03845 Success

Mean 40.3 9.7 57.25 0.19 0.01 95% Success

Table 2.5: Randomness tests over the set of LMAP exchanged messages.

A B C D
Entropy (bits/byte) 7.999999 7.999999 7.999999 7.999999
Compression Rate 0% 0% 0% 0%
χ2 Statistic 250.98 (50%) 255.71 (50%) 244.46 (50%) 255.18 (50%)
Arithmetic Mean 127.5062 127.4977 127.4946 127.5030
Monte Carlo π Estimation 3.1413 (0.01%) 3.1417 (0.0%) 3.1417 (0.0%) 3.1413 (0.01%)
Serial Correlation Coeff. -0.000040 0.000010 -0.000077 -0.000036
Diehard Battery (p-value) 0.227765 0.775516 0.641906 0.410066
Nist Battery X X X X

40 Chapter 2. Ultralightweight Authentication

R T

hello−−−−−−−−−−−−−−−−−−→
IDS←−−−−−−−−−−−−−−−−−−

Identify T
Pick n1, n2

Compute A,B,C,D,E
A||B||C||D||E−−−−−−−−−−−−−−−−−−→

Retrieve n1, n2

Authenticate R
Compute F

F←−−−−−−−−−−−−−−−−−−
Authenticate T

A = K1 ⊕ n1

B = K2 ⊕ n2

C = K3 ⊕ n1 ⊕ n2

D = K1 ⊕ n1 ⊕ n2

E = K2 ⊕ n1 ⊕ n2

F = IDtag ⊕ n1 ⊕ n2 ⊕K3

Figure 2.7: The Trivially Weak protocol, for demonstration purposes.

simply by solving the trivial equations involved. Indeed,

n2 = A⊕D
n1 = B ⊕ E
K1 = A⊕B ⊕ E
K2 = B ⊕A⊕D
K3 = A⊕B ⊕ C ⊕D ⊕ E

IDtag = F ⊕ C

Nevertheless, even in this very simple and weak protocol, exchanged messages pass all randomness
statistical tests8. At the very least, to prevent the indirect measure of the randomness of the
source of n1 and n2 one has also to examine in detail all the correlations between these exchanged
messages.

So if by now it seems clear that randomness of the exchanged messages is not a sufficient
condition, it should also be clear that it is neither a necessary one. Another trivial way of showing
this is by thinking about highly formatted messages and how, even if a protocol is secure, due to
formatting and padding of some or all of its messages these may not pass some randomness test.

Intuitively, this shows that randomness of the exchanged messages is neither a sufficient nor a
necessary condition for protocol robustness, and as such it should no longer be used to prove any
kind of security level in future proposals.

2.4.2 BAN and GNY Logic

Some authors have tried to use BAN logic to prove the security of their proposals. A notable
example is [163]. Needless to say, this approach did not work out as intended and, despite being
accompanied by a formal security proof in BAN logic the proposal was broken shortly afterwards
in [153]. In the particular case of [163], the authors mistakenly employed CRC (Cyclic Redundancy
Codes) as recommended by the EPC-C1-G2 standard, but instead of using them as simple error
detection tool, they employed them for encryption. In their idealized model, they identified their

8Provided, of course, that the (P)RNG used for creating n1 and n2 is good enough.

2.5. Weaknesses in Recent Protocols 41

CRC usage as equivalent to encryption, so some of the BAN logic rules (for example R1: Message-
meaning rule) do not hold any more. This is a particularly flagrant mistake because CRCs are
linear and should never be used for encryption, hashing or any other cryptographic purposes. But it
is also a very common error, as never an idealized scenario like the one modelled by BAN logic (with
perfect, unbreakable and zero-leaking ciphers) accurately models reality. The level of abstraction
needed in the modelling phase basically makes it impractical for most realistic situations. This is,
unfortunately, not only a limitation of BAN logic but, to different extents, is also in most formal
models (GNY, etc.) which makes them not very relevant for our purposes.

A recent example of the current and continuous use of these quite limited approaches is [166],
where again BAN logic was used again to proof the security of the proposal, despite its severe
limitations and unrealistic assumptions. Another recent case can be found in Section 2.5.3, where
a protocol published in Nov. 2013 uses GNY logic to prove its security. Needless to say, this
proposal can be attacked quite straightforwardly as mentioned in 2.5.3.

2.4.3 Other Approaches

Recently, some authors are taking a different approach to this problem, by using automatic analysis
tools previously employed on the formal analysis of classical protocols. Two interesting examples
are [108], and [177].

In the first, the author uses the AVISPA [5] tool to analyze the security of the LMAP protocol.
This protocol, being the first of its kind has many vulnerabilities (some of them having been
discussed in Section 2.3), so the conclusion of this work are to be taken lightly, as apparently only
two attacks have been discovered by AVISPA and the author proposed an easy patch.

Although these results have to be examined with more caution, it seems that the general
approach is promising and that better proposals will appear if using the AVISPA and similar tools
becomes commonplace in the area.

In [177], the authors propose a key establishment and derivation protocol for EPC Gen2 tags,
and employ model checking techniques to verify whether the security properties needed hold in
a finite state machine. For that, they use automated reasoning, specifically the Constraint-Logic
based Attack Searcher (CL-AtSe), and the HLPSL input language.

This should be an approach to encourage in the future, with any new proposal having been
tested by automated tools prior to acceptance. Of course attacks could still exist after this check,
but this check prevents falling flat on well-known mistakes.

2.5 Weaknesses in Recent Protocols

In this section, recently published protocols are presented along with weaknesses in their design,
illustrating the discussions of Sections 2.3 and 2.4.

2.5.1 Bilal and Martin

Bilal and Martin proposed in 2013 a protocol called UMAP [43]. The protocol definition is depicted
in Figure 2.8. It uses modular rotations, so a natural first attempt at analyzing its security is to
look at what happens when they behave like the identity. This happens with a non-negligible
probability of L−2. The relevant equations of the protocol become:

A = n2 + IDS +K + ID + n1

B = n1 + IDS +K + ID + n2

IDSnext = n1 + IDS + n2

Knext = n2 +K + n1

Note that in particular, we have that A = B. Therefore, with probability L−2, an attacker can
authenticate in place of a tag, just by knowing the IDS of some target tag (this may be obtained
beforehand simply by sending hello to the tag), and by replicating A as sent by the reader. This
attack vector is addressed in Section 2.3.3.

42 Chapter 2. Ultralightweight Authentication

R T

hello−−−−−−−−−−−−−−−−−−→
IDS←−−−−−−−−−−−−−−−−−−

Identify T
Pick r
Compute A

A||r−−−−−−−−−−−−−−−−−−→
Authenticate R
Compute B
Update IDS,K

B←−−−−−−−−−−−−−−−−−−
Authenticate T
Update IDS,K

n1 = f(K, r)

n2 = f(r,K)

A = rot(rot(n2 + IDS +K + ID, n1) + n1, n2)

B = rot(rot(n1 + IDS +K + ID, n2) + n2, n1)

IDSnext = rot(rot(n1 + IDS, n1) + n2, n2)

Knext = rot(rot(n2 +K,n1) + n1, n2)

Figure 2.8: Bilal and Martin’s protocol.

Another point regards the function f . It is described in [43] as a “lightweight pseudo random
function.” If such a function is readily available on the tag, and if it has good security properties,
then why bother with the other constructions ? As mentioned in Section 2.2, a very basic challenge-
response protocol, such as the following, works just as well:

R→ T : hello

T → R : IDS

R→ T : r, fK(r)

T → R : f ′K(r)

2.5.2 Jeon and Yoon

Jeon and Yoon presented in 2013 their protocol RAPLT [109]. This protocol (shown in Figure 2.9)
introduces two new lightweight operations: Mer(A,B,K,C) and Sep(C,K,A,B). Their definition
is the following. Mer(A,B,K,C) merges the values A ∈ {0, 1}L and B ∈ {0, 1}L into C ∈ {0, 1}2L
using the bits of K ∈ {0, 1}2L: if a bit in K is 0, then a bit of A is moved to C, else a bit of B is
used. Sep(C,K,A,B) does the opposite: if a bit in K is 0, the next bit in C is moved to A, else
it is moved to B.

The first thing to note is that these operations are ill-defined as they both require that H(K) =
L. The authors make no mention of any way to guarantee that, and it would anyway result in a
smaller entropy. Regardless, it is assumed that this property is satisfied in what follows.

The usage of Sep in the protocol does not follow the definition. In the protocol, it is spec-
ified that Sep(M1,M2,K2||K1, B1||B2) is used. Instead, the authors presumably rather meant
Sep(M1||M2,K2||K1, B1, B2), since otherwise the variables would not have the right sizes.

Another point is that these operations, that consist in rearrangements of bits of some of their
inputs, have linear properties. The only other operation used is the XOR, which makes the protocol
entirely linear. This problem is addressed in Section 2.3.1.

Finally, a traceability attack may easily be mounted against the protocol by using the fact that
the two new operations are Hamming-weight invariant. A very similar attack was previously done

2.5. Weaknesses in Recent Protocols 43

R T

hello−−−−−−−−−−−−−−−−−−→
IDS←−−−−−−−−−−−−−−−−−−

Identify T
Pick n1

Compute A1, A2, B2
A1||A2||B2−−−−−−−−−−−−−−−−−−→

Extract n1, n2

Authenticate R
Compute C3

Update IDS
C3←−−−−−−−−−−−−−−−−−−

Authenticate T
Update IDS

N1 = n1 ⊕ ID
N2 = n2 ⊕ IDS
A : Mer(N1, N2,K1||K2, A1||A2)

M1 = N1 ⊕K2

M2 = N2 ⊕K1

B : Sep(M1||M2,K2||K1, B1, B2)

B3 = B1 ⊕B2

K′ : Mer(K1,K2,K2||K1,K
′
1||K′2)

C : Mer(n2, N1,K
′
1||K′2, C1||C2)

C3 = C1 ⊕ C2

Figure 2.9: Jeon and Yoon’s protocol.

on RAPP [176] in [16]. We have that, after Mer(A,B,K,C), or after Sep(C,K,A,B),

H(A) +H(B) = H(C) = H(C1) +H(C2).

A property of the Hamming weight is that

H(A⊕B) ≡ H(A) +H(B) (mod 2),

for any A, B. Therefore,

H(B3) ≡ H(B1) +H(B2)

≡ H(M1) +H(M2)

≡ H(N1) +H(N2) +H(K2) +H(K1) (mod 2).

Moreover,

H(A1) +H(A2) ≡ H(N1) +H(N2) (mod 2).

Therefore,

H(K) mod 2 = (H(B3) +H(A1) +H(A2)) mod 2

Since A1, A2 and B3 are public, and since K is static, it is easy for an attacker to trace a tag by
observing its communications with a genuine reader.

44 Chapter 2. Ultralightweight Authentication

2.5.3 Ling and Shen

Ling and Shen present in [133] a protocol that is strongly inspired by the SASI protocol [64]. A
formal proof using GNY logic is made, which should indicate that the protocol is secure.

However, since messages C and D are exactly the same ones as in SASI, Phan’s simple trace-
ability attack [161], which allows a passive attacker to recover one bit of the secret, works here
too. Without going into the details, it essentially relies on the fact that the OR (∨) operation has
biased output, an issue that has been covered in Section 2.3.2.

This attack proves that the formal security proof made in [133] is not valid, a point that was
already raised in Section 2.4.2.

2.6 Ultralightweight Building Blocks

Rather than designing an authentication protocol from scratch using ultralightweight operations,
another approach to designing an ultralightweight authentication protocol is to use a classical
challenge-response authentication protocol, and using ultralightweight constructions as crypto-
graphic primitives.

In the category of ultralightweight primitives, that goes up to around 1.5K GE, there is gen-
erally no place for highly optimized versions of standard ciphers like AES and IDEA, or slight
modifications of classical block ciphers like DES (DESL, DESXL) [120].

Only newly and purposefully designed low-cost primitives can be ascribed to it. Fortunately
for the area, more and more of the new proposals fall easily within this limit, as there seems to be
growing consensus this is about the maximum GE that many devices would be able to afford to
devote to security.

Within this limit, there was hardly any valid proposal before the publication of PRESENT [51]
in 2007, as both DES (2300-3000 GE) or even DESXL (2168 GE) are too large. AES needs even
more gates with around 3400 GE (recent results [79] put this at 2400GE, still well above the 1.5K
limit). Not even well-known extremely efficient and easy to memorize proposals such as TEA [188]
(2100) and XTEA (2000) were light enough.

Other more recent proposals like MCRYPTON [131] (2949 GE), HIGHT [105] (3000) and
SEA [171] (2280) were also not adequate for our purposes. After 2007, on the other hand, there
has been a blossoming of new primitives, including most notably PRESENT (1570 GE), based on
the AES finalist Serpent, which can fairly be considered a pioneer in this area.

The European eSTREAM project was also relevant, as it looked for stream ciphers with efficient
hardware implementation, and it contributed to the development of Trivium (2599 GE) and Grain
(1294 GE).

Other ultralightweight block cipher are LBlock (1320 GE), TWINE (1116 GE), MIBS (1400
GE), KLEIN [87] (1478 GE), KATAN/KTANTAN [69] (from 688 GE), Piccolo (683 to 1043 GE),
LED [91] (1040 GE) and the PRINTcipher (503 GE) or PRINCE.

From this long list, specially notable are the KATAN, LED and KLEIN proposals which have
gained respect and popularity after resisting attacks for a time. Although all have received some
minor attacks, these look at the moment like a particularly good trade-off between security and
efficiency.

It is important to note that the gate count needs to be taken carefully into consideration, as not
all of these algorithms operate over the same key size, block size or produce the same throughput.

Lastly, even the NSA came with two proposals in this area, called SIMON (763 GE) and SPECK
(884 GE), meant to provide high performance across a range of devices. In the light of recent NSA
scandals these two proposals, independently of their respective merits, will probably never prove
very popular within the cryptography community. On top of that, there are some attacks [180]
that present a not particularly rosy view on them.

Not only block and stream ciphers designers have been attracted to the challenge of devising
ultralightweight primitives, as some interesting though less numerous construction in other areas of
cryptography have been proposed. Particularly interesting are the SPONGENT [50] (from 738 GE
to 1950) and QUARK [8] (from 1379 to 4460 GE) families of lightweight hash functions. Despite
being by far more popular, they are complemented by the PHOTON [90] family (1122 to 2768
GE).

2.7. Conclusion 45

Note that all these proposals, despite being analyzed much more deeply than protocols discussed
in this chapter, are still under scrutiny and are continuously improved. In particular, they are not
considered safe under fault attacks or side-channel analysis [37, 189].

2.7 Conclusion

The need for inexpensive tags capable of secure, efficient, and privacy-friendly authentication has
prompted a significant part of the community to develop lightweight protocols. This endeavor has
been the focus of many researchers since the early days of RFID security in 2005, and is still a
recurring topic. The data provided in Section 2.2 speaks for itself regarding the existing proposals
(virtually all of them are broken, with half of the protocols being broken within 8 months of their
publication, and most of them within a year), and it was shown in Section 2.5 that little effort is
often sufficient to break new schemes as well.

The problems discussed in this chapter indicate clearly that the current approach for designing
these protocols is wrong.

One possible alternative approach is using block ciphers or hash functions issued from the
lightweight cryptography community, such as PRESENT, on top of a classical challenge-response
authentication protocol. This approach is arguably more reliable, and is probably the best com-
promise today. There are a few security issues with existing lightweight building blocks, but it
is an active area of research, and it is scrutinized by experienced cryptographers. There are also
privacy and efficiency considerations regarding classical challenge-response protocols (as discussed
in Chapters 3 and 4). One may finally argue that, although it is of course possible to achieve
authentication using general-purpose block ciphers or hash functions, they may be excessive and
in particular simply too expensive.

There has been other attempts to design an ad-hoc authentication protocol for RFID, such as the
notorious HB+ (introduced in 2005 by Juels and Weis [112] and based on HB, a secure identification
scheme for Human Beings designed by Hopper and Blum in 2001 [106]). HB+ requires only
lightweight calculations from the prover and the protocol benefits from a security proof based on a
reduction to the Learning Parity with Noise (LPN) problem. In spite of attractive properties, HB+

and its family (the protocol spawned numerous fixes and variants) are not secure, and moreover
considered not so lightweight by some experts, in particular not fitting within the 1500 GE margin
(see [6] for a thorough discussion on the subject).

46 Chapter 2. Ultralightweight Authentication

Chapter 3

Complexity and Privacy

Articles related to this chapter

[13] Gildas Avoine, Muhammed Ali Bingol, Xavier Carpent, and Siddika Berna Ors Yal-
cin. Privacy-friendly authentication in RFID systems: On sub-linear protocols based on
symmetric-key cryptography. IEEE Transactions on Mobile Computing, 12(10):2037–
2049, October 2013.

Privacy is a major concern for RFID protocols, as was highlighted in Chapter 1. The speed
of authentication is also very important for RFID applications. The example that embodies this
problematic is public transportation. Authentication needs to be fast, with a simple swipe of a
tag being sufficient to identify and authenticate a user. It is generally agreed upon that about 200
milliseconds can be devoted to grant or deny access to a customer [66].

Combining privacy protection with an efficient identification procedure is a challenging task,
and is the subject of a significant part of the literature in RFID authentication.

This chapter reviews the associated literature, categorizes protocols according to common fea-
tures, analyzes them, compares their properties and discusses about which can be considered as
the best ones to date. Many new attacks on several of these protocols are provided, as well as
some patches. Note that low-level criteria such as gate count or power consumption of tags are not
considered in this chapter, as the cost of building blocks was the focus of Chapter 2.

Section 3.1 presents some preliminary solutions that contextualize the problematic. Section 3.2
presents some protocols trading away privacy in order to achieve faster authentication. Sec-
tions 3.3, 3.4, and 3.5 present three families of protocols (respectively with shared secrets, based on
hash-chains, and based on counters) dedicated to the scalability issue, along with discussions and
attacks on them. These protocols are then compared in Section 3.6, and the chapter is concluded
in Section 3.7.

3.1 Preliminaries

This Section looks at the naive solutions for the scalability problematic. In what follows, the
variable N refers to the number of tags in a system.

Challenge-response Protocols

The ISO-9798 (Figure 3.1) defines challenge-response authentication protocols, which are commonly
used in RFID. These are used in the MIFARE Classic for instance1. Other standards are also in

1The authentication protocol of the MIFARE Classic is based on the ISO-9798-2.3, a mutual authentication
protocol using a stream cipher.

47

48 Chapter 3. Complexity and Privacy

R T
r−−−−−−−−−−−−−−−−−−−−−−−−−−−→

ID, Ek(ID, r)←−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.1: The ISO 9798-2.2 challenge-response protocol.

R T
r−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ek(ID, r)←−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.2: Variant to the ISO 9798-2.2 protocol that has good privacy but is inefficient.

application, such as the ISO-11770 (a protocol with key agreement), used for example in the Basic
Access Control of e-passports.

In the example of Figure 3.1, the ID of the tag is sent in the clear. This allows the reader
to identify the tag, find the corresponding key k and authenticate the tag. This solution is very
efficient and secure, but there is no privacy since the identifier is sent in the clear.

On the other hand, when the tag does not directly reveal its identifier (as depicted in Figure 3.2),
the reader has to try all the possible keys while decrypting the message, and check if it corresponds
to the nonce he sent to authenticate the tag (there is no identification prior to authentication).
This solution has good privacy and security, but takes O(N) cryptographic operations, which is
inefficient in large systems. In the following, this is referred to as a “linear protocol.”

Finally, if the identifier is not sent in the clear, but there is only one key in the system (common
to all tags), identification isO(1) and the privacy is respected. However, an adversary compromising
a single tag and retrieving its key breaks the whole system (she can mount not only traceability
attacks, but above all impersonation attacks, targeting any tag in the system). This approach,
dubbed the “master key” solution, is another extreme case of the privacy-security-efficiency trade-
off.

The rest of this chapter focuses on protocols designed to reduce the complexity of the identi-
fication, while trying to preserve privacy, and which are distinct from these three extreme cases.
Protocols such as the HB family ([54, 74, 93, 106, 112, 141]), or protocols such as [44, 60] are
therefore not considered below.

Public-key Cryptography for RFID

Public-key cryptography (PKC) seems to be a solution to the identification problem stated above.
The randomized Schnorr protocol [55], for instance, uses public-key encryption to provide both
strong privacy and constant-time identification.

However, PKC is expensive, being in terms of gates required on the tag, or of time and especially
energy necessary to perform the computations on a tag. Although some recent studies point
otherwise (see, e.g., [95, 107, 123]), it is generally acknowledged that PKC is not affordable on
low-cost tags, and most of the proposals for authentication in RFID use symmetric-key building
blocks. Hopefully, further research in that area will improve the feasibility of PKC for low-cost
RFID, but there will always be a market for symmetric-key solutions. For these reasons, only
symmetric-key schemes are considered in what follows.

Note on Protocol Names

Some of the protocols analyzed in this chapter were named differently by their authors in different
publications. To avoid confusion, Table 3.1 presents the matches between the protocols proposed
with different names. The papers and publication years are given in the first row. Each other row

3.2. Protocols with Limited Privacy 49

R T
hello−−−−−−−−−−−−−−−−−−−−→
IDS←−−−−−−−−−−−−−−−−−−−−

r, Ek(r)−−−−−−−−−−−−−−−−−−−−→
Update IDS and k

r′, Ek(r,r′)←−−−−−−−−−−−−−−−−−−−− Update IDS and k

Figure 3.3: Hypothetical pseudonym-based challenge-response protocol.

represents one protocol, showing names given in each paper. In what follows the name used is the
one that appeared most recently (shown in bold in Table 3.1).

Table 3.1: Matching of the names of some protocols

[178] [57] [179] [58]
2006 2006 2007 2009

YA-TRAP - YA-TRIP RIP
- - YA-TRAP RIP+
- YA-TRAP+ - RAP
- O-TRAP - O-RAP
- - - O-RAKE
- - YA-TRAP* -
- - YA-TRAP*& fwd -

3.2 Protocols with Limited Privacy

This section briefly discusses protocols trying to achieve some practical privacy, although not being
private in a strict sense.

By trying to lower the identification procedure complexity, some solutions also lower the privacy
or the security considerably. For instance, one could imagine a very simple scheme where each tag
has a limited amount of ephemeral pseudonyms (or “coupons”), using one each time a reader
wants to authenticate it. This solution is both private and efficient, but has a limited lifetime
and an adversary could perform denial-of-service attacks very easily. Juels proposes in [110] a
similar protocol in which each tag loops through a sequence of secrets to authenticate itself to a
reader, again providing efficiency, but limited privacy. Henrici and Müller proposes in [98] that tags
communicate to the reader the number of failed authentication attempts since the last legitimate
authentication. While this allows the reader to efficiently identify the tags, it also allows an
adversary to trace them, as pointed in [9].

Ultralightweight protocols, such as the ones discussed in Chapter 2, share a pattern on ex-
changed messages. As illustrated in Chapter 2, virtually all these protocols are broken due to
the nature of the building blocks used. One could however conceive a protocol following the same
structure, but using regular cryptographic building blocks, such as the one illustrated in Figure 3.3.
This protocol provides O(1) identification, security2, and some level of privacy. However, this pro-
tocol can not be completely private strictly speaking. Indeed, tag pseudonyms (IDS) change after
each successful authentication, but an adversary is able to trace a tag between two genuine authen-
tications by simply querying the tag and then terminating the authentication session. Since no
update is performed, the pseudonym remains the same and the tag can be traced. This is captured
by the notion of existential and universal untraceability in more detailed privacy models such as
Avoine, Coisel and Martin’s [23].

2It could be the target of desynchronization attacks such as described in Section 2.3.6, although countermeasures
would work here too.

50 Chapter 3. Complexity and Privacy

Note that despite the fact that these solutions are not private strictly speaking, there might be
scenarios where they can be applied, since some privacy is better than none at all. The rest of this
chapter however focuses on protocols aiming to achieve “perfect” privacy to some extent.

3.3 Protocols with Shared Secrets

Some recent protocols have the common feature that several tags in the system share their secrets
(at least partially). They manage to lower the online complexity of the reader by storing tag secrets
in a particular structure (a tree, a grid, etc.). While these protocols provide that very desirable
property, and also bring new and interesting ideas, they all have traceability issues.

This section introduces Molnar and Wagner’s tree-based protocol [140], Alomair, Clark, Cuellar,
and Poovendran’s protocol [4], Avoine, Buttyán, Holczer, and Vajda’s group-based protocol [15],
and Cheon, Hong, and Tsudik’s meet-in-the-middle protocol [63]. Some attacks on these protocols
are also discussed, especially new attacks against [63] and [4].

3.3.1 Tree-based and Group-based Protocols

As stated previously, privacy-friendly challenge-response protocols do not scale well: the reader
must check O(N) keys to authenticate a tag, where N is the total number of tags in the system.

Molnar and Wagner propose in [140] an approach that reduces the complexity from O(N) to
O(logN). The fundamental idea is to manage the tags’ keys in a tree structure instead of using a
flat structure. More precisely, the tags are assigned to the leaves of a balanced tree with branching
factor b at each level of the tree. Each edge of the tree carries a random key. Each tag stores the
keys along the path from the root to the leaf corresponding to the given tag, while the reader stores
the whole tree. During the authentication process, the reader performs one challenge-response per
tree level in order to identify the sub-tree the tag belongs to. Each challenge-response requires from
the reader an exhaustive search in a set containing b keys only. The overall reader’s complexity of
the authentication is b logbN in the worst case.

The significant complexity improvement due to Molnar and Wagner’s technique (MW) has how-
ever an unacceptable drawback: the level of privacy provided by the scheme is quickly decreasing
when an adversary tampers with tags. Giving the adversary the ability to tamper with some tags
makes sense because MW is useless without this assumption: in such a case, the same key can be
stored in all the tags and the complexity problem no longer occurs. On the other side, giving to
the adversary the ability to tamper with tags significantly degrades the privacy in MW.

Avoine, Dysli, and Oechslin raise this attack in [25] and evaluate the trade-off between com-
plexity and privacy according to the branching factor. Buttyán, Holczer, and Vajda in [59] also
identified weaknesses of MW and introduce an improvement with variable branching factors. Nohl
and Evans in [146] provided another approach to analyze MW. Later on, Halevi, Saxena, and
Halevi [93] present a lightweight privacy-friendly authentication protocol that combines Hopper
and Blum’s HB protocol [106] and the tree-based key infrastructure suggested by Molnar and
Wagner [140]. However, [106] inherits from the weaknesses of MW as demonstrated by Avoine,
Martin, and Martin in [29]. Finally, Beye and Veugen further analyze the improvement of Buttyán
et al. in [42].

One may also cite some other attempts to design tree-based protocols, e.g., [190] or the saga [1,
72, 134, 186]. However, as said previously out, tree-based secret sharing is definitely not suited
when the adversary is capable of tampering with tags, and the tree structure is even not the best
solution in that case. Indeed, Avoine, Buttyán, Holczer, and Vajda demonstrate in [15] that a
simpler structure than the tree, namely when tags are grouped and each group share a same key,
achieves a higher level of privacy and a better efficiency. Finding a better structure, that does not
avoid the traceability problem but that mitigates it is still an open problem.

3.3. Protocols with Shared Secrets 51

K1
1 K2

1 K3
1 . . . Ki

1 . . . Kn
1

K1
2 T1,1 T2,1 T3,1 . . . Ti,1 . . . Tn,1

K2
2 T1,2 T2,2 T3,2 . . . Ti,2 . . . Tn,2

...
...

...
...

. . .
...

. . .
...

Kj
2 T1,j T2,j T3,j . . . Ti,j . . . Tn,j

...
...

...
...

. . .
...

. . .
...

Kn
2 T1,n T2,n T3,n . . . Ti,n . . . Tn,n

Figure 3.4: Tags’ secrets organized in a grid in CHT.

R Ti,j
r−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

r′, C=PRF
Ki1

(r,r′)⊕PRF
K
j
2

(r,r′)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.5: Cheon-Hong-Tsudik plain protocol.

3.3.2 Cheon, Hong, and Tsudik’s Protocol

Description

The protocol proposed by Cheon, Hong, and Tsudik in [63] is an innovative proposal to reduce the
reader complexity. It uses a meet-in-the-middle strategy, similar to the one used in several famous
attacks on double-encryption schemes [71]. The idea is the following. During the initialization, the
system chooses two sets of keys K1 and K2 such that |K1| = |K2| = n, where N = n2 is the number
of tags in the system, and K1 ∩ K2 = ∅. It then initializes each tag Ti,j with a unique pair of keys

〈Ki
1,K

j
2〉, where Ki

1 ∈ K1 and Kj
2 ∈ K2, yielding an n× n grid in which each cell represents a tag,

as depicted in Figure 3.4.
The identification procedure, represented in Figure 3.5, is as follows. The reader R first picks

a nonce r and sends it to a tag Ti,j entering its field. The latter then picks another nonce r′,
and computes C = PRFKi

1
(r, r′) ⊕ PRFKj

2
(r, r′), where PRF is a pseudo-random function. The

tag Ti,j then sends the pair 〈C, r′〉 to R. In order to identify the tag, R computes PRFKx
1
(r, r′)

for x ∈ [1, n], and then computes C ⊕ PRFKy
2
(r, r′) for y ∈ [1, n], and tries to find a match

between two values. This search requires 2n = 2
√
N PRF evaluations at worst, rather than N for

a standard linear search3. An adversary eavesdropping r, r′, and C however would have to search
the entire key space, since she does not know the key sets K1 and K2.

The protocol presents an efficient search procedure, but is not synchronized (i.e., the tag has no
state that changes over time). This implies that it does not provide any forward-privacy, because an
adversary having compromised a tag gets its two keys, and can thus recompute messages previously
produced by the tag, in this way “tracing” the tag in the past.

Moreover, the authors themselves identify an important issue. Indeed, when a tag is compro-
mised, its two sub-keys are disclosed, but this does not leak any information on other tags’ keys
as the combination of subkeys is unique. However, when the adversary compromises several tags,
she gains knowledge of key-pairs of legitimate tags. For instance, if the adversary compromises
the tags Ta,b and Tc,d, she also discovers the keys of the tags Ta,d and Tb,c. These will respectively
be referred as directly compromised tags and indirectly compromised tags hereafter (a compromised
tag refers to either situation). Additionally, partially compromised refers to the tags for which only
one key is known.

The authors describe an extension to mitigate this problem by introducing proper authentica-
tion in the protocol. In this extension, each tag has a third, unique subkey K3. The key sets K1

and K2 have a size of Nα, with 0 ≤ α ≤ 1
2 being a system parameter and K3 has a size of N , such

that N1−2α tags have the same 〈K1,K2〉 key-pair. The tag further computes C ′ = PRFK3
(r, r′),

3Note that in [63], the authors state that the search isO(
√
N logN). Only cryptographic operations are considered

in the online time, so O(
√
N) is used instead.

52 Chapter 3. Complexity and Privacy

0 1,000 2,000 3,000 4,000 5,000
0

0.2

0.4

0.6

0.8

1
·106

Figure 3.6: Average number of indirectly compromised tags in a system of N = 106 tags, with
respect to an increasing number of directly compromised tags.

and sends it to the reader. After the usual search procedure, R checks the value C ′ to authenticate
the tag. Since K3 is unique to each tag, the impersonation attack is prevented, but there is still a
traceability issue, as detailed in Section 3.3.2.

Impersonation Attack on the Plain Protocol

After having compromised some tags, an adversary can perform the following impersonation attack.
She listens to a legitimate authentication session between R and Ti,j . When Ti,j outputs (r′, C),
she blocks the message. She can now change C in order to authenticate another tag than Ti,j .
Because the protocol is stateless, C̃, the modified C, will be accepted (provided it is valid), and
the corresponding tag will be identified. Two situations may occur for an adversary:

1. She wants to let a tag that is compromised be authenticated instead of Ti,j .

2. She wants to let a tag that is partially compromised be authenticated.

In case 1, the adversary can replace the authenticating tag with another compromised tag, say, Ta,b,
by simply replacing C by C̃ = PRFKa

1
(r, r′)⊕PRFKb

2
(r, r′). This problem was already highlighted

in [63].
In case 2, the adversary must at least know one of the keys of Ti,j to succeed (i.e. Ti,j must

be partially compromised). Suppose that the adversary knows Ki
1 but not Kj

2 , and that she also
knows another key Kk

1 . She can then replace C by C̃ = PRFKk
1
(r, r′)⊕PRFKj

2
(r, r′) by computing

C̃ = C ⊕ PRFKi
1
(r, r′)⊕ PRFKk

1
(r, r′), and by doing so, authenticate Tk,j , which is only partially

compromised. Of course, she does not know the keys of the victim in advance, so the attack is
probabilistic. She can thus iterate on all the tags for which she knows the secrets partially. A
side-effect of this is that when R accepts the authentication, the adversary gets PRFKj

2
(r, r′),

which can lead to a traceability attack.
In [63], the authors state that, when compromising t tags, the number of indirectly compromised

tags is t2 − t. This is actually rather optimistic (from an attacker viewpoint) and only accurate
when t is small. A more precise result is provided in Lemma 2. An example is presented in
Figure 3.6.

