"Strong density for higher order Sobolev spaces into compact manifolds"

Bousquet, Pierre ; Ponce, Augusto ; Van Schaftingen, Jean

Abstract

Given a compact manifold $\backslash\left(\mathrm{N}^{\wedge} \mathrm{n} \backslash\right)$, an integer $\backslash\left(\mathrm{k}\right.$ lin $\left.\backslash m a t h b b\{N\}_{-}^{*} \backslash\right)$ and an exponent $\backslash(1$ le $p<$ linfty $\backslash)$, we prove that the class $\backslash\left(\mathrm{C}^{\wedge}\right.$ linfty (loverline\{Q\} ${ }^{\wedge} m$; $\left.N^{\wedge} n\right) \backslash$) of smooth maps on the cube with values into $\backslash\left(N^{\wedge} n \backslash\right)$ is dense with respect to the strong topology in the Sobolev space $\backslash\left(W^{\wedge}\{k, p\}\left(Q^{\wedge} m ; N^{\wedge} n\right) \backslash\right)$ when the homotopy group $\pi_\{\|floor kp \rfloor\}(\(\left.\mathrm{N}^{\wedge} \mathrm{n}\right)$)) of order
(\|floor kp \rfloorl) is trivial. We also prove the density of maps that are smooth except for a set of dimension $\backslash\left(m-\backslash f l o o r ~ k p ~ \\right.$ 'ffloor - $1 \backslash$), without any restriction on the homotopy group of $\backslash\left(N^{\wedge} n \backslash\right)$.

Document type: Article de périodique (Journal article)

Bousquet, Pierre ; Ponce, Augusto ; Van Schaftingen, Jean. Strong density for higher order Sobolev spaces into compact manifolds. In: Journal of the european mathematical society, Vol. 17, no.4, p. 763-817 (2015)

DOI : 10.4171/JEMS/518

Strong density for higher order Sobolev spaces into compact manifolds

Pierre Bousquet
Augusto C. Ponce
Jean Van Schaftingen

April 14, 2015

Abstract

Given a compact manifold N^{n}, an integer $k \in \mathbb{N}_{*}$ and an exponent $1 \leq p<\infty$, we prove that the class $C^{\infty}\left(\bar{Q}^{m} ; N^{n}\right)$ of smooth maps on the cube with values into N^{n} is dense with respect to the strong topology in the Sobolev space $W^{k, p}\left(Q^{m} ; N^{n}\right)$ when the homotopy group $\pi_{\lfloor k p\rfloor}\left(N^{n}\right)$ of order $\lfloor k p\rfloor$ is trivial. We also prove the density of maps that are smooth except for a set of dimension $m-\lfloor k p\rfloor-1$, without any restriction on the homotopy group of N^{n}.

Published in J. Eur. Math. Soc. (JEMS) 17 (2015), 763-817, by the European Mathematical Society.

Keywords. Strong density; Sobolev maps; compact manifolds; higher order Sobolev spaces; homotopy; topological singularity

1 Introduction

There are two natural approaches to define Sobolev maps with values in a compact manifold. More precisely, let N^{n} be a compact connected smooth manifold of dimension n imbedded in \mathbb{R}^{ν} for some $\nu \geq 1[42,43], k \in \mathbb{N}_{*}$ and $1 \leq p<+\infty$. One can first define $W^{k, p}\left(Q^{m} ; N^{n}\right)$ as the set

$$
\left\{u \in W^{k, p}\left(Q^{m} ; \mathbb{R}^{\nu}\right): u \in N^{n} \text { a.e. }\right\},
$$

where $Q^{m} \subset \mathbb{R}^{m}$ is the open unit cube. The other possibility is to define $H^{k, p}\left(Q^{m} ; N^{n}\right)$ as the completion of the class of smooth maps $C^{\infty}\left(\bar{Q}^{m} ; N^{n}\right)$ with respect to the Sobolev

[^0]metric
$$
d_{k, p}(u, v)=\|u-v\|_{L^{p}\left(Q^{m}\right)}+\sum_{i=1}^{k}\left\|D^{i} u-D^{i} v\right\|_{L^{p}\left(Q^{m}\right)} .
$$

These spaces are the natural framework for the study of harmonic maps [23, 34, 38, 49], biharmonic maps [15, 39, 47,51,52] and polyharmonic maps [1,21, 24, 25, 33] with values into manifolds. They also arise in some physical models [8,35]. For instance, maps into the sphere, the projective space and other manifolds appear in liquid cristal models [2,9,40,41].

In contrast with the real-valued case [16, 36], these spaces may be different. For instance, $H^{1, p}\left(Q^{2} ; \mathbb{S}^{1}\right)=W^{1, p}\left(Q^{2} ; \mathbb{S}^{1}\right)$ if and only if $p \geq 2$ [4, Theorem 3]. The goal of this paper is to determine when $H^{k, p}\left(Q^{m} ; N^{n}\right)=W^{k, p}\left(Q^{m} ; N^{n}\right)$.

This always happens when $k p \geq m$ [48, Section 4, Proposition], as $W^{k, p}\left(\mathbb{R}^{m}\right) \cap$ $L^{\infty}\left(\mathbb{R}^{m}\right)$ is imbedded into the space of functions with vanishing mean oscillation $\operatorname{VMO}\left(\mathbb{R}^{m}\right)$ [13, Example 1, Eq. (7)]. The main result of this paper completely solves the problem in the case $k p<m$. It is remarkable that such an analytical question has a purely topological answer:

Theorem 1. If $k p<m$, then $H^{k, p}\left(Q^{m} ; N^{n}\right)=W^{k, p}\left(Q^{m} ; N^{n}\right)$ if and only if $\pi_{\lfloor k p\rfloor}\left(N^{n}\right) \simeq$ $\{0\}$.

We denote by $\lfloor k p\rfloor$ the integral part of $k p$ and by $\pi_{\lfloor k p\rfloor}\left(N^{n}\right)$ the $\lfloor k p\rfloor$ th homotopy group of N^{n}; the topological condition $\pi_{\lfloor k p\rfloor}\left(N^{n}\right) \simeq\{0\}$ means that every continuous map $f: \mathbb{S}^{\lfloor k p\rfloor} \rightarrow N^{n}$ on the $\lfloor k p\rfloor$ dimensional sphere is homotopic to a constant map. The necessity of this assumption has been known for some time [4, Theorem 2] [17, Theorem 3] [48, Section 4, Example] [37, Theorem 4.4].

The case $k=1$ of Theorem 1 is the main result of Bethuel's seminal work [3, Theorem 1] (see also [27,28]). The case $k \geq 2$ cannot be handled by merely adapting Bethuel's tools due to the rigidity of $W^{k, p}$ and requires new ideas. A typical issue one faces when dealing with two maps in $W^{k, p}$ is that they cannot be glued together under the sole assumption that their traces coincide. Results concerning strong density of smooth maps in higher order Sobolev maps have been known in some cases situations where N^{n} is a sphere [37, Theorem 5] [11, Theorem 4] [17, Theorem 2].

In the case $\pi_{\lfloor k p\rfloor}\left(N^{n}\right) \not 千\{0\}$, we prove that $W^{k, p}\left(Q^{m} ; N^{n}\right)$ is the completion of a set of maps that are smooth outside a small singular set. For this purpose, given $i \in$ $\{0, \ldots, m-1\}$ we denote by $R_{i}\left(Q^{m} ; N^{n}\right)$ the set of maps $u: \bar{Q}^{m} \rightarrow N^{n}$ which are smooth on $\bar{Q}^{m} \backslash T$, where T is a finite union of i dimensional planes, and such that for every $j \in \mathbb{N}_{*}$ and $x \in \bar{Q}^{m} \backslash T$,

$$
\left|D^{j} u(x)\right| \leq \frac{C}{\operatorname{dist}(x, T)^{j}}
$$

for some constant $C \geq 0$ depending on u and j.
Theorem 2. If $k p<m$ and $\pi_{\lfloor k p\rfloor}\left(N^{n}\right) \not 千\{0\}$, then $W^{k, p}\left(Q^{m} ; N^{n}\right)$ is the completion of $R_{i}\left(Q^{m} ; N^{n}\right)$ with respect to the Sobolev metric $d_{k, p}$ if and only if $i=m-\lfloor k p\rfloor-1$.

This result was known for an arbitrary manifold N^{n} only in the case $k=1$ [3, Theorem 2] (see also [28, Theorem 1.3]). It is a fundamental tool in the study of the weak density of smooth maps in Sobolev spaces and in the study of topological singularities of Sobolev maps [5, 22, 23, 29, 31, 45]. Counterparts of Theorems 1 and 2 for fractional Sobolev spaces $W^{s, p}\left(Q^{m} ; N^{n}\right)$ such that $0<s<1$ have been investigated by Brezis and Mironescu [12].

We explain the strategy of the proofs of Theorems 1 and 2 under the additional assumption $k p>m-1$. Given a decomposition of Q^{m} in cubes of size $\eta>0$, we distinguish them between good cubes and bad cubes - a notion reminiscent from [3] as follows: for a map $u \in W^{k, p}\left(Q^{m} ; N^{n}\right)$ and a cube σ_{η}^{m} in Q^{m} of radius $\eta>0, \sigma_{\eta}^{m}$ is a good cube if

$$
\frac{1}{\eta^{m-k p}} \int_{\sigma_{\eta}^{m}}|D u|^{k p} \lesssim 1
$$

which means that u does not oscillate too much in σ_{η}^{m}; otherwise σ_{η}^{m} is a bad cube. The main steps in the proof of Theorem 2 are the following:
Opening We construct a map u_{η}^{op} which is continuous on a neighborhood of the $m-1$ dimensional faces of the bad cubes, and equal to u elsewhere. This map, which takes its values into N^{n}, is close to u with respect to the $W^{k, p}$ distance because there are not too many bad cubes. Since $k p>m-1, W^{k, p}$ maps are continuous on faces of dimension $m-1$.
Adaptive smoothing By convolution with a smooth kernel, we then construct a smooth $\operatorname{map} u_{\eta}^{\mathrm{sm}} \in W^{k, p}\left(Q^{m} ; N^{n}\right)$. The scale of convolution is chosen to be of the order of η on the good cubes, and close to zero in a neighborhood of the faces of the bad cubes. On the union of these sets, we are thus ensuring that u_{η}^{sm} takes its values in a small neigborhood of N^{n}.
Thickening We propagate diffeomorphically the values of u_{η}^{sm} near the faces of the bad cubes to the interior of these cubes. The resulting map $u_{\eta}^{\text {th }}$ coincides with u_{η}^{sm} on the good cubes and near the faces of the bad cubes, is close to u with respect to the $W^{k, p}$ distance and takes its values in a neighborhood of N^{n}. This construction creates at most one singularity at the center of each bad cube.
The map obtained by projecting $u_{\eta}^{\text {th }}$ from a neighborhood of N^{n} into N^{n} itself belongs to the class $R_{0}\left(Q^{m} ; N^{n}\right)$ and converges strongly to u with respect to the Sobolev distance $d_{k, p}$ as $\eta \rightarrow 0$. This argument works regardless of the $\lfloor k p\rfloor$ th homotopy group of N^{n}; see Theorem 3 in Section 5 below.

The sketch of the proof we have announced in a previous work [6] for $k=2$ and $2 p>m-1$ is based on the strategy above but was organized differently following [46] (see also [20]). The opening technique was introduced by Brezis and Li [10] in their study of homotopy classes of $W^{1, p}\left(Q^{m} ; N^{n}\right)$.

The proof of Theorem 1 in the case $k p \geq m-1$ relies on the fact that $R_{0}\left(Q^{m} ; N^{n}\right)$ is strongly dense in $W^{k, p}\left(Q^{m} ; N^{n}\right)$ with respect to the Sobolev distance $d_{k, p}$. The approximation of a map $u \in R_{0}\left(Q^{m} ; N^{n}\right)$ by a map in $C^{\infty}\left(\bar{Q}^{m} ; N^{n}\right)$ in this case goes as follows:

Continuous extension property By the assumption on the homotopy group of N^{n}, for any $\mu<1$ there exists a smooth map $u_{\mu}^{\text {ex }}$ with values into N^{n} which coincides with u outside a neighborhood of radius $\mu \eta$ of the singular set of u. As a drawback, u_{μ}^{ex} may be far from u with respect to the $W^{k, p}$ distance.
Shrinking We propagate diffeomorphically the values of $u_{\mu}^{\text {ex }}$ in the neighborhood of radius $\mu \eta$ of each singularity of u into a smaller neighborhood of radius $\tau \mu \eta$ for $\tau<1$. Since $k p<m$, we obtain a map $u_{\tau, \mu}^{\mathrm{sh}}$ which is still smooth but now close to u with respect to the $W^{k, p}$ distance. This construction is reminiscent of thickening but does not create singularities.
The smooth map $u_{\tau, \mu}^{\text {sh }}$ converges strongly to u with respect to the $W^{k, p}$ distance as $\tau \rightarrow 0$ and $\mu \rightarrow 0$. The role of this continuous extension property in the case of $W^{1, p}$ approximation of maps u with higher dimensional singularities has been clarified by Hang and Lin [28].

Contents

1 Introduction 1
2 Opening 5
3 Adaptive smoothing 20
4 Thickening 24
5 Density of the class $R_{m-\lfloor k p\rfloor-1}\left(Q^{m} ; N^{n}\right)$ 38
6 Proof of Theorem 2 48
7 Continuous extension property 50
8 Shrinking 53
9 Proof of Theorem 1 64
10 Concluding remarks 67
10.1 Other domains 67
10.2 Complete manifolds 67
$10.3\lfloor k p\rfloor$ simply connected manifolds 68
References 68

2 Opening

For $a \in \mathbb{R}^{m}$ and $r>0$, we denote by $Q_{r}^{m}(a)$ the cube of radius r with center a; by radius of the cube we mean half of the length of one of its edges. When $a=0$, we abbreviate
$Q_{r}^{m}=Q_{r}^{m}(0)$.
Definition 2.1. A family of closed cubes \mathcal{S}^{m} is a cubication of $A \subset \mathbb{R}^{m}$ if all cubes have the same radius, if $\bigcup_{\sigma^{m} \in \mathcal{S}^{m}} \sigma^{m}=A$ and if for every $\sigma_{1}^{m}, \sigma_{2}^{m} \in \mathcal{S}^{m}$ which are not disjoint, $\sigma_{1}^{m} \cap \sigma_{2}^{m}$ is a common face of dimension $i \in\{0, \ldots, m\}$.

The radius of a cubication is the radius of any of its cubes.
Definition 2.2. Given a cubication \mathcal{S}^{m} of $A \subset \mathbb{R}^{m}$ and $\ell \in\{0, \ldots, m\}$, the skeleton of dimension ℓ is the set \mathcal{S}^{ℓ} of all ℓ dimensional faces of all cubes in \mathcal{S}^{m}. A subskeleton of dimension ℓ of \mathcal{S}^{m} is a subset of \mathcal{S}^{ℓ}.

Given a skeleton \mathcal{S}^{ℓ}, we denote by S^{ℓ} the union of all elements of \mathcal{S}^{ℓ},

$$
S^{\ell}=\bigcup_{\sigma^{\ell} \in \mathcal{S}^{\ell}} \sigma^{\ell}
$$

For a given map $u \in W^{k, p}\left(U^{m} ; \mathbb{R}^{\nu}\right)$ on some subskeleton \mathcal{U}^{m} and for any $\ell \in$ $\{0, \ldots, m-1\}$, we are going to construct a map $u \circ \Phi \in W^{k, p}\left(U^{m} ; \mathbb{R}^{\nu}\right)$ which is constant along the normals to U^{ℓ} in a neighborhood of U^{ℓ}. In this region, the map $u \circ \Phi$ will thus be essentially a $W^{k, p}$ map of ℓ variables. Hence, if $k p>\ell$, then $u \circ \Phi$ will be continuous there, whereas in the critical case $\ell=k p$, the map $u \circ \Phi$ need not be continuous but will still have vanishing mean oscillation. In this construction the map Φ depends on u and is never injective. This idea of opening a map has been inspired by a similar construction of Brezis and Li [10].

Given a map $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$, we denote by Supp Φ the geometric support of Φ, namely the closure of the set $\left\{x \in \mathbb{R}^{m}: \Phi(x) \neq x\right\}$. This should not be confused with the analytic support $\operatorname{supp} \varphi$ of a function $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ which is the closure of the set $\left\{x \in \mathbb{R}^{m}: \varphi(x) \neq 0\right\}$.

Proposition 2.1. Let $\ell \in\{0, \ldots, m-1\}, \eta>0,0<\rho<\frac{1}{2}$, and \mathcal{U}^{ℓ} be a subskeleton of \mathbb{R}^{m} of radius η. Then, for every $u \in W^{k, p}\left(U^{\ell}+Q_{2 \rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$, there exists a smooth map $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that
(i) for every $i \in\{0, \ldots, \ell\}$ and for every $\sigma^{i} \in \mathcal{U}^{i}, \Phi$ is constant on the $m-i$ dimensional cubes of radius $\rho \eta$ which are orthogonal to σ^{i},
(ii) Supp $\Phi \subset U^{\ell}+Q_{2 \rho \eta}^{m}$ and $\Phi\left(U^{\ell}+Q_{2 \rho \eta}^{m}\right) \subset U^{\ell}+Q_{2 \rho \eta}^{m}$,
(iii) $u \circ \Phi \in W^{k, p}\left(U^{\ell}+Q_{2 \rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$, and for every $j \in\{1, \ldots, k\}$,

$$
\eta^{j}\left\|D^{j}(u \circ \Phi)\right\|_{L^{p}\left(U^{\ell}+Q_{2 \rho \eta}^{m}\right)} \leq C \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(U^{\ell}+Q_{2 \rho \eta}^{m}\right)},
$$

for some constant $C>0$ depending on m, k, p and ρ,
(iv) for every $\sigma^{\ell} \in \mathcal{U}^{\ell}$ and for every $j \in\{1, \ldots, k\}$,

$$
\eta^{j}\left\|D^{j}(u \circ \Phi)\right\|_{L^{p}\left(\sigma^{\ell}+Q_{2 \rho \eta}^{m}\right)} \leq C^{\prime} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(\sigma^{\ell}+Q_{2 \rho \eta}^{m}\right)},
$$

for some constant $C^{\prime}>0$ depending on m, k, p and ρ.
In the case of $W^{2, p}$ maps, the quantity $\|D(u \circ \Phi)\|_{L^{p}}$ can be estimated in terms of $\|D u\|_{L^{p}}$; hence there is no explicit dependence of η. However, concerning the second-order term, estimate in (iii) reads

$$
\left\|D^{2}(u \circ \Phi)\right\|_{L^{p}\left(U^{\ell}+Q_{2 \rho \eta}^{m}\right)} \leq C\left\|D^{2} u\right\|_{L^{p}\left(U^{\ell}+Q_{2 \rho \eta}^{m}\right)}+\frac{C}{\eta}\|D u\|_{L^{p}\left(U^{\ell}+Q_{2 \rho \eta}^{m}\right)} .
$$

The factor $\frac{1}{\eta}$ which comes naturally from a scaling argument is one of the differences with respect to the opening of $W^{1, p}$ maps. In the proof of Theorem 1 , we shall use the Gagliardo-Nirenberg interpolation inequality to deal with this extra term.

Since the map u in the statement is defined almost everywhere, the map $u \circ \Phi$ need not be well-defined by standard composition of maps. By $u \circ \Phi$, we mean a map v in $W^{k, p}$ such that there exists a sequence of smooth maps $\left(u_{n}\right)_{n \in \mathbb{N}}$ converging to u in $W^{k, p}$ such that $\left(u_{n} \circ \Phi\right)_{n \in \mathbb{N}}$ converges to v in $W^{k, p}$. By pointwise convergence, this map $u \circ \Phi$ inherits several properties of Φ and of u. For instance, if Φ is constant in a neighborhood of some point a, then so is $u \circ \Phi$. One can show that under some assumptions on Φ which are satisfied in all the cases that we consider $u \circ \Phi$ does not depend on the sequence $\left(u_{n}\right)_{n \in \mathbb{N}}$, but we shall not make use of this fact. The only property we shall need from $u \circ \Phi$ is that its essential range is contained in the essential range of u; this is actually the case in view of Lemma 2.3 (ii) below. In particular, if u is a map with values into the manifold N^{n}, then $u \circ \Phi$ is also a map with values into N^{n}.

The following proposition is the main tool in the proof of Proposition 2.1.
Proposition 2.2. Let $\ell \in\{0, \ldots, m-1\}, \eta>0,0<\underline{\rho}<\bar{\rho}$ and $A \subset \mathbb{R}^{\ell}$ be an open set. For every $u \in W^{k, p}\left(A \times Q_{\bar{\rho} \eta}^{m-\ell} ; \mathbb{R}^{\nu}\right)$, there exists a smooth map $\zeta: \mathbb{R}^{m-\ell} \rightarrow \mathbb{R}^{m-\ell}$ such that
(i) ζ is constant in $Q_{\underline{\rho} \eta}^{m-\ell}$,
(ii) $\operatorname{Supp} \zeta \subset Q_{\bar{\rho} \eta}^{m-\ell}$ and $\zeta\left(Q_{\bar{\rho} \eta}^{m-\ell}\right) \subset Q_{\bar{\rho} \eta}^{m-\ell}$,
(iii) if $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is defined for every $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ by

$$
\Phi(x)=\left(x^{\prime}, \zeta\left(x^{\prime \prime}\right)\right)
$$

then $u \circ \Phi \in W^{k, p}\left(A \times Q_{\bar{\rho} \eta}^{m-\ell} ; \mathbb{R}^{\nu}\right)$, and for every $j \in\{1, \ldots, k\}$,

$$
\eta^{j}\left\|D^{j}(u \circ \Phi)\right\|_{L^{p}\left(A \times Q_{\bar{p} \eta}^{m-\ell}\right)} \leq C \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(A \times Q_{\bar{p} \eta}^{m-\ell}\right)},
$$

for some constant $C>0$ depending on $m, k, p, \underline{\rho}$ and $\bar{\rho}$.