Lemma 2. Let T denote the number of directly compromised tags and S the total number of
compromised tags (both directly and indirectly), that is the ones for which both keys are known.
Then, the expected number of compromised tags given that t tags were directly compromised is:

E [S|T = t] = N

[
1−

2
(
N−n
t

)
−
(
N−2n+1

t

)(
N
t

)]
,

where n =
√
N . A similar result applies for the authentication extension, and S here denotes the

number of compromised cells:

E [S|T = t] = n2

[
1−

2
(
N−N/n

t

)
−
(
N−2N/n+N/n2

t

)(
N
t

)]
,

3.3. Protocols with Shared Secrets 53

with n = Nα.

Proof. Consider the plain protocol first. We have E [# indirectly compr. tags] = E [# compr. tags]−
t, where a compromised tag refers to a tag that is either directly or indirectly compromised. Ri
denotes the following random variable:

Ri =

{
1 if at least one compromised tag has Ki

1

0 otherwise.

Likewise,

Ci =

{
1 if at least one compromised tag has Ki

2

0 otherwise.

Note that the total number of compromised tags can be expressed as:

S =

(
n∑
i=1

Ri

)(
n∑
i=1

Ci

)
.

Indeed, this number corresponds to the number of tags (“cells” in the grid) for which K1 and K2

are known. Therefore,

E [S] = E

 n∑
i=1

n∑
j=1

RiCj

 =

n∑
i=1

n∑
j=1

E [RiCj]

=

n∑
i=1

n∑
j=1

Pr(Ri = 1 ∧ Cj = 1). (3.1)

Note that Ri and Cj are not independent. However,

Pr(Ri = 1 ∧ Cj = 1) = 1− Pr(Ri = 0 ∨ Cj = 0)

= 1− [Pr(Ri = 0) + Pr(Cj = 0)− Pr(Ri = 0 ∧ Cj = 0)]. (3.2)

Pr(Ri = 0) is the probability that, after compromising t tags, none belong to the row i. That is,
Pr(Ri = 0) =

(
N−n
t

)
/
(
N
t

)
. Moreover, ∀ 1 ≤ i, j ≤ n we have Pr(Cj = 0) = Pr(Ri = 0) since the

grid is symmetric. Likewise, Pr(Ri = 0 ∧ Cj = 0) =
(
N−2n+1

t

)
/
(
N
t

)
. Using (3.2) and the above

in (3.1) gives:

E [S|T = t] =

n∑
i=1

n∑
j=1

Pr(Ri = 1 ∧ Cj = 1|T = t)

=

n∑
i=1

n∑
j=1

[
1− 2

(
N−n
t

)(
N
t

) +

(
N−2n+1

t

)(
N
t

)]

= N

[
1−

2
(
N−n
t

)
−
(
N−2n+1

t

)(
N
t

)]
.

The demonstration for the authentication extension is very similar to the above, except that
cells contain N1−2α tags.

This result allows to quantify the probability of success of our attacks and confirms their
feasibility.

Traceability Attack on Authentication Extension

Recall that in the authentication extension, the grid can now be seen as Nα×Nα “cells” of N1−2α

tags secrets. No two tags share the K3 key, but each 〈K1,K2〉 is shared among N1−2α tags. As
the authors mentioned, this leads to a traceability issue because if an attacker knows a 〈Ki

1,K
j
2〉

54 Chapter 3. Complexity and Privacy

pair, she can track Ti,j with probability 1/N1−2α by using the fact that there are N1−2α tags with
the same pair.

In this section, a more dangerous issue is given. It is assumed that the adversary has obtained
the keys related to s cells. For the sake of simplicity, it is assumed that the compromised tags are
put back into circulation. Since this number is supposedly small compared to N , the number of
tags in the system, this is a reasonable assumption.

Let X denote the set of tags which secrets belong to one of the s cells known by the adversary.
In a Juels and Weis game [113], when two tags T0 and T1 are presented to her, the adversary is
asked to answer which of these tags is her target. Several cases occur:

• E1 = T0 ∈ X ∧ T1 6∈ X

• E2 = T0 6∈ X ∧ T1 ∈ X

• E3 = T0 ∈ X ∧ T1 ∈ X ∧ 〈K1,K2〉T0 6= 〈K1,K2〉T1

• E4 = T0 ∈ X ∧ T1 ∈ X ∧ 〈K1,K2〉T0 = 〈K1,K2〉T1

• E5 = T0 6∈ X ∧ T1 6∈ X

The obvious strategy for an adversary is, after choosing r, to query T0 and T1, and compare their
answer with what would have answered the tags of which she knows the keys. If there is a match,
then she identifies the tag and deduces its keys. In E1 and E2, only either of T0 and T1 is identified,
and the adversary is able to determine correctly whether it is her target or not in all cases. If both
tags are identified, the adversary succeeds only when they have a different key-pair (E3, but not
E4). Finally, if neither is identified, the adversary is unable to tell her target apart in any better
way than at random. Therefore, in the first three events, the adversary succeeds in the attack, and
in the other two she fails. It is clear that the first two cases are symmetric:

Pr(E1) = Pr(E2) =
NM −M2

N2
, (3.3)

where M = sN1−2α, that is the number of tags for which the adversary knows the secrets. Likewise,

Pr(E3) =
M2

N2
(1− 1/s). (3.4)

The overall probability that the adversary succeeds after corrupting s cells is thus

Pr(E1 ∨ E2 ∨ E3) = Pr(E1) + Pr(E2) + Pr(E3)

= 2
M

N
− M2

N2
(1 + 1/s),

because these events are mutually exclusive. This probability can become much higher than the
one presented in [63]. For instance, in a system with N = 106 tags, configured with α = 1

3 (as
suggested by the authors), an adversary having compromised t = 300 tags has roughly s = 8750
compromised cells (Lemma 2), and a probability of tracing a tag of roughly 0.984.

Discussion

Two important attacks on CHT were introduced. The first one regards the plain protocol and
allows an adversary to change the tag being authenticated. The targeted tag need not be completely
indirectly compromised, as a probabilistic approach can be carried out. The second attack regards
the authentication extension, and allows an adversary to trace a tag.

The second attack is similar to the one [25] against MW. Although quite different technically,
MW and CHT have in common the fact that tags share parts of their secrets. This property yields
efficient tag identification, but tag compromising is dangerous since it jeopardizes the privacy of the
whole system. Figure 3.7 is a comparison of the probability of tracing in CHT and MW protocols
(with different values for the branching factor), in a system with N = 106 tags. Figure 3.8 is a
comparison of their efficiency as a function of the number of tags in the system.

3.3. Protocols with Shared Secrets 55

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

CheonHT

MW (δ = 2)

MW (δ = 100)

MW (δ = 500)

MW (δ = 1000)

Figure 3.7: Probability of tracing a tag in CHT and in MW with respect to the number of com-
promised tags.

0 200000 400000 600000 800000 10000000

500

1000

1500

2000

CheonHT
MW (δ=2)
MW (δ=100)
MW (δ=500)
MW (δ=1000)

Figure 3.8: Average number of PRF execution on the reader side to authenticate a tag in CHT
and MW, as a function of the number of tags in the system.

3.3.3 Alomair, Clark, Cuellar, and Poovendran’s Protocol

Description

The protocol introduced by Alomair, Clark, Cuellar, and Poovendran in [4] provides Constant-
Time Identification (CTI). This protocol is classified here in the shared-secret family in the sense
that the system manages a pool of shared secret pseudonyms such that each tag is paired with
a pseudonym for a while, and is reassigned to another one each time it is legitimately authen-
ticated. Consequently, different tags may use the same pseudonym, at different times. Using
re-usable pseudonyms was first introduced by Juels in [110] where each tag manages its own pool
of pseudonyms and uses linear combination of them once all the pseudonyms have been used.
However, tags do not exchange their pseudonym in [110], contrarily to [4].

During the set up phase, each of the NT tags is assigned with a secret key k, a cycling counter
c that is incremented modulo C each time the tag is queried (initially c = 0), and an initial
pseudonym ψ drawn from a pool E of size N > NT . A sketch of CTI is depicted in Figure 3.9 and
we refer the reader to [4] for a detailed description.

The key-point of CTI is that each time a tag is legitimately authenticated, it releases its current
pseudonym in order to get a new one from the reader randomly drawn from E ; it also updates
its secret key k with the value h(k) where h is a hash function. CTI provides constant time

56 Chapter 3. Complexity and Privacy

identification but this property is obtained after pre-calculation of all the NC possible answers
from the tags. In that sense, CTI is not far from OSK [149], a protocol based on hash-chains that
is analyzed in Section 3.4.1. The table of pairs (pseudonym, counter) in [4] is in some way similar
to the table of pairs (identifier, counter) in [149]. A few differences can nevertheless be raised:
(1) a denial of Service (DoS) occurs with OSK after M illegitimate authentications, while CTI is
DoS-resistant; (2) OSK with authentication requires to compute between 3 (if there is no attack)
and 2m+ 1 hash calculations per identification, while CTI requires 4 hash calculations in any case;
(3) CTI needs a larger memory than OSK and provides a lower privacy-resistance, as explained
below. Note that both of them are resistant to timing attacks as stated in [22].

Intra-legitimate authentication Attack

The main drawback of CTI, already mentioned in [4] is the cycling counter because a tag can be
easily tracked between two legitimate authentications if an adversary is able to query it C times.
Indeed, recording each of the answers h(0, ψ, c, k, r) (0 ≤ c < C), the adversary can definitely
track the tag till the next legitimate authentication. This attack is especially meaningful when
considering tags that are not frequently used, e.g., passports or tickets used for ephemeral event
and kept by the customer as souvenir. . . Increasing C makes the attack harder, but this also
significantly increases the memory consumption (and the reader’s workload during the setup).
This attack makes CTI not traceability-resistant in the Juels and Weis model [113].

Inter-legitimate authentication Attack

The pseudonyms used in the system are originally secret and can only be revealed in case of tam-
pering attack. In such a case the current pseudonym of the compromised tag is revealed (and
the secret key as well) but the adversary can also obtain additional pseudonyms by impersonat-
ing the tag in the system. This attack is mentioned in [4] but its analysis is refined here. Its
impact should not be underestimated. First of all, the number of pseudonyms obtained by the
adversary after tampering with only one tag is [4] N (1− (1− 1/N)

q
), where q is the number of

protocol executions4. Let Eq ⊂ E the set of pseudonyms so revealed, the adversary can track a tag
(even after legitimate authentications) as follows: in the learning phase as defined in the model of
Juels and Weis [113], the adversary queries the targeted tag Ttarget once and so obtains a value
h(ψtarget, ctarget). Trying an exhaustive search on all values in Eq and all counter values, she obtains
ctarget if and only if ψtarget ∈ Eq, which occurs with probability |Eq|/N . In the challenge phase,
given T0 and T1, the adversary must decide which one is Ttarget. To do so, she applies the same
technique and so possibly obtains c0 and c1. From c0 and c1, she could be able to decide which
of T0 and T1 is Ttarget. For example, if the adversary knows that her target is rather new while
ci (i = 0 or 1) is large, it may be safe to conclude that Ttarget is T1−i. To illustrate this attack,
consider the following practical parameters: N = 2NT , NT = 106, C = 103, and q = 103. The
probability to track a given tag is therefore 0.1%, assuming that one of the two tags only is rather
new.

4Note that [4] suggests to limit the number of requests to a reader per tag, but bounding q to a value less than
1000 does not seem realistic in most applications as the adversary can avoid being detected, using a slow attack.

R Ti
r−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

h(ψ,c), r̃=h(0,ψ,c,k,r)←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
h(1,ψ,k,r̃), h(2,ψ,k,r̃)⊕ψ′, h(3,ψ′,k,r̃)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Figure 3.9: The CTI Protocol.

3.4. Protocols Based on Hash-Chains 57

3.3.4 Discussion

While protocols using shared secrets all aim mainly to decrease the identification time on the reader,
they all have issues when facing adversaries capable of compromising tags. One could argue that
a protocol using only one “master key” is the extreme case in that direction: it has constant-time
identification, but no privacy/security as soon as one tag is compromised.

All of the proposals analyzed in this section have important problems, mostly due to the fact
that compromising one tag reveals information on other tags too. However, no element shows that
sharing secrets between tags is a definitely flawed way of reducing identification time. It remains
an open question whether it is possible to design such a protocol without any loss of security or
privacy.

3.4 Protocols Based on Hash-Chains

An early family of sub-linear protocols uses hash-chains to update the internal state of the tags.
In this section, the protocol of Ohkubo, Suzuki, and Kinoshita’s (OSK) [149] is described along
with two of its improvements, OSK/AO [25, 30] and OSK/BF [145]. Another protocol based on
hash-chains, O-RAP [58], is then discussed.

A traceability attack is pointed out on the mutual authentication extension of OSK/AO proto-
col, and a solution to overcome this problem is suggested. New weaknesses of O-RAP and OSK/BF
are also given.

3.4.1 OSK Protocol

OSK [149] is a well-known synchronized identification protocol5, and was one of the earliest of its
kind. However, beside its traceability issue, and although the protocol is very efficient when all
tags are synchronized, the worst-case complexity of the search makes the protocol unsuitable for
most practical systems.

OSK works as follows. Each tag Ti of the system is initialized with a randomly chosen secret s0
i .

When queried by a reader, a tag answers with the hash of its current secret, that is σ = G(sji), and

immediately updates it using another hash function: sj+1
i = H(sji). When receiving an answer, the

reader looks in its database for an initial secret s0
i that leads to σ, in other words, it checks whether

there exists i and j such that G(Hj(s0
i)) = σ. To do that, from each of the N initial secrets s0

i , the
reader computes the hash chains as shown in Figure 4.2 until it finds a value matching σ, or until
it reaches a given maximum limit L on the chain length. An overview of the protocol is shown in
Figure 3.11.

The value σ = G(sji) does not allow an eavesdropper to learn the identity of Ti. However, since
a tag updates its secret regardless of the success of the identification, a rogue reader initiating
the protocol with Ti will make it update its secret. An adversary initiating lots of instances of
the protocol with Ti will perform a desynchronization denial-of-service attack. Indeed, the reader
would then need to compute a lot of hashes to identify Ti. To prevent this, the length of the hash
chains have to be bounded, i.e., the reader stops its search after L hashes per tag. This protection
has the following drawback: an adversary skimming a tag L times makes it unable to be identified
by the system, and therefore traceable (see the model of privacy of Juels and Weis [113] for details).

Another isue is the timing attacks [22]. Timing attacks are side-channel privacy attacks, and
their objective is to distinguish two tags based on the amount of time taken during authentication.
In the case of OSK, it is possible for an adversary to distinguish two tags if one takes significantly
longer to be authenticated than the other one (for instance if the former has previously been
skimmed many times by the adversary).

The authors later introduced in [150] some ideas to improve the efficiency of the search at the
cost of lowering privacy. They are not considered here since these modifications purposely reduce
the privacy of the protocol. Instead, variants that make the search more efficient without hurting
the privacy are presented thereafter.

5PFP, introduced by Berbain, Billet, Etrog, and Gilbert in [41] is strongly inspired by OSK. The building blocks
in PFP are different than the ones in OSK, and they are used in a different way, but the global scheme is the same,
and the security and privacy properties of the two protocols are equivalent. Hence, PFP is not detailed further.

58 Chapter 3. Complexity and Privacy

s01 −→ r01 r11 r21 . . . rL−1
1 rL1

. . . −→

s0i −→ rji = G(Hj(s0i)) . . . rLi

. . . −→

s0N −→ r0N r1N r2N . . . rL−1
N rLN

Figure 3.10: Chains of hashes in the OSK protocol.

R Ti
request−−−−−−−−−−−−−−→

find i and j so that
σ=G(s

j
i)←−−−−−−−−−−−−−− sj+1

i ← H(sji)
G(Hj(s0i)) = σ

Figure 3.11: The OSK protocol.

3.4.2 OSK/AO Protocol

Avoine and Oechslin propose in [30] to apply Hellman’s time-memory trade-offs [96] to the search
procedure of OSK, which has two main implications. First, the complexity of the search procedure
varies from O(1) to O(NL), depending on the amount of memory one is willing to devote to the
time-memory trade-off6. Moreover, the search is intrinsically randomized, which prevents timing
attacks [22].

Avoine, Dysli, and Oechslin also suggest in [25] a variant of OSK that ensures authentication
as OSK is originally designed to provide private identification only (i.e., it does not resist to replay
attacks). To do so, they suggest using nonces: instead of simply sending a request message, the
reader sends a nonce r, and the tag answers G(sji ⊕ r) along with G(sji).

Finally, Avoine proposes in [10] an extended version of OSK that provides reader authentication
to the tag: the reader sends a last message G(sj+1

i ⊕ w), where w is a public static value.

However, a traceability issue exists in this extension: an adversary can eavesdrop a legitimate
authentication between R and Ti, and record the last message (i.e. G(sj+1

i ⊕ w)); after a while,
she sends w as a nonce to a tag, and if the tag answers with the previously recorded value, this
tag is almost certainly Ti, and it has not been queried since then.

Preventing this attack can be done easily using a third hash function for the last message. In
practice, a single hash function is implemented and an additional input enables to derive it into
several functions, for instance, by concatenating 0, 1, or 2 to the value to hash. Figure 3.12 shows
our modification to the mutual authentication extension of OSK/AO.

6The authors mention that, for instance, a complexity of O((NL)2/3) can be reached with a memory of size
O((NL)2/3).

R Ti
r−−−−−−−−−−−−−−→

search for i
H1(s

j
i⊕r), H1(s

j
i)←−−−−−−−−−−−−−− sj+1

i ← H0(sji)

sj+1
i ← H0(sji)

H2(s
j+1
i)−−−−−−−−−−−−−−→

Figure 3.12: Patched OSK with replay-attack protection and reader authentication.

3.4. Protocols Based on Hash-Chains 59

3.4.3 OSK/BF Protocol

Description

Nohara, Inoue and Yasuura propose in [145] another innovative time-memory trade-off for OSK,
which is labeled OSK/BF in the following. They use Bloom Filters [49], a space-efficient data
structure, to store all the hash-chains of each tag. When identifying a tag, the reader first queries
all the Bloom Filters for the received σ, and then computes the whole hash-chain of each candidate
to confirm the identity of the tag. Once identified, the corresponding Bloom Filter is re-computed
for the next hash-chain. On that point OSK/BF contrasts with OSK/AO, in which updates of the
database occur less frequently but are more costly.

As presented in [145], OSK/BF is an identification protocol and does not resist impersonation.
However, it could be easily adapted to an authentication scheme using the same construction as
the one in [25].

In [144], Nohara and Inoue present an analogous protocol using a similar architecture but a
different data structure, d-left Hash Tables [56], an extension of Bloom Filters. The resulting
protocol has, according to the authors, a better update efficiency than OSK/BF, but it turns out
to be the same. Furthermore, the identification time seems to be very comparable to that of [145],
and it has the further disadvantage of being less parameterizable.

Traceability Timing Attacks

Discussed below are two potential traceability weaknesses of OSK/BF due to timing analysis, not
mentioned in [145]. The first one uses the fact that the search is linear in [145], meaning that T1

will on average be authenticated much faster than TN , for instance. The reason is that when a
tag has a record (and a corresponding Bloom Filter) at the start of the table, the reader has to go
through few false positives invalidations before actually confirming the identity of the tag, whereas
when it has a record near the end of the table, it might go through several of them. The second
attack uses the fact that it is possible to trace a tag being desynchronized more than L times by
observing whether the identification time remains constant (it should be constant when the reader
refuses identification, but not when the Bloom Filters get updated). Countermeasures might exist
against these attacks (simply shuffling the search seems to be a solution to the first one), but in
any case, OSK/BF is more fragile regarding timing analysis than OSK/AO, and avoiding them
without artificially waiting for O(N) cryptographic operations does not seem to be trivial.

Comparison with OSK/AO

As in OSK/AO, the time of identification can be lowered by increasing the memory of the reader.
In OSK/BF, this is done by tuning the false positive rate of the Bloom Filters. Doing so results
in more time needed to compute the hash-chains in order to infirm false positives, increasing
identification time, but also in a decrease of the size of Bloom Filters and thus of memory. In
OSK/AO, this is done by tuning the size of the Rainbow table, and also determining the amount
of intermediate columns stored.

A slight advantage of OSK/BF over OSK/AO is that, despite it also has a probabilistic nature,
the successful identification rate is of 100% while being close to 100% (fixed by parameters) in
OSK/AO. However, the two protocols have the same disadvantage regarding desynchronization,
i.e., a tag desynchronized more than L times is lost.

Regarding the trade-off efficiency, OSK/AO seems slightly more efficient than OSK/BF, al-
though comparable. Numbers from [25] were used, i.e. a system of 220 tags and chains of 27

hashes, to provide a comparison between the two protocols, which is depicted in Figure 3.13. The
saturation in OSK/BF after some point comes from the fact that the update part takes 2L cryp-
tographic operations, no matter how much memory is dedicated to the trade-off. Note also that
the random hash calculations is not taken into account. This could, depending on the functions
used, increase the identification time significantly.

60 Chapter 3. Complexity and Privacy

16Mb 64Mb 256Mb 1Gb 4Gb 16Gb
100

105

1010

OSK/AO

OSK/BF

OSK/d-left

Figure 3.13: Average number of cryptographic hashes during identification for variants of OSK.

3.4.4 O-RAP Protocol

Description

O-RAP, which stands for Optimistic RFID Authentication Protocol, has been originally introduced
in [57] by Burmester, van Le and de Medeiros. Its former name was O-TRAP (see Table 3.1) and a
slightly modified version is re-presented in [58]. The authors call the protocol “optimistic” for the
reason that the security overhead is minimal when the system is not under attack. The steps of
O-RAP are shown in Figure 3.14. The reader contains a hash table indexed by rtag with entries Ki

(the static keys of the tags). When starting an authentication, the reader sends a random number
rsys to the tag. The tag computes the hash of rsys and rtag with its key Ki and gets r and h
output values. Then the tag sends h and rtag values to the reader. The tag also updates rtag with
r value. The system searches rtag to find the corresponding Ki in the database, and if found, it
checks the correctness of the hash. If rtag is not found, then it exhaustively searches among all
the keys. If found, it validates the tag and updates rtag with r value. This allows the reader to
re-synchronize the tag automatically.

R Ti
rsys−−−−−−−−−−−−−−→

Lookup with rtag
rtag, h←−−−−−−−−−−−−−− r||h = HKi(rsys, rtag)

if not found, search Ki rtag ← r
s.t. r||h = HKi(rsys, rtag)

Figure 3.14: O-RAP Protocol.

Attack by Ouafi and Phan

In [151], Ouafi and Phan propose a traceability attack on O-RAP based on the desynchronization
of a tag. The idea is that an adversary can make enough queries to a tag in order to make it
update its secret rtag a lot of times to the point that a legitimate reader is unable to authenticate
it anymore.

However, this attack seems erroneous. Indeed, the tag always sends rtag in its answer so the
resynchronization is trivial, and because Ki does not change, the authentication is always correct,
regardless of how many queries the attacker has performed.

Forward-Privacy Issue and O-FRAP

Although the authors raise the problem in [57], no particular attention has been drawn on the
forward-privacy of O-RAP. An attacker compromising Ti at some point can recover rtag and Ki.
This allows him to trace Ti in the past, because rtag is sent in the clear and is updated by r. This
update can be computed by the adversary, since Ki does not change.

3.5. Counter-Based Protocols 61

The authors propose in [182] the O-FRAP protocol, adding the forward-privacy to O-RAP.
This comes at the cost of an extra pass in order to authenticate the reader to the tag, as well as a
memory overhead for storing previous keys. However, the protocol is not forward-private strictly
speaking. Indeed, suppose than an adversary queries the tag some times without answering to it.
Afterwards, she compromises the tag, and if the tag has not been authenticated since, she will be
able to trace it in the past. This is the same idea as protocols using pseudonyms for identification,
described in Section 3.2.

Also note that in [58] and [182], the authors propose key exchange extensions to O-RAP and
O-FRAP respectively, namely O-RAKE and O-FRAKE. Their goal is to provide features outside
of authentication, and are not analyzed further.

Traceability Timing Attack

The fact that O-RAP behaves differently according to synchronization makes it work very efficiently
in “normal” situations, but allows an adversary to carry out the following timing attack. The
adversary first sends a random number to a tag and ignores its answer. The tag will thus be
desynchronized with the system, and the next legitimate reader trying to authenticate it will take
much more time, because in that case, the search is linear. The adversary can easily notice that
by measuring time differences, and can thus trace the tag she desynchronized.

A possible countermeasure is to artificially add time for the search in a normal situation, but
this would be equivalent to a protocol with linear complexity.

3.4.5 Discussion

OSK and O-RAP are two convincing proposals with a simple design and interesting properties.
As pointed by Avoine and Oechslin in [30] and by Nohara et al. in [145], OSK can be easily

accommodated to using time-memory trade-offs, which make the identification procedure efficient.
It also provides forward-privacy to the tags. However, the synchronization issue present in OSK
and its variants, although mitigable, remains significant.

In that regard, the O-RAP protocol has no such synchronization issue because tags automati-
cally “re-synchronize” with each authentication attempt. It is also the reason why the identification
procedure is constant-time in normal situations. However, it is very easy to make the next search
linear by querying the tag once. This also leads to traceability issues using reader-side timing
analysis. Additionally, it provides no forward-privacy.

Despite their respective weaknesses, these protocols are nonetheless probably the most solid
solutions analyzed here that are applicable to RFID tags (with symmetric key capabilities).

3.5 Counter-Based Protocols

The counter-based protocols all share the same characteristics: they use a strictly increasing num-
ber7 and maintain a periodically updated hash table for each counter. The idea is to pre-compute
the table at each counter tick, in order to reduce the online search to a constant time on the
server-side.

This section examines a family of counter-based protocols, namely RIP, RIP+, RAP, and YA-
TRAP* (see Table 3.1 for the names given in different papers). A traceability attack is given on
the most advanced protocol proposed in [179], namely YA-TRAP*, based on timing analysis.

3.5.1 YA-TRAP Family

A family of tag identification and authentication protocols that use strictly increasing counters is
proposed in the papers [57, 58, 178, 179]. The first protocol, RIP, stands for RFID Identification
Protocol. It is followed by authentication protocols called RIP+, YA-TRAP*, and a variant of
YA-TRAP* with forward-privacy (called here YA-TRAP*&fwd).

7In some previous papers [57, 58, 178, 179] the name “timestamp” is used to denote a strictly increasing number.
Since the tags do not have any clock and this number is not a cryptographic timestamp, the more generic term
counter is preferred here.

62 Chapter 3. Complexity and Privacy

Description

The RIP [58] protocol, which is the simplest and earliest proposal in the family, is described below.
Each tag Ti is initialized with a starting counter T0 and a maximum counter value Tmax, as well

as with a unique secret key Ki. When initiating an authentication, the reader sends its current
counter Tr. The tag checks that Tr is less than Tmax and that the received counter is bigger than
the one it currently stores, Tt, which it received during the last successful identification. If these
conditions hold, it stores the new counter and computes and sends the hash of Tr with its key Ki.
Otherwise, the tag sends a random number to prevent an adversary from drawing any conclusion.
The authors added that to avoid timing attacks against a tag at this point, the nonce generation
must be designed to take approximately the same time as the hash computation.

As stated above, every now and then, the server increases the value of the counter, and re-
computes the table accordingly. This allows for a constant time identification online, but takes
time offline.

The authors identified several drawbacks in this protocol. First, it is vulnerable to a trivial
DoS attack: the adversary can temporarily or permanently incapacitate a tag by sending a future
counter. Although the authors point out that DoS resistance is not the main goal of this protocol,
the attack is very easy to perform and very hard to recover from. Second, it is implicitly assumed
that a tag is never identified more than once between two consecutive counter ticks. A short time
interval (e.g., a second) between two counter updates makes this assumption realistic, but it causes
heavy computational burden for the server. RIP is also vulnerable to replay attacks: an adversary
can send a counter slightly ahead to a tag and wait until this counter is sent by the server. She can
repeat this attack and thus impersonate its victim for a long time without the original tag being
present. RIP is depicted in Figure 3.15.

R Ti
Tr−−−−−−−−−−−−−−→ if (Tr ≤ Tt) or (Tr > Tmax),

then hid random
else hid = HKi(Tr) and Tt ← Tr

Lookup hid
hid←−−−−−−−−−−−−−−

Figure 3.15: RIP protocol.

In RIP+, the protocol is modified in order to provide authentication. The reader sends a
random nonce Rr along with the counter. The tag chooses its random nonce Rt and computes a
hash for authentication hauth = HKi(Rt, Rr). The reader first identifies the tag, then checks the
correctness of the hash.

Note that although this prevents the replay attack, the two aforementioned issues are still
present.

R Ti
Tr, Rr, ETr−−−−−−−−−−→ ν = bTr/INT c − bTt/INT c

if (Tr ≤ Tt) or (Tr > Tmax)
or Hν(ETr) 6= ETt,

then hid random and hauth random
else Tt ← Tr, ETt ← ETr, hid = HKi(Tt),

hauth = HKi(Rt, Rr)

Lookup hid
hid, Rt, hauth←−−−−−−−−−−

check hauth
?
= HKi(Rt, Rr)

Figure 3.16: YA-TRAP* protocol.

In order to cope with DoS attacks, Tsudik proposed YA-TRAP*, which is illustrated in Fig-
ure 3.16. DoS resistance is achieved by using a system-wide hash-chain. At setup, the system

3.6. Comparison 63

initializes a long Lamport-chain [119] of hashes, and sets the value ETt of all tags to the last hash
computed. Every INT counter ticks, a value of the hash-chain is popped, and the next one is used
as ETr. During an authentication session, a tag receiving Tr, Rr and ETr will compute the number
of intervals skipped since the last authentication (i.e. ν = bTr/INT c− bTt/INT c), and will verify
that the hash ETr is the corresponding predecessor of ETt by checking whether Hν(ETr) = ETt

8.
Note that DoS resistance in YA-TRAP* is limited by the magnitude of INT value. When ETr

is sent by the system it is no longer secret. Therefore, the adversary can still incapacitate tags
up to the duration of INT by querying the tag with the maximum possible Tr value within the
current epoch.

All the aforementioned protocols do not provide forward-privacy because the long-term key of
the tags are static. Tsudik introduces an additional operation for updating the keys of the tags.
In this extension, which is called YA-TRAP*&fwd hereafter, a tag takes ν times hash of the key
for each authentication namely Kν

i = Hν(Ki). With this modification, the tag’s key is changed
once per INT interval, and this brings ν additional hash operations on the tag-side.

Attacks on YA-TRAP*

In YA-TRAP*, the tag computes ν times the hash function depending on the difference between
the Tt and Tr values. If the received Tr value is within the same interval as Tt, the tag computes
no hash function for the interval check. If the difference between these two counters is large, the
tag has to compute many hash functions. This leads to two potential attacks.

The first one is a traceability attack. It is simply that if a tag has not been authenticated in a
long time, it is traceable due to the amount of time it spends computing the hashes. Distinction
is thus possible between two tags in some situations.

The second one is a DoS. If an adversary sends a big Tr and a random ETr to a tag, the latter
needs to compute many hashes, even if it will eventually discard the request since the ETr is not
correct. Depending on INT , this can make the authentication impossible due to the amount of
time needed by the tag to complete its calculation.

The parameter INT must be carefully chosen: the bigger, the less it mitigates the DoS already
present in RIP+; and the smaller, the more computation on tags, leading to the two problems
described above.

Other Protocols

Another counter-based protocol called YA-TRAP+ is proposed by Burmester et al. in 2006 [57, 62].
A slightly modified version of it is presented in [58] with a new name “RAP.” This protocol is very
similar to O-RAP in terms of security properties. In [58] it is also stated that “O-RAP is simpler
than RAP, at the cost of not supporting kill-keys. The security for O-RAP is similar to that
of RAP.” In particular, the two issues mentioned in Section 3.4.4 are also applicable to RAP.
Additionally, in O-RAP a desynchronized tag is resynchronized automatically after each legitimate
authentication, however RAP does not support automatic resynchronization. For these reasons,
only O-RAP is analyzed among those two similar protocols.

3.5.2 Discussion

Counter-based protocols, embodied by the YA-TRAP family, provide an interesting approach to
constant-time identification. However, since the counter must be provided in the clear and, as
such, is not authenticated, DoS attacks are extremely easy to accomplish and hard to prevent.
YA-TRAP* attempts to alleviate this problem but at the same time introduces other weaknesses
as indicated in Section 3.5.1.

3.6 Comparison

In this section, the most of the protocols analyzed in this chapter are analyzed and compared on
several criteria, as shown in Table 3.2. Evaluated here are the schemes that provide sub-linear

8Note that in [179], the authors mistakenly stated this check was Hν(ETt) = ETr.

64 Chapter 3. Complexity and Privacy

T
ab

le
3.

2:
C

om
p
ar

is
on

of
th

e
p

ro
to

co
ls

an
a
ly

ze
d

in
th

is
ch

a
p

te
r.

L
et

te
rs

in
b

ra
ck

et
s

li
n

k
to

co
m

m
en

ts
d

es
cr

ib
ed

b
el

ow
.

C
la
s
s

S
h
a
r
e
d

s
e
c
r
e
t
s

H
a
s
h
-c
h
a
in

s
C
o
u
n
t
e
r
-b

a
s
e
d

P
r
o
t
o
c
o
l

C
H

T
p
la

in
C

H
T

w
it

h
a
u
th

C
T

I
O

S
K

O
S
K

/
A

O
w

it
h

A
u
th

O
S
K

/
B

F
w

it
h

A
u
th

O
-R

A
P

O
-F

R
A

P
R

IP
+

Y
A

-T
R

A
P

*
Y

A
-T

R
A

P
*

&
fw

d

M
a
in

r
e
fe
r
e
n
c
e

[6
3
]

[6
3
]

[4
]

[1
4
9
]

[1
0
,

2
5
,

3
0
]

[1
4
5
]

[5
7
]

[1
8
2
]

[1
7
9
]

[1
7
9
]

[1
7
9
]

Y
e
a
r

o
f

p
u
b
li
c
a
-

t
io

n
2
0
0
9

2
0
0
9

2
0
1
0

2
0
0
3

2
0
0
5

2
0
0
8

2
0
0
6

2
0
0
7

2
0
0
7

2
0
0
7

2
0
0
7

Id
e
n
ti

fi
c
a
ti

o
n
/

A
u
-

th
e
n
ti

c
a
ti

o
n

a
u
th

.[
A
]

a
u
th

.
a
u
th

.
id

.
a
u
th

.
a
u
th

.
a
u
th

.
a
u
th

.
a
u
th

.
a
u
th

.
a
u
th

.

O
ff

-l
in

e
C

o
m

p
u
ta

-

ti
o
n

C
o
m

p
le

x
it

y
[B

]
0

0
O

(N
C

)[
C
]

2
N

[C
]

N
L

2

2
([

2
5
])

[D
]

2
N
L

[C
]

0
0

N
/
c
o
u
n
te

r

u
p

d
a
te

[E
]

N
/
c
o
u
n
te

r

u
p

d
a
te

[E
]
+

L
a
m

p
o
rt

C
h
a
in

N
/
c
o
u
n
te

r
a
n
d

k
e
y

u
p

d
a
te

[E
]

+
L

a
m

p
o
rt

C
h
a
in

N
o
rm

a
l

c
a
se

o
n
li
n
e

c
o
m

p
le

x
it

y
O

(√
N

)
O

(N
a
)

4
2

O
((
N
L

)2
/
3
)[

F
]
L

(ε
N

+
3
)

o
n

a
v
e
ra

g
e

1
2

0
[E

]
+

1
[G

]
0
[E

]
+

1
[G

]
0
[E

]
+

1
[G

]

D
e
sy

n
ch

ro
n
iz

e
d

c
a
se

o
n
li

n
e

c
o
m

-
p
le

x
it

y

N
/
A

N
/
A

N
/
A

lo
w

e
r

th
a
n

2
N

(L
−

1
)[

H
]

O
((
N
L

)2
/
3
)[

F
]
L

(ε
N

+
3
)

o
n

a
v
e
ra

g
e

O
(N

)
O

(N
)

o
u
t

o
f

o
r-

d
e
r

a
ft

e
r

d
e
sy

n
c
.[
H
]

o
u
t

o
f

o
r-

d
e
r

a
ft

e
r

d
e
sy

n
c
.[
I]

o
u
t

o
f

o
r-

d
e
r

a
ft

e
r

d
e
sy

n
c
.[
I]

M
e
m

o
ry

C
o
m

p
le

x
-

it
y

2
√
N

2
N
a

+
N

O
(N

)[
J
]

N
O

((
N
L

)2
/
3
)[

F
]
N
L

lo
g
ε

−
lo

g
2

2
2
N

3
N

N
[E

]
N

[E
]

N
[E

]

T
a
g

C
o
m

p
u
ta

ti
o
n

2
P

R
F

s
+

1
N

o
n
c
e

3
P

R
F

s
+

1
N

o
n
c
e

5
h
a
sh

e
s

2
h
a
sh

e
s

3
h
a
sh

e
s

3
h
a
sh

e
s

2
h
a
sh

e
s

4
h
a
sh

e
s

2
h
a
sh

e
s

+
1

N
o
n
c
e

ν
+

2
h
a
sh

e
s

+
1

N
o
n
c
e

2
ν

+
2

h
a
sh

e
s

+
1

N
o
n
c
e

T
a
g

R
e
so

u
rc

e
s

P
R

F
,

P
R

N
G

P
R

F
,

P
R

N
G

P
R

N
G

,
H

a
sh

fu
n
c
.

H
a
sh

fu
n
c
.

H
a
sh

fu
n
c
.

H
a
sh

fu
n
c
.

H
a
sh

fu
n
c
.

H
a
sh

fu
n
c
.

P
R

N
G

,
H

a
sh

fu
n
c
.

P
R

N
G

,
H

a
sh

fu
n
c
.

P
R

N
G

,
H

a
sh

fu
n
c
.

P
ri

v
a
c
y

n
o

n
o
F

n
o
F

y
e
s[

K
]

y
e
s♦
,
[K

]
n
o
F

n
o
F
,
[K

]
n
o
F
,
[K

]
n
o
t

p
ri

-
v
a
te

a
ft

e
r

d
e
sy

n
c
.

n
o
t

p
ri

-
v
a
te

a
ft

e
r

d
e
sy

n
c
.F
,
[L

]

n
o
t

p
ri

-
v
a
te

a
ft

e
r

d
e
sy

n
c
.F
,
[L

]

F
o
rw

a
rd

-p
ri

v
a
c
y

n
o

n
o

n
o
[M

]
y
e
s[

K
]

y
e
s[

K
]

n
o
[M

]
n
o

n
o
F

n
o

n
o

n
o
[N

]

D
e
sy

n
ch

ro
n
iz

a
ti

o
n

re
si

st
a
n
c
e

N
/
A

N
/
A

y
e
s

y
e
s

u
p

to
L

c
o
n
se

c
u
ti

v
e
[O

]
y
e
s

u
p

to
L

c
o
n
se

c
u
ti

v
e
[P

]
y
e
s

u
p

to
L

c
o
n
se

c
u
ti

v
e
[O

]
n
o
[Q

]
n
o
[Q

]
n
o
[R

]
y
e
s[

S
]

y
e
s[

S
]

Im
p

e
rs

o
n
a
ti

o
n

R
e
-

si
st

a
n
c
e

n
o
F

y
e
s

y
e
s

N
/
A

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

y
e
s

F
:

W
e
a
k
n
e
ss

e
s

d
is

c
o
v
e
re

d
in

th
is

th
e
si

s.
♦

:
W

e
a
k
n
e
ss

e
s

d
is

c
o
v
e
re

d
a
n
d

fi
x
e
d

in
th

is
th

e
si

s.

3.6. Comparison 65

[A
]

A
lt

h
ou

gh
th

e
au

th
or

s
im

p
li

ci
tl

y
co

n
si

d
er

it
to

b
e

an
id

en
ti

fi
ca

ti
o
n

p
ro

to
-

co
l
(b

ec
au

se
of

th
e

ex
is

te
n

ce
of

an
a
u

th
en

ti
ca

ti
o
n

ex
te

n
si

o
n

),
it

is
re

fe
rr

ed
to

as
an

au
th

en
ti

ca
ti

on
p

ro
to

co
l
h

er
e

si
n

ce
th

e
re

ad
er

se
n

d
s

a
n

o
n

ce
,

a
n

d
si

n
ce

th
e

p
ro

to
co

l
is

at
fi

rs
t

d
es

ig
n

ed
to

co
p

e
w

it
h

im
p

er
so

n
a
ti

o
n

.

[B
]

E
x
cl

u
d

in
g

ke
y

ge
n

er
at

io
n

.

[C
]

D
on

e
d

u
ri

n
g

th
e

se
tu

p
.

[D
]

D
on

e
ea

ch
ti

m
e

on
e

ta
g

re
ac

h
es
L

au
th

en
ti

ca
ti

on
s

si
n

ce
th

e
la

st
ta

b
le

u
p

d
at

e.

[E
]

T
h

e
w

h
ol

e
h

as
h

ta
b

le
is

p
er

io
d

ic
al

ly
u

p
d

at
ed

or
ca

n
b

e
p

re
co

m
p

u
te

d
fo

r
fo

re
co

m
in

g
co

u
n
te

rs
.

[F
]

U
si

n
g

ra
in

b
ow

ta
b

le
s.

T
h

e
co

m
p

le
x
it

y
p

ro
v
id

ed
is

an
ex

a
m

p
le

,
b

u
t

th
e

id
en

ti
fi

ca
ti

on
co

m
p

le
x
it

y
ca

n
b

e
se

t
an

y
w

h
er

e
b

et
w

ee
n
O

(1
)

a
n

d
O

(N
L

)
ac

co
rd

in
g

to
th

e
m

em
or

y
av

ai
la

b
le

fo
r

th
e

tr
ad

e-
off

(s
ee

S
ec

ti
o
n

3
.4

.2
fo

r
d

is
cu

ss
io

n
).

[G
]

A
d

d
it

io
n

al
h

as
h

fo
r

au
th

en
ti

ca
ti

on
.

[H
]

T
h

e
d

es
y
n

ch
ro

n
iz

ed
ta

g
m

ig
h
t

n
ot

b
e

id
en

ti
fi

ed
/a

u
th

en
ti

ca
te

d
b
y

th
e

re
ad

er
.

[I
]

T
h

e
ta

g
ca

n
n

ot
b

e
au

th
en

ti
ca

te
d

w
it

h
in

th
e

ti
m

e
in

te
rv

a
l.

It
g
et

s
re

sy
n

-
ch

ro
n

iz
ed

in
th

e
n

ex
t

on
e.

[J
]

C
an

b
e

b
ig

d
u

e
to

co
n

st
an

t
te

rm
s

(s
ee

S
ec

ti
on

3.
3.

3
an

d
[4

])
.

[K
]

P
ri

va
te

if
a
n

d
o
n

ly
if

th
e

a
d

ve
rs

a
ry

is
n

o
t

a
b

le
to

te
ll

w
h

et
h

er
th

e
p

ro
-

to
co

l
se

ss
io

n
w

a
s

su
cc

es
sf

u
l.

[L
]

H
ow

ev
er

,
p

ri
va

te
a
ft

er
re

sy
n

ch
ro

n
iz

a
ti

o
n

.
T

h
e

ta
g

re
sy

n
ch

ro
n

iz
e

a
u

to
-

m
a
ti

ca
ll

y
a
t

ea
ch

in
te

rv
a
l

st
a
rt

.

[M
]

S
in

ce
it

is
n

o
t

p
ri

va
te

.

[N
]

N
o
t

fo
rw

a
rd

p
ri

va
te

u
n
ti

l
th

e
la

st
E

T
u

p
d

a
te

.

[O
]

A
ft

er
L

d
es

y
n

ch
ro

n
iz

a
ti

o
n

s,
th

e
ta

g
ow

n
er

ca
n

g
o

to
so

m
e

ce
n
tr

a
l

o
ffi

ce
to

fi
x

th
e

is
su

e.

[P
]

In
cl

u
d

in
g

le
g
it

im
a
te

a
u

th
en

ti
ca

ti
o
n

s.
If

th
e

ta
g

ow
n

er
g
o
es

to
th

e
o
ffi

ce
th

e
ta

g
ca

n
b

e
re

sy
n

ch
ro

n
iz

ed
in

th
e

n
ex

t
p

re
co

m
p

u
ta

ti
o
n

.
H

ow
ev

er
,

if
th

e
n
u

m
b

er
o
f

th
e

il
le

g
it

im
a
te

a
u

th
en

ti
ca

ti
o
n

s
is

le
ss

th
a
n
L

,
th

en
th

e
re

sy
n

ch
ro

n
iz

a
ti

o
n

o
f

th
e

ta
g

w
il

l
b

e
d

o
n

e
a
u

to
m

a
ti

ca
ll

y
d

u
ri

n
g

th
e

n
ex

t
u

p
d

a
te

.

[Q
]

T
a
g
s

ca
n

b
e

d
es

y
n

ch
ro

n
iz

ed
,

b
u

t
re

sy
n

ch
ro

n
iz

e
a
u

to
m

a
ti

ca
ll

y
a
ft

er
ea

ch
a
u

th
en

ti
ca

ti
o
n

.

[R
]

E
it

h
er

u
p

to
T

m
a
x

(t
a
g

b
ec

o
m

es
u

se
le

ss
)

o
r

w
it

h
a

sm
a
ll

er
co

u
n
te

r
(f

o
r

to
tr

a
ce

a
b

il
it

y
a
n

d
re

p
la

y
).

[S
]

T
a
g
s

ca
n

b
e

ea
si

ly
d

es
y
n

ch
ro

n
iz

ed
w

it
h

in
a

ti
m

e
in

te
rv

a
l

(e
.g

.
o
n

e
d

ay
),

m
a
k
in

g
th

em
u

n
u
sa

b
le

a
n

d
/
o
r

tr
a
ce

a
b

le
.

T
a
g
s

a
re

a
u

to
m

a
ti

ca
ll

y
re

sy
n

-
ch

ro
n

iz
ed

a
t

th
e

b
eg

in
n

in
g

o
f

ea
ch

in
te

rv
a
l.

T
a
g
s

h
av

e
li

m
it

ed
li

fe
ti

m
e

b
ec

a
u

se
th

e
L

a
m

p
o
rt

ch
a
in

m
u

st
h

av
e

a
st

a
rt

(a
lt

h
o
u

g
h

th
e

sy
st

em
ca

n
b

e
in

it
ia

li
ze

d
w

it
h

a
re

a
ll

y
b

ig
h

a
sh

-c
h

a
in

).

66 Chapter 3. Complexity and Privacy

complexity, at least during the normal case online interaction, and that intend to provide at least
user privacy (not necessarily forward-privacy). Those for which new weaknesses are highlighted in
this chapter are also included. For clarity reasons, additional remarks are provided (superscripted
capital letters in the table) below the table. It is difficult to compare these protocols objectively
because of the number of criteria available. Nonetheless, some hindsights are given below about
their comparison.

A major design goal for authentication protocols is the protection against impersonation attacks.
Cheon, Hong, and Tsudik’s plain protocol can therefore be discarded since it does not satisfy this
requirement. OSK and its variants do not satisfy it either, but they are identification protocols,
and it is possible to extend them to authentication protocols as explained in Section 3.4.2. For the
rest of the protocols, a trade-off between efficiency of the reader authentication complexity, and
privacy weaknesses and/or other issues is generally observed.

The protocols using shared secrets, although presenting alluring identification efficiency, have
important security and privacy problems, as stated earlier. They are particularly vulnerable in
scenarios where tag corruption is easy. Nonetheless, future ideas might lower the impact of tag
compromise, and this approach remains interesting.

The counter-based protocols, embodied by the YA-TRAP family, seem to be promising as
well, but are easily desynchronized, which decreases the privacy they provide. Their usability
(a maximum of one authentication per counter tick) might be a problem in some applications
too. If this is not a problem, YA-TRAP* provides a decent level of privacy and allows automatic
re-synchronization.

Finally, although not ideal, the protocols based on hash-chains seem to be the most solid
solutions to date among the protocols analyzed in this chapter. OSK/AO and OSK/BF provide
forward-privacy and a very good efficiency for the authentication on the reader side, but have
desynchronization issues due to the finite size of the chains. O-RAP is also quite good and does
not have desynchronization problems. However, if an adversary capable of performing timing
analysis is considered, it has a lower privacy. O-FRAP also brings some forward-privacy to O-RAP
(but not completely as pointed out in Section 3.4.4).

Some protocols require fewer assets on the tag. For instance, hash-chains protocols do not
require randomness to originate from tags and might therefore be more easily implemented on
low-cost tags.

In conclusion, the choice of the best protocol depends on the scenario, and on the privacy and
efficiency requirements. In any case, the protocols based on hash-chains clearly stand out.

3.7 Conclusion

This chapter studied the problematic of the scalability of private symmetric-key authentication
protocols in large systems. In order to ensure the privacy of a tag’s identity in such protocols
means that no information sent over the channel should help an attacker to identify a tag. A the
same time, the reader needs some information to identify the tag quickly. These two contradictory
requirements (along with other constraints) have been addressed by a number of proposals.

These protocols have been analysed in this chapter, and a number of attacks and weaknesses
have been identified. Two new attacks were described on the CHT protocol [63], a very efficient
protocol in terms of key search complexity (i.e., O(

√
N)). Two new traceability attacks were also

introduced on the CTI protocol [4]. Furthermore, a traceability weakness was found on the mutual
authentication version of OSK/AO [25] protocol, and a possible way to repair this problem was
proposed, with no additional cost. Finally, traceability attacks were introduced on OSK/BF [145],
O-RAP [62] and YA-TRAP* [179], emphasizing the importance of timing attacks [22] on the reader
side.

All candidates have been extensively evaluated and comapred according to their security and
performance. The conclusion is that in the current state of the art, protocols based on hash-chains,
such as OSK/AO and O-RAP are those that have the best characteristics overall. The next chapter
takes a closer look at OSK/AO in practical settings.

Chapter 4

The OSK/AO Protocol

Articles related to this chapter

[12] Gildas Avoine, Muhammed Ali Bingol, Xavier Carpent, and Suleyman Kardas. Deploy-
ing OSK on low-resource mobile devices. In Workshop on RFID Security – RFIDSec’13,
Graz, Austria, July 2013.

This chapter takes a closer look at OSK/AO, an extension to the OSK protocol that improves
significantly its efficiency without lowering its security. It is one of the most promising solutions to
the scalability of privacy-friendly symmetric-key authentication protocols discussed in Chapter 3.

This protocols makes use of time-memory trade-offs, a technique to carry out efficient brute-
force search. Time-memory trade-offs are typically used to perform cryptanalysis such as password
cracking, but they are used in a constructive way in OSK/AO. An important leverage of time-
memory trade-offs is the “lunchtime attack” scenario (see Chapter 1), where the user may benefit
from a long preparation time but has a limited window of opportunity and limited resources to
perform the actual search. This aspect of time-memory trade-offs is used in OSK/AO to provide
efficient identification. Reader unfamiliar with time-memory trade-offs are referred to Section 5.1
for a detailed description.

As part of the work on OSK/AO, the protocol was also implemented on an NFC-compliant1

cellphone and a ZC7.5 contactless tag. This is, as far as we know, the first implementation of a
protocol of this type. This implementation demonstrates the practicability and efficiency of the
OSK protocol and illustrates that privacy-by-design is achievable to some extent in constrained
environments.

The OSK protocol is described in Section 4.1, along with its online search and full storage
approaches. Section 4.2 presents the OSK/AO protocol in details. Section 4.3 presents our imple-
mentation, and the chapter is concluded in Section 4.4

4.1 Ohkubo, Suzuki, and Kinoshita’s Protocol

4.1.1 Description

The OSK protocol is proposed by Ohkubo, Suzuki, and Kinoshita in [149]. It is one of the most
well-known RFID-devoted authentication protocols and is the earliest one that achieves forward
privacy2. In the RFID context, forward privacy is the property that guarantees the security of past
interactions of a tag even if it is compromised at a later stage. Namely, if the secret information of

1The NFC (Near Field Communication) technology is a set of standards built upon RFID standards that allow
two-way communication on smartphones and other mobile devices.

2It is also known as backward untraceability and used interchangeably in some papers [115, 132, 162].

67

68 Chapter 4. The OSK/AO Protocol

R Ti
request−−−−−−−−−−−−−−→

find i and j so that
σ=G(s

j
i)←−−−−−−−−−−−−−− sj+1

i ← H(sji)
G(Hj(s0i)) = σ

Figure 4.1: The OSK protocol.

s01 −→ r01 r11 r21 . . . rL−1
1 rL1

. . . −→

s0i −→ rji = G(Hj(s0i)) . . . rLi

. . . −→

s0N −→ r0N r1N r2N . . . rL−1
N rLN

Figure 4.2: Chains of hashes in the OSK protocol.

a tag Ti (1 ≤ i ≤ N) is corrupted by an adversary at a given time, the adversary can not associate
any transaction with Ti at any earlier time (See Chapter 1 for more details).

The OSK protocol is described in Section 3.4.1 and may be summarized as follows. Each tag
Ti has an initial secret s0

i that is updated after each authentication query. The update consists in
hashing the current secret with a one-way function H. Upon reception of the authentication query,
the tag answers by hashing the current secret with a different hash function3, G. Fig. 4.1 shows
the OSK protocol.

System Setup.

Each tag Ti of the system is initialized with a randomly chosen secret s0
i . The N initial secrets are

stored in a database, sometimes called back-end system. In some settings the back-end system and
the reader are two different devices, connected in a way that is considered secure. In some other
settings the back-end system is embedded in the readers.

Interrogation.

When the tag is queried by a reader it answers with a response using the current secret such that
σ = G(sji) and also updates the secret immediately using a different hash function: sj+1

i = H(sji).

Search & Identification.

When receiving an answer the database searches for an initial secret s0
i that leads to σ. In other

words, it checks whether there exists i and j such that G(Hj(s0
i)) = σ. To do that, from each of

the N initial secrets s0
i , the reader computes the hash chains as shown in Fig. 4.2 until it finds a

value matching σ, or until it reaches a given maximum limit L (the “lifetime” of a tag4) on the
chain length.

The value σ = G(Sji) does not leak any information to an attacker on the secret of Ti when
G and H behave as pseudo-random functions. However, given that the authentication process is
bounded by L, the OSK protocol is prone to desynchronization when an adversary queries the tag
more than L times. In such a case, the tag can no longer be authenticated and a privacy issue
arises for a certain type of adversary, capable of detecting the success status of an authentication
(see [113] for a discussion). Fortunately, the synchronization can be retrieved by the back-end

3Note that although these two functions need to be different, only one algorithm may be implemented on the
tag, and an additional 1-bit input parameter used to select the function.

4The lifetime of a tag corresponds to the maximum number of times it may be interrogated by an adversary
without being desynchronized with the database. On genuine authentications, the tag is resynchronized with the
database, and its lifetime reset.

4.1. Ohkubo, Suzuki, and Kinoshita’s Protocol 69

without replacing the tag; for example, the holder of a desynchronized tag can ask the system
operator to recompute the chain of his tag.

Beside this desynchronization issue – and although the protocol is very efficient when all the
tags are synchronized [149] – the worst-case complexity of the search procedure makes the protocol
unsuitable for most practical applications.

4.1.2 Real-life Applications

This section discusses the possibility of implementing OSK in real-life applications. A system of
N = 220 tags with a lifetime of L = 27 is chosen to represent a typical application throughout this
chapter. These are reasonable parameters and are in accordance with [25].

Online Search

A näıve approach for the server is to only keep the initial secrets and recompute the N × L
possibilities each time it receives a given σ. With a server capable of 220 cryptographic hash
operations per second, this takes 26 seconds ≈ 1 minute on average for these parameters. This is
far beyond the limit of 200 milliseconds for a reasonable authentication time.

Full Storage

The other extreme solution consists in storing all the chains in a table and letting the server perform
a simple look-up whenever it receives σ. This solution has the advantage of requiring no crypto-
graphic operation on the reader side during the authentication, which makes the authentication
very fast. Unfortunately, this approach has two major drawbacks.

First of all, a large memory is needed to store the table: given our parameters (N = 220

tags with a lifetime of L = 27, and a hash size of 128 bits), the full storage approach requires
234 bits = 2 GB5. In a system where readers are permanently connected to the back-end server,
requiring such a memory (RAM) for the server is not a problem. However, in systems consisting
of mobile readers sporadically connected to the database, the authentication material should be
replicated in each of these low-resource devices. In such a scenario, this amount of memory is
very large for small devices such as PDA’s or handheld RFID readers, which typically have a
memory of 128 MB. It might however be reasonable for more elaborate devices such as NFC-
enabled smartphones, which have several gigabytes of flash memory.

A second issue is that, every now and then, the table needs to be either computed in a central
server and uploaded on the smartphones, or computed by the smartphones themselves after recep-
tion of the first column of the table. This might take a significant time for both cases, and might
be an issue in certain situations.

In the context of [45] for instance, where a central server is used, the full storage technique
makes sense, and is more simple and efficient.

Time-Memory Trade-off

An intermediate solution is the time-memory trade-off (TMTO). The idea is to use memory to
reduce the authentication time, making both memory and time suitable to our application. Note
that the goal of the TMTO is here to reach an authentication time that is below the acceptable
threshold of 200 ms. Once this requirement is fulfilled, still decreasing the time does not make
sense because (i) this implies a memory cost (ii) the authentication time would become a negligible
factor in the whole communication time.

In the following, the TMTO version is explored. It uses rainbow tables of maximal size, which
are introduced in Chapter 1.

5If one wants to index the hashes with (i, j) couples, the memory increases by 25% (32 bits appended to each of
the 128-bit hashes).

70 Chapter 4. The OSK/AO Protocol

s0
1 sκ0 s2κ

0 . . . s
(bLκ c−2)κ
0 s

(bLκ c−1)κ
0

s0
2 sκ1 s2κ

1 . . . s
(bLκ c−2)κ
1 s

(bLκ c−1)κ
1

...
...

s0
i sκi s2κ

i . . . s
(bLκ c−2)κ
i s

(bLκ c−1)κ
i

...
...

s0
n sκn−1 s2κ

n−1 . . . s
(bLκ c−2)κ
n−1 s

(bLκ c−1)κ
n−1︸ ︷︷ ︸

L
κ columns

Figure 4.3: The rapid-hash table.

4.2 OSK/AO

4.2.1 Description

Avoine and Oechslin propose in [30] to apply a time-memory trade-off to the search procedure of
OSK, leading in this way to a variant known as OSK/AO.

The protocol execution is the same, only the search procedure is modified. The reader performs
an exhaustive search over the NL possible states using a time-memory trade-off. The complexity
of the search procedure thus varies from O(1) to O(NL), depending on the amount of memory
devoted to the trade-off. For example, they mention that a complexity of O((NL)2/3) can be
reached with a memory of size O((NL)2/3).

Avoine, Dysli, and Oechslin also suggest in [25] a variant of the OSK protocol that ensures strong
authentication, as OSK is originally designed to ensure identification only, without consequently
considering replay attacks. To do so, [25] suggests using nonces as follows: the reader sends a
nonce r in the authentication request message and the tag answers G(sji ⊕ r) along with G(sji).
The latter value is used by the reader to identify the tag, and the former to authenticate it.

Another advantage of OSK/AO is that the search done in the identification is intrinsically
randomized, which makes timing attacks irrelevant [22].

The specific time-memory trade-off technique introduced in [25, 30] is described below.
In this technique there are two main functions namely a response generating function F and

a reduction function R. F takes two indices as an input (i.e., tag index and life time index) and
outputs a tag response such that

F (i, j) 7→ G(Hj(s0
i)) = rji

The reduction function R is such that

R(rji) 7→ (i′, j′),

where 1 ≤ i, i′ ≤ N , and 0 ≤ j, j′ ≤ L.
Note that F requires j + 1 cryptographic operations to be computed, which would drastically

lower the efficiency of the search if it were used directly. What is suggested instead in [30] is to use
a second kind of-time-memory trade-off, called the rapid-hash table, to compute F efficiently. This
trade-off table is rather straightforward: the secrets sji of the tags are computed from lifetime values
0 to L, but only L

κ columns are stored. This is illustrated in Fig. 4.3. As explained in Section 4.2.3,
this means that an average of κ+1

2 cryptographic operations are required per evaluation of F .

4.2.2 Analysis

As explained in Section 4.2.1, there are two things that need to be stored in memory: the rainbow
tables and the rapid-hash table. The proportion of memory that should be dedicated to each is
discussed hereafter.

Let ρ denote the proportion of memory dedicated to the rainbow tables. The trade-off efficiency
follows the rule T = N2γ/M2

RT (see [27, 96]), with γ being a small factor depending on the

4.2. OSK/AO 71

Table 4.1: Notations used throughout the paper.

N Number of tags in the system.
L Lifetime of a tag in the system (in terms of authentication executions).
` Number of rainbow tables.
t Length of the chains in each rainbow table.

sji Secret of the i-th tag used for the j + 1-th authentication where 1 ≤ i ≤ N ,
and 0 ≤ j ≤ L.

H, G Collision resistant one-way functions.

Hfast(i, j) Function that computes the j-th secret of the i-th, that is sji = Hj(s0i). This
function uses a precomputed rapid-hash table to compute hashes faster. The
construction of this function is showed in Algorithm 3.

κ Length of the interval between hash indices in the rapid-hash table.
state[i][k] state is a precomputed two-dimensional array that represents the rapid-hash

table. state[i][k] stores the k × κ-th state of the i-th tag, that is sk×κi .
F (i, j) The response generating function. It outputs a tag response such that

F (i, j) = G(Hfast(i, j)), that is the output of tag i in its j-th authentica-
tion attempt.

Tablev The v-th rainbow table, where 1 ≤ v ≤ `.
Rvw(s) For w-th column where 1 ≤ w ≤ t of the v-th table where 1 ≤ v ≤ `, a

reduction function that maps input s into arbitrary indices (i’, j’), where
1 ≤ i′ ≤ N and 0 ≤ j′ ≤ L.

probability of success of the trade-off, and MRT the memory dedicated to the rainbow tables (that
is ρM). As for the rapid-hash table, we have:

κ =

⌈
N |hash|
MRH

⌉
,

with |hash| the size of a hash, and MRH the memory for the rapid-hash table (that is (1− ρ)M).
Each operation in the rainbow tables requires an average of κ+1

2 cryptographic operations in the
rapid-hash table. Therefore:

T =
N2γ

M2
RT

κ+ 1

2
≈ N2γ

ρ2M2

N |hash|
2(1− ρ)M

.

The optimal value of ρ can be found easily by deriving:

∂T

∂ρ
= 0 ⇔ ∂

∂ρ

[
1

ρ2(1− ρ)

]
=

3ρ− 2

(ρ− 1)2ρ3
= 0,

which yields ρopt = 2
3 . In the following, the memory for the rainbow tables is fixed to two thirds

of the total memory6.

4.2.3 Algorithms

This section presents the algorithms used in OSK/AO, namely (i) the algorithm to compute the
rapid-hash table (Algorithm 3), (ii) the algorithm to build the rainbow tables (Algorithm 4), and
(iii) the algorithm to identify the tag (Algorithm 5). The material in this section mostly comes
from [45]. The notations used in the algorithms are given in Table 7.1.

First, the system randomly generates the initial secrets for all the tags such that s0
i ∈R {0, 1}λ

where 1 ≤ i ≤ N , and λ is the length of the secrets. The system defines a κ parameter then
computes the interval secret values of all the tags. After that all the secrets are stored into a two
dimensional array such that state[i][k] := Hk×κ(S0

i) where k = 0, 1, 2, . . . and 0 ≤ k × κ ≤ L.
Now, for a given secret of tag i, the j-th rapid-hash computation of the secret is presented in

Algorithm 3. The algorithm requires only at most κ hashes by the help of the precomputed RH
table. Whenever κ decreases, the memory usage increases but the on-line computation decreases.

6Note that this result is compliant with the analysis done in [30]. The development done in this section is
somewhat simpler and matches the notations used in the rest of this chapter.

72 Chapter 4. The OSK/AO Protocol

Algorithm 3 Compute s = Hfast(i, j)

Require: 1 ≤ i ≤ N, 0 ≤ j ≤ L
Ensure: s = sji
s← state[i][

⌊
j
κ

⌋
]

a← j mod κ
while a 6= 0 do
s = H(y)
a← a− 1

end while
return s

Algorithm 4 shows the procedure to construct a single rainbow table. For the construction, only
two parameters are needed: the number of startpoints used in the precomputation phase (named
m1, as in [27]) and the number of the table to be generated. The startpoints of a rainbow table are
fed into the F function sequentially. The output is actually a response of a tag in the system and
is fed into the reduction function which outputs arbitrary indices. For a single chain this process is
repeated consecutively up to a predefined chain size t, then the starting and endpoints are stored
in the table. Finally, each generated endpoint is compared in the table to detect fusions. When
two chains generate a fusion, one of them is discarded. This procedure eventually leads to a perfect
table.