The proof of Proposition 2.2 is based on a Fubini type argument, which gives some flexibility on the choice of ζ. In particular, given finitely many measurable subsets $A_{1}, \ldots, A_{s} \subset A$, the map ζ can be chosen such that we have in addition, for every $r \in\{1, \ldots, s\}$ and for every $j \in\{1, \ldots, k\}$,

$$
\eta^{j}\left\|D^{j}(u \circ \Phi)\right\|_{L^{p}\left(A_{r} \times Q_{\bar{\rho} \eta}^{m-\ell}\right)} \leq C \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(A_{r} \times Q_{\bar{\rho} \eta}^{m-\ell}\right)} .
$$

We will temporarily accept this proposition and the observation that follows it, and we prove the main result of the section:

Proof of Proposition 2.1. We first take a finite sequence $\left(\rho_{i}\right)_{0 \leq i \leq \ell}$ such that

$$
\rho=\rho_{\ell}<\ldots<\rho_{i}<\ldots<\rho_{0}<2 \rho .
$$

We construct by induction on $i \in\{0, \ldots, \ell\}$ a map $\Phi^{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that
(a) for every $r \in\{0, \ldots, i\}$ and every $\sigma^{r} \in \mathcal{U}^{r}, \Phi^{i}$ is constant on the $m-r$ dimensional cubes of radius $\rho_{i} \eta$ which are orthogonal to σ^{r},
(b) Supp $\Phi^{i} \subset U^{i}+Q_{2 \rho \eta}^{m}$ and $\Phi^{i}\left(U^{i}+Q_{2 \rho \eta}^{m}\right) \subset U^{i}+Q_{2 \rho \eta}^{m}$,
(c) $u \circ \Phi^{i} \in W^{k, p}\left(U^{\ell}+Q_{2 \rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$,
(d) for every $\sigma^{i} \in \mathcal{U}^{i}$ and for every $j \in\{1, \ldots, k\}$,

$$
\eta^{j}\left\|D^{j}\left(u \circ \Phi^{i}\right)\right\|_{L^{p}\left(\sigma^{i}+Q_{2 \rho \eta}^{m}\right)} \leq C \sum_{\alpha=1}^{j} \eta^{\alpha}\left\|D^{\alpha} u\right\|_{L^{p}\left(\sigma^{i}+Q_{2 \rho \eta}^{m}\right)}
$$

for some constant $C>0$ depending on m, k, p and ρ.
The map Φ^{ℓ} will satisfy the conclusion of the proposition.
If $i=0$, then \mathcal{U}^{0} consists of all vertices of cubes in \mathcal{U}^{m}. To construct Φ^{0}, we apply Proposition 2.2 to the map u around each $\sigma^{0} \in \mathcal{U}^{0}$ with parameters $\rho_{0}<2 \rho$ and $\ell=0$: in this case, the set $A \times Q_{\bar{\rho} \eta}^{m-\ell}$ in Proposition 2.2 is simply $Q_{2 \rho}^{m}$. This gives a map Φ^{0} such that for every $\sigma^{0} \in \mathcal{U}^{0}, \Phi^{0}$ is constant on $\sigma^{0}+Q_{\rho_{0} \eta}^{m}$ and $\Phi^{0}=\operatorname{Id}$ outside $U^{0}+Q_{2 \rho \eta}^{m}$. Moreover, $u \circ \Phi^{0} \in W^{k, p}\left(U^{\ell}+Q_{2 \rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$ and for every $\sigma^{0} \in \mathcal{U}^{0}$ and for every $j \in\{1, \ldots, k\}$,

$$
\eta^{j}\left\|D^{j}\left(u \circ \Phi^{i}\right)\right\|_{L^{p}\left(\sigma^{0}+Q_{2 \rho \eta}^{m}\right)} \leq C \sum_{\alpha=1}^{j} \eta^{\alpha}\left\|D^{\alpha} u\right\|_{L^{p}\left(\sigma^{0}+Q_{2 \rho \eta}^{m}\right)},
$$

Assume that the maps $\Phi^{0}, \ldots, \Phi^{i-1}$ have been constructed. To define Φ^{i}, we first apply Proposition 2.2 , for each $\sigma^{i} \in \mathcal{U}^{i}$, to the map $u \circ \Phi^{i-1}$ with $A=\sigma^{i}$ and parameters $\rho_{i}<\rho_{i-1}$. This gives a smooth map $\Phi_{\sigma^{i}}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that $\Phi_{\sigma^{i}}$ is constant on the $m-i$ dimensional cubes of radius $\rho_{i} \eta$ which are orthogonal to σ^{i}.

Let $\Phi^{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be defined for $x \in \mathbb{R}^{m}$ by

$$
\Phi^{i}(x)= \begin{cases}\Phi^{i-1}\left(\Phi_{\sigma^{i}}(x)\right) & \text { if } x \in \sigma^{i}+Q_{\rho_{i-1} \eta}^{m} \text { where } \sigma^{i} \in \mathcal{U}^{i}, \\ \Phi^{i-1}(x) & \text { otherwise } .\end{cases}
$$

We first explain why Φ^{i} is well-defined. For this purpose, let

$$
x \in\left(\sigma_{1}^{i}+Q_{\rho_{i-1} \eta}^{m}\right) \cap\left(\sigma_{2}^{i}+Q_{\rho_{i-1} \eta}^{m}\right)
$$

for some $\sigma_{1}^{i} \in \mathcal{U}^{i}$ and $\sigma_{2}^{i} \in \mathcal{U}^{i}$ such that $\sigma_{1}^{i} \neq \sigma_{2}^{i}$. In particular, σ_{1}^{i} and σ_{2}^{i} are not disjoint, and there exists a smallest dimension $r \in\{0, \ldots, i-1\}$ such that

$$
x \in \tau^{r}+Q_{\rho_{i-1} \eta}^{m} \quad \text { and } \quad \tau^{r} \subset \sigma_{1}^{i} \cap \sigma_{2}^{i}
$$

for some $\tau^{r} \in \mathcal{U}^{r}$. By the formula of $\Phi_{\sigma_{j}^{i}}$ given in Proposition 2.2, the points $x, \Phi_{\sigma_{1}^{i}}(x)$ and $\Phi_{\sigma_{2}^{i}}(x)$ belong to the same $m-r$ dimensional cube of radius $\rho_{i-1} \eta$ which is orthogonal to τ^{r}. Since by induction hypothesis Φ^{i-1} is constant on the $m-r$ dimensional cubes of radius $\rho_{i-1} \eta$ which are orthogonal to τ^{r}, we have

$$
\Phi^{i-1}(x)=\Phi^{i-1}\left(\Phi_{\sigma_{1}^{i}}(x)\right)=\Phi^{i-1}\left(\Phi_{\sigma_{2}^{i}}(x)\right)
$$

This implies that Φ^{i} is well-defined. Moreover, Φ^{i} is smooth and satisfies properties (a)-(c).

We prove the estimates given by (d). If e_{1}, \ldots, e_{m} is an orthonormal basis of \mathbb{R}^{m} compatible with the skeleton \mathcal{U}^{ℓ}, then by abuse of notation we denote by $\sigma^{i} \times Q_{\alpha \eta}^{m-i}$ the parallelepiped given by

$$
\left\{x+\sum_{s=1}^{m-i} t_{s} e_{r_{s}}: x \in \sigma^{i} \text { and }\left|t_{s}\right| \leq \alpha \eta\right\}
$$

where $e_{r_{1}}, \ldots, e_{r_{m-i}}$ are orthogonal to σ^{i}. Note that for every $\sigma^{i} \in \mathcal{U}^{i}$,

$$
\sigma^{i}+Q_{2 \rho \eta}^{m}=\left(\sigma^{i} \times Q_{2 \rho \eta}^{m-i}\right) \cup\left(\partial \sigma^{i}+Q_{2 \rho \eta}^{m}\right),
$$

where $\partial \sigma^{i}$ denotes the $i-1$ dimensional skeleton of σ^{i}. By property (iii) of Proposition 2.2,

$$
\int_{\sigma^{i} \times Q_{\rho_{i-1} \eta}^{m-i} \eta} \eta^{j p}\left|D^{j}\left(u \circ \Phi^{i-1} \circ \Phi_{\sigma^{i}}\right)\right|^{p} \leq C_{1} \sum_{\alpha=1}^{j} \int_{\sigma^{i} \times Q_{\rho_{i-1} \eta}^{m-i}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p},
$$

and then, since $\Phi^{i}=\Phi^{i-1} \circ \Phi_{\sigma^{i}}$ on $\left(\sigma^{i} \times Q_{2 \rho \eta}^{m-i}\right) \backslash\left(\partial \sigma^{i}+Q_{2 \rho \eta}^{m}\right)$ and since the geometric support $\operatorname{Supp} \Phi_{\sigma^{i}}$ is contained in $\sigma^{i} \times Q_{\rho_{i-1} \eta}^{m-i}$, we have

$$
\begin{align*}
& \int_{\left(\sigma^{i} \times Q_{2 \rho \eta}^{m-i}\right) \backslash\left(\partial \sigma^{i}+Q_{2 \rho \eta}^{m}\right)} \eta^{j p}\left|D^{j}\left(u \circ \Phi^{i}\right)\right|^{p} \\
& \leq C_{1} \sum_{\alpha=1}^{j} \int_{\sigma^{i} \times Q_{2 \rho \eta}^{m-i}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p} . \tag{2.1}
\end{align*}
$$

We claim that the maps $\Phi_{\sigma^{i}}$ can be chosen such that the additional property holds: for every $j \in\{1, \ldots, k\}$,

$$
\begin{equation*}
\int_{\partial \sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{j p}\left|D^{j}\left(u \circ \Phi^{i}\right)\right|^{p} \leq C_{2} \sum_{\alpha=1}^{j} \int_{\partial \sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p} . \tag{2.2}
\end{equation*}
$$

Indeed, by the remark following Proposition 2.2, for every $\sigma^{i} \in \mathcal{U}^{i}$ we may further require that $\Phi_{\sigma^{i}}$ satisfies for every $i-1$ dimensional cube $\tau^{i-1} \subset \partial \sigma^{i}$ and for every $j \in\{1, \ldots, k\}$,

$$
\begin{aligned}
& \int_{\left[\left(\tau^{i-1}+Q_{2 \rho \eta}^{m}\right) \cap \sigma^{i}\right] \times Q_{\rho_{i-1} \eta}^{m}} \eta^{j p}\left|D^{j}\left(u \circ \Phi^{i-1} \circ \Phi_{\sigma^{i}}\right)\right|^{p} \\
& \leq C_{3} \sum_{\alpha=1}^{j} \int_{\left[\left(\tau^{i-1}+Q_{2 \rho \eta}^{m}\right) \cap \sigma^{i}\right] \times Q_{\rho_{i-1} \eta}^{m}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p}
\end{aligned}
$$

Next, given $\tau^{i-1} \subset \partial \sigma^{i}$, denote by $\sigma_{1}^{i}, \ldots, \sigma_{\theta}^{i}$ the i dimensional cubes in \mathcal{U}^{i} containing τ^{i-1} in their boundaries. In this case,
$\tau^{i-1}+Q_{2 \rho \eta}^{m} \subset\left(\bigcup_{\beta=1}^{\theta}\left[\left(\tau^{i-1}+Q_{2 \rho \eta}^{m}\right) \cap \sigma_{\beta}^{i}\right] \times Q_{\rho_{i-1} \eta}^{m}\right) \cup\left\{x \in \mathbb{R}^{m}: \Phi^{i}(x)=\Phi^{i-1}(x)\right\}$.
Since for every $\beta \in\{1, \ldots, \theta\}, \Phi^{i}=\Phi^{i-1} \circ \Phi_{\sigma_{\beta}^{i}}$ on $\left[\left(\tau^{i-1}+Q_{2 \rho \eta}^{m}\right) \cap \sigma_{\beta}^{i}\right] \times Q_{\rho_{i-1} \eta}^{m}$, by the previous estimate on each cube σ_{β}^{i} and by additivity of the integral, we get

$$
\int_{\tau^{i-1}+Q_{2 \rho \eta}^{m}} \eta^{j p}\left|D^{j}\left(u \circ \Phi^{i}\right)\right|^{p} \leq C_{4} \sum_{\alpha=1}^{j} \int_{\tau^{i-1}+Q_{2 \rho \eta}^{m}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p} .
$$

Adding both sides of this inequality over the $i-1$ dimensional cubes $\tau^{i-1} \subset \partial \sigma^{i}$, we deduce estimate (2.2) as we claimed.

By additivity of the integral and by estimates (2.1) and (2.2), we then obtain

$$
\int_{\sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{j p}\left|D^{j}\left(u \circ \Phi^{i}\right)\right|^{p} \leq C_{5} \sum_{\alpha=1}^{j} \int_{\sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p} .
$$

Since by induction hypothesis Φ^{i-1} coincides with the identity map outside $U^{i-1}+Q_{2 \rho \eta}^{m}$, for every $\alpha \in\{1, \ldots, j\}$ we have

$$
\begin{aligned}
& \int_{\sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p} \\
&=\int_{\partial \sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p}+\int_{\left(\sigma^{i}+Q_{2 \rho \eta}^{m}\right) \backslash\left(\partial \sigma^{i}+Q_{2 \rho \eta}^{m}\right)} \eta^{\alpha p}\left|D^{\alpha} u\right|^{p} .
\end{aligned}
$$

By induction hypothesis, for every $i-1$ dimensional face τ^{i-1} of $\partial \sigma^{i}$,

$$
\int_{\tau^{i-1}+Q_{2 \rho \eta}^{m}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p} \leq C_{6} \sum_{\beta=1}^{\alpha} \int_{\tau^{i-1}+Q_{2 \rho \eta}^{m}} \eta^{\beta p}\left|D^{\beta} u\right|^{p} .
$$

Since the number of overlaps of the sets $\tau^{i-1}+Q_{2 \rho \eta}^{m}$ is bounded from above by a constant only depending on m, we have by additivity of the integral,

$$
\int_{\partial \sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{\alpha p}\left|D^{\alpha}\left(u \circ \Phi^{i-1}\right)\right|^{p} \leq C_{7} \sum_{\beta=1}^{\alpha} \int_{\partial \sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{\beta p}\left|D^{\beta} u\right|^{p} .
$$

Therefore,

$$
\int_{\sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{j p}\left|D^{j}\left(u \circ \Phi^{i}\right)\right|^{p} \leq C_{8} \sum_{\alpha=1}^{j} \int_{\sigma^{i}+Q_{2 \rho \eta}^{m}} \eta^{\alpha p}\left|D^{\alpha} u\right|^{p} .
$$

The map Φ^{ℓ} satisfies properties $(i)-(i v)$. The estimate of property (iii) is a consequence of $(i v)$ and the additivity of the integral.

We proceed to prove Proposition 2.2 by making precise the meaning of $u \circ \Phi$ in the statement.

Given a continuous function $\Psi: U \times V \rightarrow W$ and $z \in V$, we denote by $\Psi_{z}: U \rightarrow W$ the map defined for every $x \in U$ by

$$
\Psi_{z}(x)=\Psi(x, z)
$$

For every measurable function $g: W \rightarrow \mathbb{R}$, the composition $g \circ \Psi_{z}$ is well-defined and gives a measurable function defined on W for every z.
Lemma 2.3. Let $U, W \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{l}$ be measurable sets and let $\Psi: U \times V \rightarrow W$ be a continuous map such that for every measurable function $g: W \rightarrow \mathbb{R}$,

$$
\int_{V}\left\|g \circ \Psi_{z}\right\|_{L^{1}(U)} \mathrm{d} z \leq C\|g\|_{L^{1}(W)} .
$$

If $u \in L^{p}\left(W ; \mathbb{R}^{\nu}\right)$ and if $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a sequence of measurable functions converging to u in $L^{p}\left(W ; \mathbb{R}^{\nu}\right)$, then there exists a subsequence $\left(u_{n_{i}}\right)_{i \in \mathbb{N}}$ such that for almost every $z \in V$,
(i) the sequence $\left(u_{n_{i}} \circ \Psi_{z}\right)_{i \in \mathbb{N}}$ converges in $L^{p}\left(U ; \mathbb{R}^{\nu}\right)$ to a function which we denote by $u \circ \Psi_{z}$,
(ii) the essential range of $u \circ \Psi_{z}$ is contained in the essential range of u.

Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of measurable functions in W converging to u in $L^{p}\left(W ; \mathbb{R}^{\nu}\right)$. Given a sequence $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ of positive numbers, let $\left(u_{n_{i}}\right)_{i \in \mathbb{N}}$ be a subsequence such that for every $i \in \mathbb{N}$,

$$
\left\|u_{n_{i+1}}-u_{n_{i}}\right\|_{L^{p}(W)} \leq \varepsilon_{i} .
$$

By the assumption on Ψ,

$$
\int_{V}\left\|u_{n_{i+1}} \circ \Psi_{z}-u_{n_{i}} \circ \Psi_{z}\right\|_{L^{p}(U)}^{p} \mathrm{~d} z \leq C\left\|u_{n_{i+1}}-u_{n_{i}}\right\|_{L^{p}(W)}^{p} \leq C \varepsilon_{i}^{p}
$$

Given a sequence $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ of positive numbers, let

$$
Y_{i}=\left\{z \in V:\left\|u_{n_{i+1}} \circ \Psi_{z}-u_{n_{i}} \circ \Psi_{z}\right\|_{L^{p}(U)}>\alpha_{i}\right\}
$$

If the series $\sum_{i=0}^{\infty} \alpha_{i}$ converges, then for every $t \in \mathbb{N}$ and for every $z \notin \bigcup_{i=t}^{\infty} Y_{i}$, the sequence $\left(u_{n_{i}} \circ \Psi_{z}\right)_{i \in \mathbb{N}}$ is a Cauchy sequence in $L^{p}\left(U ; \mathbb{R}^{\nu}\right)$.

By the Chebyshev inequality,

$$
\alpha_{i}^{p}\left|Y_{i}\right| \leq \int_{Y_{i}}\left\|u_{n_{i+1}} \circ \Psi_{z}-u_{n_{i}} \circ \Psi_{z}\right\|_{L^{p}(U)}^{p} \mathrm{~d} z \leq C \varepsilon_{i}^{p}
$$

Hence, for every $t \in \mathbb{N}$,

$$
\left|\bigcup_{i=t}^{\infty} Y_{i}\right| \leq C \sum_{i=t}^{\infty}\left(\frac{\varepsilon_{i}}{\alpha_{i}}\right)^{p}
$$

Taking the sequences $\left(\varepsilon_{n}\right)_{n \in \mathbb{N}}$ and $\left(\alpha_{n}\right)_{n \in \mathbb{N}}$ such that both series $\sum_{i=0}^{\infty} \alpha_{i}$ and $\sum_{i=0}^{\infty}\left(\varepsilon_{i} / \alpha_{i}\right)^{p}$ converge, then the set $E=\bigcap_{t=0}^{\infty} \bigcup_{i=t}^{\infty} Y_{i}$ is negligible and for every $z \in V \backslash E,\left(u_{n_{i}} \circ \Psi_{z}\right)_{i \in \mathbb{N}}$ is a Cauchy sequence in $L^{p}\left(U ; \mathbb{R}^{\nu}\right)$. This proves assertion (i).

It suffices to prove assertion (ii) when W has finite Lebesgue measure. For every $z \in V \backslash E$, we denote by $u \circ \Psi_{z}$ the limit in $L^{p}\left(U ; \mathbb{R}^{\nu}\right)$ of the sequence $\left(u_{n_{i}} \circ \Psi_{z}\right)_{i \in \mathbb{N}}$.

Let $\theta: \mathbb{R}^{\nu} \rightarrow \mathbb{R}$ be a continuous function such that $\theta^{-1}(0)$ is equal to the essential range of u and $0 \leq \theta \leq 1$ in \mathbb{R}^{ν}. For every $i \in \mathbb{N}$,

$$
\int_{V}\left\|\theta \circ\left(u_{n_{i}} \circ \Psi_{z}\right)\right\|_{L^{1}(U)} \mathrm{d} z \leq C\left\|\theta \circ u_{n_{i}}\right\|_{L^{1}(W)} .
$$

By Fatou's lemma,

$$
\int_{V}\left\|\theta \circ\left(u \circ \Psi_{z}\right)\right\|_{L^{1}(U)} \mathrm{d} z \leq \liminf _{i \rightarrow \infty} \int_{V}\left\|\theta \circ\left(u_{n_{i}} \circ \Psi_{z}\right)\right\|_{L^{1}(U)} \mathrm{d} z .
$$

Since W has finite Lebesgue measure and θ is bounded, as i tends to infinity we get

$$
\int_{V}\left\|\theta \circ\left(u \circ \Psi_{z}\right)\right\|_{L^{1}(U)} \mathrm{d} z \leq C\|\theta \circ u\|_{L^{1}(W)}=0 .
$$

Therefore, for almost every $z \in V,\left\|\theta \circ\left(u \circ \Psi_{z}\right)\right\|_{L^{1}(U)}=0$, whence the essential range of $u \circ \Psi_{z}$ is contained in the essential range of u.

From the previous lemma, we can prove the following property for maps in $W^{k, p}$:
Lemma 2.4. Let $U, W \subset \mathbb{R}^{m}$ and $V \subset \mathbb{R}^{l}$ be open sets and let $\Psi: U \times V \rightarrow W$ be a smooth map such that for every measurable function $g: W \rightarrow \mathbb{R}$,

$$
\int_{V}\left\|g \circ \Psi_{z}\right\|_{L^{1}(U)} \mathrm{d} z \leq C\|g\|_{L^{1}(W)} .
$$

If $u \in W^{k, p}\left(W ; \mathbb{R}^{\nu}\right)$ and if $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a sequence of smooth functions converging to u in $W^{k, p}\left(W ; \mathbb{R}^{\nu}\right)$, then there exists a subsequence $\left(u_{n_{i}}\right)_{i \in \mathbb{N}}$ such that for almost every $z \in V$ the sequence $\left(u_{n_{i}} \circ \Psi_{z}\right)_{i \in \mathbb{N}}$ converges to $u \circ \Psi_{z}$ in $W^{k, p}\left(U ; \mathbb{R}^{\nu}\right)$, and for every $j \in\{1, \ldots, k\}$,

$$
\int_{V}\left\|D^{j}\left(u \circ \Psi_{z}\right)\right\|_{L^{p}(U)} \mathrm{d} z \leq C^{\prime}|V|^{1-\frac{1}{p}} \sum_{i=1}^{j}\left\|D^{i} u\right\|_{L^{p}(W)},
$$

for some constant $C^{\prime}>0$ depending on m, p, k, C and $\max _{1 \leq j \leq k} \sup _{z \in V}\left\|D^{j} \Psi_{z}\right\|_{L^{\infty}(U)}$.
Proof. Let $\left(u_{n}\right)_{n \in \mathbb{N}}$ be a sequence of smooth functions in $W^{k, p}\left(W ; \mathbb{R}^{\nu}\right)$ converging to u in $W^{k, p}\left(W ; \mathbb{R}^{\nu}\right)$. By the previous lemma, there exists a subsequence $\left(u_{n_{i}}\right)_{i \in \mathbb{N}}$ such that for almost every $z \in V,\left(u_{n_{i}} \circ \Psi_{z}\right)_{i \in \mathbb{N}}$ converges to $u \circ \Psi_{z}$ in L^{p} and for every $j \in\{1, \ldots, k\},\left(\left(D^{j} u_{n_{i}}\right) \circ \Psi_{z}\right)_{i \in \mathbb{N}}$ converges to $\left(D^{j} u\right) \circ \Psi_{z}$ in L^{p}.

For every $v \in C^{\infty}\left(W ; \mathbb{R}^{\nu}\right)$, for every $z \in V$ and for each $j \in\{1, \ldots, k\}$,

$$
\begin{aligned}
\left|D^{j}\left(v \circ \Psi_{z}\right)(x)\right| & \leq C_{1} \sum_{i=1}^{j} \sum_{\substack{1 \leq t_{1} \leq \ldots \leq t_{i} \\
t_{1}+\cdots+t_{i}=j}}\left|D^{i} v\left(\Psi_{z}(x)\right)\right|\left|D^{t_{1}} \Psi_{z}(x)\right| \cdots\left|D^{t_{i}} \Psi_{z}(x)\right| \\
& \leq C_{2} \sum_{i=1}^{j}\left|D^{i} v\left(\Psi_{z}(x)\right)\right|,
\end{aligned}
$$

whence

$$
\left\|D^{j}\left(v \circ \Psi_{z}\right)\right\|_{L^{p}(U)}^{p} \leq C_{3} \sum_{i=1}^{j}\left\|\left|D^{i} v\right|^{p} \circ \Psi_{z}\right\|_{L^{1}(U)}
$$

This implies that for almost every $z \in V,\left(u_{n_{i}} \circ \Psi_{z}\right)_{i \in \mathbb{N}}$ is a Cauchy sequence in $W^{k, p}\left(U ; \mathbb{R}^{\nu}\right)$, thus $\left(u_{n_{i}} \circ \Psi_{z}\right)_{i \in \mathbb{N}}$ converges to $u \circ \Psi_{z}$ in $W^{k, p}\left(U ; \mathbb{R}^{\nu}\right)$. Moreover, integrating with respect to z the above estimate and using the assumption on Ψ we get

$$
\begin{aligned}
\int_{V}\left\|D^{j}\left(v \circ \Psi_{z}\right)\right\|_{L^{p}(U)}^{p} \mathrm{~d} z & \leq C_{3} \sum_{i=1}^{j} \int_{V}\left\|\left|D^{i} v\right|^{p} \circ \Psi_{z}\right\|_{L^{1}(U)} \mathrm{d} z \\
& \leq C_{4} \sum_{i=1}^{j}\left\|\left|D^{i} v\right|^{p}\right\|_{L^{1}(W)}=C_{4} \sum_{i=1}^{j}\left\|D^{i} v\right\|_{L^{p}(W)}^{p}
\end{aligned}
$$

Thus, by Hölder's inequality,

$$
\begin{aligned}
\int_{V}\left\|D^{j}\left(v \circ \Psi_{z}\right)\right\|_{L^{p}(U)} \mathrm{d} z & \leq|V|^{1-\frac{1}{p}}\left(C_{4} \sum_{i=1}^{j}\left\|D^{i} v\right\|_{L^{p}(W)}^{p}\right)^{\frac{1}{p}} \\
& \leq C_{5}|V|^{1-\frac{1}{p}} \sum_{i=1}^{j}\left\|D^{i} v\right\|_{L^{p}(W)} .
\end{aligned}
$$

We obtain the desired estimate by taking $v=u_{n_{i}}$ and letting n_{i} tend to infinity.

We now show that the functional estimate in Lemma 2.3 and 2.4 is satisfied for maps Ψ of the form

$$
\Psi(x, z)=\zeta(x+z)-z
$$

The strategy is based on an averaging device due to Federer and Fleming [18] and adapted by Hardt, Kinderlehrer and Lin [30] in the context of Sobolev maps. It relies on the following lemma:

Lemma 2.5. Let $U, V, W \subset \mathbb{R}^{l}$ be measurable sets and let $\zeta: U+V \rightarrow \mathbb{R}^{l}$ be a continuous map such that for every $x \in U$ and for every $z \in V, \zeta(x+z)-z \in W$. Then, for every measurable function $g: W \rightarrow \mathbb{R}$,

$$
\int_{V}\left(\int_{U}|g(\zeta(x+z)-z)| \mathrm{d} x\right) \mathrm{d} z \leq|U+V| \int_{W}|g(x)| \mathrm{d} x .
$$

Proof. Let $\xi:(U+V) \times V \rightarrow \mathbb{R}^{l}$ be the function defined by

$$
\xi(x, z)=\zeta(x+z)-z .
$$

By Fubini's theorem,

$$
\int_{V}\left(\int_{U}|(g \circ \xi)(x, z)| \mathrm{d} x\right) \mathrm{d} z=\int_{U}\left(\int_{V}|g(\zeta(x+z)-z)| \mathrm{d} z\right) \mathrm{d} x .
$$

Applying the change of variables $\tilde{z}=x+z$ in the variable z and Fubini's theorem,

$$
\begin{aligned}
\int_{V}\left(\int_{U}|(g \circ \xi)(x, z)| \mathrm{d} x\right) \mathrm{d} z & =\int_{U}\left(\int_{x+V}|g(\zeta(\tilde{z})+x-\tilde{z})| \mathrm{d} \tilde{z}\right) \mathrm{d} x \\
& =\int_{U+V}\left(\int_{(\tilde{z}-V) \cap U}|g(\zeta(\tilde{z})+x-\tilde{z})| \mathrm{d} x\right) \mathrm{d} \tilde{z}
\end{aligned}
$$

We now apply the change of variables $\tilde{x}=\zeta(\tilde{z})+x-\tilde{z}$ in the variable x, and use the
assumption on W to conclude

$$
\begin{aligned}
\int_{V}\left(\int_{U}|(g \circ \xi)(x, z)| \mathrm{d} x\right) \mathrm{d} z & =\int_{U+V}\left(\int_{\zeta(\tilde{z})-(V \cap(\tilde{z}-U))}|g(\tilde{x})| \mathrm{d} \tilde{x}\right) \mathrm{d} \tilde{z} \\
& \leq \int_{U+V}\left(\int_{W}|g(\tilde{x})| \mathrm{d} \tilde{x}\right) \mathrm{d} \tilde{z} \\
& =|U+V| \int_{W}|g(\tilde{x})| \mathrm{d} \tilde{x}
\end{aligned}
$$

This gives the desired estimate.
Proof of Proposition 2.2. By scaling, it suffices to establish the result when $\eta=1$. We fix $\hat{\rho}$ such that $2 \hat{\rho}<\bar{\rho}-\underline{\rho}$.

Let $\tilde{\zeta}: \mathbb{R}^{m-\ell} \rightarrow \mathbb{R}^{m-\ell}$ be the smooth map defined by

$$
\tilde{\zeta}(y)=(1-\varphi(y)) y
$$

where $\varphi: \mathbb{R}^{m-\ell} \rightarrow[0,1]$ is a smooth function such that

- for $y \in Q_{\rho+\hat{\rho}}^{m-\ell}, \varphi(y)=1$,
- for $y \in \mathbb{R}^{m-\ell} \backslash Q_{\bar{\rho}-\hat{\rho}}^{m-\ell}, \varphi(y)=0$.

For any $z \in Q_{\hat{\rho}}^{m-\ell}$, the function $\zeta: \mathbb{R}^{m-\ell} \rightarrow \mathbb{R}^{m-\ell}$ defined for $x^{\prime \prime} \in \mathbb{R}^{m-\ell}$ by

$$
\zeta\left(x^{\prime \prime}\right)=\tilde{\zeta}\left(x^{\prime \prime}+z\right)-z
$$

satisfies properties $(i)-(i i)$.
We claim that for some $z \in Q_{\hat{\rho}}^{m-\ell}$, the function $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ defined for $x=$ $\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ by

$$
\Phi(x)=\left(x^{\prime}, \zeta\left(x^{\prime \prime}\right)\right)
$$

satisfies property (iii).
For this purpose, let $\Psi: \mathbb{R}^{m} \times Q_{\hat{\rho}}^{m-\ell} \rightarrow \mathbb{R}^{m}$ be the function defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in$ $\mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ and $z \in Q_{\hat{\rho}}^{m-\ell}$ by

$$
\Psi(x, z)=\left(x^{\prime}, \tilde{\zeta}\left(x^{\prime \prime}+z\right)-z\right)
$$

For every measurable function $f: A \times Q_{\bar{\rho}}^{m-\ell} \rightarrow \mathbb{R}$, we have by Fubini's theorem,

$$
\begin{aligned}
\int_{Q_{\hat{\rho}}^{m-\ell}}\left\|f \circ \Psi_{z}\right\|_{L^{1}\left(A \times Q_{\bar{\rho}}^{m-\ell}\right)} & \mathrm{d} z \\
& =\iint_{A}\left[\int_{Q_{\hat{\rho}}^{m-\ell}}\left(\int_{Q_{\bar{\rho}}^{m-\ell}}\left|f\left(x^{\prime}, \tilde{\zeta}\left(x^{\prime \prime}+z\right)-z\right)\right| \mathrm{d} x^{\prime \prime}\right) \mathrm{d} z\right] \mathrm{d} x^{\prime}
\end{aligned}
$$

Given $x^{\prime} \in A$, we apply Lemma 2.5 with $U=Q_{\bar{\rho}}^{m-\ell}, V=Q_{\hat{\rho}}^{m-\ell}, W=Q_{\bar{\rho}}^{m-\ell}$, and $\tilde{\zeta}$.
We deduce that

$$
\int_{Q_{\tilde{p}}^{m-\ell}}\left(\int_{Q_{\bar{\rho}}^{m-\ell}}\left|f\left(x^{\prime}, \tilde{\zeta}\left(x^{\prime \prime}+z\right)-z\right)\right| \mathrm{d} x^{\prime \prime}\right) \mathrm{d} z \leq C_{1} \int_{Q_{\bar{\rho}}^{m-\ell}}\left|f\left(x^{\prime}, x^{\prime \prime}\right)\right| \mathrm{d} x^{\prime \prime} .
$$

Thus,

$$
\int_{Q_{\hat{\rho}}^{m-\ell}}\left\|f \circ \Psi_{z}\right\|_{L^{1}\left(A \times Q_{\bar{\rho}}^{m-\ell}\right)} \mathrm{d} z \leq C_{1}\|f\|_{L^{1}\left(A \times Q_{\bar{\rho}}^{m-\ell}\right)} .
$$

By Lemma 2.4, for almost every $z \in Q_{\hat{\rho}}^{m-\ell}, u \circ \Psi_{z} \in W^{k, p}\left(A \times Q_{\bar{\rho}}^{m-\ell} ; \mathbb{R}^{\nu}\right)$ and for every $j \in\{1, \ldots, k\}$,

$$
\int_{Q_{\hat{\rho}}^{m-\ell}}\left\|D^{j}\left(u \circ \Psi_{z}\right)\right\|_{L^{p}\left(A \times Q_{\bar{\rho}}^{m-\ell}\right)} \mathrm{d} z \leq C_{2} \sum_{i=1}^{j}\left\|D^{i} u\right\|_{L^{p}\left(A \times Q_{\bar{\rho}}^{m-\ell}\right)} .
$$

We may thus find some $z \in Q_{\hat{\rho}}^{m-\ell}$ such that $u \circ \Psi_{z} \in W^{k, p}\left(A \times Q_{\bar{\rho}}^{m-\ell} ; \mathbb{R}^{\nu}\right)$ and for every $j \in\{1, \ldots, k\}$,

$$
\left\|D^{j}\left(u \circ \Psi_{z}\right)\right\|_{L^{p}\left(A \times Q_{\bar{\rho}}^{m-\ell}\right)} \leq C_{3} \sum_{i=1}^{j}\left\|D^{i} u\right\|_{L^{p}\left(A \times Q_{\bar{\rho}}^{m-\ell}\right)} .
$$

The function ζ defined in terms of this point z satisfies the required properties.
Addendum 1 to Proposition 2.1. Let \mathcal{K}^{m} be a cubication containing \mathcal{U}^{m} and let $q \geq 1$. If $u \in W^{1, q}\left(K^{m}+Q_{2 \rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$, then the map $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ can be chosen with the additional property that $u \circ \Phi \in W^{1, q}\left(K^{m}+Q_{2 \rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$ and for every $\sigma^{m} \in \mathcal{K}^{m}$,

$$
\|D(u \circ \Phi)\|_{L^{q}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)} \leq C^{\prime \prime}\|D u\|_{L^{q}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)},
$$

for some constant $C^{\prime \prime}>0$ depending on m, q and ρ.
Proof. Since $u \in W^{1, q}\left(U^{\ell}+Q_{2 \rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$, we may apply Proposition 2.1 with $k=1$ and $p=q$ in order to obtain a map $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that $u \circ \Phi \in W^{1, q}\left(U^{\ell}+Q_{2 \rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$ and for every $\sigma^{\ell} \in \mathcal{U}^{\ell}$,

$$
\|D(u \circ \Phi)\|_{L^{q}\left(\sigma^{\ell}+Q_{2 \rho \eta}^{m}\right)} \leq C\|D u\|_{L^{q}\left(\sigma^{\ell}+Q_{2 \rho \eta}^{m}\right)} .
$$

Since the choice of the point z in the proof of Proposition 2.2 can be done in a set of positive measure, we may do so by keeping the properties we already have for $W^{k, p}$.

For every $\sigma^{m} \in \mathcal{K}^{m}$, if $\sigma^{m, \ell}$ denotes the skeleton of dimension ℓ of σ^{m}, then by additivity of the integral,

$$
\left.\|D(u \circ \Phi)\|_{L^{q}\left(\left(\sigma^{m, \ell} \cap U^{\ell}\right)+Q_{2 \rho \eta}^{m}\right)} \leq C\|D u\|_{L^{q}\left(\left(\sigma^{m, \ell} \cap U^{\ell}\right)+Q_{2 \rho \eta}^{m}\right)}\right) .
$$

Since Φ coincides with the identity map in $\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right) \backslash\left(\left(\sigma^{m, \ell} \cap U^{\ell}\right)+Q_{2 \rho \eta}^{m}\right)$,

$$
\|D(u \circ \Phi)\|_{L^{q}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)} \leq C\|D u\|_{L^{q}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)}
$$

This concludes the proof.
Addendum 2 to Proposition 2.1. Let \mathcal{K}^{m} be a cubication containing \mathcal{U}^{m}. If $u \in$ $W^{1, k p}\left(K^{m}+Q_{2 \rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$, then the map $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ given by Proposition 2.1 and Addendum 1 above with $q=k p$ satisfies

$$
\lim _{r \rightarrow 0} \sup _{Q_{r}^{m}(a) \subset U^{\ell}+Q_{\rho \eta}^{m}} \frac{r^{\frac{\ell}{k p}-1}}{\left|Q_{r}^{m}\right|^{2}} \int_{Q_{r}^{m}(a)} \int_{Q_{r}^{m}(a)}|u \circ \Phi(x)-u \circ \Phi(y)| \mathrm{d} x \mathrm{~d} y=0
$$

and for every $\sigma^{m} \in \mathcal{U}^{m}$ and for every $a \in \sigma^{m}$ such that $Q_{r}^{m}(a) \subset U^{\ell}+Q_{\rho \eta}^{m}$,

$$
\frac{1}{\left|Q_{r}^{m}\right|^{2}} \int_{Q_{r}^{m}(a)} \int_{Q_{r}^{m}(a)}|u \circ \Phi(x)-u \circ \Phi(y)| \mathrm{d} x \mathrm{~d} y \leq \frac{C^{\prime \prime \prime} r^{1-\frac{\ell}{k p}}}{\eta^{\frac{m-\ell}{k p}}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)}
$$

for some constant $C^{\prime \prime \prime}>0$ depending on $m, k p$ and ρ.
If $k p \geq \ell$, then the limit above implies that $u \circ \Phi$ belongs to the space of functions of vanishing mean oscillation $\operatorname{VMO}\left(U^{\ell}+Q_{\rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$ and the estimate yields an estimate on the BMO seminorm on the domain $U^{\ell}+Q_{\rho \eta}^{m}$ as defined by Jones [32]. If $k p>\ell>0$, then the estimate implies that $u \circ \Phi \in C^{0,1-\frac{\ell}{k p}}\left(U^{\ell}+Q_{\rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$ with an upper bound on the $C^{0,1-\frac{\ell}{k p}}$ seminorm of $u \circ \Phi$ [14]. The estimates of this addendum are not really useful when $k p<\ell$ since in this case $\lim _{r \rightarrow 0} r^{1-\frac{\ell}{k p}}=+\infty$.

Proof of Addendum 2. Fix $Q_{r}^{m}(a) \subset U^{\ell}+Q_{\rho \eta}^{m}$. Then $a \in U^{\ell}+Q_{\rho \eta-r}^{m}$. Hence there exists an ℓ dimensional face $\tau^{\ell} \in \mathcal{U}^{\ell}$ such that $Q_{r}^{m}(a) \subset \tau^{\ell}+Q_{\rho \eta}^{m}$. Without loss of generality, we may assume that $\tau^{\ell}=Q_{\eta}^{\ell} \times\left\{0^{m-\ell}\right\} \subset \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$. From Proposition $2.1(i)$, the map Φ is constant on the $m-\ell$ dimensional cubes of radius $\rho \eta$ which are orthogonal to $Q_{(1+\rho) \eta}^{\ell} \times\left\{0^{m-\ell}\right\}$. Writing $Q_{r}^{m}(a)=Q_{r}^{\ell}\left(a^{\prime}\right) \times Q_{r}^{m-\ell}\left(a^{\prime \prime}\right)$, then $u \circ \Phi$ only depends on the first ℓ dimensional variables in $Q_{r}^{m}(a)$. Let $v: Q_{(1+\rho) \eta}^{\ell} \rightarrow \mathbb{R}^{\nu}$ be the function defined by

$$
v\left(x^{\prime}\right)=(u \circ \Phi)\left(x^{\prime}, a^{\prime \prime}\right)
$$

By Addendum 1 above with $q=k p, u \circ \Phi \in W^{1, k p}\left(Q_{(1+\rho) \eta}^{\ell} \times Q_{\rho \eta}^{m-\ell} ; \mathbb{R}^{\nu}\right)$, whence

$$
v \in W^{1, k p}\left(Q_{(1+\rho) \eta}^{\ell} ; \mathbb{R}^{\nu}\right)
$$

Note that

$$
\begin{aligned}
& \frac{1}{\left|Q_{r}^{m}\right|^{2}} \int_{Q_{r}^{m}(a)} \int_{Q_{r}^{m}(a)}|u \circ \Phi(x)-u \circ \Phi(y)| \mathrm{d} x \mathrm{~d} y \\
&=\frac{1}{\left|Q_{r}^{\ell}\right|^{2}} \int_{Q_{r}^{\ell}\left(a^{\prime}\right)} \int_{Q_{r}^{\ell}\left(a^{\prime}\right)}\left|v\left(x^{\prime}\right)-v\left(y^{\prime}\right)\right| \mathrm{d} x^{\prime} \mathrm{d} y^{\prime}
\end{aligned}
$$

By the Poincaré-Wirtinger inequality,

$$
\frac{1}{\left|Q_{r}^{\ell}\right|^{2}} \int_{Q_{r}^{e}\left(a^{\prime}\right)} \int_{Q_{r}^{\ell}\left(a^{\prime}\right)}\left|v\left(x^{\prime}\right)-v\left(y^{\prime}\right)\right| \mathrm{d} x^{\prime} \mathrm{d} y^{\prime} \leq C_{1} r^{1-\frac{\ell}{k p}}\|D v\|_{L^{k p}\left(Q_{r}^{\ell}\left(a^{\prime}\right)\right)}
$$

Thus,

$$
\frac{1}{\left|Q_{r}^{m}\right|^{2}} \int_{Q_{r}^{m}(a)} \int_{Q_{r}^{m}(a)}|u \circ \Phi(x)-u \circ \Phi(y)| \mathrm{d} x \mathrm{~d} y \leq C_{1} r^{1-\frac{\ell}{k p}}\|D v\|_{L^{k p}\left(Q_{r}^{\ell}\left(a^{\prime}\right)\right)}
$$

and this implies the first part of the conclusion.
In order to get the estimate of the oscillation of $u \circ \Phi$ in terms of $\|D(u \circ \Phi)\|_{L^{k p}}$, note that

$$
\|D(u \circ \Phi)\|_{L^{k p}\left(Q_{r}^{\ell}\left(a^{\prime}\right) \times Q_{\rho \eta}^{m-\ell}\left(a^{\prime \prime}\right)\right)}=(2 \rho \eta)^{\frac{m-\ell}{k p}}\|D v\|_{L^{k p}\left(Q_{r}^{\ell}\left(a^{\prime}\right)\right)} .
$$

This implies for any $\sigma^{m} \in \mathcal{U}^{m}$ such that $\tau^{\ell} \subset \sigma^{m}$

$$
\begin{aligned}
\|D v\|_{L^{k p}\left(Q_{r}^{\ell}\right)} & =\frac{1}{(2 \rho \eta)^{\frac{m-\ell}{k p}}}\|D(u \circ \Phi)\|_{L^{k p}\left(Q_{r}^{\ell} \times Q_{\rho \eta}^{m-\ell}\right)} \\
& \leq \frac{1}{(2 \rho \eta)^{\frac{m-\ell}{k p}}}\|D(u \circ \Phi)\|_{L^{k p}\left(\sigma^{\ell}+Q_{\rho \eta}^{m}\right)} \\
& \leq \frac{1}{(2 \rho \eta)^{\frac{m-\ell}{k p}}}\|D(u \circ \Phi)\|_{L^{k p}\left(\sigma^{m}+Q_{\rho \eta}^{m}\right)}
\end{aligned}
$$

Thus,

$$
\frac{1}{\left|Q_{r}^{m}\right|^{2}} \int_{Q_{r}^{m}(a)} \int_{Q_{r}^{m}(a)}|u \circ \Phi(x)-u \circ \Phi(y)| \mathrm{d} x \mathrm{~d} y \leq \frac{C_{2} r^{1-\frac{\ell}{k p}}}{(\rho \eta)^{\frac{m-\ell}{k p}}}\|D(u \circ \Phi)\|_{L^{k p}\left(\sigma^{m}+Q_{\rho \eta}^{m}\right)}
$$

By Addendum 1 above,

$$
\|D(u \circ \Phi)\|_{L^{k p}\left(\sigma^{m}+Q_{\rho \eta}^{m}\right)} \leq C_{3}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)}
$$

This proves the estimate that we claimed.

3 Adaptive smoothing

Given $u \in W^{k, p}\left(\Omega ; \mathbb{R}^{\nu}\right)$, we would like to consider a convolution of u with a parameter which may depend on the point where we compute the convolution itself. The main reason is that we want to choose the convolution parameter by taking into account the mean oscillation of u : we choose a large parameter where u does not oscillate too much and a small parameter elsewhere.

For this purpose, consider a function $u \in L^{1}\left(\Omega ; \mathbb{R}^{\nu}\right)$. Let φ be a mollifier, in other words,

$$
\varphi \in C_{c}^{\infty}\left(B_{1}^{m}\right), \quad \varphi \geq 0 \text { in } B_{1}^{m} \quad \text { and } \quad \int_{B_{1}^{m}} \varphi=1
$$

For every $s \geq 0$ and for every $x \in \Omega$ such that $d(x, \partial \Omega) \geq s$, we may consider the convolution

$$
\left(\varphi_{s} * u\right)(x)=\int_{B_{1}^{m}} \varphi(z) u(x+s z) \mathrm{d} z
$$

We may keep in mind that with this definition,

$$
\left(\varphi_{0} * u\right)(x)=\int_{B_{1}^{m}} \varphi(z) \mathrm{d} z u(x)=u(x)
$$

This way of writing the convolution has the advantage that we may treat the cases $s=0$ and $s>0$ using the same formula.

We now introduce a nonconstant parameter in the convolution given by a nonnegative function $\psi \in C^{\infty}(\Omega)$. The convolution

$$
\varphi_{\psi} * u:\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geq \psi(x)\} \rightarrow \mathbb{R}^{\nu}
$$

is well-defined and if $\psi(a)>0$ and $|D \psi(a)|<1$ at some point $a \in \Omega$, then by a change of variable in the integral the map $\varphi_{\psi} * u$ is smooth in a neighborhood of a.