Algorithm 4 Construction of Tablev (j, m1, v)

Require: 1 ≤ j, 1 ≤ m1 ≤ N × j , v ≥ 1
table← {∅}
for i = 1 to

⌈
m1

j

⌉
do

for k = 0 to j do
nextResp← F (i, k)
for w = 1 to t− 1 do
z[]← Rvw(nextResp)
nextResp = F (z[0], z[1])

end for
z[]← Rvt (nextResp)
if z 6∈ table then

add the record {(i, k); (z[0], z[1])} into table
end if
if (i− 1)× j + k ≥ m1 then

break
end if

end for
end for
clean table
return table

Finally, Algorithm 5 shows the identification process of a tag by extracting the preimage of a
given response using rainbow tables. This part of the system runs during the authentication of a
tag. First, TagResp (the answer of the tag) is fed into the reduction function Rvt and searched
among the endpoints of the rainbow table. (i) If a match is found, the corresponding startpoint
is iterated as explained in Algorithm 4 up to the (t − 1)th reduction function Rvt in order to
get a candidate response. If the candidate response is equal to TagResp then identification is
completed. Otherwise (ii) TagResp fed into the reduction function such that Rvt−1(TagResp),
then the resulting indices fed into F , and then the resulting response fed into Rvt (TagRespnext)
consecutively.

4.3. Experiments and Comparison 73

Algorithm 5 Identify (Tablev, TagResp)

Require: TagResp ∈ {0, 1}λ, v ≥ 1
Ensure: TagResp ← G(y)

for q = t down to 1 do
nextResp←TagResp
for i = q to t− 1 do
z[]← Rvi (nextResp)
nextResp← F (z[0], z[1])

end for
z[]← Rvt (nextResp)
if z ∈ Tablev then
{z′; z} ← Tablev(z)
nextResp← F (z′[0], z′[1])
for w = 1 to q − 1 do
z̃[]← Rvw(nextResp)
nextResp← F (z̃[0], z̃[1])

end for
if nextResp = TagResp then

return true
end if

end if
end for
return false

4.3 Experiments and Comparison

This section presents the details of the implementation of OSK/AO and discusses its results. This
section is partially based on the master thesis of Muhammed Ali Bingöl [45]. In his master thesis,
Muhammed Ali Bingöl did an implementation of OSK/AO for a centralized system. As it was
pointed out however, a solution where the OSK chains are all stored is feasible for such systems,
and is both simpler and more efficient. Nevertheless, in distributed systems, OSK/AO happens
to be much more viable than the full storage solution, in particular when the authentication is
performed by low-resource mobile devices, such as PDA’s or NFC-compliant cellphones.

4.3.1 Environment

The precomputations are performed with a personal computer having Intel 2.8GHz Core2 Duo
processor, 4GB RAM and Windows 7 - 64-bit operating system. The NFC-enabled mobile phone
is LG OPTIMUS 4X HD, having 1.5GHz processor and 1GB RAM [125]. The cell phone has an
open source Linux-based operating system, Android. This OS has a large community of contribu-
tors who develop applications primarily written in a customized version of the Java programming
language [170]. The phone supports both ISO/IEC 14443 and ISO/IEC 15693 standards which are
the common standards in order to read/write 13.56 MHz contactless smart cards.

For the tags, professional version of ZeitControlers basic card ZC7.5 (ZC−Basic) were chosen.
It has a programmable processor card as hardware environment for protocol implementation [89].
It has a micro-controller with 32kB user EEPROM that holds its own operating system and it has
2.9kB RAM for user data. It supports ISO/IEC 14443. The EEPROM contains the user’s Basic
code, compiled into a virtual machine language known as P-Code (the Java programming language
uses the same technology). The RAM contains runtime data and the P-Code stack. The overview
of the system is depicted in Figure 4.4.

74 Chapter 4. The OSK/AO Protocol

LG Optimus 4X P880
Android 4.1
NFC enabled phone
Processor: 1.5 GHz
RAM: 1.0 GB

Basic card ZC 7.5
EEPROM: 32 kB
RAM: 2.9 kB

Tag

Processor: 2.8 GHz
RAM: 4 GB
Windows 7 – 64 bit
Programming Lang: Java

Figure 4.4: Overview of the system [credits: Muhammed Ali Bingöl].

4.3.2 Parameters and Functions

The parameters for the experiments7 are N = 220, L = 27 and the one-way functions selected
are (4.1) and (4.2).

H(x) = AESK(x)⊕ x, (4.1)

G(x) = AESK(x+ 1)⊕ (x+ 1), (4.2)

where K is a 128-bit constant key. This is known as the Matyas-Meyer-Oseas construction [137].
Its goal is to build a one-way function from a block cipher.

The AES algorithm was used in the construction because it is commonly implemented on fewer
gates than classical hash functions (see e.g. [80]), and, in particular, is also available in the ZC7.5.
This construction requires only one key schedule during the initialization phase of the tags.

To construct rainbow tables each column of each table uses a different reduction function. The
function takes three parameters that are the table index (v = 0, 1, . . . , ` − 1), the column index
(w = 1, 2, . . . , t) and the response output as a byte array (val[.]). This function produces two
output values; the first one is for the tag index (i = 0, . . . , N −1), the second one is for the lifetime
index (j = 0, . . . , L− 1). The i value is computed as i = (Int32(val[v, v+ 3]) +w) mod N where
the function Int32 converts a given input 4-byte array into an unsigned 32-bit integer. The j value
is computed as i = (Int32(val[v + 1, v + 4]) + w) mod L. The construction of our reduction
functions are given in Algorithm 6.

Algorithm 6 Compute Rvw(val[.])

Require: v ≥ 0, w ≥ 1
Ensure: i ∈ ZN , j ∈ ZL
i← Int32(val[v, v + 3]) + w
j ← Int32(val[v + 1, v + 4]) + w
i = i mod N
j = j mod L
return {i, j}

4.3.3 Precomputation of the Tables

In order to use OSK/AO on low-resource devices (such as hand-held readers, PDA’s and NFC
compliant cellphones), it is necessary to build tables that can fit to small RAMs.

For the total memory there are two parts: (i) the rapid-hash table that stores some intermediate
values of the OSK table and (ii) the rainbow tables8. Optimal parameters are used, and therefore
the values of κ and t are computed such that the memory consumption is as described in 4.2.2.

7The parameters are the same than the ones in [25].
8A technique known as the prefix-suffix decomposition was used in order to reduce to some extent the size of the

rainbow tables. It is described for instance in [48].

4.4. Conclusion 75

Table 4.2: Results of experiments on an NFC compliant cellphone.

Memory 253MB 113MB
Identification time 15.26ms 117.54ms

Length of the chains of the TMTO (t) 27 72
Number of chains of the TMTO (mt) 8968214 3566605

Rapid-hash parameter(κ) 22 43
Authentication rate 99.9% 99.9%

Another significant choice for the time-memory trade-off construction is the probability of
success. It should be high enough to avoid false negatives during the authentication process. In
the scenario described in this chapter, using ` = 4 rainbow tables of maximal size makes the
probability to identify a tag greater than 0.999 (see Theorem 1 in Chapter 5). Note that trying
to reach a higher success probability is probably not useful in this situation. It may happen that
authentication fails because of noise on the channel for instance, and the successful probability of
the rainbow table need only sufficiently low as to not lower the overall probability of success of the
whole authentication process.

Finally, regarding the number of startpoints m1, the trick described in [27] to reduce the
precomputation effort is used. Namely, in order to build a perfect table of maximal size, it is
technically necessary to build NL chains. However in practice, and as described in [27], fewer
chains are computed (but still enough to achieve a table of almost maximal size). In the case
described here, about 98% of the maximal number of endpoints are computed by starting with 50
times that number.

In total, the precomputation cost is ` × m1 × t evaluations of F , which is about 4 × 50 ×
mt × t = 400NL (see Theorem 2 in Chapter 5). Since these are F evaluations, this number is
also multiplied by κ+1

2 hash operations. For instance, if κ = 6 and on a server capable of 220

hash operations per second, the precomputation stage would take about 50 hours. Some details
about the precomputation of rainbow tables seem to have been overlooked in [25, 30], which would
explain their optimistic result. However, one can do much better than that if a table containing
the NL secrets is built and used during the precomputation instead of the Hfast table. This table
needs NL|hash| bits, that is 2GB in our case, and takes about 2 minutes to build on the server.
In this second solution, there are actually no hash operations during the building of the rainbow
table, making it much faster. In our experimental setting, the whole precomputation process takes
about an hour.

4.3.4 Experiments

This section presents experimental validation of Algorithm 5, by measuring the performance of the
identification process with randomly chosen tags. The mobile phone that was used [125] is able
to compute about 187, 750 hashes per second. For both settings, the experiment is run 1, 000, 000
times. The experimental results are depicted in Table 4.2.

There are three phases on the tag’s side: receiving a query, computing the response (two hash
calculations), and sending the response. The total time is 70 ms on average, including 50 ms for
the calculation of the two hash values and 20 ms for the communication. It can be seen in Table 4.2
that the average identification time is below the 200 ms threshold (including the 70 ms for the tag
computation and the communication) even for a memory below 128MB. This shows that one can
achieve very fast authentication even with limited memory.

4.4 Conclusion

This chapter focused on the OSK/AO protocol, a scalable privacy-friendly symmetric-key au-
thentication protocol. This protocol is arguably the best solution to date to the scalability issue
raised in Chapter 3. It is a variant of the hash-chain-based OSK protocol that uses cryptanalytic

76 Chapter 4. The OSK/AO Protocol

time-memory trade-offs constructively to accelerate the search in low-memory settings. The OSK
protocol may also be used with a full storage approach, where the chains are completely stored in
memory. This technique is however only applicable if the memory is large enough, which is the
case in centralized systems for instance.

An implementation of the OSK/AO protocol was realized on an NFC-compliant cellphone and a
ZC7.5 contactless tag. The implementation is fully operational and is, to the best of our knowledge,
the first implementation of a privacy-friendly authentication protocol based on symmetric-key
cryptography. The implementation is suited to large-scale applications, e.g. a million of tags, as
this can be the case in mass transportation systems, even on low-resource mobile devices such as
hand held readers, PDA’s or NFC compliant cellphones. Several experiments carried out on the
implemented RFID system show that the results obtained match the theory and are favorable to
a practical deployment.

This chapter also illustrated a constructive use case of time-memory trade-offs. OSK/AO uses
rainbow tables along with an additional ad-hoc data structure in a creative way and shows that they
can be used for more than cracking passwords. The rest of this thesis is dedicated to algorithmic
improvements to time-memory trade-offs.

Chapter 5

Rainbow Tables with Fingerprints

Articles related to this chapter

[14] Gildas Avoine and Adrien Bourgeois and Xavier Carpent. Analysis of Rainbow Tables
with Fingerprints. Financial Cryptography and Data Security – FC’15. (submitted)

In spite of the wide use of cryptanalytic time-memory trade-offs, few significant advances have
been done since Oechslin introduced the rainbow tables at Crypto 2003 [147], illustrated with the
instant cracking of alphanumerical Windows LM Hash passwords. However, any improvement of
their efficiency may render attacks more practical, especially when they are time-constrained. It is
thus very important to minimize their cost.

In 2005, Avoine, Junod, and Oechslin [26] introduced a new feature to the rainbow tables,
known as the checkpoints. The authors observed that more than 50% of the cryptanalysis time
is devoted to rule out false alarms. Their technique consists in storing information (e.g., a parity
bit) on some intermediate points of the chains alongside the endpoints. During the online phase,
when a match with an endpoint occurs, its checkpoints must be compared with the checkpoints of
the chain which construction is ongoing. When there is a match of the endpoints, but no match of
the checkpoints, the adversary can conclude that a false alarm occurred without re-computing the
colliding chain. Although the addition of checkpoints increases the performance of the trade-off,
their impact is limited given that their storage consumes additional memory.

In an effort to lower the memory consumption of the rainbow tables, an idea is to truncate the
endpoints by a fixed amount of bits. It is not clear where this idea first appeared, but it most likely
originated from the (more straightforward) truncation in the distinguished points method [70]. In
the case of rainbow tables, it was hinted in [38]. As noted in [121], endpoint truncation however
comes with a cost in the form of an increase in false alarms (due to fortuitous matching endpoints).

This chapter revisits checkpoints and endpoint truncation and unifies them in a new model,
where the information stored to characterize a chain is named a fingerprint. Section 5.1 is a tech-
nical introduction to time-memory trade-offs. Section 5.2 introduces the fingerprints and discusses
how to build and use rainbow tables with fingerprints. Section 5.3 analyses rainbow tables with fin-
gerprints and in particular their average cryptanalysis time. Section 5.4 presents an algorithm for
finding optimal configurations of fingerprints. Theoretical and experimental results are presented
in Section 6.5, and the chapter is concluded in Section 5.6.

5.1 Background on Cryptanalytic Time-Memory Trade-offs

5.1.1 Hellman Tables

Although the work regarding TMTO that is done in this chapter relies on rainbow tables, Hellman
tables are described below because rainbow tables are heavily based on them. Hellman’s method

77

78 Chapter 5. Rainbow Tables with Fingerprints

X1,1
r◦h−−→ X1,2

r◦h−−→ . . .
r◦h−−→ X1,i

r◦h−−→ . . .
r◦h−−→ X1,t−1

r◦h−−→ X1,t

X2,1
r◦h−−→ X2,2

r◦h−−→ . . .
r◦h−−→ X2,i

r◦h−−→ . . .
r◦h−−→ X2,t−1

r◦h−−→ X2,t

...
...

. . .
...

. . .
...

...

Xj,1
r◦h−−→ Xj,2

r◦h−−→ . . .
r◦h−−→ Xj,i

r◦h−−→ . . .
r◦h−−→ Xj,t−1

r◦h−−→ Xj,t

...
...

. . .
...

. . .
...

...

Xm,1
r◦h−−→ Xm,2

r◦h−−→ . . .
r◦h−−→ Xm,i

r◦h−−→ . . .
r◦h−−→ Xm,t−1

r◦h−−→ Xm,t

Figure 5.1: Structure of a Hellman table. The framed columns, respectively the startpoints and
the endpoints, are the parts stored in memory.

and variants based on it have an online phase complexity of N2/M2, with N the size of the input
space, and M the amount of memory dedicated to the trade-off.

Precomputation Phase

In the precomputation phase, a series of chains of hashes1 is constructed by alternating the h
function, and r : B → A, a reduction function. The purpose of the reduction function is to map
a point in B to a point in A in a uniform and efficient way. Typically, it is implemented with a
modulo: r(y) = y mod N . A chain j starts at an arbitrarily chosen startpoint Xj,1 ∈ A, and it is
iteratively built with Xj,i+1 = h(r(Xj,i)) until the endpoint Xj,t, where the length of the chain t is
a fixed parameter. Once m chains are computed this way, the startpoint/endpoint pairs are sorted
according to their endpoints, and stored in a table2. Figure 5.1 is a representation of the structure
of such a table.

Online Phase

Given y ∈ B, the online phase aims to retrieve x ∈ A such that y = h(x). For that, r(y) is
computed and a lookup is performed in the table to check whether it matches a stored endpoint3.
Assuming it matches Xj,t for some 1 ≤ j ≤ m, the chain j is rebuilt from Xj,1 up to Xj,t−1. If
h(Xj,t−1) = y, then the problem is solved given that Xj,t−1 is the expected value. If they are
not equal or if no match was found in the first place, the process moves up to the next step by
computing r(h(r(y))) and repeating the same procedure. This goes on until a solution is found, or
until the table is completely searched through (t steps).

The Hellman method is probabilistic: not all points in N are found with equal efficiency,
and some are not even covered. However, parameters may be tuned so as to have an adequate
probability of success.

A major drawback of Hellman’s method is that two colliding chains in a given table lead to
a fusion. Such artifacts substantially decrease the trade-off performance. Two significant im-
provements have been introduced to mitigate this problem: the distinguished points in 1982 by
Rivest [70] and the rainbow table in 2003 by Oechslin [147]. The latter is significantly faster in
practice [147, 121].

5.1.2 Rainbow Tables

Rainbow tables [147] are an important improvement over Hellman tables, even though the difference
is subtle. Instead of a single reduction function within one table, a different one per column is used.
An example of a typical reduction function family is ri(y) = r(y + i), with r a reduction function
such as a modulo. The drawback is that, during the online phase, the chain rt−1(h(rt−2(h(. . .))))

1The technique works for inverting any one-way function, but the term “hash functions” and “hashes” is used
for simplicity.

2Several tables actually need to be constructed this way. The reason for this is that the coverage quickly saturates
in Hellman tables. See [97]. Also note that with rainbow tables, although 3 or 4 tables are generally required for a
good probability of success, the number of Hellman tables required is usually much bigger.

3Since the endpoints are sorted, this lookup is inexpensive.

5.1. Background on Cryptanalytic Time-Memory Trade-offs 79

S1 = X1,1
r1◦h−−−→ X1,2

r2◦h−−−→ . . .
ri−1◦h−−−−→ X1,i

ri◦h−−−→ . . .
rt−1◦h−−−−→ X1,t = E1

S2 = X2,1
r1◦h−−−→ X2,2

r2◦h−−−→ . . .
ri−1◦h−−−−→ X2,i

ri◦h−−−→ . . .
rt−1◦h−−−−→ X2,t = E2

...
...

. . .
...

. . .
...

Sj = Xj,1
r1◦h−−−→ Xj,2

r2◦h−−−→ . . .
ri−1◦h−−−−→ Xj,i

ri◦h−−−→ . . .
rt−1◦h−−−−→ Xj,t = Ej

...
...

. . .
...

. . .
...

Sm = Xm,1
r1◦h−−−→ Xm,2

r2◦h−−−→ . . .
ri−1◦h−−−−→ Xm,i

ri◦h−−−→ . . .
rt−1◦h−−−−→ Xm,t = Em

Figure 5.2: Structure of a rainbow table. The framed columns, respectively the startpoints and
the endpoints, are the parts stored in memory.

must be recomputed entirely at each step rather than just computing r ◦ h of the previous result.
However, it is much easier in rainbow tables to build clean4 tables, which are tables without merges.
A merge is a situation in which two chains contain an identical point in a given column. The two
chains “merge” because the series of values obtained afterwards are the same. A merge appearing
in rainbow tables therefore always results in identical endpoints, but it is generally not the case
with Hellman tables, in which merges are the cause of a drastic decrease in performances. At the
end of the precomputation phase, duplicate endpoints are thus filtered out of rainbow tables. This
results in much more efficient tables.

Precomputation Phase

The precomputation phase is very similar to that of the Hellman method. Instead of iterating
a function f : x 7→ r(h(x)) to compute a chain, a different reduction function is used in each
column. Chains therefore consists of elements computed iteratively using fi : x 7→ ri(h(x)), where
ri is the reduction function associated with column i. A typical reduction function family is
ri : y 7→ (y + i) mod N , with N = |A|. A series of chains is computed in order to form a table.

In order to build a clean table, only one chain per different endpoint is kept. These endpoints,
along with their corresponding startpoints, are stored in memory. Furthermore, a table of maximal
size is obtained when all (or almost all) the possible endpoints are saved, which happens when the
number of chains computed is sufficiently large (i.e. when any new chain would have a negligible
probability of having an endpoint that is not yet saved). The structure of a rainbow table is shown
in Figure 5.2.

As for Hellman tables, the probability of success of a single rainbow table is bounded. In the
case of rainbow tables of maximal size, this probability is about 86.47% (see Section 5.1.3. In
order to obtain a higher probability of success, multiple tables are used, with a different family of
reduction functions per table. A typical number is 4 (achieving a total probability of success of
about 99.97%).

In the rest of this thesis, clean rainbow tables of maximal size are assumed, because they offer
the best efficiency for a given memory.

Online Phase

The online phase in rainbow tables is again very similar to that of the Hellman method. In order to
invert a given y, one starts by computing rt−1(y) and searching through the endpoint list whether
there exists j such that Ej = rt−1(y). If so, a chain is rebuilt from the corresponding startpoint
Sj in order to compute Xj,t−1 and verify whether h(Xj,t−1) = y. If so, the attack succeeds with
x = Xj,t−1, and if not, this match was a false alarm. In that case, or when no matching endpoint
is found, the attack proceeds to the next table. Once all tables are cycled5, the attack proceeds

4Although the word “perfect” is usually attributed to tables without merges in the literature, this terminology
is more intuitive and seems more adapted.

5The order of search in rainbow tables is to search in all tables in a given column, then proceed to the next and
so on, rather than searching a table entirely, then proceeding to the next and so on. This is due to the fact that the
search is increasingly more expensive towards the left (longer online chain) of the rainbow tables. In the Hellman
method, this does not matter.

80 Chapter 5. Rainbow Tables with Fingerprints

with the next column, computing rt−1(h(rt−2(y))), and so on until the search succeeds or that all
columns are searched through.

5.1.3 Main Results on Rainbow Tables

A thorough analysis of the rainbow tables has been done by Avoine, Junod, and Oechslin in [28].
Below are some results from [28] that are relevant for the discussions of in this chapter and Chap-
ters 6 and 7.

Result 1. The probability of success of a set of ` clean rainbow tables of maximal size with m
chains of size t on a problem set of size N is:

P ∗ = 1−
(

1− m

N

)t`
≈ 1− e−2`.

Result 2. In a problem of size N , given the N possible chains started at column 1, there are on
average mc different points in column c with:

mc =
2N

c+ 1
.

In particular, the average maximum number of chains with different endpoints in a rainbow table
of t columns, for a problem of size N is:

mmax
t =

2N

t+ 1
.

Result 3. The optimal parameters for a rainbow table, for a problem of size N , given a memory
of M and a desired probability of success P ∗ are:

` =

⌈
− log(1− P ∗)

2

⌉
,

m =
M

`
,

t =
log(1− P ∗)
` log

(
1− m

N

) ≈ −N
M

log(1− P ∗).

Result 4. The average number of h evaluations during a search in column k (column 0 being the
rightmost one) of a set of ` clean rainbow tables of maximal size with chains of size t is:

Ck = k + (t− k + 1)qt−k+1,

with

qi = 1− i(i− 1)

t(t+ 1)
.

Result 5. The average number of h evaluations during the online phase of a set of ` clean rainbow
tables of maximal size with m chains of size t on a problem set of size N is:

T =

t∑
k=1

(
1−

(
1− m

N

)`)(
1− m

N

)(k−1)` k∑
i=1

`Ck

+
(

1− m

N

)t` t∑
k=1

`Ck,

5.2 Fingerprints

Despite having been analyzed separately (see e.g. [121]), checkpoints and endpoint truncation have
never been addressed together. Moreover, and more importantly, good checkpoint positions and
truncation amount were up to now found empirically. In this section, a new model is proposed. It
encompasses these two improvements of rainbow tables in a sensible and unified way. A technique
for determining configurations is discussed in Section 5.4.

5.2. Fingerprints 81

5.2.1 Rationale

In regular rainbow tables, chains are composed of the startpoints, which allows one to rebuild
that chain without ambiguity, and the endpoints, which are used to select the chain to rebuild
in each step of the online phase. Although it is necessary for the startpoints to be points in
A for the chain reconstruction to be meaningful, it is not necessary for endpoints to have that
property. Indeed, their purpose is solely to compare the online chain with each chain of the table,
in order to determine which should be rebuilt (if there is one). An issue with using the endpoint as
characterization is that when the online chain merges with a precomputed chain, they cannot be
distinguished. This leads to the false alarms, which are the pet hate of the time-memory trade-offs.
The fingerprints reduce this problem by providing a better way to characterize the chains.

5.2.2 Description

Definition

In the model presented in this chapter, the characterization of a chain is the list of checkpoints,
and the endpoint is considered as a regular checkpoint. Formally, a fingerprint Fj is defined as the
concatenation of the outputs of the functions Φi applied to each element Xj,i of the chain:

Fj = Φ1(Xj,1) || Φ2(Xj,2) || . . . || Φt(Xj,t)

where j ∈ [1,m], “||” denotes the concatenation, and Φi (1 ≤ i ≤ t) is a checkpoint function, used
in column i. A checkpoint function is such that:

Φi : A →

{
{0, 1}σi if σi > 0

ε otherwise

with 0 ≤ σi ≤ dlog2Ne. The output of the checkpoint function is called a checkpoint. A fingerprint
is therefore the concatenation of the checkpoints in the chain. Note that a checkpoint function is
expected to have a uniform distribution of its output, as it is the case with reduction functions. A
typical checkpoint function Φi(x) returns the σi least significant bits of x for instance.

Note that, depending on the configuration (i.e. the value of σi in all columns), a fingerprint Fj
is not necessarily dlog2Ne bits long. In fact, fingerprints are typically smaller than the endpoints
in regular rainbow tables, as shown in Section 6.5. This allows the rainbow table with fingerprints
to contain more chains than what a regular rainbow table would, for the same memory.

Precomputation Phase

Precomputation in rainbow tables with fingerprints is very similar to that of regular rainbow tables.
The difference is that during the computation of a chain, the checkpoint functions are applied on
each point, such that a fingerprint is computed for that chain. Once a chain is complete, the start-
point, the fingerprint, as well as the endpoint (i.e. the last point of the chain) are all temporarily
stored. Similarly to rainbow tables, chains are then sorted according to their endpoints in order
to remove the merging chains. The table thus becomes clean (or perfect). Endpoints are then
discarded, as they are no longer required. A final step consists in sorting the chains according to
their fingerprints, in order to make the search more efficient6. Note that at this point, there might
be several chains sharing the same fingerprint even though they had different endpoints. However,
this is marginal for reasonable configurations. This final step (sorting fingerprints) requires negli-
gible time with respect to the earlier work, much like sorting the endpoints requires negligible time
over the computation of the chains. Rainbow tables with fingerprints therefore require the same
amount of precomputation as their regular counterparts.

6The sort is performed in reverse order, that is the fingerprints are considered flipped, because partial fingerprints
Φc(Xj,c)|| . . . ||Φt(Xj,t) are searched in the online phase. This ensures that multiple candidate matching fingerprints
are contiguous in the list, making the search more efficient.

82 Chapter 5. Rainbow Tables with Fingerprints

Online Phase

Again, the algorithm for performing the search in rainbow tables with fingerprints is very close to
the one of regular rainbow tables, as described in Chapter 1. However, the checkpoint functions
are applied to the online chain, which gives a partial fingerprint (rather than an endpoint). The
fingerprint is partial because the online chain is shorter than chains of the table, and therefore it
might be that not all checkpoints are part of it. The partial fingerprint is then compared to stored
fingerprints (the comparison is done for the available bits only). A second particularity is that
there might be several fingerprints matching the partial fingerprint of the online chain, leading to
possibly several false alarms per step (there can only be one in regular rainbow tables).

The fact that endpoints are possibly not completely part of the fingerprint means that it
is possible that two non-merging chains share the same fingerprint. This leads to false alarms,
although they are not of the same type as false alarms caused by merges. Consequently, false
alarms are divided into two types: Type-I false alarms are those that are merge-induced, and
Type-II false alarms are those that are caused by partial fingerprint matching of non-merging
chains. Although Type-II false alarms do not appear in regular rainbow tables, the additional cost
they incur in tables with fingerprints is more than made up for by the other benefits (in good
configurations).

5.3 Analysis

This section provides an analysis of rainbow tables with fingerprints. Theorem 1 presents pre-
liminary results regarding fortuitous collisions in checkpoint functions, and Theorem 2 is presents
the average execution cost of a rainbow table with fingerprints, for a given configuration. In this
section, the following notations are used, in agreement with the existing litterature on the analysis
of rainbow tables: ` is the number of tables, m is the amount of chains per table, and t is the
length of the chains.

Let φc be the probability that two different points have the same checkpoint in a given column c:

φc := Pr
[
Φc(x) = Φc(y)|x, y ∈ A : x 6= y

]
. (5.1)

This probability is useful to describe the event of two non-merging chains having the same partial
fingerprint.

Theorem 1. If N ≡ 0 (mod 2σc), given a column c, the probability that two different points chosen
uniformly at random in A have the same checkpoint in c is:

φc =
N/2σc − 1

N − 1
. (5.2)

Proof. Given a value x and its corresponding checkpoint Φc(x), there are N − 1 different possible
values y 6= x. Among those, there are on average N/2σc − 1 values y such that Φc(x) = Φc(y).

This theorem assumes that both the points in a column and the checkpoints are uniformly
distributed. This is for instance ensured if the reduction and checkpoint functions are modulos,
and if the h function has a uniformly distributed output, which is the case in virtually all practical
cases. This assumption is already made in previous analyses, such as [28] and [147].

The following theorem gives the average cost of a search using a rainbow table with fingerprints.

Theorem 2. The average amount of evaluations of h during the online phase using the rainbow
tables with fingerprints is:

T =

`t∑
k=1

m

N

(
1− m

N

)k−1

(Wk +Qk) +
(

1− m

N

)`t
(W`t +Q`t) , (5.3)

5.3. Analysis 83

with

ci = t−
⌊
i− 1

`

⌋
, qc = 1−

t∏
i=c

(
1− mi

N

)
,

Wk =

k∑
i=1

(t− ci), Pc =
m

N
+
mc −m
N

φcP̃c+1 +
N −mc

N
φcPc+1,

Qk =

k∑
i=1

(ci − 1)(Pci + Eci), P̃c =
1

t− c+ 1
+

t− c
t− c+ 1

φcP̃c+1

Ec = (m− qc)
t∏
i=c

φi, Pt =
m

N
, P̃t = 1.

Proof. Given the online phase described in Section 5.2, we have:

T =

`t∑
k=1

pkTk + pfailT`t, (5.4)

with pfail and pk the probabilities that the attack fails, and that it succeeds after k steps respectively.
Here, Tk denotes the average amount of evaluations of h when the attack stops after k steps.

Determination of pk and pfail:
The probability that the current point is found in a column is m/N , and pk is the probability that
the current point is found in a column, but is not found in the preceding k − 1 searches:

pk =
m

N

(
1− m

N

)k−1

. (5.5)

The probability of failure pfail is simply the probability that the current point is not found in any
of the `t previous searches, that is: (

1− m

N

)`t
. (5.6)

Determination of Tk:
At each step, h is computed for the following reasons: when building the online chain (this work
is noted W), and when filtering false alarms (noted Q), hence Tk = Wk +Qk.

Determination of Wk:
At step k, the fingerprint comparison is done at column

ck = t−
⌊
k − 1

`

⌋
.

The number of h computations needed for the online chain is the number of columns separating
ck from t, that is t− ck. Consequently,

Wk =

k∑
i=1

(t− ci). (5.7)

Determination of Qk:
Similarly, for each false alarm, a chain from column 1 to column ck has to be computed, needing
ck − 1 computations. Hence, we have:

Qk =

k∑
i=1

(ci − 1)Fci , (5.8)

with Fc the average number of false alarms at column c. False alarms in rainbow tables with
fingerprints are of two types. Type-I false alarms are the same as the ones in rainbow tables and

84 Chapter 5. Rainbow Tables with Fingerprints

t

N

c

mc

mt = m

0

1

Figure 5.3: Illustration of the different types of merges. At column c, a concrete merge (1) occurs
when the online chain is in the dark gray area; an abstract merge (2) occurs when the online chain
is in the medium gray area; finally, the online chain is free (3) while it is in the light gray area.

occur because of merges induced by reduction functions. Type-II false alarms occur because two
chains may have the same partial fingerprint. Pc and Ec respectively denote the average number
of Type-I and Type-II false alarms at column c. In the following, all alarms (that is, including
the one true alarm) are counted as false alarms, for the sake of simplicity. The resulting loss in
accuracy is negligible.

Determination of Pc:
Because the tables are clean (or perfect), there can be at most one Type-I false alarm per step.
This false alarm, if it exists, is due to a chain merging with the online chain, somewhere between c
and t. Moreover, for this chain to cause a false alarm, the partial fingerprint must match before the
merge as well. The online chain is started by computing rc(y). There can only be three separate
outcomes:

(1) there exists a chain j in the table such that Xj,c = rc(y) (“concrete” merge),

(2) rc(y) belongs to the mc −m other points that could also be in the table (“abstract” merge),

(3) rc(y) is one of the N −mc remaining points (“free” chain).

These three cases are illustrated in figure 5.3. Although this might not seem intuitive, the cases
(2) and (3) are different. This is because when a point is one of the mc points that could appear
in this column, it results in a merge in all cases, while it might not be the case in (3). We have:

Pc = Pr(Type-I false alarm from column c)

= Pr(Type-I FA from column c | concrete merge in c)× Pr(concrete merge in c)

+ Pr(Type-I FA from column c | abstract merge in c)× Pr(abstract merge in c)

+ Pr(Type-I FA from column c | free in c)× Pr(free in c).

The following details this part by part.
The first factor of the first term is simply equal to one. Indeed, in case (1) the online chain

merges entirely with chain j, inevitably leading to a partial fingerprint match. The second factor
is equal to m

N because there are N possibilities, and m of them lead to a point in one of the chains.
For the second term, the second factor is equal to mc−m

N , for similar reasons. For the first
factor, we have:

Pr(Type-I FA from column c | abstract merge in c)

= Pr(Same checkpoint in c ∧ Type-I FA from column c+ 1 | abstract merge in c)

= Pr(Same checkpoint in c | abstract merge in c)

× Pr(Type-I FA from column c+ 1 | abstract merge in c)

= φc P̃c+1.