Proposition 3.1. Let $\varphi \in C_{c}^{\infty}\left(B_{1}^{m}\right)$ be a mollifier and let $\psi \in C^{\infty}(\Omega)$ be a nonnegative function such that $\|D \psi\|_{L^{\infty}(\Omega)}<1$. Then, for every $u \in L^{p}\left(\Omega ; \mathbb{R}^{\nu}\right)$ and for every open set $\omega \subset\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geq \psi(x)\}, \varphi_{\psi} * u \in L^{p}\left(\omega ; \mathbb{R}^{\nu}\right)$,

$$
\left\|\varphi_{\psi} * u\right\|_{L^{p}(\omega)} \leq \frac{1}{\left(1-\|D \psi\|_{L^{\infty}(\omega)}\right)^{\frac{1}{p}}}\|u\|_{L^{p}(\Omega)}
$$

and

$$
\left\|\varphi_{\psi} * u-u\right\|_{L^{p}(\omega)} \leq \sup _{v \in B_{1}^{m}}\left\|\tau_{\psi v} u-u\right\|_{L^{p}(\omega)}
$$

where $\tau_{\psi v} u(x)=u(x+\psi(x) v)$.
For $p>1$, it is possible to obtain an estimate for $\left\|\varphi_{\psi} * u\right\|_{L^{p}(\omega)}$ without any dependence on ψ by the theory of the Hardy-Littlewood maximal function [50]; this approach fails for $p=1$.

In the context of the proposition above, one can prove in a standard way the following statement: given $u \in L^{p}\left(\Omega ; \mathbb{R}^{\nu}\right), 0 \leq \beta<1$ and $\varepsilon>0$, there exists $\delta>0$ such that for any nonnegative function $\psi \in C^{\infty}(\Omega)$ satisfying $\|\psi\|_{L^{\infty}(\Omega)} \leq \delta$ and $\|D \psi\|_{L^{\infty}(\Omega)} \leq \beta$, and for every open set $\omega \subset\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geq \psi(x)\}$,

$$
\sup _{v \in B_{1}^{m}}\left\|\tau_{\psi v} u-u\right\|_{L^{p}(\omega)} \leq \varepsilon
$$

We may pursue these estimates for maps in $W^{k, p}\left(\Omega ; \mathbb{R}^{\nu}\right)$:
Proposition 3.2. Let $\varphi \in C_{c}^{\infty}\left(B_{1}^{m}\right)$ be a mollifier and let $\psi \in C^{\infty}(\Omega)$ be a nonnegative function such that $\|D \psi\|_{L^{\infty}(\Omega)}<1$. For every $k \in \mathbb{N}_{*}$, for every $u \in W^{k, p}\left(\Omega ; \mathbb{R}^{\nu}\right)$ and
for every open set $\omega \subset\{x \in \Omega: \operatorname{dist}(x, \partial \Omega) \geq \psi(x)\}, \varphi_{\psi} * u \in W^{k, p}\left(\omega ; \mathbb{R}^{\nu}\right)$ and for every $j \in\{1, \ldots, k\}$,

$$
\eta^{j}\left\|D^{j}\left(\varphi_{\psi} * u\right)\right\|_{L^{p}(\omega)} \leq \frac{C}{\left(1-\|D \psi\|_{L^{\infty}(\omega)}\right)^{\frac{1}{p}}} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}(\Omega)}
$$

and

$$
\begin{aligned}
& \eta^{j}\left\|D^{j}\left(\varphi_{\psi} * u\right)-D^{j} u\right\|_{L^{p}(\omega)} \\
& \quad \leq \sup _{v \in B_{1}^{m}} \eta^{j}\left\|\tau_{\psi v}\left(D^{j} u\right)-D^{j} u\right\|_{L^{p}(\omega)}+\frac{C^{\prime}}{\left(1-\|D \psi\|_{\left.L^{\infty}(\omega)\right)^{\frac{1}{p}}}\right.} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}(A)}
\end{aligned}
$$

for some constants $C>0$ and $C^{\prime}>0$ depending on m, k and p, where

$$
A=\bigcup_{x \in \omega \cap \operatorname{supp} D \psi} B_{\psi(x)}^{m}(x)
$$

and $\eta>0$ is such that for every $j \in\{2, \ldots, k\}$,

$$
\eta^{j}\left\|D^{j} \psi\right\|_{L^{\infty}(\omega)} \leq \eta
$$

Proof. We only prove the second estimate. We assume for simplicity that $u \in C^{\infty}\left(\Omega ; \mathbb{R}^{\nu}\right)$.
For every $x \in \omega$,

$$
\left(\varphi_{\psi} * u\right)(x)-u(x)=\int_{B_{1}^{m}} \varphi(z)[u(x+\psi(x) z)-u(x)] \mathrm{d} z
$$

For every $j \in\{1, \ldots, k\}$, we have by the chain rule for higher order derivatives,

$$
\begin{aligned}
& \left|D^{j}\left(\varphi_{\psi} * u\right)(x)-D^{j} u(x)\right| \\
& \quad \leq \int_{B_{1}^{m}} \varphi(z)\left|D^{j} u(x+\psi(x) z) \circ(\operatorname{Id}+D \psi(x) \otimes z)^{j}-D^{j} u(x)\right| \mathrm{d} z \\
& \quad+C_{1} \sum_{\substack{j=1}}^{j-1} \sum_{\substack{\alpha_{1}+2 \alpha_{2}+\cdots+j \alpha_{j}=j \\
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{j}=i}}(1+|D \psi(x)|)^{\alpha_{1}}\left|D^{2} \psi(x)\right|^{\alpha_{2}} \cdots\left|D^{j} \psi(x)\right|^{\alpha_{j}} \times \\
& \quad \times \int_{B_{1}^{m}} \varphi(z)\left|D^{i} u(x+\psi(x) z)\right| \mathrm{d} z
\end{aligned}
$$

Since $\|D \psi\|_{L^{\infty}(\Omega)} \leq 1$, for every $z \in B_{1}^{m}$,

$$
\left|(\operatorname{Id}+D \psi(x) \otimes z)^{j}-\operatorname{Id}\right| \leq C_{2}|D \psi(x)|
$$

and we have

$$
\begin{aligned}
& \left|D^{j}\left(\varphi_{\psi} * u\right)(x)-D^{j} u(x)\right| \\
& \leq \int_{B_{1}^{m}} \varphi(z)\left|D^{j} u(x+\psi(x) z)-D^{j} u(x)\right| \mathrm{d} z+C_{2}|D \psi(x)| \int_{B_{1}^{m}} \varphi(z)\left|D^{j} u(x+\psi(x) z)\right| \mathrm{d} z \\
& \quad+C_{1} \sum_{\substack{i=1}}^{j-1} \sum_{\substack{\alpha_{1}+2 \alpha_{2}+\cdots+j \alpha_{j}=j \\
\alpha_{1}+\alpha_{2}+\cdots+\alpha_{j}=i}}(1+|D \psi(x)|)^{\alpha_{1}}\left|D^{2} \psi(x)\right|^{\alpha_{2}} \cdots\left|D^{j} \psi(x)\right|^{\alpha_{j}} \times \\
& \\
& \quad \times \int_{B_{1}^{m}} \varphi(z)\left|D^{i} u(x+\psi(x) z)\right| \mathrm{d} z .
\end{aligned}
$$

The second and the third terms in the right hand side are supported on supp $D \psi$ since $\alpha_{s} \neq 0$ for some $s>1$. Moreover, by the choice of η,

$$
\begin{aligned}
(1+|D \psi(x)|)^{\alpha_{1}}\left|D^{2} \psi(x)\right|^{\alpha_{2}} \cdots\left|D^{j} \psi(x)\right|^{\alpha_{j}} & \leq(1+1)^{\alpha_{1}}\left(\frac{\eta}{\eta^{2}}\right)^{\alpha_{2}} \cdots\left(\frac{\eta}{\eta^{j}}\right)^{\alpha_{j}} \\
& =2^{\alpha_{1}} \frac{\eta^{\alpha_{1}+\alpha_{2}+\cdots+\alpha_{j}}}{\eta^{\alpha_{1}+2 \alpha_{2}+\cdots+j \alpha_{j}}}=2^{\alpha_{1}} \frac{\eta^{i}}{\eta^{j}} \leq 2^{j} \frac{\eta^{i}}{\eta^{j}} .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left|D^{j}\left(\varphi_{\psi} * u\right)(x)-D^{j} u(x)\right| & \leq \int_{B_{1}^{m}} \varphi(z)\left|D^{j} u(x+\psi(x) z)-D^{j} u(x)\right| \mathrm{d} z \\
& +C_{3} \sum_{i=1}^{j} \frac{\eta^{i}}{\eta^{j}} \chi_{\operatorname{supp} D \psi}(x) \int_{B_{1}^{m}} \varphi(z)\left|D^{i} u(x+\psi(x) z)\right| \mathrm{d} z .
\end{aligned}
$$

By the Minkowski inequality,

$$
\begin{aligned}
\left(\int _ { \omega } \left(\int_{B_{1}^{m}} \varphi(z) \mid D^{j} u(x+\right.\right. & \left.\left.\psi(x) z)-D^{j} u(x) \mid \mathrm{d} z\right)^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& \leq \int_{B_{1}^{m}}\left(\int_{\omega}\left|D^{j} u(x+\psi(x) z)-D^{j} u(x)\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \varphi(z) \mathrm{d} z \\
& \leq \sup _{v \in B_{1}^{m}}\left\|\tau_{\psi v}\left(D^{j} u\right)-D^{j} u\right\|_{L^{p}(\omega)} \int_{B_{1}^{m}} \varphi(z) \mathrm{d} z \\
& =\sup _{v \in B_{1}^{m}}\left\|\tau_{\psi v}\left(D^{j} u\right)-D^{j} u\right\|_{L^{p}(\omega)}
\end{aligned}
$$

and for every $i \in\{1, \ldots, j\}$, we also have

$$
\begin{aligned}
& \left(\int_{\omega \cap \operatorname{supp} D \psi}\left(\int_{B_{1}^{m}} \varphi(z)\left|D^{i} u(x+\psi(x) z)\right| \mathrm{d} z\right)^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& \quad \leq \int_{B_{1}^{m}} \varphi(z)\left(\int_{\omega \cap \operatorname{supp} D \psi}\left|D^{i} u(x+\psi(x) z)\right|^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \mathrm{~d} z
\end{aligned}
$$

Using the change of variable $y=x+\psi(x) z$ with respect to the variable x, we deduce by definition of A that

$$
\begin{aligned}
\left(\int _ { \omega \cap \operatorname { s u p p } D \psi } \left(\int_{B_{1}^{m}} \varphi(z) \mid D^{i} u(x\right.\right. & \left.+\psi(x) z) \mid \mathrm{d} z)^{p} \mathrm{~d} x\right)^{\frac{1}{p}} \\
& \leq \int_{B_{1}^{m}} \varphi(z)\left(\frac{1}{1-\|D \psi\|_{L^{\infty}(\omega)}} \int_{A}\left|D^{i} u(y)\right|^{p} \mathrm{~d} y\right)^{\frac{1}{p}} \mathrm{~d} z \\
& =\frac{1}{\left(1-\|D \psi\|_{\left.L^{\infty}(\omega)\right)^{\frac{1}{p}}}\right.}\left\|D^{i} u\right\|_{L^{p}(A)}
\end{aligned}
$$

This gives the desired estimate for $u \in C^{\infty}\left(\Omega ; \mathbb{R}^{\nu}\right)$. The case of functions in $W^{k, p}\left(\Omega ; \mathbb{R}^{\nu}\right)$ follows by density.

4 Thickening

Given a map $u \in W^{k, p}\left(U^{m} ; \mathbb{R}^{\nu}\right)$ which behaves nicely near the skeleton U^{ℓ}, we would like to construct a map $u \circ \Phi$ that does not depend on the values of u away from the skeleton U^{ℓ}. The price to pay is that the map $u \circ \Phi$ will be singular on the dual skeleton $T^{\ell^{*}}$; these singularities will however be mild enough to allow $u \circ \Phi$ to be in $R_{\ell^{*}}\left(U^{m} ; \mathbb{R}^{\nu}\right)$ and to satisfy $W^{k, p}$ estimates for $k p<\ell+1$. The thickening construction is related to homogenization of functions on cubes that are used in the study of density problems for $k=1[3,4,28]$.

The precise meaning of dual skeleton we use is the following:
Definition 4.1. Given $\ell \in\{0, \ldots, m-1\}$ and the ℓ dimensional skeleton \mathcal{S}^{ℓ} of a cubication \mathcal{S}^{m}, the dual skeleton $\mathcal{T}^{\ell^{*}}$ of \mathcal{S}^{ℓ} is the skeleton of dimension $\ell^{*}=m-\ell-1$ composed of all cubes of the form $\sigma^{\ell^{*}}+x-a$, where $\sigma^{\ell^{*}} \in \mathcal{S}^{\ell^{*}}, a$ is the center and x the vertex of a cube of \mathcal{S}^{m}.

The integer ℓ^{*} gives the greatest dimension such that $S^{\ell} \cap T^{\ell^{*}}=\emptyset$.
The proposition below provides the main properties of the map Φ :
Proposition 4.1. Let $\ell \in\{0, \ldots, m-1\}, \eta>0,0<\rho<1$, \mathcal{S}^{m} be a cubication of \mathbb{R}^{m} of radius η, \mathcal{U}^{m} be a subskeleton of \mathcal{S}^{m} and $\mathcal{T}^{\ell^{*}}$ be the dual skeleton of \mathcal{U}^{ℓ}. There exists a smooth map $\Phi: \mathbb{R}^{m} \backslash T^{\ell^{*}} \rightarrow \mathbb{R}^{m}$ such that
(i) Φ is injective,
(ii) for every $\sigma^{m} \in \mathcal{S}^{m}, \Phi\left(\sigma^{m} \backslash T^{\ell^{*}}\right) \subset \sigma^{m} \backslash T^{\ell^{*}}$,
(iii) $\operatorname{Supp} \Phi \subset U^{m}+Q_{\rho \eta}^{m}$ and $\Phi\left(U^{m} \backslash T^{\ell^{*}}\right) \subset U^{\ell}+Q_{\rho \eta}^{m}$,
(iv) for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m} \backslash T^{\ell^{*}}$,

$$
\left|D^{j} \Phi(x)\right| \leq \frac{C \eta}{\left(\operatorname{dist}\left(x, T^{\ell^{*}}\right)\right)^{j}}
$$

for some constant $C>0$ depending on j, m and ρ,
(v) for every $0<\beta<\ell+1$, for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m} \backslash T^{\ell^{*}}$,

$$
\eta^{j-1}\left|D^{j} \Phi(x)\right| \leq C^{\prime}(\operatorname{jac} \Phi(x))^{\frac{j}{\beta}},
$$

for some constant $C^{\prime}>0$ depending on β, j, m and ρ.
This proposition gives $W^{k, p}$ bounds on $u \circ \Phi$ for every $W^{k, p}$ function u. The proposition and the corollary below will be applied in the proof of Theorem 2 with $\ell=\lfloor k p\rfloor$.

Corollary 4.2. Let $\Phi: \mathbb{R}^{m} \backslash T^{\ell^{*}} \rightarrow \mathbb{R}^{m}$ be the map given by Proposition 4.1. If $\ell+1>k p$, then for every $u \in W^{k, p}\left(U^{m}+Q_{\rho \eta}^{m} ; \mathbb{R}^{\nu}\right), u \circ \Phi \in W^{k, p}\left(U^{m}+Q_{\rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$ and for every $j \in\{1, \ldots, k\}$,

$$
\eta^{j}\left\|D^{j}(u \circ \Phi)\right\|_{L^{p}\left(U^{m}+Q_{\rho \eta}^{m}\right)} \leq C^{\prime \prime} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(U^{m}+Q_{\rho \eta}^{m}\right)},
$$

for some constant $C^{\prime \prime}>0$ depending on m, k, p and ρ.
Proof. We first establish the estimate for a map u in $C^{\infty}\left(U^{m}+Q_{\rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$. By the chain rule for higher-order derivatives, for every $j \in\{1, \ldots, k\}$ and for every $x \in U^{m} \backslash T^{\ell^{*}}$,

$$
\left|D^{j}(u \circ \Phi)(x)\right|^{p} \leq C_{1} \sum_{i=1}^{j} \sum_{\substack{1 \leq t_{1} \leq \ldots \leq t_{i} \\ t_{1}+\cdots+t_{i}=j}}\left|D^{i} u(\Phi(x))\right|^{p}\left|D^{t_{1}} \Phi(x)\right|^{p} \cdots\left|D^{t_{i}} \Phi(x)\right|^{p} .
$$

Let $0<\beta<\ell+1$. If $1 \leq t_{1} \leq \ldots \leq t_{i}$ and $t_{1}+\cdots+t_{i}=j$, then by property (v) of Proposition 4.1,

$$
\left|D^{t_{1}} \Phi(x)\right|^{p} \cdots\left|D^{t_{i}} \Phi(x)\right|^{p} \leq C_{2} \frac{(\operatorname{jac} \Phi(x))^{\frac{t_{1} p}{\beta}}}{\eta^{\left(t_{1}-1\right) p}} \cdots \frac{(\operatorname{jac} \Phi(x))^{\frac{t_{i} p}{\beta}}}{\eta^{\left(t_{i}-1\right) p}}=C_{2} \frac{(\operatorname{jac} \Phi(x))^{\frac{j p}{\beta}}}{\eta^{(j-i) p}}
$$

Since $k p<\ell+1$, we may take $\beta=j p$. Thus,

$$
\left|D^{t_{1}} \Phi(x)\right|^{p} \cdots\left|D^{t_{i}} \Phi(x)\right|^{p} \leq C_{2} \frac{\operatorname{jac} \Phi(x)}{\eta^{(j-i) p}}
$$

and this implies

$$
\eta^{j p}\left|D^{j}(u \circ \Phi)(x)\right|^{p} \leq C_{3} \sum_{i=1}^{j} \eta^{i p}\left|D^{i} u(\Phi(x))\right|^{p} \operatorname{jac} \Phi(x) .
$$

Since Φ is injective and $\operatorname{Supp} \Phi \subset U^{m}+Q_{\rho \eta}^{m}$, we have $\Phi\left(\left(U^{m}+Q_{\rho \eta}^{m}\right) \backslash T^{\ell^{*}}\right) \subset U^{m}+Q_{\rho \eta}^{m}$. Thus, by the change of variable formula,

$$
\begin{aligned}
\int_{\left(U^{m}+Q_{\rho \eta}^{m}\right) \backslash T^{e^{*}}} \eta^{j p}\left|D^{j}(u \circ \Phi)\right|^{p} & \leq C_{3} \sum_{i=1}^{j} \int_{\left(U^{m}+Q_{\rho \eta}^{m}\right) \backslash T^{\ell^{*}}} \eta^{i p}\left|\left(D^{i} u\right) \circ \Phi\right|^{p} \mathrm{jac} \Phi \\
& \leq C_{3} \sum_{i=1}^{j} \int_{U^{m}+Q_{\rho \eta}^{m}} \eta^{i p}\left|D^{i} u\right|^{p}
\end{aligned}
$$

and $u \circ \Phi \in W^{k, p}\left(\left(U^{m}+Q_{\rho \eta}^{m}\right) \backslash T^{\ell^{*}} ; \mathbb{R}^{\nu}\right)$. Since $\ell>0$, the dimension of the skeleton $T^{\ell^{*}}$ is strictly less than $m-1$. Thus, $u \circ \Phi \in W^{k, p}\left(U^{m}+Q_{\rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$. By density of smooth maps in $W^{k, p}\left(U^{m}+Q_{\rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$, we deduce that for every $u \in W^{k, p}\left(U^{m}+Q_{\rho \eta}^{m} ; \mathbb{R}^{\nu}\right)$, the function $u \circ \Phi$ also belongs to this space and satisfies the estimate above.

We describe the construction of the map Φ given by Proposition 4.1 in the case of only one ℓ dimensional cube:
Proposition 4.3. Let $\ell \in\{1, \ldots, m\}, \eta>0,0<\rho<\rho<\bar{\rho}<1$ and $T=\left\{0^{\ell}\right\} \times Q_{\rho \eta}^{m-\ell}$. There exists a smooth function $\lambda: \mathbb{R}^{m} \backslash T \rightarrow[1, \infty)$ such that if $\Phi: \mathbb{R}^{m} \backslash T \rightarrow \mathbb{R}^{m}$ is defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in\left(\mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}\right) \backslash T$ by

$$
\Phi(x)=\left(\lambda(x) x^{\prime}, x^{\prime \prime}\right),
$$

then
(i) Φ is injective,
(ii) $\operatorname{Supp} \Phi \subset Q_{(1-\rho) \eta}^{\ell} \times Q_{\rho \eta}^{m-\ell}$,
(iii) $\Phi\left(\left(Q_{(1-\rho) \eta}^{\ell} \times Q_{\underline{\rho} \eta}^{m-\ell}\right) \backslash T\right) \subset\left(Q_{(1-\rho) \eta}^{\ell} \backslash Q_{(1-\bar{\rho}) \eta}^{\ell}\right) \times Q_{\underline{\rho} \eta}^{m-\ell}$,
(iv) for every $j \in \mathbb{N}_{*}$ and for every $x=\left(x^{\prime}, x^{\prime \prime}\right) \in\left(Q_{(1-\rho) \eta}^{\ell} \times Q_{\rho \eta}^{m-\ell}\right) \backslash T$,

$$
\left|D^{j} \Phi(x)\right| \leq \frac{C \eta}{\left|x^{\prime}\right|^{j}}
$$

for some constant $C>0$ depending on $j, m, \underline{\rho}, \rho$ and $\bar{\rho}$,
(v) for every $0<\beta<\ell$, for every $j \in \mathbb{N}_{*}$ and for every $x \in\left(Q_{(1-\rho) \eta}^{\ell} \times Q_{\rho \eta}^{m-\ell}\right) \backslash T$,

$$
\eta^{j-1}\left|D^{j} \Phi(x)\right| \leq C^{\prime}(\operatorname{jac} \Phi(x))^{\frac{j}{\beta}}
$$

for some constant $C^{\prime}>0$ depending on $\beta, j, m, \underline{\rho}, \rho$ and $\bar{\rho}$.