5.3. Analysis 85

The computation of P̃c is addressed below. The second equality is valid because the two event in
the joint probability are independent. Indeed, given that there is an abstract merge in c, the two
chains have not merged yet in c and thus the checkpoint in c does not give any information on a
possible future Type-I false alarm. Conversely, the behavior after c does not change the situation
in c.

Finally, for the last term, the second factor is equal to N−mc
N , again for the same reasons. For

the first factor, we have:

Pr(Type-I FA from column c | free in c)

= Pr(Same checkpoint in c ∧ Type-I FA from column c+ 1 | free in c)

= Pr(Same checkpoint in c | free in c) Pr(Type-I FA from column c+ 1 | free in c)

= φc Pc+1.

We have that Pr(Type-I FA from column c+ 1 | free in c) = Pc+1 because the fact of having a free
chain in c means that it can lead to any of the N points in column c + 1. Therefore it does not
restrict the situation for the next column. The validity of the second equality can be argued as
above.

Finally,

Pc =
m

N
+
mc −m
N

φcP̃c+1 +
N −mc

N
φcPc+1. (5.9)

For the initial case, when c = t, the only solution is that a concrete merge occurs right away,
that is:

Pt =
m

N
. (5.10)

Determination of P̃c:

The probability P̃c is calculated in a very similar way to Pc. The difference is that this is a
situation of abstract merge before column c. It will therefore result in a merge in all cases, but
not necessarily to a false alarm since for that, all the intermediary checkpoints must match. When
computing rc(y), there are only two possible outcomes (the chain cannot be free again since it has
merged):

(1) there exists a chain j in the table such that Xj,c = rc(y) (a concrete merge),

(2) rc(y) belongs to the mc −m other points that could also be in the table (a continuation of
the abstract merge).

This gives:

P̃c = Pr(Type-I FA from column c | abstract merge in c− 1)

= Pr(Type-I FA from column c | abstract merge in c− 1 ∧ concrete merge in c)

Pr(concrete merge in c | abstract merge in c− 1)

+ Pr(Type-I FA from column c | abstract merge in c− 1 ∧ abstract merge in c)

Pr(abstract merge in c | abstract merge in c− 1).

This is analyzed part by part below.
In the first term, the first factor is equal to one. Indeed, the fact that there is a concrete

merge in c supersedes the fact that there was an abstract merge in c− 1, which leads to the same
expression as the corresponding probability in Pc. The second factor may be rewritten as such:

Pr(concrete merge in c | abstract merge in c− 1)

= Pr(online chain merges in c | abstract merge in c− 1)

× Pr(concrete merge in c | online chain merges in c ∧ abstract merge in c− 1).

The first factor is equal to mc−1−mc
mc−1−m . Indeed, among the mc−1 −m chains that were abstract in

c− 1, there are mc−1 −mc of them that merged in c (that is, mc−1 −mc chains were “lost”). The

86 Chapter 5. Rainbow Tables with Fingerprints

second factor is equal to m
mc

: among the mc possible chains to merge with, m chains correspond
to a concrete merge. Using the approximation from Result 2, we can rewrite:

mc−1 −mc

mc−1 −m
m

mc
=

2N
c −

2N
c+1

2N
c −

2N
t+1

2N
t+1
2N
c+1

=
(c+ 1)(1

c −
1
c+1)

(t+ 1)(1
c −

1
t+1)

=
1

t− c+ 1
.

In the second term of P̃c, the second factor is the complement of the probability discussed
above, that is t−c

t−c+1 . For the first factor, again the fact that there is an abstract merge in c− 1 is
superseded by the fact that there is an abstract merge in c. This leads to the same expression as
the corresponding probability in Pc, that is φc P̃c+1.

To summarize, we have:

P̃c =
1

t− c+ 1
+

t− c
t− c+ 1

φc P̃c+1. (5.11)

For the initial case when c = t, a merge may only be concrete, and therefore:

P̃t = 1. (5.12)

Determination of Ec:
The probability of having a merge between columns c and t, already identified in [28], is qc =
1 −

∏t
i=c

(
1− mi

N

)
. The probability that the online chain merges with a chain of the table is

qc, and therefore, there are on average m − qc non-merging chains. Among those, each creates a
Type-II FA with probability

∏t
i=c φi, which gives:

Ec = (m− qc)
t∏
i=c

φi. (5.13)

Using equations (5.5), (5.6), (5.7), (5.8), (5.9), (5.11), and (5.13) into (5.4) gives (7.1), allowing us
to conclude.

5.4 Algorithm for Finding Optimal Configurations

This section presents an algorithm for determining the configuration of a rainbow table with fin-
gerprints. Up to now, the configurations for checkpoints and endpoint truncation were found
empirically.

5.4.1 Hill Climbing

Hill Climbing [168] is a local search technique designed to obtain a local optimum of a function f
using an iterative procedure. If f has a single local optimum which is thus the global optimum (in
our case, minimum), it will be found by in a finite (and small) number of steps with Hill Climbing.
The idea is the following. Let f : X → R be the target function of which one wants to find the
global minimum. An initial x0 ∈ X is chosen, and each step consists in exploring the neighbors
of the current point, evaluating f in these neighbor positions, and comparing these values to that
of the current position. The new current point is then set to be the neighbor that minimized f
among all the neighbors. The search goes on until a situation where all neighbor have small values
through f than the current point, which consists in a local minimum.

The definition of neighbor depends on the application, but when minimizing a discrete function,
it is rather straightforward. An additional improvement that is used in order to accelerate the
search is starting with a large step, and decreasing it gradually whenever the search stalls, until
the step is sufficiently small.

See [168] for a more thorough description of the Hill Climbing algorithm.

5.4. Algorithm for Finding Optimal Configurations 87

5.4.2 Application to Checkpoint Functions

As shown in Section 5.3, the performance of the rainbow tables with fingerprints strongly depends
on their configuration.

One way to find the best configuration for the checkpoint functions is to apply a brute-force
technique to compute T for the (1 + dlog2Ne)t possibilities (from 0 to dlog2Ne bits included for
each column), and keep the one that minimizes T . This however is not feasible for any practical
instance, because the parameter space is too large. Instead, Hill climbing is used, as described in
Section 5.4.1, to compute these configurations efficiently. In order to apply it, the two following
assumptions are made.

First, all the non-ε checkpoint functions, except the one in column t, output exactly one bit.
This hypothesis makes sense because one two-bit checkpoint in a column or two one-bit checkpoints
in adjacent columns give nearly identical results. Moreover, it has been observed experimentally
that good configurations tend to have their non-ε checkpoints scattered, except in the last column
where a more important concentration is more efficient. This tendency is most likely explained by
Type-II false alarms.

Then, it is assumed that the local minimum is a global minimum (that is, T is unimodal with
respect to the positions of the one-bit checkpoints). This has been observed experimentally.

Note that this technique is conservative in the sense that if either assumption is not verified,
then the real optimal configuration can only lead to yet better performance. In the following, the
“optimal configurations” refer to the best solutions found using this approach. The determination
of the configuration is of course only done once, before the precomputation phase, and adds a
marginal overhead to its cost.

The overall technique used to find the optimal configurations is displayed in Algorithm 7.
The variables nbits and ncp represent respectively the number of bits for a fingerprint (that is,
nbits =

∑t
i=1 σi) and the number of one-bit non-final checkpoints (that is, ncp = nbits−σt). The

values nbitsmin and nbitsmax represent the range of search of nbits. In theory, this goes from 1
up to t × dlog2Ne, but it is impractical to explore that range. These bounds need to be defined
heuristically. Experiments seem to point out that it is hardly necessary to search beyond about
[0.75dlog2Ne, . . . , 1.25dlog2Ne]. The same holds for the values ncpmin and ncpmax, which represent
the range of search of ncp. Again, in theory these bounds are respectively 0 and nbits, but in
practice, the optimal configuration is in most cases in a range of about [0.1 nbits, . . . , 0.4 nbits].

Algorithm 7 Algorithm for finding optimal configurations of rainbow tables with fingerprints.

Require: N,M, `
bestcfg ← ∅
for nbits ∈ [nbitsmin, . . . , nbitsmax] do
m←M/(`× nbits)
t← 2N/m− 1
for ncp ∈ [ncpmin, . . . , ncpmax] do
newcfg ← Hill Climbing on T with ncp one-bit checkpoints and a final (nbits− ncp)-bits
checkpoint
if T (newcfg) < T (bestcfg) then
bestcfg ← newcfg

end if
end for

end for
return bestcfg

Finally, there is a clear constancy in the optimal positions for the one-bit checkpoints, as
represented in Figure 5.4. One can notice that, for a given ncpopt, the relative positions of the
one-bit checkpoints remain the same. When ncpopt changes (as is the case between N = 244 and
N = 246 for instance), the relative checkpoint positions change as well, although they retain the
same structure. Although no analytic way to use this was found, one could spare the somewhat
tedious procedure exposed in this section by using known optimal relative checkpoint positions, or
using them as initial startpoints for the Hill Climbing search.

88 Chapter 5. Rainbow Tables with Fingerprints

Figure 5.4: Repartition of one-bit checkpoints relatively to t (perfect tables with ` = 4).

Table 5.1: Gain due to fingerprints over regular rainbow tables for various N and M .

238 240 242 244 246 248

2GB 32.48% 35.94% 39.01% 41.73% 44.16% 46.35%

4GB 30.76% 34.36% 37.54% 40.36% 42.88% 45.14%

8GB 29.04% 32.76% 36.05% 38.97% 41.58% 43.93%

5.5 Theoretical and Experimental Results

5.5.1 Theoretical Results

Table 5.1 presents the gain 1 − Tfingerprint/Tregular between rainbow tables with fingerprints in
optimal configurations and regular rainbow tables, for different sizes of key space and memory
dedicated to the trade-off. The value ` = 4 is considered in both cases7, and m and t are set
for regular rainbow tables to the optimal values as presented in [28]. For the fingerprint version,
Algorithm 7 is used to find the optimal configurations.

Table 5.1 is filled with memory sizes that belong to a reasonable range for an average personal
computer. Note that M denotes the memory dedicated for endpoints/fingerprints only (adding the
startpoints about doubles the memory required). The problem sizes are also driven by practical
considerations, to avoid a prohibitive online search time. Analyzing the results leads to two trends.
The advantage of the rainbow tables with fingerprints over the regular version tends to increase as
the memory decreases. Secondly, the gain increases with the problem size. This behavior can be
explained by the fact that when N is large, or when M is small, t and therefore T increases, and
there is thus more freedom in the configuration of the checkpoint functions.

Table 5.2 lists differences in the parameters and results between rainbow tables with fingerprints
in optimal configuration and regular rainbow tables in several settings. Again, the memory M is
the one dedicated to endpoint/fingerprint storage (identical in both cases). The row “Positions”
corresponds to the set of columns associated with a one-bit checkpoint. In the optimal configura-
tions found, all checkpoints but the one in the last column consist of at most one bit, as described
in Section 5.4.2. The use of the following checkpoint functions are assumed:

Φi : A → {0, 1}σi

x 7→

{
lsbσi(x) if σi > 0

ε otherwise,

7This value for ` represents an overwhelming success probability, and is the default in Ophcrack [148], for instance.
Other values of ` lead to very similar results.

5.5. Theoretical and Experimental Results 89

where lsbn(x) is a function that outputs the n least significant bits of x.

One can observe that when additional memory is available, the optimal solutions tend to use
some extra memory per chain, and vice versa. Additionally, it is noteworthy that the cost of a
false alarm for rainbow tables with fingerprints is around one third of the one for regular rainbow
tables.

Table 5.2: Analytical performance for the best configurations of rainbow tables with fingerprints
(perfect tables with ` = 4).

(a) N = 248, M = 2GB

regular rainbow
tables

rainbow tables with
fingerprints

m 4.47× 107 4.88× 107

|Ej |, |Fj | 48 40
t 1.26× 107 1.15× 107

T 2.32× 1013 1.24× 1013 (−46.35%)
Average FA cost 1.33× 1013 0.41× 1013 (−68.88%)
Positions 8476358, 9172110, 9663530, 10050060, 10371170, 10647046,

10889558, 11106326, 11302572, 11482032

(b) N = 248, M = 4GB

regular rainbow
tables

rainbow tables with
fingerprints

m 8.95× 107 9.65× 107

|Ej |, |Fj | 48 41
t 6.29× 106 5.83× 106

T 5.79× 1012 3.18× 1012 (−45.14%)
Average FA cost 3.33× 1012, 1.06× 1012 (−68.20%)
Positions 4285001, 4636802, 4885286, 5080733, 5243100, 5382597,

5505222, 5614831, 5714062, 5804807

(c) N = 248, M = 8GB

regular rainbow
tables

rainbow tables with
fingerprints

m 1.79× 108 1.89× 108

|Ej |, |Fj | 48 43
t 3.15× 106 2.98× 106

T 1.45× 1012 0.81× 1012 (−43.93%)
Average FA cost 8.31× 1011 2.58× 1011 (−68.99%)
Positions 2155147, 2334199, 2460731, 2560281, 2642997, 2714070,

2776554, 2832410, 2882981, 2929230, 2971872

5.5.2 Experimental Validation

A time-memory trade-off with rainbow tables with fingerprints has been implemented in order
to illustrate the theory with experimental results. NTLM Hash alphanumeric (both lowercase
and uppercase) passwords of length 1 to 7 were considered. This represents a search space of

N =
∑7
i=1 62i ≈ 241.70.

The parameters are m = 5.03 × 108, t = 13554, ` = 4. Prefix/suffix decomposition [26] was
also used in order to save some extra memory, but this has no influence on the online performance
(it decreases M , the memory used in practice, but not m, the number of chains). The four tables
take up about 14.8GB in total. Using the methodology described in Section 5.4.2, the following

90 Chapter 5. Rainbow Tables with Fingerprints

Table 5.3: Theoretical and experimental (average of 25000 searches) results for NTLM problem.

Theoretical Experimental

operations total (×106) 19.88 19.29

operations for false alarms (×106) 7.28 7.15

false alarms 716.57 697.15

configuration was found:

Φi(x) =

lsb1(x) if i ∈ {10077, 10928, 11530, 12004, 12398, 12736, 13034, 13301}
lsb34(x) if i = 13554

ε otherwise.

The results of our experiment are presented in Table 5.3. It shows that the practice matches
with the theoretical estimations.

The precomputing phase for these tables took roughly a month on about a hundred machines.
The online phase takes place on a machine with a i7-3770 CPU and 16GB of RAM. Recovering
any alphanumeric NTLM Hash password (whose length is 1 to 7 characters) in this setting takes
3.5 seconds on average.

5.6 Conclusion

The fingerprint model for rainbow tables highlights that endpoints (truncated or not) and check-
points have the same nature. It provides a more intuitive and natural way to describe the rainbow
trade-off than endpoints, checkpoints, and truncation taken separately.

The technique discussed for finding optimal configurations, although biased towards configura-
tions of a certain type (scattered one-bit checkpoints along with a final, multi-bits checkpoint), is
practical and systematic. In typical scenarios, such configurations present a speedup of about two
with respect to regular rainbow tables.

Chapter 6

Rainbow Tables Optimal Storage

Articles related to this chapter

[17] Gildas Avoine and Xavier Carpent. Optimal Storage for Rainbow Tables. In Sukwoo
Kim and Seok-Yeol Kang, editors, International Conference on Information Security
and Cryptology – ICISC 2013, Seoul, Korea, November 2013.

Chapter 5 presents an variant of rainbow tables that improves their efficiency. This chapter
studies their storage. Although algorithmic improvements are important, implementation opti-
mizations are also very valuable: while it is stated in [147] that rainbow tables present a gain of
a factor 2 in time with respect to Hellman tables for instance, a gain of 3 can be gained through
storage optimizations alone. Despite some having been discussed in the past [26, 28, 48, 121], they
have never been the focus of a rigorous analysis and the optimal parameters have consequently
never been investigated. This is the subject of our work [17], presented at ICISC 2013, and the
focus of this chapter.

Although the techniques discussed throughout this chapter work in other trade-off algorithms
such as Hellman’s, the focus is on rainbow tables, that are significantly more efficient in prac-
tice [121, 147]. Likewise, and as discussed in Chapter 5, the analysis is done on clean tables of
maximal size, because they offer the best efficiency for a given memory.

The conventions and notations regarding cryptanalytic time-memory trade-offs introduced in
Section 5.1 are used throughout this chapter. Section 6.1 discusses rainbow table storage and
presents a lower bounds for endpoint storage. Section 6.2 presents the Prefix/Suffix Decomposi-
tion technique used in past implementations to compress endpoints, and provides an analysis of
its optimal parameterization. A more efficient technique for endpoint compression, dubbed “Com-
pressed Delta Encoding,” is introduced and analyzed in Section 6.3. Section 6.4 discusses the
compression of startpoints. Section 6.5 discusses practical details, presents results, and puts them
in perspective. The chapter is concluded in Section 6.6.

6.1 Bound for Endpoint Storage

The memory available for the tables is a very important factor. Recall from Chapter 1 that
cryptanalytic time-memory trade-offs follow the rule T ∝ N2/M2. More memory means faster
inversion and/or bigger searching space. It is therefore an interesting objective to reduce the
memory required to store the tables. Note that, because of the nature of the search process, an
efficient random access to the chains is necessary. This means that one can not simply compress
the tables using a regular entropy compression technique (e.g. deflate, lzw).

The data stored in rainbow tables are the startpoints and the endpoints. Their analysis may be
done separately, as motivated in Section 6.4. The first part of the discussion is focused on endpoint
storage.

91

92 Chapter 6. Rainbow Tables Optimal Storage

In the naive algorithm, each endpoint is stored on dlog2Ne bits. Therefore, the total memory
for endpoints Mep is:

Morig
ep = mdlog2Ne. (6.1)

Before discussing how this can be reduced, a theoretical lower bound for endpoint storage is
discussed here. A natural assumption that is made is that the endpoints are uniformly distributed
in A. Indeed, it is assumed that the output of h is uniformly distributed in B and that therefore
the output of ri ◦ h is uniformly distributed in A (i.e., expected to behave like a random oracle)1.
A second point is that, since the endpoints are free of duplicates, the number of possible sets of
endpoints is

(
N
m

)
(they are all equiprobable). Therefore, the average minimal number of bits to

store one such set of endpoints is:

Mopt
ep = log2

(
N

m

)
. (6.2)

Indeed, if one could index each possible endpoint set by an integer, this would be the size of one
such index.

Note that this bound regards the storage of the full endpoints only. Techniques that truncate
them (see Chapter 5) reduce the memory usage further, at the cost of increased online time.

6.2 Decomposition of the Endpoints in Prefix and Suffix

6.2.1 Description

The technique that is used in current implementations (see e.g. Ophcrack [148]) for storing end-
points efficiently is the prefix-suffix decomposition of the endpoints. It is discussed in [26, 28]. The
technique takes advantage of the fact that endpoints are sorted to store them more efficiently. In
the following, it is assumed that N = 2n for the sake of simplicity, but the technique also works if
N is not a power of two (see e.g. [26]).

The endpoints are sorted and divided in two parts: the p most significant bits form the prefix,
and the s = n − p (with N = 2n) least significant ones the suffix of an endpoint. They are then
stored in two separate files: the prefix file and the suffix file. The suffix file simply contains all the
suffixes, in the order of the sorted whole endpoints. The suffix file will also typically contain the
startpoints corresponding to each suffix. The prefix file contains a list of indices relating to the
suffix file. Each index indicates up to which suffix the corresponding prefix maps to.

This is illustrated with an example with n = 32 (that is a space size of N = 232), a prefix size
of p = 12 and a suffix size of s = 20. Figure 6.1 represents a possible list of sorted endpoints in
binary format. The first entry of the prefix table is 62, because the prefix 000000000000 is used
up to chain 62; the next entry is 198 because prefix 000000000001 is used up to there, and so
on. Whenever a prefix actually does not appear in the list of endpoints (this is possible although
unlikely if p is adequate), the index put in the prefix table is simply the same as the previous one.
In the previous example, the index related to prefix 000000000010 is also 198 because it does not
appear in the list of endpoints.

For the online phase, what needs to be specified is the operation that gives the startpoint
corresponding to some point x, or nothing if x is not in the endpoint list. For that, x is again
decomposed in a prefix and suffix (with the same p and s parameters). The prefix of x, let’s say
011101011100, is used to fetch the corresponding entry in the prefix table. This gives a number,
let’s say 11152, as well as the value just before this one, let’s say 10440 (note: if the entry is the
first chunk, then the previous index is simply 0). So, by construction, if x appears in the list of
endpoints, it must lie between entry 10441 and entry 11152 of the suffix table (included). A simple
binary search (or linear for that matter, the range should be very small anyway) in that area of
the suffix table is then carried out to find the right entry. The fetching operation is therefore very
comparable to the naive approach in terms of speed.

Finally, note that both prefix-suffix decomposition and compressed delta encoding (described
in Section 6.3) add negligible overhead in time in the precomputation and online phases. Indeed,

1This is the case with cryptographic hash functions, which are the focus of time-memory trade-offs such as rainbow
tables. Work has been done on more general (but less efficient) time-memory trade-offs for any function [82].

6.2. Decomposition of the Endpoints in Prefix and Suffix 93

chain 0

p︷ ︸︸ ︷
000000000000

s︷ ︸︸ ︷
00001011010100110110

chain 1 000000000000 00001100110101101001
chain 2 000000000000 00010001010101001010
chain 3 000000000000 00010111110001010011

... ...
chain 62 000000000000 10010101010111011100
chain 63 000000000001 00000010110101101001

... ...
chain 198 000000000001 11010101111101101011
chain 199 000000000011 00000100010011110111

... ...
chain m− 1 111111111111 11010100110000011110

⇓

Prefix file

(implicit prefix 0) 62
(implicit prefix 1) 198
(implicit prefix 2) 198

... ...
(implicit prefix 2p − 1) m− 1

Suffix file

chain 0 00001011010100110110
chain 1 00001100110101101001
chain 2 00010001010101001010
chain 3 00010111110001010011

...
chain 62 10010101010111011100
chain 63 00000010110101101001

...
chain 198 11010101111101101011
chain 199 00000100010011110111

...
chain m− 1 11010100110000011110

Figure 6.1: Prefix-suffix decomposition example with parameters N = 232, p = 12, s = 20.

the added cost consists in a handful of simple operations (shifts, additions, ...) versus typically
thousands of cryptographic hashes to compute a chain.

6.2.2 Analysis and Optimality

Let p be the size in bits of the prefix, and s = n−p the size in bits of the suffix. The total memory
used for endpoints is therefore:

Mps
ep = 2pdlog2me+ms. (6.3)

The first term is for the prefix file, with each possible prefix having an index in the suffix file. Since
the latter has m entries, the size of this index is dlog2me. The second term is for the suffix file
and its size is straightforward.

Theorem 3. The optimal parameter popt for the prefix-suffix decomposition is one of bp∗c or dp∗e,
where

p∗ = log2

m

dlog2me log 2
. (6.4)

Proof. First note that (6.3) is convex, because:

∂2Mps
ep

∂p2
= 2pdlog2me log2 2 > 0.

94 Chapter 6. Rainbow Tables Optimal Storage

A simple way to find the optimal value is thus to find the minimum of the relaxed optimization
problem, where p is a real-valued parameter, and test the two neighboring integer values. We have:

∂Mps
ep

∂p
= 2pdlog2me log 2−m.

Therefore,

p∗ = log2

m

dlog2me log 2
,

and the two neighboring integers are bp∗c and dp∗e. Finding which of the two is best is simply a
matter of evaluating (6.3).

6.3 Compressed Delta Encoding of the Endpoints

6.3.1 Description

A new technique called Compressed Delta Encoding is introduced in this section. The technique
consists in computing the vector of differences between each consecutive endpoint2, which is then
compressed using Rice coding [164] (this choice is argued in Section 6.3.2). This results in endpoint
differences of varying size (small differences being stored on fewer bits, and larger ones in more
bits).

The online phase requires to efficiently perform random accesses on the elements stored in the
table. In order to make the encoding efficient, an additional index table is computed and stored.
The space A is divided into L blocks of the same size. The start of each block is indexed in a
dedicated area of the memory, which size should be small compared to the compressed endpoints.
The index table contains L pairs of values that each indicate the starting (bit) position of the
corresponding block and the number of the chain. The former is used to jump into the right block,
and the latter is used to know what startpoint to use in case the point is found.

When the differences are computed during the offline phase, at the start of each i-th block, the
first difference is computed with respect to

⌊
iN
L

⌋
, and not the last endpoint encoded. The reason

is that if the difference was computed with respect to the previous endpoint instead, one would
need to decompress all the endpoints from the beginning. The resulting gain in space due to the
smaller differences is negligible.

During the online phase, given x, the corresponding block is found by computing
⌊
xL
N

⌋
, go to

the address pointed by that block by looking up in the small index table, and start recomputing
the sum of the differences with the offset

⌊⌊
xL
N

⌋
N
L

⌋
(i.e. the start of the corresponding block).

Once the sum is bigger or equal to x, the search is over (if it is equal, then a matching endpoint
is found, and if it is bigger, no such point exists). On average, m

2L decodings are required for each
search (each block contains on average m

L compressed endpoints). Experiences show that a number
of blocks of about L =

⌊
m
28

⌋
is reasonable for practical applications, as explained in Section 6.5.1.

Section 6.3.2 describes the technique quantitatively. A complete example of compressed delta
encoding is given in Section 6.3.3.

6.3.2 Analysis and Optimality

Let Ei denote the ith sorted endpoint and Di := Ei+1 − Ei − 1. We have:

Pr(Di = d) =

(
N−d−1
m−1

)(
N
m

) if 0 ≤ d ≤ N −m,

0 else.

(6.5)

Indeed this corresponds, among all possible choices for m endpoints in A, to choosing the other
m− 1 endpoints among the N − d− 1 values left. Since the probability does not depend on i, we
simply note D := Di.

2Note that endpoints are unique meaning that a zero difference is not possible. One can therefore also decrease
the differences by one.

6.3. Compressed Delta Encoding of the Endpoints 95

Theorem 4. The expected value of the difference (diminished by one) D between two consecutive
endpoints is:

E[D] =
N −m
m+ 1

(6.6)

Proof. We have E[D] =
∑∞
d=0 dPr(D = d). This is the expression that is addressed in p.175–177

of [88].

One can observe that the probability mass function (6.5) has a striking similarity with a geo-
metric distribution. Let D′ be a geometrically distributed random variable having the same average
as D, that is:

Pr(D′ = d) =

(
N −m
N + 1

)d
m+ 1

N + 1
.

Geometrically distributed data is best compressed when using schemes known as exponential
codes such as Rice coding [164] (Rice coding of parameter k is a special case of Golomb coding of
parameter m = 2k). Rice coding (see [164] for a thorough description) is a lossless data compression
scheme that creates variable-sized codes. Given an input integer x to compress, its corresponding
code is a binary string comprised of bx/2kc times the bit “1” followed by a bit “0”, and finally the
k least significant bits of x. For instance with a Rice parameter of k = 3, the integer “00110101”
is compressed to “1111110101”, and the integer “00000110” is compressed to “0110”.

It has been shown (see [83]) that Golomb codes are optimal to compress a geometrically dis-
tributed source. In order to select the parameter k that minimizes the rate (the average size of
a code), the results of [117] can be used. In the case of compressing endpoints, this leads to
Theorem 5.

Theorem 5. The optimal parameter kopt for the Rice coding of the differences (diminished by
one) of the endpoints is:

kopt = 1 +

⌊
log2

(
log(ϕ− 1)

log N−m
N+1

)⌋
, (6.7)

with ϕ the golden ratio (1 +
√

5)/2. The rate of the corresponding code is:

Rkopt = kopt +
1

1−
(
N −m
N + 1

)2k
opt (6.8)

Proof. See Section 3.A in [117], with µ = N−m
m+1 (from eq. (6.6)).

The memory usage of compressed delta encoding is determined as follows. Each of the m
compressed endpoints requires on average Rkopt bits as showed in Theorem 5. Additionally, each
entry in the index table comprises the position in bits of the beginning of its block, which requires
dlog2mRkopte bits, and the chain number for possible chain reconstruction, which requires dlog2me
bits. The total memory follows easily:

M cde
ep = mRkopt + L (dlog2mRkopte+ dlog2me) . (6.9)

6.3.3 Example

Figure 6.2 presents an example of compressed delta encoding. The parameters are a space size of
N = 220, a number of chains of m = 216, a number of blocks L = m

28 = 28, and a Rice parameter
k = kopt = 3. The first step consists in computing the delta encoding of the sorted endpoints (left
box) minus one. The list is divided in L blocks, with the beginning of each block marked (these
are the framed numbers in Figure 6.2). For instance, the second block should begin right after
N
L = 4096, which corresponds in this case to chain 249. The difference is computed with respect to
4096 rather than the previous endpoint 4090, in order to make the reconstruction possible. In the
second step, Rice compression is applied to these differences (top right box), and the index is built
(bottom right box). In the index, each block is mapped with its corresponding starting bit as well
as the corresponding chain number. Each entry in the index is 35 bits long, dlog2mRkopte = 19
for the bit address of the block and dlog2me = 16 for the chain number.

96 Chapter 6. Rainbow Tables Optimal Storage

chain 0 1
chain 1 7
chain 2 17
chain 3 31
chain 4 32
chain 5 52
chain 6 54

...
chain 248 4090
chain 249 4099
chain 250 4115

...

(1)⇒

chain 0 1
chain 1 5
chain 2 9
chain 3 13
chain 4 0
chain 5 19
chain 6 1

...
chain 248 14

chain 249 3
chain 250 15

...

(2)⇒

Compressed endpoints

(bit 0) 0001
(bit 4) 0101
(bit 8) 10001
(bit 13) 10101
(bit 18) 0000
(bit 22) 110011
(bit 28) 0001

...
(bit 1412) 10110

(bit 1417) 0011
(bit 1421) 10111

...

Index table

(bit 0) 0 0
(bit 35) 1417 249

...

Figure 6.2: Compressed delta encoding example with parameters N = 220, m = 216, L = m
28 = 28,

and k = kopt = 3. Step (1) is delta encoding (minus one) and step (2) is Rice compression and
index construction.

6.4 Compressing the Startpoints

Startpoint compression is addressed in this section. The main difference with the endpoints is
that startpoints are not sorted, which means that a list needs to be compressed, rather than a
set. Nevertheless, there is some slack in their choice. In particular, the startpoints are chosen in
{0, . . . ,m1 − 1} in [26, 28] (with m1 being the total number of chains generated during the offline
phase). They are, as far as we know, chosen in the same way in modern implementations, and are
therefore stored on dlog2m1e bits rather than n.

One might try to somehow compress this further, but the possible gain is very small. Indeed
the startpoints and endpoints may be seen as a choice of m couples in {0, . . . ,m1−1}×A, of which
there are

(
Nm1

m

)
. Therefore, using the same reasoning as in Section 6.1, one finds that the size of

startpoints and endpoints together is lower-bounded by:

Mopt
tot = log2

(
Nm1

m

)
. (6.10)

The total memory (the memory for the startpoints and the endpoints) is therefore given by
mdlog2m1e (that is, dlog2m1e bits for each startpoint) plus the memory for the endpoints, lower-
bounded by (and close to) eq. 6.2. This gives:

Mtot = mdlog2m1e+ log2

(
N

m

)
. (6.11)

Consider the following practical example: a space size of N = 240, a number of chains m = 224,
and m1 = 25 × m chains generated during the offline phase. In this case, the theoretical lower
bound for the total memory (from eq. (6.10)) is a mere 0.59% lower than the theoretical lower
bound for startpoints and compressed endpoints (from eq. (6.11)).

This tells us that it is not possible to do significantly better than compressing the endpoints as
explained in Section 6.3, and adding the startpoints on dlog2m1e bits. Nevertheless, recall that the

6.5. Experiments and Comparison 97

startpoints are in {0, . . . ,m1 − 1}. Whether other choices allowing them to be compressed more
exist is an open question.

6.5 Experiments and Comparison

Theoretical and practical experiments were carried out in order to compare the two techniques
(prefix-suffix decomposition and compressed delta encoding), and evaluate the gain realized with
respect to the naive implementation. The value of the number of blocks L for compressed delta
encoding is also discussed in this section.

6.5.1 Choice of the L Parameter

Recall from Section 6.3 that the compressed delta encoding technique separates the endpoints into
L blocks, and requires them to be indexed. The choice of the parameter L is a trade-off between
memory and online time. Indeed, if L is too big, the index part is large and the memory increases
too much. If it is too small, the online time is impacted in a noticeable way because the number
of items that need to be decompressed on the fly increases.