We temporarily admit Proposition 4.3 and we prove Proposition 4.1.
Proof of Proposition 4.1. We first introduce finite sequences $\left(\rho_{i}\right)_{\ell \leq i \leq m}$ and $\left(\tau_{i}\right)_{\ell \leq i \leq m}$ such that

$$
0<\rho_{m}<\tau_{m-1}<\rho_{m-1}<\ldots<\rho_{\ell+1}<\tau_{\ell}<\rho_{\ell}=\rho
$$

For $i=m$, we take $\Phi_{m}=\mathrm{Id}$. Using downward induction, we shall define for every $i \in\{\ell, \ldots, m-1\}$ smooth maps $\Phi_{i}: \mathbb{R}^{m} \backslash T^{i^{*}} \rightarrow \mathbb{R}^{m}$ such that
(a) Φ_{i} is injective,
(b) for every $\sigma^{m} \in \mathcal{S}^{m}$ and for every $r \in\left\{i^{*}, \ldots, m-1\right\}, \Phi_{i}\left(\sigma^{m} \backslash T^{r}\right) \subset \sigma^{m} \backslash T^{r}$,
(c) $\operatorname{Supp} \Phi_{i} \subset U^{m}+Q_{\rho_{i} \eta}^{m}$,
(d) $\Phi_{i}\left(U^{m} \backslash T^{i^{*}}\right) \subset U^{i}+Q_{\rho_{i} \eta}^{m}$,
(e) for every $x \in \mathbb{R}^{m} \backslash T^{i^{*}}$ and for every $r \in\left\{i^{*}, \ldots, m-2\right\}$,

$$
\operatorname{dist}\left(\Phi_{i}(x), T^{r}\right) \operatorname{dist}\left(x, T^{r+1}\right)=\operatorname{dist}\left(\Phi_{i}(x), T^{r+1}\right) \operatorname{dist}\left(x, T^{r}\right)
$$

(f) for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m} \backslash T^{i^{*}}$,

$$
\left|D^{j} \Phi_{i}(x)\right| \leq \frac{C \eta}{\left(\operatorname{dist}\left(x, T^{i^{*}}\right)\right)^{j}}
$$

for some constant $C>0$ depending on j, m and ρ,
(g) for every $0<\beta<i+1$, for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m} \backslash T^{i^{*}}$,

$$
\eta^{j-1}\left|D^{j} \Phi_{i}(x)\right| \leq C^{\prime}\left(\operatorname{jac} \Phi_{i}(x)\right)^{\frac{j}{\beta}}
$$

for some constant $C^{\prime}>0$ depending on β, j, m and ρ.
The map Φ_{ℓ} will satisfy the conclusion of the proposition.
Let $i \in\{\ell+1, \ldots, m\}$ and let Θ_{i} be the map obtained from Proposition 4.3 with parameters $\underline{\rho}=\rho_{i}, \rho=\tau_{i-1}, \bar{\rho}=\rho_{i-1}$ and $\ell=i$. Given $\sigma^{i} \in \mathcal{U}^{i}$, we may identify σ^{i} with $Q_{\eta}^{i} \times\left\{0^{m-i}\right\}$ and $T^{(i-1)^{*}} \cap\left(\sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right)$ with $\left\{0^{i}\right\} \times Q_{\tau_{i-1} \eta}^{m-i}$. The map Θ_{i} induces by isometry a map which we shall denote by $\Theta_{\sigma^{i}}$.

Let $\Psi_{i}: \mathbb{R}^{m} \backslash T^{(i-1)^{*}} \rightarrow \mathbb{R}^{m}$ be defined for every $x \in \mathbb{R}^{m} \backslash T^{(i-1)^{*}}$ by

$$
\Psi_{i}(x):= \begin{cases}\Theta_{\sigma^{i}}(x) & \text { if } x \in \sigma^{i}+Q_{\tau_{i-1} \eta}^{m} \text { for some } \sigma^{i} \in \mathcal{U}^{i} \\ x & \text { otherwise }\end{cases}
$$

We first explain why Ψ_{i} is well-defined. Since $\Theta_{\sigma^{i}}$ coincides with the identity map on $\partial \sigma^{i}+Q_{\tau_{i-1} \eta}^{m}$, then for every $\sigma_{1}^{i}, \sigma_{2}^{i} \in \mathcal{U}^{i}$, if $x \in\left(\sigma_{1}^{i}+Q_{\tau_{i-1} \eta}^{m}\right) \cap\left(\sigma_{2}^{i}+Q_{\tau_{i-1} \eta}^{m}\right)$ and $\sigma_{1}^{i} \neq \sigma_{2}^{i}$, then

$$
\Theta_{\sigma_{1}^{i}}(x)=x=\Theta_{\sigma_{2}^{i}}(x) .
$$

One also verifies directly that Ψ_{i} is smooth on $\mathbb{R}^{m} \backslash T^{(i-1)^{*}}$.
Assuming that Φ_{i} has been defined satisfying properties (a)-(g), we let

$$
\Phi_{i-1}=\Psi_{i} \circ \Phi_{i} .
$$

The map Φ_{i-1} is well-defined on $\mathbb{R}^{m} \backslash T^{(i-1)^{*}}$ since $\Phi_{i}\left(\mathbb{R}^{m} \backslash T^{(i-1)^{*}}\right) \subset \mathbb{R}^{m} \backslash T^{(i-1)^{*}}$. We now check that Φ_{i-1} satisfies all required properties.

Proof of Property (a). The map Φ_{i-1} is injective since Ψ_{i} and Φ_{i} are injective.
Proof of Property (b). For every $r \in\left\{(i-1)^{*}, \ldots, m-1\right\}$ and for every $\sigma^{m} \in \mathcal{S}^{m}$, we have by induction hypothesis $\Phi_{i}\left(\sigma^{m} \backslash T^{r}\right) \subset \sigma^{m} \backslash T^{r}$. Moreover, for any $\sigma^{m} \in \mathcal{S}^{m}$ and any $\tilde{\sigma}^{i} \in \mathcal{U}^{i}$, the formula of Θ_{i} implies that $\Theta_{\tilde{\sigma}^{i}}\left(\sigma^{m} \backslash T^{r}\right) \subset \sigma^{m} \backslash T^{r}$.

Proof of Property (c). By induction hypothesis Φ_{i} coincides with the identity map outside $U^{m}+Q_{\rho_{i} \eta}^{m}$. By construction, Ψ_{i} coincides with the identity map outside $U^{m}+Q_{\tau_{i-1} \eta}^{m}$ (see Proposition 4.3, property (ii)). Since $\rho_{i}<\tau_{i-1}<\rho_{i-1}$, we deduce that Supp $\Phi_{i-1} \subset$ $U^{m}+Q_{\rho_{i-1} \eta}^{m}$.

Proof of Property (d). By induction hypothesis (property (d))

$$
\Phi_{i}\left(U^{m} \backslash T^{i^{*}}\right) \subset U^{i}+Q_{\rho_{i} \eta}^{m}
$$

and (property (b))

$$
\Phi_{i}\left(\mathbb{R}^{m} \backslash T^{(i-1)^{*}}\right) \subset \mathbb{R}^{m} \backslash T^{(i-1)^{*}}
$$

Since $T^{(i-1)^{*}} \supset T^{i^{*}}$, we have

$$
\Phi_{i}\left(U^{m} \backslash T^{(i-1)^{*}}\right) \subset\left(U^{i}+Q_{\rho_{i} \eta}^{m}\right) \backslash T^{(i-1)^{*}}
$$

By construction of Θ_{i} (see Proposition 4.3, property (iii)), for every $\sigma^{i} \in \mathcal{U}^{i}$,

$$
\Theta_{\sigma^{i}}\left(\left(\sigma^{i}+Q_{\rho_{i} \eta}^{m}\right) \backslash T^{(i-1)^{*}}\right) \subset \partial \sigma^{i}+Q_{\rho_{i-1} \eta}^{m}
$$

Taking the union over all faces $\sigma^{i} \in \mathcal{U}^{i}$, we get

$$
\Psi_{i}\left(\left(U^{i}+Q_{\rho_{i} \eta}^{m}\right) \backslash T^{(i-1)^{*}}\right) \subset U^{i-1}+Q_{\rho_{i-1} \eta}^{m}
$$

Combining the information for Φ_{i} and Ψ_{i}, we obtain

$$
\Phi_{i-1}\left(U^{m} \backslash T^{(i-1)^{*}}\right) \subset U^{i-1}+Q_{\rho_{i-1} \eta}^{m}
$$

Proof of Property (e). Let $r \in\left\{(i-1)^{*}, \ldots, m-2\right\}$ and $x \in \mathbb{R}^{m} \backslash T^{(i-1)^{*}}$. If $\Phi_{i-1}(x)=$ $\Phi_{i}(x)$, then the conclusion follows by induction. If $\Phi_{i-1}(x) \neq \Phi_{i}(x)$, then there exists $\sigma^{i} \in \mathcal{U}^{i}$ such that $\Phi_{i}(x) \in \sigma^{i}+Q_{\tau_{i-1} \eta}^{m}$ and $\Phi_{i-1}(x)=\Theta_{\sigma^{i}}\left(\Phi_{i}(x)\right)$. Since $\Phi_{i}(x) \in$ $\operatorname{Supp} \Psi_{i}$,

$$
\Phi_{i}(x) \in\left(\sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right) \backslash\left(\partial \sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right)
$$

Up to an isometry, we may assume that $\sigma^{i}=Q_{\eta}^{i} \times\left\{0^{m-i}\right\}$. For every $0<\lambda<1$ and for every $y=\left(y^{\prime}, y^{\prime \prime}\right) \in Q_{(1-\lambda) \eta}^{i} \times Q_{\lambda \eta}^{m-i}$,

$$
\operatorname{dist}\left(y, T^{r}\right)=\operatorname{dist}\left(\left(y^{\prime}, 0\right), T^{r} \cap\left(Q_{(1-\lambda) \eta}^{i} \times\left\{0^{m-i}\right\}\right)\right)
$$

In view of the formula of Θ_{i}, we deduce that for every $y \in\left(\sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right) \backslash\left(\partial \sigma^{i} \times Q_{\tau_{i-1} \eta}^{m}\right)$,

$$
\operatorname{dist}\left(\Theta_{\sigma^{i}}(y), T^{r}\right) \operatorname{dist}\left(y, T^{r+1}\right)=\operatorname{dist}\left(\Theta_{\sigma^{i}}(y), T^{r+1}\right) \operatorname{dist}\left(y, T^{r}\right)
$$

this identity is reminiscent of Thales' intercept theorem from Euclidean geometry. By induction hypothesis, we then get

$$
\begin{aligned}
\operatorname{dist}\left(\Phi_{i-1}(x), T^{r}\right) \operatorname{dist}\left(x, T^{r+1}\right) & =\operatorname{dist}\left(\Theta_{\sigma^{i}}\left(\Phi_{i}(x)\right), T^{r}\right) \operatorname{dist}\left(x, T^{r+1}\right) \\
& =\operatorname{dist}\left(\Theta_{\sigma^{i}}\left(\Phi_{i}(x)\right), T^{r+1}\right) \operatorname{dist}\left(x, T^{r}\right) \\
& \left.=\operatorname{dist}\left(\Phi_{i-1}(x)\right), T^{r+1}\right) \operatorname{dist}\left(x, T^{r}\right)
\end{aligned}
$$

This gives the conclusion.
Proof of Property (f). Let $x \in \mathbb{R}^{m} \backslash T^{(i-1)^{*}}$. If Ψ_{i} coincides with the identity map in a neighborhood of $\Phi_{i}(x)$, then $D^{j} \Phi_{i-1}(x)=D^{j} \Phi_{i}(x)$ and the conclusion follows from the induction hypothesis and the fact that $T^{(i-1)^{*}} \supset T^{i^{*}}$.

If Ψ_{i} does not coincide with the identity map in a neighborhood of $\Phi_{i}(x)$, then there exists $\sigma^{i} \in \mathcal{U}^{i}$ such that

$$
\Phi_{i}(x) \in\left(\sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right) \backslash\left(\partial \sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right)
$$

and $\Phi_{i-1}(x)=\Theta_{\sigma_{i}}\left(\Phi_{i}(x)\right)$. By the chain rule for higher order derivatives,

$$
\left|D^{j} \Phi_{i-1}(x)\right| \leq C_{1} \sum_{r=1}^{j} \sum_{\substack{1 \leq t_{1} \leq \ldots \leq t_{r} \\ t_{1}+\cdots+t_{r}=j}}\left|D^{r} \Theta_{\sigma_{i}}\left(\Phi_{i}(x)\right)\right|\left|D^{t_{1}} \Phi_{i}(x)\right| \cdots\left|D^{t_{r}} \Phi_{i}(x)\right| .
$$

By construction of Θ_{i} (see Proposition 4.3, property (iv)), we have for any $y=\left(y^{\prime}, y^{\prime \prime}\right) \in$ $\left(Q_{\left(1-\tau_{i-1}\right) \eta}^{i} \times Q_{\tau_{i-1} \eta}^{m-i}\right) \backslash\left(\left\{0^{i}\right\} \times Q_{\tau_{i-1} \eta}^{m-i}\right)$,

$$
\left|D^{r} \Theta_{i}(y)\right| \leq \frac{C_{2} \eta}{\left|y^{\prime}\right|^{r}}
$$

This implies

$$
\left|D^{r} \Theta_{\sigma^{i}}\left(\Phi_{i}(x)\right)\right| \leq \frac{C_{2} \eta}{\left(\operatorname{dist}\left(\Phi_{i}(x), T^{(i-1)^{*}}\right)\right)^{r}}
$$

By the induction hypothesis, for every $1 \leq t_{1} \leq \ldots \leq t_{r}$ such that $t_{1}+\cdots+t_{r}=j$,

$$
\begin{aligned}
\left|D^{t_{1}} \Phi_{i}(x)\right| \cdots \mid & D^{t_{r}} \Phi_{i}(x) \mid \\
& \leq C_{3} \frac{\eta}{\left(\operatorname{dist}\left(x, T^{i^{*}}\right)\right)^{t_{1}}} \cdots \frac{\eta}{\left(\operatorname{dist}\left(x, T^{i^{*}}\right)\right)^{t_{r}}}=C_{3} \frac{\eta^{r}}{\left(\operatorname{dist}\left(x, T^{i^{*}}\right)\right)^{j}}
\end{aligned}
$$

Thus,

$$
\left|D^{j} \Phi_{i-1}(x)\right| \leq C_{4} \sum_{r=1}^{j} \frac{\eta^{r+1}}{\left(\operatorname{dist}\left(\Phi_{i}(x), T^{(i-1)^{*}}\right)\right)^{r}\left(\operatorname{dist}\left(x, T^{i^{*}}\right)\right)^{j}}
$$

We recall that by property (f),

$$
\operatorname{dist}\left(\Phi_{i}(x), T^{(i-1)^{*}}\right) \operatorname{dist}\left(x, T^{i^{*}}\right)=\operatorname{dist}\left(x, T^{(i-1)^{*}}\right) \operatorname{dist}\left(\Phi_{i}(x), T^{i^{*}}\right)
$$

Since $\Phi_{i}(x) \in\left(\sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right) \backslash\left(\partial \sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right)$,

$$
\operatorname{dist}\left(\Phi_{i}(x), T^{i^{*}}\right) \geq\left(1-\tau_{i-1}\right) \eta \geq(1-\rho) \eta
$$

Thus,

$$
\begin{aligned}
\left(\operatorname{dist}\left(\Phi_{i}(x), T^{(i-1)^{*}}\right)\right)^{r} & \left(\operatorname{dist}\left(x, T^{i^{*}}\right)\right)^{j} \\
& =\left(\operatorname{dist}\left(x, T^{(i-1)^{*}}\right) \operatorname{dist}\left(\Phi_{i}(x), T^{i^{*}}\right)\right)^{r}\left(\operatorname{dist}\left(x, T^{i^{*}}\right)\right)^{j-r} \\
& \geq\left(\operatorname{dist}\left(x, T^{(i-1)^{*}}\right)\right)^{r}((1-\rho) \eta)^{r}\left(\operatorname{dist}\left(x, T^{i^{*}}\right)\right)^{j-r}
\end{aligned}
$$

Since $T^{i^{*}} \subset T^{(i-1)^{*}}$, we conclude that

$$
\left|D^{j} \Phi_{i-1}(x)\right| \leq C_{5} \frac{\eta}{\left(\operatorname{dist}\left(x, T^{(i-1)^{*}}\right)\right)^{j}}
$$

Proof of Property (g). Let $j \in \mathbb{N}_{*}$ and let $x \in \mathbb{R}^{m} \backslash T^{(i-1)^{*}}$. If Ψ_{i} coincides with the identity map in a in a neighborhood of $\Phi_{i}(x)$, then $D^{j} \Phi_{i-1}(x)=D^{j} \Phi_{i}(x)$ and jac $\Phi_{i-1}(x)=\operatorname{jac} \Phi_{i}(x)$. The conclusion then follows from the induction hypothesis.

Assume that Ψ_{i} does not coincides with the identity map in a neighborhood of $\Phi_{i}(x)$. Let $0<\beta<i$ and $r \in\{0, \ldots, j\}$. By induction hypothesis, if $1 \leq t_{1} \leq \ldots \leq t_{r}$ and $t_{1}+\cdots+t_{r}=j$, then

$$
\left|D^{t_{1}} \Phi_{i}(x)\right| \cdots\left|D^{t_{r}} \Phi_{i}(x)\right| \leq C_{1} \frac{\left(\mathrm{jac} \Phi_{i}(x)\right)^{\frac{t_{1}}{\beta}}}{\eta^{t_{1}-1}} \cdots \frac{\left(\mathrm{jac} \Phi_{i}(x)\right)^{\frac{t_{r}}{\beta}}}{\eta^{t_{r}-1}}=C_{1} \frac{\left(\mathrm{jac} \Phi_{i}(x)\right)^{\frac{j}{\beta}}}{\eta^{j-r}}
$$

Let $\sigma^{i} \in \mathcal{U}^{i}$ be such that

$$
\Phi_{i}(x) \in\left(\sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right) \backslash\left(\partial \sigma^{i}+Q_{\tau_{i-1} \eta}^{m}\right)
$$

and $\Phi_{i-1}(x)=\Theta_{\sigma_{i}} \circ \Phi_{i}(x)$. By construction of Θ_{i} (see Proposition 4.3, property (v)), we have for any $y \in\left(Q_{\left(1-\tau_{i-1}\right) \eta}^{i} \times Q_{\tau_{i-1} \eta}^{m-i}\right) \backslash\left(\left\{0^{i}\right\} \times Q_{\tau_{i-1} \eta}^{m-i}\right)$,

$$
\eta^{r-1}\left|D^{r} \Theta_{i}(y)\right| \leq C_{2}\left(\operatorname{jac} \Theta_{i}(y)\right)^{\frac{r}{\beta \frac{r}{j}}}=C_{2}\left(\operatorname{jac} \Theta_{i}(y)\right)^{\frac{j}{\beta}}
$$

Thus,

$$
\begin{aligned}
\left|D^{r} \Theta_{\sigma^{i}}\left(\Phi_{i}(x)\right)\right|\left|D^{t_{1}} \Phi_{i}(x)\right| \cdots\left|D^{t_{r}} \Phi_{i}(x)\right| & \leq C_{3} \frac{\left(\operatorname{jac} \Theta_{\sigma^{i}}\left(\Phi_{i}(x)\right)\right)^{\frac{j}{\beta}}}{\eta^{r-1}} \frac{\left(\operatorname{jac} \Phi_{i}(x)\right)^{\frac{j}{\beta}}}{\eta^{j-r}} \\
& =\frac{C_{3}}{\eta^{j-1}}\left(\operatorname{jac} \Phi_{i-1}(x)\right)^{\frac{j}{\beta}}
\end{aligned}
$$

Therefore, by the chain rule for higher order derivatives,

$$
\left|D^{j} \Phi_{i-1}(x)\right| \leq \frac{C_{4}}{\eta^{j-1}}\left(\operatorname{jac} \Phi_{i-1}(x)\right)^{\frac{j}{\beta}}
$$

This gives the conclusion.
By downward induction, we conclude that properties (a)-(g) hold for every $i \in$ $\{\ell, \ldots, m\}$. In particular, Φ_{ℓ} satisfies properties $(i)-(v)$ of Proposition 4.1.

We establish a couple of lemmas in order to prove Proposition 4.3:
Lemma 4.4. Let $\ell \in\{1, \ldots, m\}$, let $\eta>0$, let $0<\rho<\rho<\bar{\rho}<1$ and $0<\kappa<1-\bar{\rho}$. There exists a smooth function $\lambda: \mathbb{R}^{m} \rightarrow[1, \infty)$ such that if $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ by

$$
\Phi(x)=\left(\lambda(x) x^{\prime}, x^{\prime \prime}\right)
$$

then
(i) Φ is a diffeomorphism,
(ii) $\operatorname{Supp} \Phi \subset Q_{(1-\rho) \eta}^{\ell} \times Q_{\rho \eta}^{m-\ell}$,
(iii) $\Phi\left(\left(Q_{\eta}^{\ell} \backslash Q_{\kappa \eta}^{\ell}\right) \times Q_{\underline{\rho} \eta}^{m-\ell}\right) \subset\left(Q_{\eta}^{\ell} \backslash Q_{(1-\bar{\rho}) \eta}^{\ell}\right) \times Q_{\underline{\rho} \eta}^{m-\ell}$,
(iv) for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m}$,

$$
\eta^{j-1}\left|D^{j} \Phi(x)\right| \leq C
$$

for some constant $C>0$ depending on $j, m, \underline{\rho}, \rho, \bar{\rho}$ and κ,
(v) for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m}$,

$$
C^{\prime} \leq \operatorname{jac} \Phi(x) \leq C^{\prime \prime}
$$

for some constants $C^{\prime}, C^{\prime \prime}>0$ depending on $m, \underline{\rho}, \rho, \bar{\rho}$ and κ.
Proof. By scaling, we may assume that $\eta=1$. Let $\psi: \mathbb{R} \rightarrow[0,1]$ be a smooth function such that

- ψ is nonincreasing on \mathbb{R}_{+}and nondecreasing on \mathbb{R}_{-},
- for $|t| \leq 1-\bar{\rho}, \psi(t)=1$,
- for $|t| \geq 1-\rho, \psi(t)=0$.

Let $\theta: \mathbb{R} \rightarrow[0,1]$ be a smooth function such that

- for $|t| \leq \underline{\rho}, \theta(t)=1$,
- for $|t| \geq \rho, \theta(t)=0$.

Let $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be the function defined for $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ by

$$
\varphi(x)=\prod_{i=1}^{\ell} \psi\left(x_{i}\right) \prod_{i=\ell+1}^{m} \theta\left(x_{i}\right)
$$

Thus,

- for every $x \in \mathbb{R}^{m} \backslash\left(Q_{1-\rho}^{\ell} \times Q_{\rho}^{m-\ell}\right), \varphi(x)=0$,
- for every $x \in Q_{1-\bar{\rho}}^{\ell} \times Q_{\underline{\rho}}^{m-\ell}, \varphi(x)=1$.

We shall define the map Φ in terms of its inverse Ψ : let $\Psi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be the function defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ by

$$
\Psi(x)=\left((1-\alpha \varphi(x)) x^{\prime}, x^{\prime \prime}\right),
$$

where $\alpha \in \mathbb{R}$. In particular,

- for every $x \in \mathbb{R}^{m} \backslash\left(Q_{1-\rho}^{\ell} \times Q_{\rho}^{m-\ell}\right), \Psi(x)=x$,
- for every $x=\left(x^{\prime}, x^{\prime \prime}\right) \in Q_{1-\bar{\rho}}^{\ell} \times Q_{\underline{\rho}}^{m-\ell}, \Psi(x)=\left((1-\alpha) x^{\prime}, x^{\prime \prime}\right)$.

In view of this second property, taking $\alpha=1-\frac{\kappa}{1-\bar{\rho}}$, we deduce that Ψ is a bijection between $Q_{1-\bar{\rho}}^{\ell} \times Q_{\underline{\rho}}^{m-\ell}$ and $Q_{\kappa}^{\ell} \times Q_{\underline{\rho}}^{m-\ell}$.

We now prove that Ψ is injective. If $x, y \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ satisfy $\Psi(x)=\Psi(y)$, then $y^{\prime \prime}=x^{\prime \prime}$ and $y^{\prime}=t x^{\prime}$ for some $t>0$. Since $\alpha \in(0,1)$, the function

$$
g: s \in[0, \infty) \longmapsto s\left(1-\alpha \varphi\left(s x^{\prime}, x^{\prime \prime}\right)\right)
$$

is the product of an increasing function with a nondecreasing positive function. Thus, g is increasing, whence Ψ is injective. Since $g(0)=0$ and $\lim _{t \rightarrow+\infty} g(t)=+\infty$, by the Intermediate value theorem, $g([0, \infty))=[0, \infty)$. Thus, Ψ is surjective. Therefore, the map Ψ is a bijection.

We claim that for every $x \in \mathbb{R}^{m}, D \Psi(x)$ is invertible. Indeed, for every $x=\left(x^{\prime}, x^{\prime \prime}\right) \in$ $\mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ and for every $v=\left(v^{\prime}, v^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$,

$$
D \Psi(x)[v]=\left((1-\alpha \varphi(x)) v^{\prime}-\alpha D \varphi(x)[v] x^{\prime}, v^{\prime \prime}\right) .
$$

The Jacobian of Ψ can be computed as the determinant of a nilpotent perturbation of a diagonal linear map to be

$$
\operatorname{jac} \Psi(x)=(1-\alpha \varphi(x))^{\ell-1}\left(1-\alpha \varphi(x)-\alpha D \varphi(x)\left[\left(x^{\prime}, 0\right)\right]\right)
$$

Since ψ is nonincreasing on \mathbb{R}_{+}and nondecreasing on $\mathbb{R}_{-}, D \varphi(x)\left[\left(x^{\prime}, 0\right)\right] \leq 0$. Thus,

$$
\operatorname{jac} \Psi(x) \geq(1-\alpha \varphi(x))^{\ell} \geq(1-\alpha)^{\ell}>0
$$

The map $\Phi=\Psi^{-1}$ satisfies all the desired properties.

Lemma 4.5. Let $\ell \in\{1, \ldots, m\}, \eta>0,0<\underline{\rho}<\rho<\bar{\rho}<1$ and $T=\left\{0^{\ell}\right\} \times Q_{\rho \eta}^{m-\ell}$. There exists a smooth function $\left.\lambda: \mathbb{R}^{m} \backslash T \rightarrow \overline{[1}, \infty\right)$ such that if $\Phi: \mathbb{R}^{m} \backslash T \rightarrow \mathbb{R}^{m}$ is defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in\left(\mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}\right) \backslash T$ by

$$
\Phi(x)=\left(\lambda(x) x^{\prime}, x^{\prime \prime}\right)
$$

then
(i) Φ is injective,
(ii) $\operatorname{Supp} \Phi \subset B_{(1-\rho) \eta}^{\ell} \times Q_{\rho \eta}^{m-\ell}$,
(iii) $\Phi\left(\left(B_{(1-\rho) \eta}^{\ell} \times Q_{\underline{\rho} \eta}^{m-\ell}\right) \backslash T\right) \subset\left(B_{(1-\rho) \eta}^{\ell} \backslash B_{(1-\bar{\rho}) \eta}^{\ell}\right) \times Q_{\underline{\rho} \eta}^{m-\ell}$,
(iv) for every $j \in \mathbb{N}_{*}$ and for every $x=\left(x^{\prime}, x^{\prime \prime}\right) \in\left(B_{(1-\rho) \eta}^{\ell} \times Q_{\rho \eta}^{m-\ell}\right) \backslash T$,

$$
\left|D^{j} \Phi(x)\right| \leq \frac{C \eta}{\left|x^{\prime}\right|^{j}}
$$

for some constant $C>0$ depending on $j, m, \underline{\rho}, \rho$ and $\bar{\rho}$,
(v) for every $0<\beta<\ell$, for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m} \backslash T$,

$$
\eta^{j-1}\left|D^{j} \Phi(x)\right| \leq C^{\prime}(\operatorname{jac} \Phi(x))^{\frac{j}{\beta}}
$$

for some constant $C^{\prime}>0$ depending on $\beta, j, m, \underline{\rho}, \rho$ and $\bar{\rho}$.
Proof. By scaling, we may assume that $\eta=1$. Given $b>0$, let $\varphi:(0, \infty) \rightarrow[1, \infty)$ be a smooth function such that

- for $0<s \leq 1-\bar{\rho}, \varphi(s)=\frac{1-\bar{\rho}}{s}\left(1+\frac{b}{\ln \frac{1}{s}}\right)$,
- for $s \geq 1-\rho, \varphi(s)=1$,
- the function $s \in(0, \infty) \mapsto s \varphi(s)$ is increasing.

This is possible for any $b>0$ such that

$$
(1-\bar{\rho})\left(1+\frac{b}{\ln \frac{1}{1-\bar{\rho}}}\right)<1-\rho
$$

Let $\theta: \mathbb{R}^{m-\ell} \rightarrow[0,1]$ be a smooth function such that

- for $y \in Q_{\underline{\rho}}^{m-\ell}, \theta(y)=0$,
- for $y \in \mathbb{R}^{m-\ell} \backslash Q_{\rho}^{m-\ell}, \theta(y)=1$.

We now introduce for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$,

$$
\zeta(x)=\sqrt{\left|x^{\prime}\right|^{2}+\theta\left(x^{\prime \prime}\right)^{2}}
$$

Let $\lambda: \mathbb{R}^{m} \backslash T \rightarrow \mathbb{R}$ be the function defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{m} \backslash T$ by

$$
\lambda(x)=\varphi(\zeta(x))
$$

Since $\zeta \neq 0$ in $\mathbb{R}^{m} \backslash T$, the function λ is well-defined and smooth. In addition, $\lambda \geq 1$.
We now check that the map Φ defined in the statement satisfies all the required properties.

Proof of Property (i). In order to check that Φ is injective, we first observe that if $x=$ $\left(x^{\prime}, x^{\prime \prime}\right), y=\left(y^{\prime}, y^{\prime \prime}\right) \in B_{1}^{\ell} \times Q_{\rho}^{m-\ell}$ and $\Phi(x)=\Phi(y)$, then $x^{\prime \prime}=y^{\prime \prime}$, and there exists $t>0$ such that $y^{\prime}=t x^{\prime}$. The conclusion follows from the fact that the function

$$
h: s \in[0, \infty) \longmapsto s \varphi\left(\sqrt{s^{2}+\theta\left(x^{\prime \prime}\right)^{2}}\right)
$$

is increasing.
Proof of Property (ii). For every $x=\left(x^{\prime}, x^{\prime \prime}\right) \in\left(\mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}\right) \backslash T$, if $x^{\prime} \notin B_{1-\rho}^{\ell}$ or if $x^{\prime \prime} \notin Q_{\rho}^{m-\ell}$, then $\zeta(x) \geq 1-\rho$. Thus, $\lambda(x)=\varphi(\zeta(x))=1$ and $\Phi(x)=x$. We then have Supp $\Phi \subset B_{1-\rho}^{\ell} \times Q_{\rho}^{m-\ell}$.
Proof of Property (iii). We first observe that since the function $s \in(0, \infty) \mapsto s \varphi(s)$ is increasing and $\lim _{s \rightarrow 0} s \varphi(s)=1-\bar{\rho}$, for every $s>0$,

$$
s \varphi(s) \geq 1-\bar{\rho}
$$

Since for every $x=\left(x^{\prime}, x^{\prime \prime}\right) \in\left(B_{1-\rho}^{\ell} \times Q_{\underline{\rho}}^{m-\ell}\right) \backslash T$, we have $\zeta(x)=\left|x^{\prime}\right|$, we deduce that

$$
\left|\lambda(x) x^{\prime}\right|=\varphi\left(\left|x^{\prime}\right|\right)\left|x^{\prime}\right| \geq 1-\bar{\rho}
$$

On the other hand, since the function h defined above is increasing,

$$
\left|\lambda(x) x^{\prime}\right|=h\left(\left|x^{\prime}\right|\right) \leq h(1-\rho)=1-\rho
$$

We conclude that $\lambda(x) x^{\prime} \in B_{1-\rho}^{\ell} \backslash B_{1-\bar{\rho}}^{\ell}$.
Proof of Property (iv). By the chain rule,

$$
\left|D^{j} \lambda(x)\right| \leq C_{1} \sum_{i=1}^{j} \sum_{\substack{1 \leq t_{1} \leq \ldots \leq t_{i} \\ t_{1}+\cdots+t_{i}=j}}\left|\varphi^{(i)}(\zeta(x))\right|\left|D^{t_{1}} \zeta(x)\right| \cdots\left|D^{t_{i}} \zeta(x)\right| .
$$

For every $i \in \mathbb{N}_{*}$ and for every $s>0$,

$$
\left|\varphi^{(i)}(s)\right| \leq \frac{C_{2}}{s^{i+1}}
$$

and for every $x \in\left(B_{1}^{\ell} \times \mathbb{R}^{m-\ell}\right) \backslash T$,

$$
\left|D^{i} \zeta(x)\right| \leq \frac{C_{3}}{\zeta(x)^{i-1}}
$$

Thus, for every $1 \leq t_{1} \leq \ldots \leq t_{i}$ such that $t_{1}+\cdots+t_{i}=j$,

$$
\left|D^{t_{1}} \zeta(x)\right| \cdots\left|D^{t_{i}} \zeta(x)\right| \leq \frac{C_{4}}{\zeta(x)^{t_{1}-1} \cdots \zeta(x)^{t_{i}-1}}=\frac{C_{4}}{\zeta(x)^{j-i}}
$$

By the chain rule,

$$
\left|D^{j} \lambda(x)\right| \leq C_{5} \sum_{i=1}^{j} \frac{1}{\zeta(x)^{i+1}} \frac{1}{\zeta(x)^{j-i}}=\frac{C_{5} j}{\zeta(x)^{j+1}}
$$

Hence, by the Leibniz rule, for any $x \in\left(B_{1}^{\ell} \times \mathbb{R}^{m-\ell}\right) \backslash T$,

$$
\begin{equation*}
\left|D^{j} \Phi(x)\right| \leq \frac{C_{6}}{\zeta(x)^{j}} \tag{4.1}
\end{equation*}
$$

Since $\zeta(x) \geq\left|x^{\prime}\right|$, the conclusion follows.
Proof of Property (v). For every $x=\left(x^{\prime}, x^{\prime \prime}\right) \in\left(\mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}\right) \backslash T$ and $v=\left(v^{\prime}, v^{\prime \prime}\right) \in$ $\mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$,

$$
D \Phi(x)[v]=\left(\varphi(\zeta(x)) v^{\prime}+\varphi^{(1)}(\zeta(x)) \frac{x^{\prime} \cdot v^{\prime}+\theta\left(x^{\prime \prime}\right) D \theta\left(x^{\prime \prime}\right)\left[v^{\prime \prime}\right]}{\zeta(x)} x^{\prime}, v^{\prime \prime}\right)
$$

The Jacobian can be computed as the determinant of a nilpotent perturbation of a diagonal linear map to be

$$
\begin{aligned}
\operatorname{jac} \Phi(x) & =\varphi(\zeta(x))^{\ell-1}\left(\varphi(\zeta(x))+\varphi^{(1)}(\zeta(x)) \frac{\left|x^{\prime}\right|^{2}}{\zeta(x)}\right) \\
& =\varphi(\zeta(x))^{\ell-1}\left(\varphi(\zeta(x))\left(1-\frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}}\right)+\left(\varphi^{(1)}(\zeta(x)) \zeta(x)+\varphi(\zeta(x))\right) \frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}}\right)
\end{aligned}
$$

Since for every $s>0$,

$$
s \varphi^{(1)}(s)+\varphi(s)=(s \varphi(s))^{(1)} \geq 0
$$

and since there exists $c_{1}>0$ such that for every $s>0$,

$$
\varphi(s) \geq \frac{c_{1}}{s}
$$

we have

$$
\operatorname{jac} \Phi(x) \geq \varphi(\zeta(x))^{\ell}\left(1-\frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}}\right) \geq \frac{c_{2}}{\zeta(x)^{\ell}}\left(1-\frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}}\right)
$$

If $\left|x^{\prime}\right| \leq \theta\left(x^{\prime \prime}\right)$, then $\zeta(x) \geq \sqrt{2}\left|x^{\prime}\right|$ and we get

$$
\operatorname{jac} \Phi(x) \geq \frac{c_{3}}{\zeta(x)^{\ell}}
$$

On the other hand, by direct inspection, for every $\alpha<1$, there exists a constant $c_{4}>0$ depending on α such that for every $s>0$,

$$
s \varphi^{(1)}(s)+\varphi(s) \geq \frac{c_{4}}{s^{\alpha}}
$$

Thus,

$$
\operatorname{jac} \Phi(x) \geq \varphi(\zeta(x))^{\ell-1}\left(\varphi^{(1)}(\zeta(x)) \zeta(x)+\varphi(\zeta(x))\right) \frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}} \geq \frac{c_{5}}{\zeta(x)^{\ell-1+\alpha}} \frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}}
$$

If $\left|x^{\prime}\right|>\theta\left(x^{\prime \prime}\right)$, then $\zeta(x) \leq \sqrt{2}\left|x^{\prime}\right|$ and we get

$$
\operatorname{jac} \Phi(x) \geq \frac{c_{6}}{\zeta(x)^{\ell-1+\alpha}}
$$

In both cases, we deduce that for every $\beta<\ell$ and for every $x \in \mathbb{R}^{m} \backslash T$,

$$
\operatorname{jac} \Phi(x) \geq \frac{c_{7}}{\zeta(x)^{\beta}}
$$

Thus, by estimate (4.1) in the proof of property (iv) above, when $x \in\left(B_{1-\rho}^{\ell} \times Q_{\rho}^{m-\ell}\right) \backslash T$,

$$
\left|D^{j} \Phi(x)\right| \leq \frac{C_{5}}{\zeta(x)^{j}} \leq \frac{C_{5}}{\left(c_{7}\right)^{\frac{j}{\beta}}}(\operatorname{jac} \Phi(x))^{\frac{j}{\beta}}
$$

The proof of Lemma 4.5 is complete.
Proof of Proposition 4.3. Define Φ to be the composition of the map Φ_{1} given by Lemma 4.4 with any parameter $\kappa \leq \frac{1-\bar{\rho}}{\sqrt{\ell}}$ together with the map Φ_{2} given by Lemma 4.5; more precisely, $\Phi=\Phi_{1} \circ \Phi_{2}$. By composition, the map Φ is injective and $\operatorname{Supp} \Phi \subset Q_{(1-\rho) \eta}^{\ell} \times Q_{\rho \eta}^{m-\ell}$. Moreover, the choice of κ implies that $Q_{\kappa \eta}^{\ell} \subset B_{(1-\bar{\rho}) \eta}^{\ell}$. Hence,

$$
\Phi\left(\left(Q_{(1-\rho) \eta}^{\ell} \times Q_{\underline{\rho} \eta}^{m-\ell}\right) \backslash T\right) \subset\left(Q_{(1-\rho) \eta}^{\ell} \backslash Q_{(1-\bar{\rho}) \eta}^{\ell}\right) \times Q_{\underline{\rho} \eta}^{m-l}
$$

By the chain rule for higher order derivatives and by the estimate of the derivatives of Φ_{1} (Lemma 4.4, see property (iv)),

$$
\begin{aligned}
\left|D^{j} \Phi(x)\right| & \leq C_{1} \sum_{i=1}^{j} \sum_{\substack{1 \leq t_{1} \leq \ldots \leq t_{i} \\
t_{1}+\ldots+t_{i}=j}}\left|D^{i} \Phi_{1}\left(\Phi_{2}(x)\right)\right|\left|D^{t_{1}} \Phi_{2}(x)\right| \cdots\left|D^{t_{i}} \Phi_{2}(x)\right| \\
& \leq C_{2} \sum_{i=1}^{j} \sum_{\substack{1 \leq t_{1} \leq \ldots \leq t_{i} \\
t_{1}+\cdots+t_{i}=j}} \frac{\left|D^{t_{1}} \Phi_{2}(x)\right| \cdots\left|D^{t_{i}} \Phi_{2}(x)\right|}{\eta^{i-1}}
\end{aligned}
$$

The estimate for $D^{j} \Phi$ is a consequence of the estimates of the derivatives of Φ_{2} (see Lemma 4.5, property (iv)). The estimate for jac Φ is a consequence of the estimate for jac Φ_{2} given by property (v) of Lemma 4.5 and the lower bound for jac Φ_{1} given by property (v) of Lemma 4.4.

5 Density of the class $R_{m-\lfloor k p\rfloor-1}\left(Q^{m} ; N^{n}\right)$

In this section, we prove that the class $R_{m-\lfloor k p\rfloor-1}\left(Q^{m} ; N^{n}\right)$ is dense in $W^{k, p}\left(Q^{m} ; N^{n}\right)$ regardless of the topology of the manifold N^{n}.

Theorem 3. If $k p<m$, then $R_{m-\lfloor k p\rfloor-1}\left(Q^{m} ; N^{n}\right)$ is strongly dense in $W^{k, p}\left(Q^{m} ; N^{n}\right)$.
This result implies the if part of Theorem 2.
Proof of Theorem 3. First observe that if $u \in W^{k, p}\left(Q^{m} ; N^{n}\right)$, then the restrictions to Q^{m} of the maps $u_{\gamma} \in W^{k, p}\left(Q_{1+2 \gamma}^{m} ; N^{n}\right)$ defined for $x \in Q_{1+2 \gamma}^{m}$ by $u_{\gamma}(x)=u(x /(1+2 \gamma))$ converge strongly to u in $W^{k, p}\left(Q^{m} ; N^{n}\right)$ when γ tends to 0 . We can thus assume from the beginning that $u \in W^{k, p}\left(Q_{1+2 \gamma}^{m} ; N^{n}\right)$. We apply successively the opening, smoothing and thickening constructions to this map u.

We divide the proof in four parts:
Part 1. Construction of a map $u_{\eta}^{\mathrm{th}} \in W^{k, p}\left(Q_{1+\gamma}^{m} ; \mathbb{R}^{\nu}\right) \cap C^{\infty}\left(Q_{1+\gamma}^{m} \backslash T_{\eta}^{\ell^{*}} ; \mathbb{R}^{\nu}\right)$ such that for every $j \in\{1, \ldots, k\}$,

$$
\begin{aligned}
\eta^{j} \| D^{j} u_{\eta}^{\mathrm{th}} & -D^{j} u \|_{L^{p}\left(Q_{1+\gamma}^{m}\right)} \\
& \leq \sup _{v \in B_{1}^{m}} \eta^{j}\left\|\tau_{\psi_{\eta} v}\left(D^{j} u\right)-D^{j} u\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)}+C \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)}
\end{aligned}
$$

where \mathcal{U}_{η}^{m} is a subskeleton of $Q_{1+\gamma}^{m}$ and $\mathcal{T}_{\eta}^{\ell^{*}}$ is the dual skeleton of $\mathcal{U}_{\eta}^{\ell}$.
Using the terminology presented in the Introduction, the subskeleton \mathcal{U}_{η}^{m} will be chosen to be the set of all bad cubes together with the set of good cubes which intersect some bad cube. The precise choice of \mathcal{U}_{η}^{m} will be made in Part 2.

Let \mathcal{K}_{η}^{m} be a cubication of $Q_{1+\gamma}^{m}$ of radius $0<\eta \leq \gamma$ and let \mathcal{U}_{η}^{m} be a subskeleton of \mathcal{K}_{η}^{m}. Let $0<\rho<\frac{1}{2}$; thus,

$$
2 \rho \eta \leq \gamma
$$

Given $\ell \in\{0, \ldots, m-1\}$, we begin by opening the map u in a neighborhood of U_{η}^{ℓ}. More precisely, let $\Phi^{\mathrm{op}}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be the smooth map given by Proposition 2.1 and consider the map

$$
u_{\eta}^{\mathrm{op}}=u \circ \Phi^{\mathrm{op}}
$$

In particular, $u_{\eta}^{\mathrm{op}} \in W^{k, p}\left(Q_{1+2 \gamma}^{m} ; N^{n}\right)$ and $u_{\eta}^{\mathrm{op}}=u$ in the complement of $U_{\eta}^{\ell}+Q_{2 \rho \eta}^{m}$. For every $j \in\{1, \ldots, k\}$,

$$
\begin{align*}
\eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{op}}-D^{j} u\right\|_{L^{p}\left(Q_{1+2 \gamma}^{m}\right)} & =\eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{op}}-D^{j} u\right\|_{L^{p}\left(U_{\eta}^{\ell}+Q_{2 \rho \eta}^{m}\right)} \\
& \leq \eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{op}}\right\|_{L^{p}\left(U_{\eta}^{\ell}+Q_{2 \rho \eta}^{m}\right)}^{m}+\eta^{j}\left\|D^{j} u\right\|_{L^{p}\left(U_{\eta}^{\ell}+Q_{2 \rho \eta}^{m}\right)} \\
& \leq C_{1} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(U_{\eta}^{\ell}+Q_{2 \rho \eta}^{m}\right)} . \tag{5.1}
\end{align*}
$$

We next consider a smooth function $\psi_{\eta} \in C^{\infty}\left(Q_{1+2 \gamma}^{m}\right)$ such that

$$
0<\psi_{\eta} \leq \rho \eta
$$

Given a mollifier $\varphi \in C_{c}^{\infty}\left(B_{1}^{m}\right)$, let for every $x \in Q_{1+\gamma+\rho \eta}^{m}$,

$$
u_{\eta}^{\mathrm{sm}}(x)=\left(\varphi_{\psi_{\eta}(x)} * u_{\eta}^{\mathrm{op}}\right)(x)
$$

Since $0<\psi_{\eta} \leq \rho \eta$, the map $u_{\eta}^{\mathrm{sm}}: Q_{1+\gamma+\rho \eta}^{m} \rightarrow \mathbb{R}^{\nu}$ is well-defined and smooth. If

$$
\left\|D \psi_{\eta}\right\|_{L^{\infty}\left(Q_{1+2 \gamma}^{m}\right)} \leq \beta
$$

for some $\beta<1$ and if for every $i \in\{2, \ldots, k\}$,

$$
\eta^{i}\left\|D^{i} \psi_{\eta}\right\|_{L^{\infty}\left(Q_{1+2 \gamma}^{m}\right)} \leq \eta
$$

then by Proposition 3.2 with $\omega=Q_{1+\gamma}^{m}$, we have for every $j \in\{1, \ldots, k\}$,

$$
\begin{aligned}
\eta^{j} \| D^{j} u_{\eta}^{\mathrm{sm}} & -D^{j} u_{\eta}^{\mathrm{op}} \|_{L^{p}\left(Q_{1+\gamma}^{m}\right)} \\
& \leq \sup _{v \in B_{1}^{m}} \eta^{j}\left\|\tau_{\psi_{\eta} v}\left(D^{j} u_{\eta}^{\mathrm{op}}\right)-D^{j} u_{\eta}^{\mathrm{op}}\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)}+C_{2} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u_{\eta}^{\mathrm{op}}\right\|_{L^{p}(A)},
\end{aligned}
$$

where $A=\bigcup_{x \in Q_{1+\gamma}^{m} \text { 至upp } D \psi_{\eta}} B_{\psi_{\eta}(x)}^{m}(x)$. For every $v \in B_{1}^{m}$,

$$
\begin{aligned}
& \eta^{j}\left\|\tau_{\psi_{\eta} v}\left(D^{j} u_{\eta}^{\mathrm{op}}\right)-D^{j} u_{\eta}^{\mathrm{op}}\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)} \\
& \quad \leq \eta^{j}\left\|\tau_{\psi_{\eta} v}\left(D^{j} u_{\eta}^{\mathrm{op}}\right)-\tau_{\psi_{\eta} v}\left(D^{j} u\right)\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)} \\
& \left.\quad+\eta^{j}\left\|\tau_{\psi_{\eta} v}\left(D^{j} u\right)-D^{j} u\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)}+\eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{op}}-D^{j} u\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)}\right)
\end{aligned}
$$

and, by the change of variable formula,

$$
\left\|\tau_{\psi_{\eta} v}\left(D^{j} u_{\eta}^{\mathrm{op}}\right)-\tau_{\psi_{\eta} v}\left(D^{j} u\right)\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)} \leq C_{3}\left\|D^{j} u_{\eta}^{\mathrm{op}}-D^{j} u\right\|_{L^{p}\left(Q_{1+2 \gamma}^{m}\right)} .
$$