Let q = m
L be the average number of compressed endpoints per block. As mentioned in Sec-

tion 6.3.2, the average overhead to recover a point in the endpoint list is m
2L = q

2 . This overhead
should be negligible compared to the work done by computing the online chain and verifying
the false alarms at each step. However, note that this additional cost is highly implementation-
dependant, since the hash function can be more or less expensive to compute.

Considering that the decoding procedure relies on other computations than cryptographic hash
operations, it is difficult to have a reliable point of comparison other than measured time. The
decoding procedure was implemented in C, and a decoding speed of about 18ns/entry was ob-
served3. What is suggested here is that recovering an endpoint should take about the time of a
cryptographic hash operation. This fixes q ≈ 28 in this case. For instance with N = 240 and
m = 224, this results in a negligible 0.006% increase in online time, and in a memory overhead of
about 0.6%.

6.5.2 Measure of the Gain

Endpoint Compression

Figure 6.3 shows the ratios Mps
ep/M

orig
ep and M cde

ep /Morig
ep , which are a measure of the relative mem-

ory realized with respectively prefix-suffix decomposition and compressed delta encoding on the
memory required to store the endpoints (the lower, the better). The two measures are contrasted
with Mopt

ep /Morig
ep , the optimal gain. The original method consists in storing the endpoints on

dlog2Ne bits. In both cases, the optimal configurations are assumed, and for compressed delta
encoding, a value of L =

⌊
m
28

⌋
is considered. In this example, N = 240 is used, which corresponds to

a medium-sized search space for today’s hardware. Using a small or bigger searching space retains
the same overall picture, with similar conclusions. The horizontal axis is the number of chains m.

One can observe that compressed delta encoding offers a significantly better compression than
prefix-suffix decomposition, showing a 10 to 15% improvement in terms of memory. Figure 6.3 also
clearly indicates that compressed delta encoding is very close to the lower bound.

Total Compression

As discussed in Section 6.4, startpoints can not be compressed significantly better than when
encoded on dlog2m1e bits. When one includes the startpoints in the memory (assuming m1 =
25×m), the relative gain appears a bit smaller, as shown in Figure 6.4. It shows that compressed
delta encoding is 5 to 7% better than prefix-suffix decomposition assuming optimal configuration.
However, it is hard to tell if this number is very relevant because prefix-suffix decomposition might
have been used with non-optimal parameters in past implementations.

3This experiment has been done on a laptop with an i5 Intel Processor, with the encoded differences in RAM.
SHA-1 was used as a point of comparison for a hash function.

98 Chapter 6. Rainbow Tables Optimal Storage

216 218 220 222 224 226 228 230 232
0

0.2

0.4

0.6

0.8

1

Number of chains (m)

R
el
a
ti
ve

m
em

o
ry

Mopt
ep /Morig

ep

Mps
ep/M

orig
ep

M cde
ep /Morig

ep

Figure 6.3: Endpoints relative memory for the two techniques (N = 240).

216220224228232
236

240
244

248

0.5

0.6

0.7

Number of chains (m) Problem size (N)

R
el
at
iv
e
m
em

or
y

Mopt
tot /M

orig
tot

M cde
tot /M

orig
tot

Mps
tot/M

orig
tot

Figure 6.4: Total relative memory for the two techniques.

Table 6.1: Improvements in terms of memory and time for the two methods discussed in this
chapter compared to the naive approach. Parameters are m = 224, m1 = 25 ×m and N = 240.
Optimal configurations are assumed.

M (fixed time) T (fixed memory)
Naive approach 100.00% 100.00%

Prefix-suffix decomposition 63.44% 40.24%
Compressed delta encoding 58.44% 34.15%

6.6. Conclusion 99

Finally, Table 6.1 shows the gain brought by the two techniques (optimal parameters assumed)
with respect to the naive approach, on a problem with parameters m = 224, m1 = 25 × m and
N = 240. The naive startpoint compression discussed in Section 6.4 is assumed for the two latter
cases. The memory for the naive approach, the prefix-suffix decomposition, and compressed delta
encoding are computed using respectively:

Morig
tot = 2mn (6.12)

Mps
tot = mdlog2m1e+ 2pdlog2me+ms (6.13)

M cde
tot = mdlog2m1e+mRkopt + L (dlog2mRkopte+ dlog2me) (6.14)

In any case, the impact of good storage optimizations on the overall memory is clearly illus-
trated, showing a reduced usage to 58.44% of the initial memory (a bout a 42% reduction). Recall
that, since time-memory trade-offs follow the rule T ∝ N2/M2 as described in Section 5.1, a re-
duction of 42% of the memory (as it is the case for instance with m = 224, N = 240 in Figure 6.4)
is about the same as a speedup of 3 in time.

6.6 Conclusion

This chapter clearly illustrates the importance of implementation optimizations for storage in
rainbow tables. The compressed delta encoding (almost) reaches optimality and improves the
state of the art, prefix-suffix decomposition. These storage improvements represent a speedup of
about 3 in time (with respect to the naive method), which is of great practical significance.

100 Chapter 6. Rainbow Tables Optimal Storage

Chapter 7

Interleaving for Non-Uniform
Input Distribution

Articles related to this chapter

[18] Gildas Avoine and Xavier Carpent. Interleaving Cryptanalytic Time-memory Trade-
offs on Non-Uniform Distributions. ACM Symposium on Information, Computer and
Communication Security – ASIACCS’15. (submitted)

7.1 Introduction

Security experts are often facing the problem of guessing secret values such as passwords. Per-
forming an exhaustive search in the set of possible secrets is an ad-hoc approach commonly used.
In practice, the searching time can usually be reduced (on average) by exploiting side information
on the values to be guessed. For example, a password cracker checks the most commonly used
passwords and their variants before launching an exhaustive search. This optimization is very
effective, as described in [53, 142]. More generally, the distribution of the secrets can be exploited
to reduce the average cryptanalysis time [136].

Nowadays, cryptanalytic time-memory trade-offs are used by most password crackers. Unfor-
tunately, TMTOs do not behave well with non-uniform distributions of secrets because TMTOs,
by construction, uniformly explore the set of considered secrets. Duplicating secrets in the search
set artificially creates a non-uniform distribution but this approach does not make sense in practice
due to the excessive waste of memory. Providing a solution would be very impactful in practice,
though, not only for cracking passwords, but also for solving any problem that can be reduced to a
chosen plaintext attack. For example, anonymization techniques based on hashing email addresses
or MAC addresses are vulnerable targets for non-uniform TMTOs.

This chapter introduces a technique to make cryptanalytic time-memory trade-offs compliant
with non-uniform distributions. More precisely, the approach consists in (i) dividing a set into
subsets of close densities, and (ii) exploring the related time-memory trade-offs in an interleaved
way (instead of sequentially) defined by a density-related metric. The technique significantly
improves the cryptanalysis time when considering non-uniform distributions: it was employed to
crack passwords and it is shown to be 16 times faster than state-of-the-art techniques [147] when
considering real-life password distributions.

Cryptanalytic time-memory trade-offs are introduced in Section 5.1, and the same notations
and conventions are followed throughout this chapter. This chapter focuses on clean maximal-sized
rainbow tables. This choice was done because rainbow tables have been shown to be superior to
Hellman tables [147, 121], and maximal tables have the best online performance (despite being

101

102 Chapter 7. Interleaving for Non-Uniform Input Distribution

sub-TMTO 1

sub-TMTO 2

⇒

...

Order of
visits

Figure 7.1: Intuitive illustration of the interleaved order of visit of two sub-TMTOs.

slower to precompute). However, the interleaving technique discussed here can be easily adapted
to Hellman tables or non-maximal rainbow tables.

The interleaving technique is described and analyzed in Section 7.2), and the interleaving order
discussed in Section 7.3. Section 7.4 explains the memory allocation, and Section 7.5 provides
experimental results. Finally, the chapter is brought to a close in Section 7.6.

7.2 Interleaving

7.2.1 Description

The nature of rainbow tables dictates that each point of the input set is recovered using on average
the same time. There is no bias in the coverage either: each point is covered a priori with the same
probability.

In order to work efficiently with non-uniform input distribution, what we suggest is to divide the
TMTO into several sub-TMTOs, one for each subdivision of the input set that can be considered
as roughly uniform. For instance, if one wants to build a TMTO against passwords containing
alphanumeric characters as well as special characters, two sub-TMTOs can be built on a partition
of the input set: the “alphanumeric” password set and the “alphanumeric+special” password set
(that is without passwords that are purely alphanumeric). This makes sense because the second set
is considerably larger, despite most users having passwords from the first set. This disparity is not
exploited in a regular TMTO over the whole input set. However, having two separate sub-TMTOs
allows to dedicate a bigger share of the memory to the first one comparatively, thus accelerating
the search where it matters the most on average.

Formally, let the input set A be partitioned into n input subsets [A]b
1 of size |[A]b| = [N]b.

Each subset has a probability pb that the answer to the challenge in the online phase lies in [A]b.
The part of the trade-off dedicated to [A]b is named “sub-TMTO b”. The memory is divided and
a slice [M]b = ρbM is allocated for each sub-TMTO b, where M is the total memory available for
the trade-off. Each sub-TMTO b is built on [A]b using a memory of [M]b, exactly in the same way
than a regular TMTO.

In order to search through the sub-TMTOs, one naive approach could be to search through
each of them one by one, in decreasing order of probability. However, this technique is very slow
when the point to recover ends up being in one of the last sub-TMTOs. Indeed, the search in the
rainbow scheme is slower and slower when one moves towards the left of the TMTO. This drives the
average search time down and makes the technique wasteful. A more efficient approach referred to
as interleaving is discussed in the rest of this chapter. The idea of interleaving is to rather search
through all sub-TMTOs at the same time, but to pick one sub-TMTO to search through at each
step, effectively interleaving the order of columns visit. The intuition behind this may be found in
Fig. 7.1.

1For notations that already exist for rainbow tables, the convention adopted throughout the article to avoid
confusion is to surround them with brackets, as summarized in Table 7.1.

7.2. Interleaving 103

Table 7.1: Notations used in this chapter (specific to the interleaving technique).

Notation Meaning Notes

n number of subsets (and sub-TMTOs)

[A]b input subset
⋃n
b=1[A]b = A, [A]b ∩ [A]b′ = ∅ ∀ b 6= b′

[N]b input subset size [N]b = |[A]b|,
∑n
b=1[N]b = N

pb intrinsic probability of subset [A]b pb = Pr(x ∈ [A]b|y = h(x)),
∑n
b=1 pb = 1

[M]b memory size for sub-TMTO b
∑n
b=1[M]b = M

ρb memory proportion for sub-TMTO b ρbM = [M]b,
∑n
b=1 ρb = 1

[m]b number of chains of the sub-TMTO b [m]b = [M]b
2dlog2Ne

[t]b length of chains of the sub-TMTO b [t]b = 2[N]b
[m]b

− 1

t̂ total number of steps of the TMTO t̂ =
∑n
b=1[t]b

[Ci]b cost for column i of sub-TMTO b see Theorem 4

7.2.2 Analysis

Notations

In the analysis done in this chapter, the same number ` of tables is used in each sub-TMTO. It
is also possible to use a different number of tables per sub-TMTO, but this results in a different
probability of success for each of them.

A step is defined as being a search in one column for the ` tables of a given sub-TMTO. One
could choose to define a step as being a search in a column for a single table of a given sub-TMTO,
but doing so results in a negligible difference of performance at the cost of a more complicated
analysis and implementation.

The notations used in this chapter are presented in Table 7.1.

Online Phase

Probability of Success The probability of success is the same in rainbow tables that use inter-
leaving than in the undivided case, provided clean tables of maximal size are used.

Theorem 6. The probability of success of a set of interleaved clean rainbow tables of maximal size
is:

P ∗ ≈ 1− e−2`.

Proof. The probability of success is

P ∗ =

n∑
b=1

piP
∗
i ,

with P ∗i the probability of success of the sub-TMTO i. Since each sub-TMTO is a clean rainbow
table of maximal size, we have that P ∗i ≈ 1 − e−2`, as computed in Result 1 of Chapter 5. The
results follows from

∑n
b=1 pi = 1.

Average Time The average search time for interleaved rainbow tables is given in Theorem 7.
An example of the average speedup realized is given in Section 7.5.

Theorem 7. The average number of hash operations required in the online phase of a set of
interleaved clean rainbow tables of maximal size, given a set of n input subset sizes {[N]1, ..., [N]n},
intrinsic probabilities {p1, ..., pn}, numbers of chains {[m]1, ..., [m]n}, and a vector V = (V1, ..., Vt̂)

104 Chapter 7. Interleaving for Non-Uniform Input Distribution

representing the order of visits (i.e. Vk is the sub-TMTO chosen at step k) is:

T =

t̂∑
k=1

pVk

[
1−

(
1− [m]Vk

[N]Vk

)`] [
1− [m]Vk

[N]Vk

](Sk−1)` k∑
i=1

`[CSi]Vi

+

[
n∑
b=1

pb

(
1− [m]b

[N]b

)[t]b`
]

n∑
b=1

[t]b∑
s=1

`[Cs]b, (7.1)

with t̂ =
∑n
b=1[t]b the total maximum number of steps2, and Sk the number of steps for the sub-

TMTO Vk after k steps in total, that is:

Sk = #{i ≤ k|Vi = Vk}.

Proof. The formula is a relatively direct adaptation of the average time in the undivided case
(Result 5 of Chapter 5) to the interleaved case. Let y be the given hash in the online phase, and
x ∈ A be the the preimage of y. The average cryptanalysis time for a TMTO is:

T =

t̂∑
k

Pr(search succeeds at step k)× (cost up to step k)

+ Pr(search fails)× (cost of a complete search)

Vk is the sub-TMTO chosen to visit at some step k. Vk has been visited Sk− 1 times until step
k. The probability Pr(search succeeds at step k) is therefore:

pVk

(
1−

(
1− [m]Vk

[N]Vk

)`)(
1− [m]Vk

[N]Vk

)(Sk−1)`

. (7.2)

The first factor in (7.2) is simply Pr(x ∈ [A]Vk) (the search may not succeed otherwise). Then,
for the search to succeed at step k (or step Sk within the sub-TMTO Vk), it must have failed

up to now. This is the third factor in (7.2). The expression
[m]Vk
[N]Vk

is the probability that x lies

within any column of any table of the sub-TMTO Vk, provided that x ∈ [A]Vk . The expression(
1− [m]Vk

[N]Vk

)(Sk−1)`

is then just the probability that x is not in any of the (Sk − 1)` first columns

visited, provided that x ∈ [A]Vk . Finally, the second factor in (7.2) expresses the probability that
x lies within one of the ` columns visited at this step3, provided that x ∈ [A]Vk and that it has not
been found up to now.

The value “cost up to step k” is the sum of the cost of each step up to the current one. For
each step i ≤ k, the sub-TMTO visited is Vi (and it is its Si-th visit), and the associated cost is
[CSi]Vi (see Result 4 of Chapter 5).

The probability Pr(search fails) is:

n∑
b=1

pb

(
1− [m]b

[N]b

)[t]b`

. (7.3)

A failed search means that x is not in any of the [t]b columns of the sub-TMTO b where b is
such that x ∈ [A]b. Since the subsets [A]i form a partition of A, the law of total probability

gives (7.3). The factor
(

1− [m]b
[N]b

)[t]b`

is the probability that, x is not in any of the [t]b columns of

the sub-TMTO b, given x ∈ [A]b.

2 t̂ is used instead of t in order to avoid confusion with the number of columns of the undivided TMTO, which is
a different number.

3Note that one would normally stop the search as soon as x is found rather than continuing with all ` tables of
this step. This results in a more complex formula for the average time, and a negligible difference numerically.

7.2. Interleaving 105

Finally, the “cost of a complete search” is the sum of the cost of each step in all sub-TMTOs,

that is
∑n
b=1

∑[t]b
s=1 `[Cs]b. This expression could also be written

∑t̂
k=1 `[CSk]Vk , but the former

expression is closer to its counterpart in Theorem 5 and also highlights that the cost of failure is
independent of the order of visits V .

Note that Theorem 7 for interleaved rainbow tables is a generalization of Result 5 of Chapter 5
for classical rainbow tables. In particular, if n = 1 and V = (1, 1, ..., 1) with |V | = t, Theorem 7
gives the same equation as Result 5 of Chapter 5.

Worst-Case Time A drawback of the interleaving is that it has in general a worse worst-case
time than an undivided TMTO. The worst-case in interleaved rainbow tables corresponds to the
second factor of the last term in (7.1), that is:

n∑
b=1

[t]b∑
s=1

`[Cs]b. (7.4)

Note that it is independent of the subset probabilities and the order of visits.

Offline Phase

Precalculation of an interleaved TMTO consists in precalculation of each sub-TMTO independently.
Precalculation of a clean rainbow table set of m chains requires to build m1 = αm chains, where α
is a factor depending on how close to tables of maximal size the implementer wants to get (typical
numbers for α are 20–50).

The precalculation cost is the same regardless of the order of visit (since this only regards the
online phase), and asymptotically independent of the memory allocation for each sub-TMTO. In
particular, it is the same as in the undivided case, as shown in Theorem 8.

Theorem 8. The number of hash operations required in the precalculation phase of a set of inter-
leaved clean rainbow tables, given a set of n input subset sizes {[N]1, ..., [N]n}, numbers of chains
{[m]1, ..., [m]n}, and given α, the overhead factor for clean tables, is:

P ≈ 2α`N.

Proof. The precalculation consists in computing, for each sub-TMTO b and for each of its ` tables,
[m1]b = α[m]b chains of [tb] points.

P =

n∑
b=1

`[m1]b[t]b.

By replacing the definition of [t]b for clean tables, we get

P =

n∑
b=1

`[m1]b

(
2[N]b
[m]b

− 1

)
≈

n∑
b=1

`2α[N]b.

The approximation
(

2[N]b
[m]b

− 1
)
≈ 2[N]b

[m]b
is good because typically, [t]b � 1. For unusually small

tables, the precalculation cost is slightly overestimated. The conclusion follows from
∑n
b=1[N]b =

N

Storage

In this analysis, a naive storage consisting in storing both the starting and ending points on dlog2Ne
bits is used. This explains why the number of chains [m]b is given as [M]b

2dlog2Ne
in Table 7.1.

Other options could be envisaged, such as storing the starting points on dlog2[m1]be bits and the
ending points on dlog2[N]be bits, or even better, using prefix-suffix decomposition or compressed
delta encoding [17]. These storage techniques improve the memory efficiency and therefore im-
plicitly the global efficiency of the trade-off. In fact, they are even more beneficial for interleaved

106 Chapter 7. Interleaving for Non-Uniform Input Distribution

sub-TMTOs than for an undivided TMTO, because sub-TMTOs operate on smaller subsets, and
can therefore benefit from a more substantial reduction of the memory.

However, taking these into account makes both the analysis of interleaved sub-TMTOs and
their comparison with an undivided TMTO quite a bit more complex. It is however strongly
encouraged to take these storage improvements into consideration for practical implementations,
and for figuring out the optimal memory allocation (as discussed in Section 7.4.2) for such practical
implementations.

7.3 Order of Visit

7.3.1 Discussion

This section discusses the order of visit of the columns of the sub-TMTOs. Before every step
during the search, a decision is made regarding in which sub-TMTO to search through during this
step. This decision should be made easily and quickly, and the goal is to have an order of visit
that minimizes the average search time.

What is suggested is that a metric is computed for each sub-TMTO b. This metric is defined
as being the probability to find a solution in [A]b at the next step, divided by the average amount
of work at the next step in sub-TMTO b (Definition 1).

Definition 1. The metric associated to the k-th step of sub-TMTO b is:

η(b, k) =
Pr(x found at the k-th step in sub-TMTO b)

E[work for the k-th step in sub-TMTO b]
,

with x, an answer in the online phase.

The sub-TMTO that should be visited is the one with the highest metric. This metric is
quantified for the rainbow scheme case in Section 7.3.2.

7.3.2 Analysis

It has been shown in [28] that the probability for the preimage to be in any column is m/N . This
probability is thus independent of the column visited. Moreover, it may be seen from Result 4 of
Chapter 5 that the cost is monotonically increasing towards the left columns in a rainbow table.
This means that it is always preferable to visit the rightmost column that is not yet visited first.
Therefore, the metric is only computed for each sub-TMTO rather than for each column, since the
choice of the column is implicitly the rightmost one4.

Theorem 9. The metric associated to the k-th step of sub-TMTO b is:

η(b, k) =

pb ×
(

1−
(

1− [m]b
[N]b

)`)(
1− [m]b

[N]b

)(k−1)`

`[Ck]b

Proof. The numerator in Definition 1 is the probability addressed in equation (7.2) in the proof
of Theorem 7. The denominator, the expected work required at step k in sub-TMTO b is denoted
[Ck]b, and is computed as indicated in Result 4 of Chapter 5. Since the search is done in ` tables,
the total work done at this step on average is `[Ck]b.

The Lemma 3 provided below helps demonstrating Theorem 10.

Lemma 3. The metric η(b, k) defined in Theorem 9 is a decreasing function of k.

4Note that in rainbow tables with checkpoints [26], this is not entirely the case (columns where checkpoints are
placed often have a slightly cheaper cost than the the column immediately to their right, for instance). Nevertheless,
the search is performed from right to left as well in such tables (see [26]), and experiments show that the gain of
reorganizing columns visit for taking this into account is extremely small.

7.3. Order of Visit 107

Proof. The numerator of η(b, k) is decreasing, because both pb and

(
1−

(
1− [m]b

[N]b

)`)
are constant,

and because
(

1− [m]b
[N]b

)(k−1)`

is decreasing (since 1− [m]b
[N]b

< 1).

The denominator is an increasing function of k since the cost of a step is increasingly expensive
towards the left of a rainbow table.

Theorem 10. The metric given in Theorem 9 is optimal, that is it minimizes T from Theorem 7
given a set of n input subset sizes {[N]1, ..., [N]n}, intrinsic probabilities {p1, ..., pn} and numbers
of chains {[m]1, ..., [m]n}.

Proof. For the sake of clarity, the following simplified notations are used in this proof:

f(b, k) = pb

(
1−

(
1− [m]b

[N]b

)`)(
1− [m]b

[N]b

)(k−1)`

,

g(b, k) = `[Ck]b.

Let V be a vector describing an arbitrary order of visit. Let V ∗ be a vector describing the order
of visit dictated by the metric given in Theorem 9. V is thus an arbitrary permutation of V ∗. Sk
(resp. S∗k) is defined as in Theorem 7, that is how many times Vk (resp. V ∗k) has been visited up
to step k included:

Sk = #{i ≤ k|Vi = Vk},
S∗k = #{i ≤ k|V ∗i = V ∗k }.

Additionally, let σ(b, k) be the position of the k-th apparition of the sub-TMTO b in V (and σ∗(b, k)
its V ∗ equivalent). In particular, the following identity binds these notations:

σ(Vi, Si) = σ∗(V ∗i , S
∗
i) = i ∀ 1 ≤ i ≤ t̂.

The goal is to minimize (7.1), that is:

T =

t̂∑
k=1

pVk

[
1−

(
1− [m]Vk

[N]Vk

)`] [
1− [m]Vk

[N]Vk

](Sk−1)` k∑
i=1

`[CSi]Vi

+

[
n∑
b=1

pb

(
1− [m]b

[N]b

)[t]b`
]

n∑
b=1

[t]b∑
s=1

`[Cs]b

=

t̂∑
k=1

f(Vk, Sk)

k∑
i=1

g(Vi, Si) + constant.

Note that the second term of this expression is constant, regardless of the choice for V . Therefore,
in order to prove the optimality of the metric and thus the optimality of the choice of V ∗, it suffices
to show that G ≥ G∗, with:

G =

t̂∑
k=1

f(Vk, Sk)

k∑
i=1

g(Vi, Si), (7.5)

G∗ =

t̂∑
k=1

f(V ∗k , S
∗
k)

k∑
i=1

g(V ∗i , S
∗
i), (7.6)

and with V any permutation of V ∗. Equation (7.5) can be re-written such that sub-TMTOs are
considered in consecutive order rather than considering them in the order of visit (this is a mere
re-ordering of the terms in the sum):

G =

n∑
b=1

[t]b∑
k=1

f(b, k)

σ(b,k)∑
i=1

g(Vi, Si),

108 Chapter 7. Interleaving for Non-Uniform Input Distribution

and likewise for the sum in (7.6). It is now possible to factorize the difference G−G∗ as such:

G−G∗ =

n∑
b=1

[t]b∑
k=1

f(b, k)

σ(b,k)∑
i=1

g(Vi, Si)−
σ∗(b,k)∑
i=1

g(V ∗i , S
∗
i)

 . (7.7)

Some terms cancel each other out in the two sums of the bracketed factor in (7.7), i.e. terms that
appear in both sums. Let ∆+

b,k (resp. ∆−b,k) be the set of positions in V (resp. V ∗) that only
appear in the left (resp. right) sum. Formally,

∆+
b,k = {j < σ(b, k) | σ∗(Vj , Sj) > σ∗(b, k)},

∆−b,k = {j < σ∗(b, k) | σ(V ∗j , S
∗
j) > σ(b, k)}.

This allows to rewrite the difference (7.7) as:

G−G∗ =

n∑
b=1

[t]b∑
k=1

f(b, k)

 ∑
i∈∆+

b,k

g(Vi, Si)−
∑
i∈∆−b,k

g(V ∗i , S
∗
i)

 . (7.8)

By construction, the following implication holds between ∆+ and ∆−:

σ(b, k) ∈ ∆+
b′,k′ ⇐⇒ σ∗(b′, k′) ∈ ∆−b,k. (7.9)

Indeed, we have:

σ(b, k) ∈ ∆+
b′,k′

⇐⇒ σ(b, k) < σ(b′, k′) ∧ σ∗(Vσ(b,k), Sσ(b,k)) > σ∗(b′, k′)

⇐⇒ σ(b, k) < σ(b′, k′) ∧ σ∗(b, k) > σ∗(b′, k′) (7.10)

The first equivalence is the definition of ∆+
b,k, and the second comes from the fact that Vσ(b,k) = b

and Sσ(b,k) = k, by definition of V and S. Likewise,

σ∗(b′, k′) ∈ ∆−b,k

⇐⇒ σ∗(b′, k′) < σ∗(b, k) ∧ σ(V ∗σ∗(b′,k′), S
∗
σ∗(b′,k′)) > σ(b, k)

⇐⇒ σ∗(b′, k′) < σ∗(b, k) ∧ σ(b′, k′) > σ(b, k) (7.11)

The implication (7.9) comes from the equivalence between (7.10) and (7.11). As a particular case
of (7.9), we have:

j ∈ ∆−b,k ⇐⇒ σ(b, k) ∈ ∆+
V ∗j ,S

∗
j
.

This means that for each negative term −f(b, k)g(V ∗j , S
∗
j) in (7.8), there is also a positive coun-

terpart f(V ∗j , S
∗
j)g(b, k). This allows to rewrite the difference (7.8) as a simple sum of opposed

crossed terms:

G−G∗ =
∑[

f(V ∗j , S
∗
j)g(b, k)− f(b, k)g(V ∗j , S

∗
j)
]
. (7.12)

We have that σ∗(b, k) > j = σ∗(V ∗j , S
∗
j), for all j ∈ ∆−b,k, by definition of ∆−b,k. Moreover, since

the metric used to construct B∗ is decreasing (see Lemma 3), we have that:

η(b, k) ≥ η(b′, k′),

f(b, k)g(b′, k′) ≥ f(b′, k′)g(b, k),

for all b, k, b′, k′ such that σ∗(b, k) < σ∗(b′, k′). Using this fact in (7.12) shows that each term of
the sum is positive, and thus G ≥ G∗.

7.4. Input Set Partition and Memory Allocation 109

7.4 Input Set Partition and Memory Allocation

7.4.1 Input Set Partition

Partitioning the input set induces a time overhead for the online phase. Doing so is only worth
it if the gain outweighs this overhead. The ratio pb

[N]b
represents the individual probability of

occurrence for each point of the [A]b subset, and is intuitively a measure of the “density” of [A]b.
It makes sense to divide a set when it contains subsets of unbalanced densities. A TMTO covering
a high-density subset should be devoted a higher memory and searched through more rapidly than
average, and vice versa. Once the considered set is partitioned into subsets, one may compute the
expected online time given using Theorem 7.

7.4.2 Memory Allocation

Given a partition {[N]1, ..., [N]n} of the input set and their intrinsic probabilities {p1, ..., pn}, a
memory size must be assigned to each subset. Given [N]b, we have [M]b = ρbM . The expression T
given in Theorem 7 is not simple enough to determine analytically an optimal memory allocation.
Instead, the memory allocation can be done solving an optimization problem that consists in
minimizing T by changing the variables ρ1, ..., ρn.

When the number of subsets n is small, the memory allocation can be found easily with a grid
search. That is, T is evaluated at discretized values of the parameters ρ1, ..., ρn (with

∑n
i=1 ρi = 1),

and the point where T is minimal is kept as the selected memory allocation.

This technique becomes quite costly when the number of subsets n is too large, or when the
desired resolution of the discretization is too thin. Metaheuristic techniques of local search such as
Hill Climbing [168] may be used instead to find the optimal memory allocation more efficiently.

7.5 Results

In this section, the interleaving technique is illustrated on password cracking. In order to determine
the password distribution, two publicly-available datasets have been considered: RockYou and
phpBB. The RockYou dataset originated from rockyou.com, a gaming website that lost 32.6
million unencrypted passwords in 2009. Among those passwords 14.3 million are unique. The
phpBB dataset comes from phpbb.com, a forum that was attacked in 2009 due to a vulnerable
third-party application. These datasets are for example used for dictionary attacks by the well-
known password crackers Hashcat [7] and John the Ripper [160].

Tables 7.2 and 7.3 present some statistics on these datasets. Each cell of both tables represent
the percentage of passwords that have the length indicated on the left, and that correspond to the
character set indicated on the top. Such statistics can then be used to feed the parameters for the
interleaving technique. This is illustrated below in the case of the RockYou dataset.

We decided to set A to the set of passwords of the special character set (96 characters) of length
7 or less, which corresponds to the same set covered in the “XP special” table of the Ophcrack
software [148]. Likewise, we set the total memory to 8GB, which is about the memory used for
this table. We set the number of tables to be ` = 4, which means a probability of success of
about 99.97%. With these settings, an undivided TMTO has an average cryptanalysis time of
T = 6.27× 109 operations (obtained from Result 5 of Chapter 5).

We chose the following partition: [A]1 is set to the passwords of length 7 (exactly) that contain at
least one special character, and [A]2 the rest of the passwords. This gives the following parameters
for the RockYou dataset:

[N]1 = 967 − 627 = 7.16× 1013 p1 = 0.0143

[N]2 = N − [N]1 = 4.31× 1012 p2 = 0.9857

The probabilities are taken from Table 7.2, and are adjusted such that the sum of probabilities up
to length 7 is 1.

rockyou.com
phpbb.com

110 Chapter 7. Interleaving for Non-Uniform Input Distribution

Length Special Lower Upper Digit Alpha Alnum

0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.002 0.000 0.000 0.000 0.000
3 0.000 0.015 0.001 0.003 0.000 0.001
4 0.001 0.138 0.005 0.063 0.003 0.006
5 0.028 2.893 0.140 0.655 0.051 0.301
6 0.302 12.232 0.453 6.990 0.213 5.844
7 0.571 8.398 0.303 1.968 0.185 7.855
8 0.654 7.575 0.250 2.508 0.158 8.826
9 0.592 4.239 0.138 1.377 0.095 5.668
10 0.515 2.667 0.086 1.659 0.062 4.069
11 0.290 1.401 0.046 0.374 0.036 1.417
12 0.215 0.845 0.028 0.135 0.022 0.859
13 0.156 0.506 0.018 0.096 0.014 0.527
14 0.118 0.314 0.011 0.039 0.009 0.369
15 0.089 0.206 0.008 0.023 0.006 0.219
16 0.081 0.122 0.005 0.021 0.005 0.160
17 0.025 0.048 0.002 0.004 0.001 0.043
18 0.018 0.028 0.001 0.005 0.001 0.024
19 0.015 0.017 0.001 0.002 0.001 0.014

Table 7.2: Statistics for the Rockyou dataset (percent truncated to 10−3).

Length Special Lower Upper Digit Alpha Alnum

0 0.000 0.000 0.000 0.000 0.000 0.000
1 0.001 0.030 0.001 0.033 0.000 0.000
2 0.001 0.062 0.004 0.017 0.000 0.004
3 0.005 0.376 0.013 0.156 0.005 0.023
4 0.013 1.766 0.031 1.174 0.031 0.144
5 0.038 4.160 0.064 0.694 0.121 0.592
6 0.213 14.787 0.218 5.193 0.450 6.355
7 0.329 9.523 0.132 1.272 0.365 6.062
8 0.505 10.765 0.161 2.451 0.786 12.523
9 0.259 4.252 0.062 0.568 0.181 3.766
10 0.123 2.474 0.034 0.327 0.119 2.210
11 0.069 1.058 0.009 0.086 0.049 0.812
12 0.040 0.520 0.005 0.056 0.022 0.410
13 0.022 0.217 0.003 0.014 0.010 0.160
14 0.017 0.099 0.002 0.010 0.006 0.079
15 0.010 0.046 0.000 0.002 0.001 0.034
16 0.004 0.024 0.000 0.003 0.000 0.018
17 0.004 0.007 0.000 0.000 0.000 0.002
18 0.002 0.006 0.000 0.001 0.000 0.002
19 0.003 0.000 0.000 0.000 0.000 0.000

Table 7.3: Statistics for the phpbb dataset (percent truncated to 10−3).

7.6. Conclusion 111

0.0 0.2 0.4 0.6 0.8 1.0
ρ1

108

109

1010

1011

1012

T

Figure 7.2: Memory allocation for the RockYou database: the solid line represents the average
number of operations as a function of the proportion ρ1 of the memory devoted to the first sub-
TMTO. The crossmark is the optimal memory allocation, and the dashed line represents the cost
of an undivided TMTO, about 16.45 times slower.

Figure 7.2 represents T according to ρ1: the memory allocation is optimal when ρ1 = 0.5957,
with T = 3.81 × 108 operations, which represents a speedup of about 16.45 with respect to the
undivided case5.

7.6 Conclusion

This chapter introduces a technique to improve the efficiency of cryptanalytic time-memory trade-
offs when the considered distribution of secrets is non-uniform. It consists – during the precalcula-
tion phase – in dividing the input set into smaller subsets of unbalanced densities and applying a
time-memory trade-off on every subset. As importantly, the contribution also consists of a method
to interleave – during the attack phase – the exploration of the time-memory trade-offs. For that,
a metric to select at each step the time-memory trade-off to be explored is introduced, and a proof
of optimality is provided. The efficiency of the technique is practically demonstrated to crack
7-character passwords selected in a 96-character alphabet. Password length and alphabet size have
been chosen in compliance with the tools currently used by security experts to crack LM Hash
passwords. The password distributions used to evaluate the efficiency of the technique come from
well-known websites whose password databases recently leaked. It has been shown that the time
required to crack such passwords is divided by more than 16 when the technique introduced in this
chapter is applied, compared to currently used time-memory trade-offs. The efficiency can be still
better when considering distributions with a higher standard deviation. As far as we know, this
is the first time an improvement on time-memory trade-off divides by more than two the cracking
time since Hellman’s seminal work.

5For instance, in terms of time elapsed on a laptop capable of performing 3× 106 SHA-1 operations per second,
and on a memory of 8GB, this corresponds to 34’50” (undivided case) reduced to 2’07” (interleaved case) on average.

112 Chapter 7. Interleaving for Non-Uniform Input Distribution

Chapter 8

Conclusion

This thesis first explored two of the important challenges in RFID authentication: the design of
extremely lightweight authentication protocols, and scalability issues in private authentication.

Ultralightweight protocols appeared in the advent of widespread usage of RFID technologies,
as security and privacy became important research concerns. They aim to answer a need for secure
and privacy-friendly authentication with very inexpensive tags. In this context, tags have very
limited capabilities in terms of what they can compute and with how much time and energy at
their disposal. In particular, both public-key cryptography and classical primitives of symmetric-
key cryptography are deemed too expensive. The former is only used on very high-end tags while
the latter is acceptable for intermediate tags. Instead, ultralightweight protocols rely on basic
operations only, such as bitwise operations, modular addition, data-dependent rotations and other
permutations, etc.

A significant part of this thesis has been dedicated to the cryptanalysis of ultralightweight
protocols. Chapter 2 relates the state of the art, describes a couple of cryptanalyses, and discusses
the typical weaknesses exploited by attacks on these protocols. Although commendable, the efforts
to build a good ultralightweight protocol have so far virtually all failed due to weaknesses in their
design. The quest for a perfectly secure and private ultralightweight protocol continues, but will
hopefully use a slightly different, more constructive approach, with about 10 years of experience.

As of today, the best security/privacy versus cost compromise is probably to use ultralightweight
primitives, such as PRESENT, on top of a classical challenge-response authentication protocol. As
mentioned in Chapter 2, such primitives have security issues albeit less seriously so than ultra-
lightweight protocols. Moreover, they are the focus of research of a large community and are
getting more and more secure, as well as more and more lightweight. Then again, one might argue
that using block ciphers or hash functions might be slightly excessive, as their security require-
ments may not all be needed for authentication purposes. With that in mind, it might still make
sense to try and design an authentication protocol from scratch, being in the vein of existing ultra-
lightweight protocols, or using different techniques (e.g. the HB family of protocols). Work in that
direction will probably continue, but hopefully with more care, and with past mistakes in mind.

The second RFID topic discussed in this thesis is the scalability of privacy-friendly authentica-
tion protocols. Ensuring privacy in a protocol means that an adversary should not be able to easily
guess the identity of the prover being authenticated. Therefore, exchanged information should no-
tably have no correlation with the identity of the prover from the point of view of the attacker.
This constraint however hinders the ability of a legitimate verifier to identify (and authenticate) a
prover efficiently.

Partial solutions to the problem have been created, using very inventive mechanisms. These are
analyzed in depth in Chapter 3. Among other ideas, the two main categories are protocols that use
(partially) shared secrets, and those that use hash chains. The former type of protocols let provers
share (part of) their secrets with each other, which alleviates the identification procedure on the
verifier side. The main drawback is that it also gives way to dangerous compromising attacks, where
an attacker that has acquired the secrets of a prover gains an advantage at identifying other provers.
Although these protocols are quite efficient and are mostly secure against “weak” adversaries, the
danger of compromising attacks is too great for most realistic settings. The protocols in the second

113

114 Chapter 8. Conclusion

notable category, those based on hash chains, use dynamic secrets in the provers, along with ways
for the verifier to use former secrets of provers to accelerate the search. Beside not having the issue
of compromising attacks, these protocols have the additional advantage of being able to provide
forward-secrecy, a strong notion of privacy. They are, on the other hand slightly less efficient and
have other miscellaneous minor issues.

On paper, the best solution to this issue is probably the OSK/AO protocol, a variant of the
OSK protocol that use a cryptanalytic time-memory trade-off to accelerate the search. As discussed
in Chapter 4 however, the AO variant only makes sense in certain settings, such as with mobile
readers with limited memory. The full storage variant is on the other hand extremely efficient,
and quite realistic, when sufficient memory is available. Other protocols (such as O-RAP) present
other characteristics which might make more sense in some scenarios, but OSK (in either its AO
or full-storage variant) seems to be the overall winner as of today.

Although some existing solutions are already acceptable in many settings, there might be pro-
tocols with a better privacy/complexity trade-off. This could be achieved through refining existing
protocols, or using new techniques using shared secrets, hash chains, or any other ways of reducing
the complexity level. In all cases analyzed in Chapter 3, protocols also trade away some aspect of
their security or usability to lower the privacy/complexity trade-off curve (for instance, shared se-
crets schemes introduce the compromising attacks, OSK is technically descynchronizable, O-RAP
has a high worst-case complexity, YA-TRAP has additional system assumptions, etc.). Finally, it
might be extremely valuable to know theoretical bounds on this privacy/complexity trade-off (i.e.
minimum complexity achievable for a given level of privacy), but it seems tricky to unify these
protocols (and their specific security and usability characteristics) in a model that is both fair and
realistic.

The second part of this thesis focused on improvements on cryptanalytic time-memory trade-
offs. Although they are at first sight quite unrelated to the two previous research topics, they
present an interest in the improvement of OSK/AO, and might be of use in other similar protocols.

Cryptanalytic time-memory trade-offs are a tool to perform efficient brute-force on a one-way
function. They consist in a precomputation phase, and an online phase in which the output of
a one-way function is provided, and its corresponding preimage is to be found. In the former,
chains of hashes are computed and only the start and the end of each chain is kept in memory. In
the latter, a chain is built from the given image, hopefully matching a precomputed chain. The
principal use case for cryptanalytic time-memory trade-offs is the retrieval of passwords from their
stored hashes. There are other cryptanalytic applications, and even constructive ones such as in
the OSK/AO protocol. They make sense in three scenarios: (1) the precomputation is carried out
by a more powerful entity than the online phase, (2) the online phase is carried out many times
over distinct sessions, or (3) the window of opportunity for the attack is small, but the preparation
time may be long.

The specific variant of cryptanalytic time-memory trade-offs that is considered the most efficient
today is the rainbow table, and it was the focus of the research done in this thesis. Among the
approaches at improving its performance that were explored, three showed interesting results: the
fingerprints, improved storage, and interleaving.

The fingerprint (see Chapter 5) is an information that is used to represent a chain, along with
its startpoint. It is essentially a generalized model built on earlier improvements of rainbow tables,
namely the checkpoints, and the endpoint truncation. This model may help to think about chains
differently and might spark new ideas, but most importantly, it allows the compound analysis of
checkpoints and endpoint truncation. This made possible the systematic determination of optimal
configurations. In such optimal configurations, rainbow tables with fingerprints may achieve a
speedup of about two with respect to the plain version.

Storage in cryptanalytic time-memory trade-offs is very important, as more memory available
or more efficient storage means faster online phase (the time in the online phase being inversely
proportional to the square of the memory available). Up to now, endpoint storage was done using
a technique called prefix-suffix decomposition, of which configurations were found empirically.
Chapter 6 discusses a bound on storage and presents compressed delta encoding, a technique to
reach this bound.

While symmetric keys are generated randomly according to a uniform distribution, passwords
chosen by users are in practice far from being random, as confirmed by recent leakage of databases.

115

Unfortunately, the technique used to build classical rainbow tables is not able to capitalize on this
bias. Chapter 7 introduces an efficient construction that consists in partitioning the search set
into subsets of close densities, and a strategy to explore the TMTOs associated to the subsets
based on an interleaved traversal. This approach results in a significant improvement compared to
currently used TMTOs. On a typical searching space, interleaving presents a speedup of about 16
with respect to the monolithic approach.

Fingerprints and storage compression are both generic techniques to improve the efficiency
of rainbow tables. The efficiency is however quite far from the bound stated in [38], by Barkan,
Biham, and Shamir. Chances are however that this bound will never be tight, due to relatively high
numerical factors in it. It is thus hard to tell how far these improvements bring rainbow tables from
theoretically maximal efficiency. Although techniques such as interleaving can bring an arbitrarily
high speedup, it does not contracdict the bound because the assumptions are different: interleaving
takes advantage of a bias in the input distribution probability, whereas in [38], the input set is
assumed to be uniformly distributed.

Cryptanalytic time-memory trade-offs are an important element of applied cryptography, and
there seems to be room for improvement. These improvements may come in the form of algorithmic
enhancements, or practical implementations. Areas that deserve scrutiny are the online phase of
course, but also the precomputation (which is in some cases the bottleneck, and is somewhat
poorly studied), or some specific relaxations or variations of the problem. Although not explored
in this thesis, practical implementation improvements also matter a lot. Nowadays, cryptanalytic
time-memory trade-offs are often stored on RAM, which limits the memory that is available.
Alternatively, one may use hard drives or flash memory, but it has drawbacks (essentially due
to the overhead of data transfer). Clever memory management could allow bigger memories and
thus much faster research (or bigger input space). Computation done on graphic cards has also
proved quite potent, but has constraints (GPU’s notably have small memories and are highly
parallelized). Finally, cryptanalytic time-memory trade-offs are mostly implemented on general-
purpose PC’s, but could benefit from specific hardware or configurations with a large amount of
fast memory. Improving the efficiency of time-memory trade-offs is important at the fundamental
research standpoint, for forensics applications, as well as for promoting stronger security standards.

116 Chapter 8. Conclusion

Bibliography

[1] Mete Akgün, M. Ufuk Caglayan, and Emin Anarim. Secure RFID Authentication with Effi-
cient Key-lookup. In Proceedings of the 28th IEEE conference on Global telecommunications,
GLOBECOM’09, pages 4777–4784, Piscataway, USA, 2009. IEEE Press.

[2] Mete Akgün and M. Ufuk Çaǧlayan. On the security of recently proposed RFID protocols.
Cryptology ePrint Archive, Report 2013/820, 2013.

[3] Mahdi R. Alagheband and Mohammad R. Aref. Simulation-based traceability analysis of
RFID authentication protocols. Wireless Personal Communications, December 2013.

[4] Basel Alomair, Andrew Clark, Jorge Cuellar, and Radha Poovendran. Scalable RFID Sys-
tems: a Privacy-Preserving Protocol with Constant-Time Identification. In the 40th An-
nual IEEE/IFIP International Conference on Dependable Systems and Networks – DSN’10,
Chicago, Illinois, USA, June 2010. IEEE, IEEE Computer Society.

[5] Alessandro Armando, David Basin, Yohan Boichut, Yannick Chevalier, Luca Compagna,
Jorge Cuéllar, Paul Hankes Drielsma, Pierre-Cyrille Héam, Olga Kouchnarenko, Jacopo Man-
tovani, et al. The avispa tool for the automated validation of internet security protocols and
applications. In Computer Aided Verification, pages 281–285. Springer, 2005.

[6] Frederik Armknecht, Matthias Hamann, and Vasily Mikhalev. Lightweight authentication
protocols on ultra-lightweight RFIDs – myths and facts. In Workshop on RFID Security –
RFIDSec’14, Oxford, UK, July 2014.

[7] atom. The Hashcat password cracker. http://hashcat.net/hashcat/, 2014.

[8] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia. Quark: A
lightweight hash. Journal of cryptology, 26(2):313–339, 2013.

[9] Gildas Avoine. Adversary Model for Radio Frequency Identification. Technical Report
LASEC-REPORT-2005-001, Swiss Federal Institute of Technology (EPFL), Security and
Cryptography Laboratory (LASEC), Lausanne, Switzerland, September 2005.

[10] Gildas Avoine. Cryptography in Radio Frequency Identification and Fair Exchange Protocols.
PhD thesis, EPFL, Lausanne, Switzerland, December 2005.

[11] Gildas Avoine. RFID lounge. http://www.avoine.net/rfid/, January 2011.

[12] Gildas Avoine, Muhammed Ali Bingöl, Xavier Carpent, and Suleyman Kardas. Deploying
OSK on low-resource mobile devices. In Workshop on RFID Security – RFIDSec’13, Graz,
Austria, July 2013.

[13] Gildas Avoine, Muhammed Ali Bingöl, Xavier Carpent, and Sıddıka Berna Örs Yalçın.
Privacy-friendly authentication in RFID systems: On sub-linear protocols based on
symmetric-key cryptography. IEEE Transactions on Mobile Computing, 12(10):2037–2049,
October 2013.

[14] Gildas Avoine, Adrien Bourgeois, and Xavier Carpent. Analysis of rainbow tables with
fingerprints. In Financial Cryptography and Data Security – FC’15 (submitted), 2015.

117

http://hashcat.net/hashcat/
http://www.avoine.net/rfid/

118 BIBLIOGRAPHY

[15] Gildas Avoine, Levente Buttyán, Tamás Holczer, and István Vajda. Group-based private au-
thentication. In IEEE International Workshop on Trust, Security, and Privacy for Ubiquitous
Computing – TSPUC, pages 1–6, Helsinki, Finland, June 2007. IEEE Computer Society.

[16] Gildas Avoine and Xavier Carpent. Yet another ultralightweight authentication protocol
that is broken. In Workshop on RFID Security – RFIDSec’12, Nijmegen, Netherlands, June
2012.

[17] Gildas Avoine and Xavier Carpent. Optimal storage for rainbow tables. In Sukwoo Kim and
Seok-Yeol Kang, editors, International Conference on Information Security and Cryptology
– ICISC 2013, Seoul, South Korea, November 2013.

[18] Gildas Avoine and Xavier Carpent. Interleaving cryptanalytic time-memory trade-offs on
non-uniform distributions. In ACM Symposium on Information, Computer and Communi-
cation Security – ASIACCS’15 (submitted), Singapore, 2015.

[19] Gildas Avoine, Xavier Carpent, and Julio C. Hernandez-Castro. Pitfalls in ultralightweight
authentication protocol designs. IEEE Transactions on Mobile Computing (submitted), 2014.

[20] Gildas Avoine, Xavier Carpent, and Benjamin Martin. Strong Authentication and Strong
Integrity (SASI) is not that Strong. In S.B. Ors Yalcin, editor, Workshop on RFID Security
– RFIDSec’10, volume 6370 of Lecture Notes in Computer Science, pages 50–64, Istanbul,
Turkey, June 2010. Springer.

[21] Gildas Avoine, Xavier Carpent, and Benjamin Martin. Privacy-friendly synchronized ul-
tralightweight authentication protocols in the storm. Journal of Network and Computer
Applications, December 2011.

[22] Gildas Avoine, Iwen Coisel, and Tania Martin. Time Measurement Threatens Privacy-
Friendly RFID Authentication Protocols. In S.B. Ors Yalcin, editor, Workshop on RFID
Security – RFIDSec’10, volume 6370 of Lecture Notes in Computer Science, pages 138–157,
Istanbul, Turkey, June 2010. Springer.

[23] Gildas Avoine, Iwen Coisel, and Tania Martin. Untraceability model for RFID. IEEE Trans-
actions on Mobile Computing, PrePrint, November 2013.

[24] Gildas Avoine, Iwen Coisel, and Tania Martin. Untraceability model for RFID. IEEE Trans-
actions on Mobile Computing, PrePrint, November 2014.

[25] Gildas Avoine, Etienne Dysli, and Philippe Oechslin. Reducing Time Complexity in RFID
Systems. In Bart Preneel and Stafford Tavares, editors, Selected Areas in Cryptography –
SAC 2005, volume 3897 of Lecture Notes in Computer Science, pages 291–306, Kingston,
Canada, August 2005. Springer.

[26] Gildas Avoine, Pascal Junod, and Philippe Oechslin. Time-memory trade-offs: False alarm
detection using checkpoints. In Progress in Cryptology – Indocrypt 2005, volume 3797 of
Lecture Notes in Computer Science, pages 183–196, Bangalore, India, December 2005. Cryp-
tology Research Society of India, Springer.

[27] Gildas Avoine, Pascal Junod, and Philippe Oechslin. Characterization and Improvement of
Time-Memory Trade-Off Based on Perfect Tables. ACM Trans. Inf. Syst. Secur., 11:17:1–
17:22, July 2008.

[28] Gildas Avoine, Pascal Junod, and Philippe Oechslin. Characterization and improvement of
time-memory trade-off based on perfect tables. ACM Trans. Inf. Syst. Secur., 11(4):1–22,
July 2008.

[29] Gildas Avoine, Benjamin Martin, and Tania Martin. Tree-Based RFID Authentication Pro-
tocols Are Definitively Not Privacy-Friendly. In S.B. Ors Yalcin, editor, Workshop on RFID
Security – RFIDSec’10, volume 6370 of Lecture Notes in Computer Science, pages 103–122,
Istanbul, Turkey, June 2010. Springer.

BIBLIOGRAPHY 119

[30] Gildas Avoine and Philippe Oechslin. A Scalable and Provably Secure Hash Based RFID
Protocol. In International Workshop on Pervasive Computing and Communication Security –
PerSec 2005, pages 110–114, Kauai Island, Hawaii, USA, March 2005. IEEE, IEEE Computer
Society.

[31] Steve Babbage. A space/time tradeoff in exhaustive search attacks on stream ciphers. In
European Convention on Security and Detection, volume 408, 1995.

[32] Nasour Bagheri, Praveen Gauravaram, Masoumeh Safkhani, and Somitra Kumar Sanadhya.
The resistance to intermittent position trace attacks and desynchronization attacks (RIPTA-
DA) protocol is not RIPTA-DA. In Workshop on RFID Security – RFIDSec’13, Graz,
Austria, July 2013.

[33] Nasour Bagheri, Masoumeh Safkhani, Majid Naderi, and Somitra Kumar Sanadhya. Security
Analysis of LMAP++, an RFID Authentication Protocol. Cryptology ePrint Archive, Report
2011/193, 2011.

[34] Valentina Banciu, Simon Hoerder, and Dan Page. Lightweight primitive, feather-weight se-
curity? a cryptanalytic knock-out. (preliminary results). Cryptology ePrint Archive, Report
2013/421, 2013.

[35] Mihály Bárász, Balázs Boros, Péter Ligeti, Krisztina Lója, and Dániel Nagy. Breaking LMAP.
In Conference on RFID Security, Malaga, Spain, July 2007.

[36] Mihály Bárász, Balázs Boros, Péter Ligeti, Krisztina Lója, and Dániel Nagy. Passive Attack
Against the M2AP Mutual Authentication Protocol for RFID Tags. In First International
EURASIP Workshop on RFID Technology, Vienna, Austria, September 2007.

[37] Gregory V. Bard, Nicolas T. Courtois, Jorge Jr. Nakahara, Pouyan Sepehrdad, and Bing-
sheng Zhang. Algebraic, AIDA/Cube and side channel analysis of KATAN family of block
ciphers. In Guang Gong and Kishan Chand Gupta, editors, Proceedings of the 11th Interna-
tional Conference on Cryptology in India – Indocrypt 2010, volume 6498 of Lecture Notes in
Computer Science, pages 176–196, Hyderabad, India, December 2010. Springer.

[38] Elad Barkan, Eli Biham, and Adi Shamir. Rigorous bounds on cryptanalytic time/memory
tradeoffs. In Cynthia Dwork, editor, Advances in Cryptology – CRYPTO’06, Lecture Notes
in Computer Science, Santa Barbara, California, USA, August 2006. Springer.

[39] David F. Barrero, Julio César Hernández-Castro, Pedro Peris-Lopez, David Camacho, and
Maŕıa D. R-Moreno. A genetic tango attack against the David-Prasad RFID ultra-lightweight
authentication protocol. Expert Systems, September 2012.

[40] Ramzi Bassil, Wissam El-Beaino, Wassim Itani, Ayman Kayssi, and Ali Chehab. PUMAP:
A PUF-based ultra-lightweight mutual-authentication RFID protocol. International Journal
of RFID Security and Cryptography, 1(1):58–66, March 2012.

[41] Côme Berbain, Olivier Billet, Jonathan Etrog, and Henri Gilbert. An Efficient Forward
Private RFID Protocol. In Ehab Al-Shaer, Somesh Jha, and Angelos D. Keromytis, edi-
tors, Conference on Computer and Communications Security – ACM CCS’09, pages 43–53,
Chicago, Illinois, USA, November 2009. ACM, ACM Press.

[42] Michael Beye and Thijs Veugen. Improved anonymity for key-trees. Cryptology ePrint
Archive, Report 2011/395, 2011.

[43] Zeeshan Bilal and Keith Martin. Ultra-lightweight mutual authentication protocols: Weak-
nesses and countermeasures. In Eighth International Conference on Availability, Reliability
and Security – ARES 2013, pages 304–309. IEEE, September 2013.

[44] Olivier Billet, Jonathan Etrog, and Henri Gilbert. Lightweight Privacy Preserving Authen-
tication for RFID Using a Stream Cipher. In Seokhie Hong and Tetsu Iwata, editors, Fast
Software Encryption – FSE’10, volume 6147 of Lecture Notes in Computer Science, pages
55–74, Seoul, Korea, February 2010. Springer.

120 BIBLIOGRAPHY

[45] Muhammed Ali Bingöl. Security analysis of RFID authentication protocols based on symmet-
ric cryptography and implementation of a forward private scheme. Master’s thesis, Istanbul
Technical University, Istanbul, Turkey, January 2012.

[46] Alex Biryukov, Sourav Mukhopadhyay, and Palash Sarkar. Improved time-memory trade-
offs with multiple data. In Bart Preneel and Stafford Tavares, editors, Selected Areas in
Cryptography – SAC 2005, volume 3897 of Lecture Notes in Computer Science, pages 110–
127, Kingston, Canada, August 2005. Springer.

[47] Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs for stream ci-
phers. In Colin Boyd, editor, Advances in Cryptology – ASIACRYPT’01, volume 2248 of
Lecture Notes in Computer Science, pages 1–13, Gold Coast, Australia, December 2001.
Springer.

[48] Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis of A5/1 on a PC.
In Bruce Schneier, editor, Fast Software Encryption – FSE’00, volume 1978 of Lecture Notes
in Computer Science, pages 1–18, New York, USA, April 2000. Springer.

[49] Burton Howard Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[50] Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz Toz, Kerem Varıcı, and Ingrid
Verbauwhede. Spongent: A lightweight hash function. In Cryptographic Hardware and
Embedded Systems–CHES 2011, pages 312–325. Springer, 2011.

[51] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,
Matthew JB Robshaw, Yannick Seurin, and Charlotte Vikkelsoe. Present: An ultra-
lightweight block cipher. In Cryptographic Hardware and Embedded Systems-CHES 2007,
pages 450–466. Springer, 2007.

[52] Andrey Bogdanov, Gregor Leander, Christof Paar, Axel Poschmann, Matthew Robshaw,
and Yannick Seurin. Hash Functions and RFID Tags : Mind The Gap. In Elisabeth Oswald
and Pankaj Rohatgi, editors, Proceedings of the 10th International Workshop Cryptographic
Hardware and Embedded Systems – CHES 2008, volume 5154 of Lecture Notes in Computer
Science, pages 283–299, Washington, DC, USA, August 2008. Springer.

[53] Joseph Bonneau. The Science of Guessing: Analyzing an Anonymized Corpus of 70 Million
Passwords. In IEEE Symposium on Security and Privacy, S&P 2012, San Francisco, CA,
USA, May 2012. IEEE Computer Society.

[54] Julien Bringer, Hervé Chabanne, and Dottax Emmanuelle. HB++: a Lightweight Authentica-
tion Protocol Secure against Some Attacks. In IEEE International Conference on Pervasive
Services, Workshop on Security, Privacy and Trust in Pervasive and Ubiquitous Computing
– SecPerU 2006, Lyon, France, June 2006. IEEE, IEEE Computer Society.

[55] Julien Bringer, Hervé Chabanne, and Thomas Icart. Cryptanalysis of EC-RAC, a RFID
identification protocol. In Matthew K. Franklin, Lucas Chi Kwong Hui, and Duncan S.
Wong, editors, 7th International Conference on Cryptology And Network Security – CANS’08,
volume 5339 of Lecture Notes in Computer Science, pages 149–161, Hong Kong, China,
December 2008. Springer.

[56] Andrei Broder and Michael Mitzenmacher. Using multiple hash functions to improve IP
lookups. In Procedings of the twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies – INFOCOM 2001, volume 3, pages 1454–1463. IEEE, 2001.

[57] Mike Burmester, Tri van Le, and Breno de Medeiros. Provably Secure Ubiquitous Systems:
Universally Composable RFID Authentication Protocols. In Conference on Security and
Privacy for Emerging Areas in Communication Networks – SecureComm 2006, pages 1–10,
Baltimore, Maryland, USA, August–September 2006. IEEE, IEEE Computer Society.

BIBLIOGRAPHY 121

[58] Mike Burmester, Tri van Le, and Breno de Medeiros. Universally Composable RFID Identifi-
cation and Authentication Protocols. ACM Transactions on Information and System Security
– TISSEC’09, 12(4):21:1–21:33, 2009.

[59] Levente Buttyán, Tamás Holczer, and István Vajda. Optimal Key-Trees for Tree-Based
Private Authentication. In George Danezis and Philippe Golle, editors, Workshop on Privacy
Enhancing Technologies – PET 2006, volume 4258 of Lecture Notes in Computer Science,
pages 332–350, Cambridge, United Kingdom, June 2006. Springer.

[60] Sébastien Canard and Iwen Coisel. Data Synchronization in Privacy-Preserving RFID Au-
thentication Schemes. In Workshop on RFID Security – RFIDSec’08, Budapest, Hungary,
July 2008.

[61] Mario Cardullo and William L. Parks. Transponder apparatus and system. US Patent
3713148, May 1970.

[62] Christy Chatmon, Tri van Le, and Mike Burmester. Secure Anonymous RFID Authentication
Protocols. Technical Report TR-060112, Florida State University, Department of Computer
Science, Tallahassee, Florida, USA, 2006.

[63] Jung Hee Cheon, Jeongdae Hong, and Gene Tsudik. Reducing RFID Reader Load with the
Meet-in-the-Middle Strategy. Cryptology ePrint Archive, Report 2009/092, 2009.

[64] Hung-Yu Chien. SASI: A New Ultralightweight RFID Authentication Protocol Providing
Strong Authentication and Strong Integrity. IEEE Transactions on Dependable and Secure
Computing, 4(4):337–340, December 2007.

[65] Iwen Coisel and Tania Martin. Untangling RFID privacy models. Journal of Computer
Networks and Communications, July 2012.

[66] HID Global Corporation. HSPD-12 & FIPS 201 PIV II: How Government Standards Af-
fect Physical Access Control. http://www.hidglobal.com/sites/hidglobal.com/files/

hid-how-gov-stanards-affect-physical-access-control-wp-en.pdf, 2007.

[67] Mathieu David and Neeli R. Prasad. Providing strong security and high privacy in low-cost
RFID networks. In Ozgur Akan, Paolo Bellavista, Jiannong Cao, Falko Dressler, Domenico
Ferrari, Mario Gerla, Hisashi Kobayashi, Sergio Palazzo, Sartaj Sahni, Xuemin (Sherman)
Shen, Mircea Stan, Jia Xiaohua, Albert Zomaya, Geoffrey Coulson, Andreas U. Schmidt, and
Shiguo Lian, editors, Security and Privacy in Mobile Information and Communication Sys-
tems, volume 17 of Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pages 172–179, Turin, Italy, June 2009. Springer.

[68] Anindya De, Luca Trevisan, and Madhur Tulsiani. Time space tradeoffs for attacks against
one-way functions and PRGs. In Tal Rabin, editor, Advances in Cryptology – CRYPTO’10,
volume 6223 of Lecture Notes in Computer Science, pages 649–665, Santa Barbara, California,
USA, August 2010. Springer.

[69] Christophe De Canniere, Orr Dunkelman, and Miroslav Knežević. Katan and ktantana
family of small and efficient hardware-oriented block ciphers. In Cryptographic Hardware
and Embedded Systems-CHES 2009, pages 272–288. Springer, 2009.

[70] Dorothy Denning. Cryptography and Data Security, page 100. Addison-Wesley, Boston,
Massachusetts, USA, 1982.

[71] Whitfield Diffie and Martin Hellman. Special Feature Exhaustive Cryptanalysis of the NBS
Data Encryption Standard. Computer, 10(6):74–84, 1977.

[72] Tassos Dimitriou. A Lightweight RFID Protocol to protect against Traceability and Cloning
attacks. In Conference on Security and Privacy for Emerging Areas in Communication
Networks – SecureComm 2005, pages 59–66, Athens, Greece, September 2005. IEEE, IEEE
Computer Society.

http://www.hidglobal.com/sites/hidglobal.com/files/hid-how-gov-stanards-affect-physical-access-control-wp-en.pdf
http://www.hidglobal.com/sites/hidglobal.com/files/hid-how-gov-stanards-affect-physical-access-control-wp-en.pdf

122 BIBLIOGRAPHY

[73] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE Transactions
on Information Theory, 29(2):198–207, 1983.

[74] Dang Nguyen Duc and Kwangjo Kim. Securing HB+ against GRS Man-in-the-Middle At-
tack. In Institute of Electronics, Information and Communication Engineers, Symposium on
Cryptography and Information Security, pages 23–26, 2007.

[75] Pierre Dusart and Sinaly Traoré. Lightweight authentication protocol for low-cost RFID
tags. In Lorenzo Cavallaro and Dieter Gollmann, editors, Information Security Theory and
Practice. Security of Mobile and Cyber-Physical Systems – WISTP 2013, volume 7886 of
Lecture Notes in Computer Science, pages 129–144, Heraklion, Greece, May 2013. Springer.

[76] Aras Eghdamian and Azman Samsudin. A secure protocol for ultralightweight radio fre-
quency identification (RFID) tags. In Azizah Abd Manaf, Akram Zeki, Mazdak Zamani,
Suriayati Chuprat, and Eyas El-Qawasmeh, editors, Informatics Engineering and Informa-
tion Science – ICIEIS 2011, volume 251 of Communications in Computer and Information
Science, pages 200–213, Kuala Lumpur, Malaysia, November 2011. Springer.

[77] EPCglobal. EPC Radio-Frequency Identity Protocols Class-1 Generation-2 UHF RFID Pro-
tocol for Communications at 860MHz-960MHz. http://www.gs1.org/epcglobal.

[78] Xinxin Fan, Guang Gong, Daniel W. Engels, and Eric M. Smith. A lightweight privacy-
preserving mutual authentication protocol for RFID systems. In IEEE GLOBECOM Work-
shops, pages 1083–1087. IEEE, December 2011.

[79] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen. AES Implementation on a
Grain of Sand. IEE Proceedings – Information Security, 152(1):13–20, October 2005.