If we further assume that

$$
\operatorname{supp} D \psi_{\eta} \subset U_{\eta}^{m}
$$

then since $\psi_{\eta} \leq \rho \eta$, we have $A \subset U_{\eta}^{m}+Q_{\rho \eta}^{m}$. By Proposition 2.1, we then have

$$
\sum_{i=1}^{j} \eta^{i}\left\|D^{i} u_{\eta}^{\mathrm{op}}\right\|_{L^{p}(A)} \leq \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u_{\eta}^{\mathrm{op}}\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{\rho \eta}^{m}\right)} \leq C_{4} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)}
$$

Thus, for every $j \in\{1, \ldots, k\}$,

$$
\begin{align*}
& \eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{sm}}-D^{j} u_{\eta}^{\mathrm{op}}\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)} \\
& \quad \leq \sup _{v \in B_{1}^{m}} \eta^{j}\left\|\tau_{\psi_{\eta} v}\left(D^{j} u\right)-D^{j} u\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)}+C_{5} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)} . \tag{5.2}
\end{align*}
$$

Given $0<\underline{\rho}<\rho$, we apply thickening to the map u_{η}^{sm} in a neighborhood of U_{η}^{ℓ} of size $\underline{\rho} \eta$. More precisely, denote by $\Phi^{\text {th }}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ the smooth map given by Proposition 4.1 \bar{w} with the parameter $\underline{\rho}$ and let

$$
u_{\eta}^{\mathrm{th}}=u_{\eta}^{\mathrm{sm}} \circ \Phi^{\mathrm{th}}
$$

Then, $u_{\eta}^{\mathrm{th}}=u_{\eta}^{\mathrm{sm}}$ in the complement of $U_{\eta}^{m}+Q_{\underline{\rho} \eta}^{m}$. Assuming in addition that

$$
\ell+1>k p
$$

then by Corollary $4.2, u_{\eta}^{\text {th }} \in W^{k, p}\left(K_{\eta}^{m} ; \mathbb{R}^{\nu}\right)$ and for every $j \in\{1, \ldots, k\}$,

$$
\begin{aligned}
\eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{th}}-D^{j} u_{\eta}^{\mathrm{sm}}\right\|_{L^{p}\left(K_{\eta}^{m}\right)} & \leq \eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{th}}-D^{j} u_{\eta}^{\mathrm{sm}}\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{\underline{\rho} \eta}^{m}\right)} \\
& \leq \eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{th}}\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{\underline{\underline{\eta}}}^{m}\right)}+\eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{sm}}\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{\underline{\rho} \eta}^{m}\right)} \\
& \leq C_{6} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u_{\eta}^{\mathrm{sm}}\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{\underline{\rho^{\eta}}}^{m}\right)}
\end{aligned}
$$

Thus, by Proposition 3.2 and by Proposition 2.1,

$$
\begin{align*}
\eta^{j}\left\|D^{j} u_{\eta}^{\mathrm{th}}-D^{j} u_{\eta}^{\mathrm{sm}}\right\|_{L^{p}\left(K_{\eta}^{m}\right)} & \leq C_{7} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u_{\eta}^{\mathrm{op}}\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{(\underline{\rho}+\rho) \eta}^{m}\right)} \\
& \leq C_{8} \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)} \tag{5.3}
\end{align*}
$$

By the triangle inequality, we deduce from (5.1), (5.2) and (5.3) that for every $j \in$ $\{1, \ldots, k\}$,

$$
\begin{aligned}
\eta^{j} \| D^{j} u_{\eta}^{\mathrm{th}} & -D^{j} u \|_{L^{p}\left(K_{\eta}^{m}\right)} \\
& \leq \sup _{v \in B_{1}^{m}} \eta^{j}\left\|\tau_{\psi_{\eta} v}\left(D^{j} u\right)-D^{j} u\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)}+C \sum_{i=1}^{j} \eta^{i}\left\|D^{i} u\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)}
\end{aligned}
$$

This gives the estimate we claimed since $K_{\eta}^{m}=Q_{1+\gamma}^{m}$. We observe that $u_{\eta}^{\text {th }}$ is smooth except on $\left(U_{\eta}^{m}+Q_{\underline{\rho} \eta}^{m}\right) \cap T_{\eta}^{\ell^{*}}$ where $T_{\eta}^{\ell^{*}}$ is the dual skeleton corresponding to the cubication \mathcal{K}_{η}^{m}.

The map $u_{\eta}^{\text {th }}$ need not have its values on the manifold N^{n}, so we need to estimate the distance between the image of u_{η}^{th} and N^{n}.
Part 2. The directed Hausdorff distance from the image of the map $u_{\eta}^{\text {th }}$ to the manifold N^{n} satisfies the estimate

$$
\begin{aligned}
& \operatorname{Dist}_{N^{n}}\left(u_{\eta}^{\mathrm{th}}\left(K_{\eta}^{m} \backslash T_{\eta}^{\ell^{*}}\right)\right) \leq \max \left\{\max _{\sigma^{m} \in \mathcal{K}_{\eta}^{m} \backslash \mathcal{E}_{\eta}^{m}} \frac{C^{\prime}}{\frac{m}{k^{k p}-1}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)},\right. \\
&\left.\sup _{x \in U_{\eta}^{\ell}+Q_{\mathscr{P}_{\eta}^{m}}^{m}} \frac{C^{\prime \prime}}{\left|Q_{s}^{m}\right|^{2}} \int_{Q_{s}^{m}(x)} \int_{Q_{s}^{m}(x)}\left|u_{\eta}^{\mathrm{op}}(y)-u_{\eta}^{\mathrm{op}}(z)\right| \mathrm{d} y \mathrm{~d} z\right\},
\end{aligned}
$$

where the directed Hausdorff distance from a set $S \subset \mathbb{R}^{\nu}$ to N^{n} is

$$
\operatorname{Dist}_{N^{n}}(S)=\sup \left\{\operatorname{dist}\left(x, N^{n}\right): x \in S\right\}
$$

\mathcal{E}_{η}^{m} is a subskeleton of \mathcal{U}_{η}^{m}, and $0<s<\eta$.
The subskeleton \mathcal{E}_{η}^{m} will be chosen at the end of Part 2 as the set of bad cubes and $\mathcal{K}_{\eta}^{m} \backslash \mathcal{E}_{\eta}^{m}$ will be the set of good cubes. This estimate implies that for every $\eta>0$ sufficiently small, the image of $u_{\eta}^{\text {th }}$ is contained in a small tubular neighborhood of N^{n}.

We first observe that by Proposition $4.1(i i), \Phi^{\mathrm{th}}\left(K_{\eta}^{m} \backslash\left(T^{\ell^{*}} \cup U_{\eta}^{m}\right)\right) \subset K_{\eta}^{m} \backslash U_{\eta}^{m}$ while by Proposition $4.1(i i i), \Phi^{\mathrm{th}}\left(U_{\eta}^{m} \backslash T^{\ell^{*}}\right) \subset U_{\eta}^{\ell}+Q_{\underline{\rho} \eta}^{m}$. Hence,

$$
\Phi^{\mathrm{th}}\left(K_{\eta}^{m} \backslash T_{\eta}^{\ell^{*}}\right) \subset\left(K_{\eta}^{m} \backslash U_{\eta}^{m}\right) \cup\left(U_{\eta}^{\ell}+Q_{\underline{\rho} \eta}^{m}\right)
$$

In terms of the directed Hausdorff distance we have

$$
\operatorname{Dist}_{N^{n}}\left(u_{\eta}^{\mathrm{th}}\left(K_{\eta}^{m} \backslash T_{\eta}^{\ell^{*}}\right)\right) \leq \operatorname{Dist}_{N^{n}}\left(\left(u_{\eta}^{\mathrm{sm}}\left(\left(K_{\eta}^{m} \backslash U_{\eta}^{m}\right) \cup\left(U_{\eta}^{\ell}+Q_{\underline{\rho} \eta}^{m}\right)\right)\right)\right.
$$

Since the image of the map $u_{\eta}^{\text {op }}$ obtained by opening u is contained in N^{n} (see Lemma 2.3), for every $x \in K_{\eta}^{m}$ we have

$$
\operatorname{dist}\left(u_{\eta}^{\mathrm{sm}}(x), N^{n}\right) \leq \frac{1}{\left|Q_{\psi_{\eta}(x)}^{m}\right|} \int_{Q_{\psi_{\eta}(x)}^{m}(x)}\left|u_{\eta}^{\mathrm{sm}}(x)-u_{\eta}^{\mathrm{op}}(z)\right| \mathrm{d} z
$$

On the other hand, since u_{η}^{sm} is the convolution of u_{η}^{op} with a mollifier,

$$
\begin{aligned}
\left|u_{\eta}^{\mathrm{sm}}(x)-u_{\eta}^{\mathrm{op}}(z)\right| & \leq \frac{1}{\psi_{\eta}(x)^{m}} \int_{B_{\psi_{\eta}(x)}^{m}(x)} \varphi\left(\frac{x-y}{\psi_{\eta}(x)}\right)\left|u_{\eta}^{\mathrm{op}}(y)-u_{\eta}^{\mathrm{op}}(z)\right| \mathrm{d} y \\
& \leq \frac{C_{1}}{\left|Q_{\psi_{\eta}(x)}^{m}\right|} \int_{Q_{\psi_{\eta}(x)}^{m}(x)}\left|u_{\eta}^{\mathrm{op}}(y)-u_{\eta}^{\mathrm{op}}(z)\right| \mathrm{d} y
\end{aligned}
$$

Thus,

$$
\begin{equation*}
\operatorname{dist}\left(u_{\eta}^{\mathrm{sm}}(x), N^{n}\right) \leq \frac{C_{1}}{\left|Q_{\psi_{\eta}(x)}^{m}\right|^{2}} \int_{Q_{\psi_{\eta}(x)}^{m}(x)} \int_{Q_{\psi_{\eta}(x)}^{m}(x)}\left|u_{\eta}^{\mathrm{op}}(y)-u_{\eta}^{\mathrm{op}}(z)\right| \mathrm{d} y \mathrm{~d} z \tag{5.4}
\end{equation*}
$$

Since N^{n} is a compact subset of \mathbb{R}^{ν}, u is bounded. By the Gagliardo-Nirenberg interpolation inequality (see $[19,44]), D u \in L^{k p}\left(Q_{1+2 \gamma}^{m}\right)$. By the Poincaré-Wirtinger inequality,

$$
\begin{aligned}
\frac{1}{\left|Q_{\psi_{\eta}(x)}^{m}\right|^{2}} \int_{Q_{\psi_{\eta}(x)}^{m}(x)} \int_{Q_{\psi_{\eta}(x)}^{m}(x)}\left|u_{\eta}^{\mathrm{op}}(y)-u_{\eta}^{\mathrm{op}}(z)\right| & \mathrm{d} y \mathrm{~d} z \\
& \leq \frac{C_{2}}{\psi_{\eta}(x)^{\frac{m}{k p}-1}}\left\|D u_{\eta}^{\mathrm{op}}\right\|_{L^{k p}\left(Q_{\psi_{\eta}(x)}^{m}(x)\right)}
\end{aligned}
$$

Since $\psi_{\eta} \leq \rho \eta$, if $\sigma^{m} \in \mathcal{K}_{\eta}^{m}$ is such that $x \in \sigma^{m}$, then $Q_{\psi_{\eta}(x)}^{m}(x) \subset \sigma^{m}+Q_{\rho \eta}^{m}$. Hence,

$$
\begin{aligned}
\operatorname{dist}\left(u_{\eta}^{\mathrm{sm}}(x), N^{n}\right) & \leq \frac{C_{3}}{\psi_{\eta}(x)^{\frac{m}{k p}-1}}\left\|D u_{\eta}^{\mathrm{op}}\right\|_{L^{k p}\left(Q_{\psi_{\eta}(x)}^{m}(x)\right)} \\
& \leq \frac{C_{3}}{\psi_{\eta}(x)^{\frac{m}{k p}-1}}\left\|D u_{\eta}^{\mathrm{op}}\right\|_{L^{k p}\left(\sigma^{m}+Q_{\rho \eta}^{m}\right)}
\end{aligned}
$$

Thus, by Addendum 1 to Proposition 2.1,

$$
\operatorname{dist}\left(u_{\eta}^{\mathrm{sm}}(x), N^{n}\right) \leq \frac{C_{4}}{\psi_{\eta}(x)^{\frac{m}{k p}-1}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)}
$$

We rewrite this estimate for every $x \in K_{\eta}^{m}$ as

$$
\begin{equation*}
\operatorname{dist}\left(u_{\eta}^{\mathrm{sm}}(x), N^{n}\right) \leq\left(\frac{\eta}{\psi_{\eta}(x)}\right)^{\frac{m}{k_{p}-1}} \frac{C_{4}}{\eta^{\frac{m}{k p}-1}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)} \tag{5.5}
\end{equation*}
$$

If $x \in\left(U_{\eta}^{\ell}+Q_{\underline{\rho} \eta}^{m}\right) \cap U_{\eta}^{m}$, then $x \in \sigma^{m}$ for some cube $\sigma^{m} \in \mathcal{U}_{\eta}^{m}$. If

$$
\psi_{\eta}(x) \leq(\rho-\underline{\rho}) \eta
$$

then $Q_{\psi_{\eta}(x)}^{m}(x) \subset U_{\eta}^{\ell}+Q_{\rho \eta}^{m}$. By Addendum 2 to Proposition 2.1, we have

$$
\begin{aligned}
& \frac{1}{\mid Q_{\left.\psi_{\eta}(x)\right|^{2}}^{m}} \int_{Q_{\psi_{\eta}(x)}^{m}(x)} \int_{Q_{\psi_{\eta}(x)}^{m}(x)}\left|u_{\eta}^{\mathrm{op}}(y)-u_{\eta}^{\mathrm{op}}(z)\right| \mathrm{d} y \mathrm{~d} z \\
&\left.\leq\left(\psi_{\eta}(x)\right)^{1-\frac{\ell}{k p}} \frac{C_{5}}{\eta^{\frac{m-\ell}{k p}}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right.}\right)
\end{aligned}
$$

Therefore,

$$
\operatorname{dist}\left(u_{\eta}^{\mathrm{sm}}(x), N^{n}\right) \leq\left(\psi_{\eta}(x)\right)^{1-\frac{\ell}{k p}} \frac{C_{5}}{\eta^{\frac{m-\ell}{k p}}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)}
$$

We rewrite this estimate for every $x \in\left(U_{\eta}^{\ell}+Q_{\underline{\rho} \eta}^{m}\right) \cap U_{\eta}^{m}$ as

$$
\begin{equation*}
\operatorname{dist}\left(u_{\eta}^{\mathrm{sm}}(x), N^{n}\right) \leq\left(\frac{\psi_{\eta}(x)}{\eta}\right)^{1-\frac{\ell}{k p}} \frac{C_{5}}{\eta^{\frac{m}{k p}-1}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)} \tag{5.6}
\end{equation*}
$$

We now describe the function ψ_{η} that we shall take. Given two parameters $0<s<t$ and given a function $\zeta \in C^{\infty}\left(Q_{1+2 \gamma}^{m}\right)$, we define

$$
\psi_{\eta}=t \zeta+s(1-\zeta)
$$

More precisely, let \mathcal{E}_{η}^{m} be a subskeleton of \mathcal{U}_{η}^{m} such that

$$
E_{\eta}^{m} \subset \operatorname{int} U_{\eta}^{m}
$$

in the relative topology of $Q_{1+\gamma}^{m}$. Since $\operatorname{dist}\left(E_{\eta}^{m}, K_{\eta}^{m} \backslash U_{\eta}^{m}\right) \geq \eta$, we take a function $\zeta \in C^{\infty}\left(K_{\eta}^{m}\right)$ such that
(i) $0 \leq \zeta \leq 1$ in K_{η}^{m},
(ii) $\zeta=1$ in $K_{\eta}^{m} \backslash U_{\eta}^{m}$,
(iii) $\zeta=0$ in E_{η}^{m},
(iv) for every $j \in\{1, \ldots, k\}, \eta^{j}\left\|D^{j} \zeta\right\|_{L^{\infty}} \leq \tilde{C}$, for some constant $\tilde{C}>0$ depending only on m.

Thus, $\operatorname{supp} D \psi_{\eta} \subset U_{\eta}^{m}$ and

$$
\eta^{j}\left\|D^{j} \psi_{\eta}\right\|_{L^{\infty}} \leq \tilde{C} t
$$

In order to apply Proposition 3.2 and to have $\psi_{\eta} \leq(\rho-\underline{\rho}) \eta$, we choose

$$
t=\min \left\{\frac{\kappa}{\tilde{C}}, \rho-\underline{\rho}\right\} \eta
$$

for some fixed number $0<\kappa<1$.
Since $\psi_{\eta}=t$ in $K_{\eta}^{m} \backslash U_{\eta}^{m}$ and $t \geq c \eta$ for some constant $c>0$ independent of η, we have from (5.5),

$$
\operatorname{Dist}_{N^{n}}\left(u_{\eta}^{\mathrm{sm}}\left(K_{\eta}^{m} \backslash U_{\eta}^{m}\right)\right) \leq \max _{\sigma^{m} \in \mathcal{K}_{\eta}^{m} \backslash \mathcal{U}_{\eta}^{m}} \frac{C_{6}}{\eta^{\frac{m}{k p}}-1}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)}
$$

Since $\psi_{\eta}=s$ in E_{η}^{m}, we have from (5.4),

$$
\begin{aligned}
\operatorname{Dist}_{N^{n}}\left(u _ { \eta } ^ { \mathrm { sm } } \left(\left(U_{\eta}^{\ell}+Q_{\underline{\rho} \eta}^{m}\right)\right.\right. & \left.\left.\cap E_{\eta}^{m}\right)\right) \\
& \leq \sup _{x \in U_{\eta}^{\ell}+Q_{\underline{\rho} \eta}^{m}} \frac{C_{1}}{\left|Q_{s}^{m}\right|^{2}} \int_{Q_{s}^{m}(x)} \int_{Q_{s}^{m}(x)}\left|u_{\eta}^{\mathrm{op}}(y)-u_{\eta}^{\mathrm{op}}(z)\right| \mathrm{d} y \mathrm{~d} z
\end{aligned}
$$

Finally, if

$$
\ell \leq k p
$$

then by (5.6) and by the estimate $\psi_{\eta}(x) \leq t=C_{7} \eta$, we get

$$
\operatorname{Dist}_{N^{n}}\left(u_{\eta}^{\mathrm{sm}}\left(\left(U_{\eta}^{\ell}+Q_{\underline{\rho} \eta}^{m}\right) \cap\left(U_{\eta}^{m} \backslash E_{\eta}^{m}\right)\right) \leq \max _{\sigma^{m} \in \mathcal{U}_{\eta}^{m} \backslash \mathcal{E}_{\eta}^{m}} \frac{C_{8}}{\eta^{\frac{m}{k p}}-1}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)}\right.
$$

Since we have already required that $\ell+1>k p$, we are thus led to take

$$
\ell=\lfloor k p\rfloor .
$$

We deduce that

$$
\begin{aligned}
& \operatorname{Dist}_{N^{n}}\left(u_{\eta}^{\mathrm{th}}\left(K_{\eta}^{m} \backslash T_{\eta}^{\ell^{*}}\right)\right) \leq \max \left\{\max _{\sigma^{m} \in \mathcal{K}_{\eta}^{m} \backslash \mathcal{E}_{\eta}^{m}} \frac{C^{\prime}}{\eta^{\frac{m}{k p}-1}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)},\right. \\
&\left.\sup _{x \in U_{\eta}^{\ell}+Q_{\underline{\rho}_{\eta}^{m}}^{m}} \frac{C^{\prime \prime}}{\left|Q_{s}^{m}\right|^{2}} \int_{Q_{s}^{m}(x)} \int_{Q_{s}^{m}(x)}\left|u_{\eta}^{\mathrm{op}}(y)-u_{\eta}^{\mathrm{op}}(z)\right| \mathrm{d} y \mathrm{~d} z\right\}
\end{aligned}
$$

This gives the estimate we claimed.
The nearest point projection Π onto N^{n} is well-defined and smooth on a tubular neighborhood of N^{n} of radius $\iota>0$. We now choose the subskeleton \mathcal{E}_{η}^{m} used in the definition of ζ and ψ_{η} as the set of cubes $\sigma^{m} \in \mathcal{K}_{\eta}^{m}$ such that

$$
\frac{C^{\prime}}{\eta^{\frac{m}{k p}-1}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)}>\iota
$$

Thus,

$$
\max _{\sigma^{m} \in \mathcal{K}_{\eta}^{m} \backslash \mathcal{E}_{\eta}^{m}} \frac{C^{\prime}}{\eta^{\frac{m}{k p}-1}}\|D u\|_{L^{k p}\left(\sigma^{m}+Q_{2 \rho \eta}^{m}\right)} \leq \iota .
$$

We then take the subskeleton \mathcal{U}_{η}^{m} used in the constructions of opening and thickening as the the set of cubes $\sigma^{m} \in \mathcal{K}_{\eta}^{m}$ which intersect some cube in \mathcal{E}_{η}^{m}; in particular int $E_{\eta}^{m} \subset$ U_{η}^{m} in the relative topology of $Q_{1+\gamma}^{m}$.