[80] Martin Feldhofer, Johannes Wolkerstorfer, and Vincent Rijmen. AES Implementation on a
Grain of Sand. IEE Proceedings – Information Security, 152(1):13–20, October 2005.

[81] Harinda Fernando and Jemal Abawajy. Mutual authentication protocol for networked RFID
systems. In 10th International Conference on Trust, Security and Privacy in Computing and
Communications – TrustCom 2011, pages 417–424, November 2011.

[82] Amos Fiat and Moni Naor. Rigorous time/space tradeoffs for inverting functions. In ACM
Symposium on Theory of Computing – STOC’91, pages 534–541, New Orleans, Louisiana,
USA, May 1991. ACM, ACM Press.

[83] Robert Gallager and David Van Voorhis. Optimal source codes for geometrically distributed
integer alphabets. Information Theory, IEEE Transactions on, 21(2):228–230, 1975.

[84] Lijun Gao, Maode Ma, Yantai Shu, and Yuhua Wei. A security protocol resistant to in-
termittent position trace attacks and desynchronization attacks in RFID systems. Wireless
Personal Communications, pages 1–17, July 2012.

[85] Lijun Gao, Maode Ma, Yantai Shu, and Yuhua Wei. An ultralightweight RFID authentication
protocol with CRC and permutation. Journal of Network and Computer Applications, 36(6),
November 2013.

[86] Jovan Dj. Golić. Cryptanalysis of alleged a5 stream cipher. In Advances in Cryptology
– EUROCRYPT’97, volume 1233 of Lecture Notes in Computer Science, pages 239–255,
Konstanz, Germany, May 1997. Springer.

[87] Zheng Gong, Svetla Nikova, and Yee Wei Law. Klein: a new family of lightweight block
ciphers. In RFID. Security and Privacy, pages 1–18. Springer, 2012.

[88] Ronald L. Graham, Donald Ervin Knuth, and Oren Patashnik. Concrete mathematics: a
foundation for computer science. Addison-Wesley Reading, 1989.

[89] Tony Guilfoyle. The zeitcontrol basiccard family. http://www.basiccard.com, 2009.

http://www.gs1.org/epcglobal
http://www.basiccard.com

BIBLIOGRAPHY 123

[90] Jian Guo, Thomas Peyrin, and Axel Poschmann. The photon family of lightweight hash
functions. In Advances in Cryptology–CRYPTO 2011, pages 222–239. Springer, 2011.

[91] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The led block cipher. In
Cryptographic Hardware and Embedded Systems–CHES 2011, pages 326–341. Springer, 2011.

[92] Jitendra Gurubani, Harsh Thakkar, and Dhiren Patel. Improvements over extended LMAP+:
RFID authentication protocol. In Theo Dimitrakos, Rajat Moona, Dhiren Patel, and D. McK-
night, editors, 6th International Conference on Trust Management – IFIPTM 2012, volume
374 of IFIP Advances in Information and Communication Technology, pages 225–231, Surat,
India, May 2012. Springer Boston.

[93] Tzipora Halevi, Nitesh Saxena, and Shai Halevi. Using HB Family of Protocols for Privacy-
Preserving Authentication of RFID Tags in a Population. In Workshop on RFID Security –
RFIDSec’09, Leuven, Belgium, July 2009.

[94] Gerhard P. Hancke and Markus Kuhn. An RFID Distance Bounding Protocol. In Conference
on Security and Privacy for Emerging Areas in Communication Networks – SecureComm
2005, pages 67–73, Athens, Greece, September 2005. IEEE, IEEE Computer Society.

[95] Daniel Hein, Johannes Wolkerstorfer, and Norbert Felber. ECC is Ready for RFID A Proof
in Silicon. In Workshop on RFID Security – RFIDSec’08, Budapest, Hungary, July 2008.

[96] Martin Hellman. A cryptanalytic time-memory trade-off. Information Theory, IEEE Trans-
actions on, 26(4):401–406, 1980.

[97] Martin Hellman. A cryptanalytic time-memory trade off. IEEE Transactions on Information
Theory, IT-26(4):401–406, July 1980.

[98] Dirk Henrici and Paul Müller. Hash-Based Enhancement of Location Privacy for Radio-
Frequency Identification Devices Using Varying Identifiers. In Ravi Sandhu and Roshan
Thomas, editors, International Workshop on Pervasive Computing and Communication Se-
curity – PerSec 2004, pages 149–153, Orlando, Florida, USA, March 2004. IEEE, IEEE
Computer Society.

[99] Jens Hermans, Andreas Pashalidis, Frederik Vercauteren, and Bart Preneel. A new RFID
privacy model. In 16th European Symposium on Research in Computer Security – ESORICS
2011, Lecture Notes in Computer Science, Leuven, Belgium, September 2011. Springer.

[100] Julio C. Hernandez-Castro, Juan M. Estevez-Tapiador, Pedro Peris-Lopez, and Jean-Jacques
Quisquater. Cryptanalysis of the SASI Ultralightweight RFID Authentication Protocol with
Modular Rotations. In International Workshop on Coding and Cryptography – WCC’09,
Ullensvang, Norway, May 2009.

[101] Julio C. Hernandez-Castro, Pedro Peris-Lopez, Raphael C.W. Phan, and Juan M. Estevez-
Tapiador. Cryptanalysis of the David-Prasad RFID Ultralightweight Authentication Proto-
col. In S.B. Ors Yalcin, editor, Workshop on RFID Security – RFIDSec’10, volume 6370 of
Lecture Notes in Computer Science, pages 22–34, Istanbul, Turkey, June 2010. Springer.

[102] Julio C. Hernandez-Castro, Pedro Peris-Lopez, Juan M. E. Tapiador, Raphael C.-W. Phan,
and Tieyan Li. Passive Black-Box Cryptanalysis of an Ultralightweight Protocol after Eaves-
dropping One Authentication Session. In Workshop on RFID Security – RFIDSec Asia’11,
volume 6 of Cryptology and Information Security, pages 3–17, Wuxi, China, April 2011. IOS
Press.

[103] Julio C. Hernandez-Castro, Juan E. Tapiador, Pedro Peris-Lopez, John A. Clark, and El-
Ghazali Talbi. Metaheuristic Traceability Attack against SLMAP, an RFID Lightweight Au-
thentication Protocol. In Proceedings of the 23rd IEEE International Parallel and Distributed
Processing Symposium – IPDPS 2009, Rome, Italy, May 2009. IEEE, IEEE Computer Soci-
ety.

124 BIBLIOGRAPHY

[104] Hitatchi. Symmetric key encipherment method “m6” for IEEE 1394 bus encryp-
tion/authentication. Submission 1997-4-25, Proposal for IEEE 1394, Copy Prorection Tech-
nical Working Group, 1997.

[105] Deukjo Hong, Jaechul Sung, Seokhie Hong, Jongin Lim, Sangjin Lee, Bonseok Koo,
Changhoon Lee, Donghoon Chang, Jaesang Lee, Kitae Jeong, Hyun Kim, Jongsung Kim,
and Seongtaek Chee. HIGHT: A new block cipher suitable for low-resource device. In
Louis Goubin and Mitsuru Matsui, editors, Cryptographic Hardware and Embedded Systems
– CHES 2006, volume 4249 of Lecture Notes in Computer Science, pages 46–59, Yokohama,
Japan, November 2006. Springer.

[106] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols. In Colin Boyd,
editor, Advances in Cryptology – Asiacrypt 2001, volume 2248 of Lecture Notes in Computer
Science, pages 52–66, Gold Coast, Australia, December 2001. Springer.

[107] Michael Hutter, Martin Feldhofer, and Thomas Plos. An ECDSA Processor for RFID Au-
thentication. In S.B. Ors Yalcin, editor, Workshop on RFID Security – RFIDSec’10, volume
6370 of Lecture Notes in Computer Science, pages 189–202, Istanbul, Turkey, June 2010.
Springer.

[108] Salekul Islam. Security analysis of lmap using avispa. International Journal of Security and
Networks, 9(1):30–39, 2014.

[109] Il-Soo Jeon and Eun-Jun Yoon. A new ultra-lightweight RFID authentication protocol
using merge and separation operations. International Journal of Mathematical Analysis,
7(52):2583–2593, October 2013.

[110] Ari Juels. Minimalist Cryptography for Low-Cost RFID Tags. In Carlo Blundo and Stelvio
Cimato, editors, International Conference on Security in Communication Networks – SCN
2004, volume 3352 of Lecture Notes in Computer Science, pages 149–164, Amalfi, Italy,
September 2004. Springer.

[111] Ari Juels, Ronald Rivest, and Michael Szydlo. The Blocker Tag: Selective Blocking of RFID
Tags for Consumer Privacy. In Sushil Jajodia, Vijayalakshmi Atluri, and Trent Jaeger,
editors, Conference on Computer and Communications Security – ACM CCS’03, pages 103–
111, Washington, DC, USA, October 2003. ACM, ACM Press.

[112] Ari Juels and Stephen Weis. Authenticating Pervasive Devices with Human Protocols. In
Victor Shoup, editor, Advances in Cryptology – CRYPTO’05, volume 3126 of Lecture Notes
in Computer Science, pages 293–308, Santa Barbara, California, USA, August 2005. Springer.

[113] Ari Juels and Stephen Weis. Defining Strong Privacy for RFID. In International Conference
on Pervasive Computing and Communications – PerCom 2007, pages 342–347, New York
City, NY, USA, March 2007. IEEE, IEEE Computer Society.

[114] BS Kaliski and Yiqun Lisa Yin. On the security of the RC5 encryption algorithm. Technical
report, RSA Laboratories Technical Report TR-602, 1998.

[115] Süleyman Kardaş, Albert Levi, and Ertugrul Murat. Providing Resistance against Server In-
formation Leakage in RFID Systems. In New Technologies, Mobility and Security – NTMS’11,
pages 1–7, Paris, France, February 2011. IEEE, IEEE Computer Society.

[116] John Kelsey, Bruce Schneier, and David Wagner. Mod n cryptanalysis, with applications
against RC5P and M6. In Fast Software Encryption, pages 139–155. Springer, 1999.

[117] Aaron Kiely. Selecting the golomb parameter in rice coding. IPN Progress Report, 42(159),
November 2004.

[118] Alexander Klimov and Adi Shamir. New applications of t-functions in block ciphers and
hash functions. In Fast Software Encryption, pages 18–31. Springer, 2005.

BIBLIOGRAPHY 125

[119] Leslie Lamport. Password authentication with insecure communication. Communications of
the ACM, 24(11):770–772, 1981.

[120] Gregor Leander, Christof Paar, Axel Poschmann, and Kai Schramm. New lightweight des
variants. In Fast Software Encryption, pages 196–210. Springer, 2007.

[121] Ga Won Lee and Jin Hong. A comparison of perfect table cryptanalytic tradeoff algorithms.
Cryptology ePrint Archive, Report 2012/540, 2012.

[122] Y.-C. Lee, Y.-C. Hsieh, P.-S. You, and T.-C. Chen. A New Ultralightweight RFID Protocol
with Mutual Authentication. In WASE International Conference on Information Engineering
– ICIE ’09, pages 58–61, Taiyuan, Shanxi, August 2009. IEEE, IEEE Computer Society.

[123] Yong Ki Lee, Kazuo Sakiyama, Lejla Batina, and Ingrid Verbauwhede. Elliptic-Curve-Based
Security Processor for RFID. IEEE Transactions on Computers, pages 1514–1527, 2008.

[124] Yung-Cheng Lee. Two ultralightweight authentication protocols for low-cost RFID tags.
Applied Mathematics and Information Sciences, 6(2S):425–431, May 2012.

[125] LG OPTIMUS 4X HD P880. Technical Specifications. http://www.lg.com/uk/

mobile-phones/lg-P880/technical-specifications, 2013.

[126] Tieyan Li. Employing lightweight primitives on low-cost RFID tags for authentication. In
68th Vehicular Technology Conference – VTC 2008, pages 1–5, September 2008.

[127] Tieyan Li and Robert H. Deng. Vulnerability Analysis of EMAP - An Efficient RFID Mutual
Authentication Protocol. In Second International Conference on Availability, Reliability and
Security – AReS 2007, Vienna, Austria, April 2007.

[128] Tieyan Li and Guilin Wan. SLMAP - a secure ultra-lightweight RFID mutual authentica-
tion protocol. In Advances in Cryptology – CHINACRYPT’07, Lecture Notes in Computer
Science, pages 19–22, Cheng Du, China, October 2007. Springer.

[129] Tieyan Li and Guilin Wang. Security Analysis of Two Ultra-Lightweight RFID Authenti-
cation Protocols. In Hein Venter, Mariki Eloff, Les Labuschagne, Jan Eloff, and Rossouw
Von Solms, editors, IFIP TC-11 22nd International Information Security Conference – SEC
2007, volume 232 of IFIP, pages 109–120, Sandton, Gauteng, South Africa, May 2007. IFIP,
Springer.

[130] Libnfc. The free/libre near field communication (nfc) library. http://nfc-tools.org/.

[131] Chae Hoon Lim and Tymur Korkishko. mcrypton–a lightweight block cipher for security of
low-cost rfid tags and sensors. In Information Security Applications, pages 243–258. Springer,
2006.

[132] Chae Hoon Lim and Taekyoung Kwon. Strong and Robust RFID Authentication Enabling
Perfect Ownership Transfer. In Peng Ning, Sihan Qing, and Ninghui Li, editors, International
Conference on Information and Communications Security – ICICS’06, volume 4307 of Lecture
Notes in Computer Science, pages 1–20, Raleigh, North Carolina, USA, December 2006.
Springer.

[133] Jie Ling and Jinwei Shen. New defending ultra-lightweight RFID authentication protocol
against DoS attacks. In 3rd International Conference on Consumer Electronics, Communi-
cations and Networks – CECNet 2013, pages 423–426, Xianning, China, November 2013.

[134] Li Lu, Jinsong Han, Lei Hu, Yunhao Liu, and Lionel Ni. Dynamic Key-Updating: Privacy-
Preserving Authentication for RFID Systems. In International Conference on Pervasive
Computing and Communications – PerCom 2007, pages 13–22, New York City, NY, USA,
March 2007. IEEE, IEEE Computer Society.

[135] George Marsaglia. The marsaglia random number CDROM including the diehard battery of
tests of randomness (1995). http: // www. stat. fsu. edu/ pub/ diehard , 2008.

http://www.lg.com/uk/mobile-phones/lg-P880/technical-specifications
http://www.lg.com/uk/mobile-phones/lg-P880/technical-specifications
http://nfc-tools.org/
http://www. stat. fsu. edu/pub/diehard

126 BIBLIOGRAPHY

[136] James L. Massey. Guessing and entropy. In International Symposium on Information Theory,
ISIT 1994, Trondheim, Norway, June 1994. IEEE.

[137] Stephen M. Matyas, Carl H. Meyer, and Jonathan Oseas. Generating strong one-way func-
tions with cryptographic algorithm. IBM Technical Disclosure Bulletin, 27(10A):5658–5659,
1985.

[138] Nele Mentens, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. Cracking Unix passwords
using FPGA platforms. SHARCS - Special Purpose Hardware for Attacking Cryptographic
Systems, February 2005.

[139] Aikaterini Mitrokotsa, Melanie R. Rieback, and Andrew S. Tanenbaum. Classifying RFID
Attacks and Defenses. Information Systems Frontiers, July 2009.

[140] David Molnar and David Wagner. Privacy and Security in Library RFID: Issues, Practices,
and Architectures. In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick Drew McDaniel,
editors, Conference on Computer and Communications Security – ACM CCS’04, pages 210–
219, Washington, DC, USA, October 2004. ACM, ACM Press.

[141] Jorge Munilla and Alberto Peinado. HB-MP: A further step in the HB-family of lightweight
authentication protocols. Computer Networks, 51(9):2262–2267, 2007.

[142] Arvind Narayanan and Vitaly Shmatikov. Fast dictionary attacks on passwords using time-
space tradeoff. In ACM Conference on Computer and Communications Security, CCS 2005,
Alexandria, VA, USA, November 2005. ACM.

[143] Huansheng Ning, Hong Liu, and Chen Yang. Ultralightweight RFID authentication protocol
based on random partitions of pseudorandom identifier and pre-shared secret value. Chinese
Journal of Electronics, 20(4):701–707, October 2011.

[144] Yasunobu Nohara and Sozo Inoue. A Secure and Scalable Identification for Hash-based RFID
Systems Using Updatable Pre-computation. In Susanne Wetzel, Cristina Nita-Rotaru, and
Frank Stajano, editors, Proceedings of the 3rd ACM Conference on Wireless Network Security
– WiSec’10, pages 65–74, Hoboken, New Jersey, USA, March 2010. ACM, ACM Press.

[145] Yasunobu Nohara, Sozo Inoue, and Hiroto Yasuura. A secure high-speed identification scheme
for RFID using bloom filters. In Third International Conference on Availability, Reliability
and Security – AReS 2008, pages 727–722, Barcelona, Spain, March 2008.

[146] Karsten Nohl and David Evans. Quantifying Information Leakage in Tree-Based Hash Pro-
tocols. In Peng Ning, Sihan Qing, and Ninghui Li, editors, International Conference on
Information and Communications Security – ICICS’06, volume 4307 of Lecture Notes in
Computer Science, pages 228–237, Raleigh, North Carolina, USA, December 2006. Springer.

[147] Philippe Oechslin. Making a faster cryptanalytic time-memory trade-off. In Dan Boneh,
editor, Advances in Cryptology – CRYPTO’03, volume 2729 of Lecture Notes in Computer
Science, pages 617–630, Santa Barbara, California, USA, August 2003. Springer.

[148] Philippe Oechslin. The ophcrack password cracker. http://ophcrack.sourceforge.net/,
2013.

[149] Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Cryptographic Approach to
“Privacy-Friendly” Tags. In RFID Privacy Workshop, MIT, MA, USA, November 2003.

[150] Miyako Ohkubo, Koutarou Suzuki, and Shingo Kinoshita. Efficient Hash-Chain Based RFID
Privacy Protection Scheme. In International Conference on Ubiquitous Computing – Ubi-
comp, Workshop Privacy: Current Status and Future Directions, Nottingham, England,
September 2004.

http://ophcrack.sourceforge.net/

BIBLIOGRAPHY 127

[151] Khaled Ouafi and Raphael C.-W. Phan. Privacy of Recent RFID Authentication Protocols. In
Liqun Chen, Yi Mu, and Willy Susilo, editors, 4th International Conference on Information
Security Practice and Experience – ISPEC 2008, volume 4991 of Lecture Notes in Computer
Science, pages 263–277, Sydney, Australia, April 2008. Springer.

[152] Liaojun Pang, Huixian Li, Liwei He, Ali Alramadhan, and Yumin Wang. Secure and efficient
lightweight RFID authentication protocol based on fast tag indexing. International Journal
of Communication Systems, March 2013.

[153] Pedro Peris-Lopez, Julio C. Hernandez-Castro, Juan M. Estevez-Tapiador, Tieyan Li, and
Jan C.A. van der Lubbe. Weaknesses in Two Recent Lightweight RFID Authentication
Protocols. In Workshop on RFID Security – RFIDSec’09, Leuven, Belgium, July 2009.

[154] Pedro Peris-Lopez, Julio C. Hernandez-Castro, Juan M. Estevez-Tapiador, and Arturo Rib-
agorda. EMAP: An Efficient Mutual Authentication Protocol for Low-Cost RFID Tags. In
OTM Federated Conferences and Workshop: IS Workshop – IS’06, volume 4277 of Lecture
Notes in Computer Science, pages 352–361, Montpellier, France, November 2006. Springer.

[155] Pedro Peris-Lopez, Julio C. Hernandez-Castro, Juan M. Estevez-Tapiador, and Arturo Rib-
agorda. LMAP: A Real Lightweight Mutual Authentication Protocol for Low-cost RFID
tags. In Workshop on RFID Security – RFIDSec’06, Graz, Austria, July 2006. Ecrypt.

[156] Pedro Peris-Lopez, Julio C. Hernandez-Castro, Juan M. Estevez-Tapiador, and Arturo Rib-
agorda. M2AP: A Minimalist Mutual-Authentication Protocol for Low-cost RFID Tags. In
Jianhua Ma, Hai Jin, Laurence Tianruo Yang, and Jeffrey J. P. Tsai, editors, International
Conference on Ubiquitous Intelligence and Computing – UIC’06, volume 4159 of Lecture
Notes in Computer Science, pages 912–923, Wuhan and Three Gorges, China, September
2006. Springer.

[157] Pedro Peris-Lopez, Julio C. Hernandez-Castro, Juan M. Estevez-Tapiador, and Arturo Rib-
agorda. Advances in Ultralightweight Cryptography for Low-cost RFID Tags: Gossamer
Protocol. In Kyo-Il Chung, Kiwook Sohn, and Moti Yung, editors, Workshop on Information
Security Applications – WISA’08, volume 5379 of Lecture Notes in Computer Science, pages
56–68, Jeju Island, Korea, September 2008. Springer.

[158] Pedro Peris-Lopez, Julio C. Hernandez-Castro, Juan M. Estevez-Tapiador, and Jan C. A.
van der Lubbe. Security Flaws in a Recent Ultralightweight RFID Protocol. In Workshop on
RFID Security – RFIDSec Asia’10, volume 4 of Cryptology and Information Security, pages
83–93, Singapore, Republic of Singapore, February 2010. IOS Press.

[159] Pedro Peris-Lopez, Julio C. Hernandez-Castro, Raphael C.-W. Phan, Juan M. E. Tapiador,
and Tieyan Li. Quasi-Linear Cryptanalysis of a Secure RFID Ultralightweight Authentication
Protocol. In 6th China International Conference on Information Security and Cryptology –
Inscrypt’10, Shanghai, China, October 2010. Springer.

[160] Alexander Peslyak. The John the Ripper password cracker. http://www.openwall.com/

john/, 2014.

[161] Raphael C.-W. Phan. Cryptanalysis of a New Ultralightweight RFID Authentication Protocol
- SASI. IEEE Transactions on Dependable and Secure Computing, 99(1), 2008.

[162] Raphael C.-W. Phan, Jiang Wu, Khaled Ouafi, and Douglas R. Stinson. Privacy analysis
of forward and backward untraceable rfid authentication schemes. Wirel. Pers. Commun.,
61(1):69–81, November 2011.

[163] Cai Qingling, Zhan Yiju, and Wang Yonghua. A Minimalist Mutual Authentication Protocol
for RFID System & BAN Logic Analysis. In ISECS International Colloquium on Computing,
Communication, Control, and Management – CCCM’08., volume 2, pages 449–453, August
2008.

http://www.openwall.com/john/
http://www.openwall.com/john/

128 BIBLIOGRAPHY

[164] Robert Rice and James Plaunt. Adaptive variable-length coding for efficient compression of
spacecraft television data. Communication Technology, IEEE Transactions on, 19(6):889–
897, 1971.

[165] Ronald Rivest. The RC5 encryption algorithm. In Bart Preneel, editor, Proceedings of the
Second International Workshop on Fast Software Encryption – FSE 1994, volume 1008 of
Lecture Notes in Computer Science, pages 86–96, Leuven, Belgium, December 1995. Springer,
Springer.

[166] Samad Rostampour, Mojtaba Eslamnezhad Namin, and Mehdi Hosseinzadeh. A novel mutual
rfid authentication protocol with low complexity and high security. International Journal of
Modern Education and Computer Science, 2014.

[167] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker. A statistical
test suite for random and pseudorandom number generators for cryptographic applications.
Technical report, DTIC Document, 2001.

[168] Stuart J. Russell and Peter Norvig. Artificial intelligence: a modern approach, volume 2.
Pearson Education, 2003.

[169] Markku-Juhani Olavi Saarinen. A time-memory tradeoff attack against LILI-128. In Fast
Software Encryption, volume 2365, pages 231–236, Leuven, Belgium, February 2001.

[170] Shankland, Stephen. Google’s Android parts ways with Java industry group. CNET News.
Retrieved 2012-02-15, November 12, 2007.

[171] François-Xavier Standaert, Gilles Piret, Neil Gershenfeld, and Jean-Jacques Quisquater. Sea:
A scalable encryption algorithm for small embedded applications. In Smart Card Research
and Advanced Applications, pages 222–236. Springer, 2006.

[172] Hung-Min Sun, Shuai-Min Chen, and King-Hang Wang. Cryptanalysis on the RFID ACTION
protocol. In International Conference on Security and Management – SAM 2011, Las Vegas,
Nevada, USA, July 2011.

[173] Hung-Min Sun, Wei-Chih Ting, and King-Hang Wang. On the Security of Chien’s Ultra-
Lightweight RFID Authentication Protocol. IEEE Transactions on Dependable and Secure
Computing, 99(PrePrints), 2009.

[174] Deepak Tagra, Musfiq Rahman, and Srinivas Sampalli. Technique for Preventing DoS Attacks
on RFID Systems. In 18th International Conference on Software Telecommunications and
Computer Networks – SoftCOM’10, Bol, Island of Brac, Croatia, September 2010. IEEE,
IEEE Computer Society.

[175] D.R. Thompson, N. Chaudhry, and C.W. Thompson. RFID security threat model. In Conf.
on Applied Research in Information Technology. Citeseer, 2006.

[176] Yun Tian, Gongliang Chen, and Jianhua Li. A new ultralightweight RFID authentication
protocol with permutation. IEEE Communications Letters, 16(5):702–705, May 2012.

[177] Wiem Tounsi, Nora Cuppens-Boulahia, Joaquin Garcia-Alfaro, Yannick Chevalier, and Frdric
Cuppens. Kedgen2: A key establishment and derivation protocol for {EPC} gen2 {RFID}
systems. Journal of Network and Computer Applications, 39(0):152 – 166, 2014.

[178] Gene Tsudik. YA-TRAP: Yet Another Trivial RFID Authentication Protocol. In Inter-
national Conference on Pervasive Computing and Communications – PerCom 2006, pages
640–643, Pisa, Italy, March 2006. IEEE, IEEE Computer Society.

[179] Gene Tsudik. A Family of Dunces: Trivial RFID Identification and Authentication Protocols.
In Nikita Borisov and Philippe Golle, editors, Workshop on Privacy Enhancing Technologies
– PET 2007, volume 4776 of Lecture Notes in Computer Science, pages 45–61, Ottawa,
Canada,, June 2007. Springer.

BIBLIOGRAPHY 129

[180] Harshal Tupsamudre, Shikha Bisht, and Debdeep Mukhopadhyay. Differential fault analysis
on the families of simon and speck ciphers. Technical report, Cryptology ePrint Archive,
Report 2014/267, 2014., 2014.

[181] Ton van Deursen, Sjouke Mauw, and Saša Radomirović. Untraceability of RFID Protocols.
In Jose Antonio Onieva, Damien Sauveron, Serge Chaumette, Dieter Gollmann, and Con-
stantinos Markantonakis, editors, Workshop on Information Security Theory and Practice –
WISTP’08, volume 5019 of Lecture Notes in Computer Science, pages 1–15, Sevilla, Spain,
May 2008. Springer.

[182] Tri Van Le, Mike Burmester, and Breno de Medeiros. Universally Composable and Forward-
secure RFID Authentication and Authenticated Key Exchange. In Feng Bao and Steven
Miller, editors, ACM Symposium on Information, Computer and Communications Security
– ASIACCS 2007, pages 242–252, Singapore, Republic of Singapore, March 2007. ACM,
ACM Press.

[183] Serge Vaudenay. RFID Privacy Based on Public-Key Cryptography (Abstract). In Min Surp
Rhee and Byoungcheon Lee, editors, International Conference on Information Security and
Cryptology – ICISC 2006, volume 4296 of Lecture Notes in Computer Science, pages 1–6,
Busan, Korea, November–December 2006. Springer.

[184] Serge Vaudenay. On Privacy Models for RFID. In Kaoru Kurosawa, editor, Advances in
Cryptology – Asiacrypt 2007, volume 4833 of Lecture Notes in Computer Science, pages
68–87, Kuching, Malaysia, December 2007. Springer.

[185] John Walker. ENT, a pseudorandom number sequence test program. Fourmilab, Oct, 1998.

[186] Weijia Wang, Yong Li, Lei Hu, and Li Lu. Storage-awareness: RFID private authentication
based on sparse tree. In Security, Privacy and Trust in Pervasive and Ubiquitous Computing,
2007. SECPerU 2007. Third International Workshop on, pages 61–66. IEEE, 2007.

[187] Stephen Weis. Security and Privacy in Radio-Frequency Identification Devices. Master thesis,
Massachusetts Institute of Technology (MIT), MIT, Massachusetts, USA, May 2003.

[188] David J Wheeler and Roger M Needham. Tea, a tiny encryption algorithm. In Fast Software
Encryption, pages 363–366. Springer, 1995.

[189] Lin Yang, Meiqin Wang, and Siyuan Qiao. Side channel cube attack on PRESENT. In
Juan A. Garay, Atsuko Miyaji, and Akira Otsuka, editors, 8th International Conference on
Cryptology And Network Security – CANS’09, volume 5888 of Lecture Notes in Computer
Science, pages 379–391, Kanazawa, Japan, December 2009. Springer.

[190] Qingsong Yao, Yong Qi, Jinsong Han, Jizhong Zhao, Xiangyang Li, and Yunhao Liu. Ran-
domizing RFID private authentication. In Pervasive Computing and Communications, 2009.
PerCom 2009. IEEE International Conference on, pages 1–10. IEEE, 2009.

[191] Kuo-Hui Yeh, Naiwei Lo, and Enrico Winata. An Efficient Ultralightweight Authentication
Protocol for RFID Systems. In Workshop on RFID Security – RFIDSec Asia’10, volume 4
of Cryptology and Information Security, Singapore, Republic of Singapore, February 2010.
IOS Press.

[192] Kuo-Hui Yeh and N.W. Lo. Improvement of Two Lightweight RFID Authentication Proto-
cols. Information Assurance and Security Letters – IASL 2010, 1:6–11, 2010.

	Introduction
	RFID in a Nutshell
	System Model
	Threats in RFID
	Challenges in RFID Authentication

	Results on RFID Authentication
	Introduction to Cryptanalytic Time-Memory Trade-offs
	Motivation
	Variants and Adaptations

	Results on Time-Memory Trade-offs
	Plan of the Manuscript

	Ultralightweight Authentication
	Ultralightweight Protocols
	Tag Capabilities
	Attack Model
	SASI, a Typical Ultralightweight Protocol

	Statistics on the State of the Art
	Common Flaws
	Linearity and T-functions
	Biased Output
	Rotations
	Message Composition
	Knowledge Accumulation
	Desynchronization
	Vulnerability to Systematic Black-box Attacks

	Dubious Proofs of Security
	Randomness Tests
	BAN and GNY Logic
	Other Approaches

	Weaknesses in Recent Protocols
	Bilal and Martin
	Jeon and Yoon
	Ling and Shen

	Ultralightweight Building Blocks
	Conclusion

	Complexity and Privacy
	Preliminaries
	Protocols with Limited Privacy
	Protocols with Shared Secrets
	Tree-based and Group-based Protocols
	Cheon, Hong, and Tsudik's Protocol
	Alomair, Clark, Cuellar, and Poovendran's Protocol
	Discussion

	Protocols Based on Hash-Chains
	OSK Protocol
	OSK/AO Protocol
	OSK/BF Protocol
	O-RAP Protocol
	Discussion

	Counter-Based Protocols
	YA-TRAP Family
	Discussion

	Comparison
	Conclusion

	The OSK/AO Protocol
	Ohkubo, Suzuki, and Kinoshita's Protocol
	Description
	Real-life Applications

	OSK/AO
	Description
	Analysis
	Algorithms

	Experiments and Comparison
	Environment
	Parameters and Functions
	Precomputation of the Tables
	Experiments

	Conclusion

	Rainbow Tables with Fingerprints
	Background on Cryptanalytic Time-Memory Trade-offs
	Hellman Tables
	Rainbow Tables
	Main Results on Rainbow Tables

	Fingerprints
	Rationale
	Description

	Analysis
	Algorithm for Finding Optimal Configurations
	Hill Climbing
	Application to Checkpoint Functions

	Theoretical and Experimental Results
	Theoretical Results
	Experimental Validation

	Conclusion

	Rainbow Tables Optimal Storage
	Bound for Endpoint Storage
	Decomposition of the Endpoints in Prefix and Suffix
	Description
	Analysis and Optimality

	Compressed Delta Encoding of the Endpoints
	Description
	Analysis and Optimality
	Example

	Compressing the Startpoints
	Experiments and Comparison
	Choice of the L Parameter
	Measure of the Gain

	Conclusion

	Interleaving for Non-Uniform Input Distribution
	Introduction
	Interleaving
	Description
	Analysis

	Order of Visit
	Discussion
	Analysis

	Input Set Partition and Memory Allocation
	Input Set Partition
	Memory Allocation

	Results
	Conclusion

	Conclusion