In view of the uniform limit of Addendum 2 to Proposition 2.1, since $\ell \leq k p$, for every $s>0$ small enough,

$$
\sup _{x \in U_{\eta}^{\ell}+Q_{\underline{\rho^{\eta}}}^{m}} \frac{C^{\prime \prime}}{\left|Q_{s}^{m}\right|^{2}} \int_{Q_{s}^{m}(x)} \int_{Q_{s}^{m}(x)}\left|u_{\eta}^{\mathrm{op}}(y)-u_{\eta}^{\mathrm{op}}(z)\right| \mathrm{d} y \mathrm{~d} z \leq \iota .
$$

We conclude that $u_{\eta}^{\mathrm{th}}\left(K_{\eta}^{m} \backslash T_{\eta}^{\ell^{*}}\right)$ is contained in a tubular neighborhood of N^{n} of radius ι.
Part 3. The maps $\Pi \circ u_{\eta}^{\text {th }}$ converge to u in $W^{k, p}\left(Q_{1}^{m} ; N^{n}\right)$ as η tends to 0 .
Using the estimate from Part 1 , we show that for every $j \in\{1, \ldots, k\}$,

$$
\lim _{\eta \rightarrow 0}\left\|D^{j} u_{\eta}^{\mathrm{th}}-D^{j} u\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)}=0
$$

By continuity of the translation operator in L^{p} (see the remark following Proposition 3.1),

$$
\begin{equation*}
\lim _{\eta \rightarrow 0} \sup _{v \in B_{1}^{m}}\left\|\tau_{\psi_{\eta} v}\left(D^{j} u\right)-D^{j} u\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)}=0 . \tag{5.7}
\end{equation*}
$$

We now need to show that

$$
\lim _{\eta \rightarrow 0} \sum_{i=1}^{j} \eta^{i-j}\left\|D^{i} u\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)}=0 .
$$

By the Gagliardo-Nirenberg interpolation inequality, for every $i \in\{1, \ldots, k-1\}, D^{i} u \in$ $L^{\frac{k p}{i}}\left(Q_{1+2 \gamma}^{m}\right)$. By Hölder's inequality, for every $i \in\{1, \ldots, k\}$ we have

$$
\begin{aligned}
\eta^{i-j}\left\|D^{i} u\right\|_{L^{p}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)} & \leq \eta^{i-j}\left|U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right|^{\frac{k-i}{k p}}\left\|D^{i} u\right\|_{L^{\frac{k p}{i}}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)} \\
& =\eta^{k-j}\left(\frac{\left|U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right|}{\eta^{k p}}\right)^{\frac{k-i}{k p}}\left\|D^{i} u\right\|_{L^{\frac{k p}{i}}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)} .
\end{aligned}
$$

From this estimate, we need that $\left|U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right|=O\left(\eta^{k p}\right)$ as $\eta \rightarrow 0$. We observe that $\left|U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right|$ satisfies the following estimate in terms of the number of elements $\# \mathcal{U}_{\eta}^{m}$ of the subskeleton \mathcal{U}_{η}^{m},

$$
\left|U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right| \leq 2^{m}(\eta+2 \rho \eta)^{m}\left(\# \mathcal{U}_{\eta}^{m}\right)=C_{1} \eta^{m}\left(\# \mathcal{U}_{\eta}^{m}\right) .
$$

Note that for every cube $\sigma^{m} \in \mathcal{U}_{\eta}^{m}$, if $\tau^{m} \in \mathcal{E}_{\eta}^{m}$ intersects σ^{m}, then $\tau^{m}+Q_{2 \rho \eta}^{m} \subset$ $\sigma^{m}+Q_{2(1+\rho) \eta}^{m}$. Denoting σ^{m} by $Q_{\eta}^{m}(a)$, we have $\tau^{m}+Q_{2 \rho \eta}^{m} \subset Q_{\alpha \eta}^{m}(a)$, where $\alpha=3+2 \rho$, whence

$$
\tau^{m}+Q_{2 \rho \eta}^{m} \subset Q_{\alpha \eta}^{m}(a) \cap Q_{1+2 \gamma}^{m}
$$

By the definition of \mathcal{E}_{η}^{m},

$$
\iota<\frac{C^{\prime}}{\eta^{\frac{m}{k p}-1}}\|D u\|_{L^{k p}\left(\tau^{m}+Q_{2 \rho \eta}^{m}\right)} \leq \frac{C^{\prime}}{\eta^{\frac{m}{k p}-1}}\|D u\|_{L^{k p}\left(Q_{\alpha \eta}^{m}(a) \cap Q_{1+2 \gamma}^{m}\right)} .
$$

Thus, for every $Q_{\eta}^{m}(a) \in \mathcal{U}_{\eta}^{m}$,

$$
1<\frac{C_{2}}{\eta^{m-k p}} \int_{Q_{\alpha \eta}^{m}(a) \cap Q_{1+2 \gamma}^{m}}|D u|^{k p}
$$

Since the cubes $Q_{\alpha \eta}^{m}(a)$ intersect each other finitely many times and the number of overlaps only depend on α and on the dimension m,

$$
\# \mathcal{U}_{\eta}^{m} \leq \frac{C_{2}}{\eta^{m-k p}} \sum_{Q_{\eta}^{m}(a) \in \mathcal{U}_{\eta}^{m}} \int_{Q_{\alpha \eta}^{m}(a) \cap Q_{1+2 \gamma}^{m}}|D u|^{k p} \leq \frac{C_{3}}{\eta^{m-k p}} \int_{Q_{1+2 \gamma}^{m}}|D u|^{k p}
$$

We deduce that

$$
\left|U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right| \leq C_{4} \eta^{m} \frac{1}{\eta^{m-k p}} \int_{Q_{1+2 \gamma}^{m}}|D u|^{k p}=C_{4} \eta^{k p} \int_{Q_{1+2 \gamma}^{m}}|D u|^{k p}
$$

This means that

$$
\limsup _{\eta \rightarrow 0} \frac{\left|U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right|}{\eta^{k p}}<\infty
$$

Hence, by Lebesgue's dominated convergence theorem,

$$
\lim _{\eta \rightarrow 0}\left\|D^{i} u\right\|_{L^{\frac{k p}{i}}\left(U_{\eta}^{m}+Q_{2 \rho \eta}^{m}\right)}=0
$$

In view of (5.7) and the estimate from Part 1, we have $\lim _{\eta \rightarrow 0}\left\|D^{j} u_{\eta}^{\text {th }}-D^{j} u\right\|_{L^{p}\left(Q_{1+\gamma}^{m}\right)}=0$.
Recall that $u_{\eta}^{\mathrm{th}}=u_{\eta}^{\mathrm{sm}}$ in the complement of $U_{\eta}^{m}+Q_{\rho \eta}^{m}$. Since $u_{\eta}^{\mathrm{sm}} \rightarrow u$ in measure and $\left|U_{\eta}^{m}+Q_{\rho \eta}^{m}\right| \rightarrow 0$ as $\eta \rightarrow 0, u_{\eta}^{\text {th }} \rightarrow u$ in measure as $\eta \rightarrow 0$. Hence, $u_{\eta}^{\text {th }}$ converges to u in $L^{p}\left(Q_{1+\gamma}^{m}\right)$ and

$$
\lim _{\eta \rightarrow 0}\left\|u_{\eta}^{\mathrm{th}}-u\right\|_{W^{k, p}\left(Q_{1+\gamma}^{m}\right)}=0
$$

Therefore,

$$
\lim _{\eta \rightarrow 0}\left\|\Pi \circ u_{\eta}^{\mathrm{th}}-u\right\|_{W^{k, p}\left(Q_{1+\gamma}^{m}\right)}=0
$$

This gives the conclusion of this part.
Part 4. The map $\Pi \circ u_{\eta}^{\text {th }}$ belongs to the class $R_{\ell^{*}}\left(Q^{m} ; N^{n}\right)$.
It suffices to prove the pointwise estimates of $D^{j}\left(\Pi \circ u_{\eta}^{\text {th }}\right)$. Since $\Pi \circ u_{\eta}^{\text {th }}=(\Pi \circ$ $\left.u_{\eta}^{\mathrm{sm}}\right) \circ \Phi^{\mathrm{th}}$ and the map $\Pi \circ u_{\eta}^{\mathrm{sm}}$ is smooth in K_{η}^{m}, by the chain rule for higher order derivatives,

$$
\begin{aligned}
\left|D^{j}\left(\Pi \circ u_{\eta}^{\mathrm{th}}\right)\right| & \leq C_{5} \sum_{i=1}^{j} \sum_{\substack{1 \leq \alpha_{1} \leq \ldots \leq \alpha_{i} \\
\alpha_{1}+\ldots+\alpha_{i}=j}}\left|D^{i}\left(\Pi \circ u_{\eta}^{\mathrm{sm}}\right)\right|\left|D^{\alpha_{1}} \Phi^{\mathrm{th}}\right| \cdots\left|D^{\alpha_{i}} \Phi^{\mathrm{th}}\right| \\
& \leq C_{6} \sum_{i=1}^{j} \sum_{\substack{1 \leq \alpha_{1} \leq \ldots \leq \alpha_{i} \\
\alpha_{1}+\ldots+\alpha_{i}=j}}\left|D^{\alpha_{1}} \Phi^{\mathrm{th}}\right| \cdots\left|D^{\alpha_{i}} \Phi^{\mathrm{th}}\right| .
\end{aligned}
$$

By Proposition $4.1(i v)$, we have for $x \in K_{\eta}^{m} \backslash T_{\eta}^{\ell^{*}}$,

$$
\begin{aligned}
\left|D^{j}\left(\Pi \circ u_{\eta}^{\mathrm{th}}\right)(x)\right| & \leq C_{7} \sum_{\substack{i=1 \\
1 \leq \alpha_{1} \leq \ldots \leq \alpha_{i} \\
\alpha_{1}+\cdots+\alpha_{i}=j}}^{j} \frac{\eta}{\left(\operatorname{dist}\left(x, T_{\eta}^{\ell^{*}}\right)\right)^{\alpha_{1}}} \cdots \frac{\eta}{\left(\operatorname{dist}\left(x, T_{\eta}^{\ell_{\eta}^{*}}\right)\right)^{\alpha_{i}}} \\
& \leq \frac{C_{8}}{\left(\operatorname{dist}\left(x, T_{\eta}^{\ell^{*}}\right)\right)^{j}} .
\end{aligned}
$$

This concludes the proof of the theorem.

6 Proof of Theorem 2

Let $k p<m$. It is a consequence of Theorem 3 that $R_{m-\lfloor k p\rfloor-1}\left(Q^{m} ; N^{n}\right)$ is dense in $W^{k, p}\left(Q^{m} ; N^{n}\right)$. In this section, we prove that if $\pi_{\lfloor k p\rfloor}\left(N^{n}\right) \nsucceq\{0\}$ and if $i \in\{0, \ldots, m-$ $1\}$ is such that
(a) $R_{i}\left(Q^{m} ; N^{n}\right) \subset W^{k, p}\left(Q^{m} ; N^{n}\right)$,
(b) $R_{i}\left(Q^{m} ; N^{n}\right)$ is dense in $W^{k, p}\left(Q^{m} ; N^{n}\right)$,
then $i=m-\lfloor k p\rfloor-1$.
We first prove that $i<m-\lfloor k p\rfloor$. For this purpose, let $\gamma: \mathbb{R} \rightarrow N^{n}$ be a geodesic in N^{n}. Given $i \geq m-\lfloor k p\rfloor$, the map $u: \bar{Q}^{m} \rightarrow N^{n}$ defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \bar{Q}^{m-i} \times \bar{Q}^{i}$ by

$$
u(x)=\gamma\left(\log \left|x^{\prime}\right|\right)
$$

belongs to $R_{i}\left(Q^{m} ; N^{n}\right)$. Taking γ parametrized by arc-length, we have

$$
|D u(x)|=\frac{1}{\left|x^{\prime}\right|}
$$

Since $i \geq m-\lfloor k p\rfloor$, it follows that $D u \notin L^{\lfloor k p\rfloor}\left(Q^{m}\right)$. By the Gagliardo-Nirenberg interpolation inequality, we deduce that $R_{i}\left(Q^{m} ; N^{n}\right) \not \subset W^{k, p}\left(Q^{m} ; N^{n}\right)$.

We now prove that $i>m-\lfloor k p\rfloor-2$. Given a smooth map $\varphi: \mathbb{S}^{\lfloor k p\rfloor} \rightarrow N^{n}$, we define $u: \bar{Q}^{m} \rightarrow \mathbb{N}^{n}$ for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \bar{Q}^{\lfloor k p\rfloor+1} \times \bar{Q}^{m-\lfloor k p\rfloor-1}$ by

$$
u(x)=\varphi\left(\frac{x^{\prime}}{\left|x^{\prime}\right|}\right) .
$$

Then, $u \in W^{k, p}\left(Q^{m} ; N^{n}\right)$. Given $i \in\{0, \ldots, m-\lfloor k p\rfloor-2\}$, assume by contradiction that there exists a sequence $\left(u_{j}\right)_{j \in \mathbb{N}}$ in $R_{i}\left(Q^{m} ; N^{n}\right)$ converging to u in $W^{k, p}\left(Q^{m} ; N^{n}\right)$. Passing to a subsequence if necessary, for almost every $x^{\prime \prime} \in Q^{m-\lfloor k p\rfloor-1}$ and for almost every $\rho \in(0,1)$, the sequence $\left(\left.u_{j}\right|_{\mathbb{S}_{\rho}^{\lfloor k p\rfloor} \times\left\{x^{\prime \prime}\right\}}\right)_{j \in \mathbb{N}}$ converges to $\left.u\right|_{\mathbb{S}_{\rho}^{\lfloor k p\rfloor} \times\left\{x^{\prime \prime}\right\}}$ in $W^{k, p}\left(\mathbb{S}_{\rho}^{\lfloor k p\rfloor} ; N^{n}\right)$, whence in $\operatorname{BMO}\left(\mathbb{S}_{\rho}^{\lfloor k p\rfloor} ; N^{n}\right)$.

For every $j \in \mathbb{N}$, denote by T_{j} a finite union of i dimensional planes such that $u_{j} \in C^{\infty}\left(\bar{Q}^{m} \backslash T_{j} ; N^{n}\right)$. Since $i \leq m-\lfloor k p\rfloor-2$, for every $\left(x^{\prime \prime}, \rho\right) \in Q^{m-\lfloor k p\rfloor-1} \times(0,1)$ such that $\mathbb{S}_{\rho}^{\lfloor k p\rfloor} \times\left\{x^{\prime \prime}\right\} \subset \bar{Q}^{m} \backslash T_{j}$, there exist $a \in \bar{Q}^{m} \backslash T_{j}$ and a continuous map $h:[0,1] \times\left(\mathbb{S}_{\rho}^{\lfloor k p\rfloor} \times\left\{x^{\prime \prime}\right\}\right) \rightarrow \bar{Q}^{m} \backslash T_{j}$ such that for every $y \in \mathbb{S}_{\rho}^{\lfloor k p\rfloor} \times\left\{x^{\prime \prime}\right\}, h(0, y)=y$ and $h(1, y)=a$. This implies that $\left.u_{j}\right|_{\mathbb{S}_{\rho}^{\lfloor k p\rfloor} \times\left\{x^{\prime \prime}\right\}}$ is homotopic to a constant.

We recall that homotopy classes are preserved under BMO convergence:
Claim. Let $\left(v_{j}\right)_{j \in \mathbb{N}}$ be a sequence in $C^{0}\left(\mathbb{S}^{\lfloor k p\rfloor} ; N^{n}\right)$ which converges to $v \in C^{0}\left(\mathbb{S}\lfloor k p\rfloor ; N^{n}\right)$ in $\mathrm{BMO}\left(\mathbb{S}^{\lfloor k p\rfloor} ; N^{n}\right)$. Then, for every $j \in \mathbb{N}$ sufficiently large, v_{j} is homotopic to v in $C^{0}\left(\mathbb{S}^{\lfloor k p\rfloor} ; N^{n}\right)$.

This claim is essentially [13, Lemma A.19] but we present a proof for the convenience of the reader.

Proof of the Claim. For every $\epsilon>0$, we consider the map $v_{\epsilon}: \mathbb{S}^{\lfloor k p\rfloor} \rightarrow N^{n}$ defined for $x \in \mathbb{S}^{\lfloor k p\rfloor}$ by

$$
v_{\epsilon}(x)=\frac{1}{\left|D_{\epsilon}^{\lfloor k p\rfloor}(x)\right|} \int_{D_{\epsilon}^{\lfloor k p\rfloor}(x)} v
$$

where $D_{\epsilon}^{\lfloor k p\rfloor}(x)=\mathbb{S}^{\lfloor k p\rfloor} \cap Q_{\epsilon}^{\lfloor k p\rfloor+1}(x)$. Accordingly, for every $j \in \mathbb{N}$ we define $v_{j, \epsilon}$, with v replaced by v_{j}.

The nearest point projection Π is well-defined and smooth on a tubular neighborhood of N^{n} of radius $\iota>0$. Since v_{ϵ} converges uniformly to v as ϵ tends to 0 , there exists $\epsilon_{1}>0$ such that for every $0<\epsilon \leq \epsilon_{1}, \Pi \circ v_{\epsilon}$ is well-defined and is homotopic to v.

Next, for every $j \in \mathbb{N}$ and for every $x \in \mathbb{S}^{\lfloor k p\rfloor}$, since $v_{j}(x) \in N^{n}$,

$$
\begin{aligned}
\operatorname{dist}\left(v_{j, \epsilon}(x), N^{n}\right) & \leq \frac{1}{\left|D_{\epsilon}^{\lfloor k p\rfloor}(x)\right|} \int_{D_{\epsilon}^{\lfloor k p\rfloor}(x)}\left|v_{j}(y)-\frac{1}{\left|D_{\epsilon}^{\lfloor k p\rfloor}(x)\right|} \int_{D_{\epsilon}^{\lfloor k p\rfloor}(x)} v_{j}\right| \mathrm{d} y \\
& \leq\left\|v_{j}-v\right\|_{\mathrm{BMO}(\mathbb{S}\lfloor k p\rfloor}\left\lfloor+2 \sup _{y \in D_{\epsilon}^{\lfloor k p\rfloor}(x)}|v(y)-v(x)| .\right.
\end{aligned}
$$

Since the sequence $\left(v_{j}\right)_{j \in \mathbb{N}}$ converges to v in $\operatorname{BMO}\left(\mathbb{S}^{\lfloor k p\rfloor}\right)$ and v is uniformly continuous, there exist $J \in \mathbb{N}$ and $\epsilon_{2}>0$ such that for every $j \geq J$ and for every $0<\epsilon \leq \epsilon_{2}$,

$$
\operatorname{dist}\left(v_{j, \epsilon}(x), N^{n}\right) \leq \iota
$$

In particular, $\Pi \circ v_{j, \epsilon}$ is well-defined and the continuous extension of the function $t \in$ $(0,1] \mapsto \Pi \circ v_{j, t \epsilon}$ gives a homotopy between $\Pi \circ v_{j, \epsilon}$ and v_{j}.

Finally, for every $\epsilon>0$ the sequence $\left(v_{j, \epsilon}\right)_{j \in \mathbb{N}}$ converges uniformly to v_{ϵ}. For $0<$ $\epsilon<\min \left\{\epsilon_{1}, \epsilon_{2}\right\}$ and for $j \geq J$, the functions $\Pi \circ v_{j, \epsilon}$ are well-defined and converge uniformly to $\Pi \circ v_{\epsilon}$ as j tends to infinity. Thus, there exists $\bar{J} \geq J$ such that for every $j \in \mathbb{N}$ with $j \geq \bar{J}, \Pi \circ v_{j, \epsilon}$ is homotopic to $\Pi \circ v_{\epsilon}$. By transitivity of the homotopy relation, we conclude from the above that for every such j, v_{j} is homotopic to v.

We deduce from the claim that $\left.u\right|_{\mathbb{S}_{\rho}^{\lfloor k p\rfloor} \times\left\{x^{\prime \prime}\right\}}$ is homotopic to a constant, whence $\varphi: \mathbb{S}^{\lfloor k p\rfloor} \rightarrow N^{n}$ is homotopic to a constant. Since $\pi_{\lfloor k p\rfloor}\left(N^{n}\right) \not 千\{0\}$ and $\varphi: \mathbb{S}^{\lfloor k p\rfloor} \rightarrow N^{n}$ is an arbitrary smooth function, we get a contradiction. This completes the proof of Theorem 2.

7 Continuous extension property

From Theorem 3 we are able to approximate a map by another map which is smooth except on a dual skeleton of dimension $\lfloor k p\rfloor^{*}$. We would like to modify our approximation near this singular set in order to obtain a smooth map. An important tool will be the following:

Proposition 7.1. Let \mathcal{K}^{m} be a skeleton of radius $\eta>0, \ell \in\{0, \ldots, m-1\}$, $\mathcal{T}^{\ell^{*}}$ be the dual skeleton of \mathcal{K}^{ℓ} and let $u \in C^{\infty}\left(K^{m} \backslash T^{\ell^{*}} ; N^{n}\right)$. If there exists $f \in C^{0}\left(K^{m} ; N^{n}\right)$ such that $\left.f\right|_{K^{\ell}}=\left.u\right|_{K^{\ell}}$, then for every $0<\mu<1$, there exists $v \in C^{\infty}\left(K^{m} ; N^{n}\right)$ such that $v=u$ on $K^{m} \backslash\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)$.

In the proof of Proposition 7.1, we shall rely on the fact that K^{ℓ} is a homotopy retract of $K^{m} \backslash T^{\ell^{*}}$, that is, there exists a continuous retraction of $K^{m} \backslash T^{\ell^{*}}$ onto K^{ℓ} which is homotopic to the identity map in $K^{m} \backslash T^{\ell^{*}}$:

Fact 7.1. There exists a continuous homotopy $H_{\ell}:[0,1] \times\left(K^{m} \backslash T^{\ell^{*}}\right) \rightarrow K^{m} \backslash T^{\ell^{*}}$ such that
(i) for every $x \in K^{m} \backslash T^{\ell^{*}}, H_{\ell}(0, x)=x$,
(ii) for every $x \in K^{m} \backslash T^{\ell^{*}}, H_{\ell}(1, x) \in K^{\ell}$,
(iii) for every $x \in K^{\ell}, H_{\ell}(1, x)=x$.

Proof of Proposition 7.1. Given $0<\underline{\delta}<\delta<\bar{\delta}<\mu$, let $\varphi: K^{m} \rightarrow[0,1]$ be a continuous function such that

- for every $x \in K^{m} \backslash\left(T^{\ell^{*}}+Q \frac{m}{\bar{\delta} \eta}\right), \varphi(x)=0$,
- for every $x \in \partial\left(T^{\ell^{*}}+Q_{\delta \eta}^{m}\right), \varphi(x)=1$.
- for every $x \in T^{\ell^{*}}+Q_{\underline{\delta} \eta}^{m}, \varphi(x)=0$.

We define $w: K^{m} \rightarrow N^{n}$ by

$$
w(x)= \begin{cases}\left(u \circ H_{\ell}\right)(\varphi(x), x) & \text { if } x \in K^{m} \backslash\left(T^{\ell^{*}}+Q_{\delta \eta}^{m}\right), \\ \left(f \circ H_{\ell}\right)(\varphi(x), x) & \text { if } x \in\left(T^{\ell^{*}}+Q_{\delta \eta}^{m}\right) \backslash T^{\ell^{*}} \\ f(x) & \text { if } x \in T^{\ell^{*}}\end{cases}
$$

By properties (i) and $(i i)$ of Fact 7.1, w is well-defined and continuous on K^{m}, and $w=u$ on $K^{m} \backslash\left(T^{\ell^{*}}+Q \frac{m}{\bar{\delta} \eta}\right)$. Let $\bar{w}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{\nu}$ be a continuous extension of w. Given a mollifier $\varphi \in C_{c}^{\infty}\left(B_{1}^{m}\right)$, there exists a nonnegative function $\psi \in C^{\infty}\left(\mathbb{R}^{m}\right)$ such that for any $\iota>0$,
$-\operatorname{supp} \psi \subset T^{\ell^{*}}+Q_{\mu \eta}^{m}$,
$-\psi>0$ in a neighborhood of $T^{\ell^{*}}+Q \frac{m}{\delta} \eta$,
$-\left\|\varphi_{\psi} * \bar{w}-\bar{w}\right\|_{L^{\infty}\left(\mathbb{R}^{m}\right)} \leq \iota$.
If the nearest point projection Π onto N^{n} is well-defined and smooth on a tubular neighborhood of N^{n} of radius $\iota>0$, then the map $\Pi \circ\left(\varphi_{\psi} * \bar{w}\right)$ restricted to K^{m} satisfies all the required properties.

The natural question that arises is whether a continuous extension of $\left.u\right|_{K^{\ell}}$ to K^{m} exists. This property depends on the skeleton \mathcal{K}^{m} and on the manifold N^{n}.

Proposition 7.2. Let \mathcal{K}^{m} be a skeleton of radius $\eta>0$ and $\ell \in\{0, \ldots, m-1\}$. If K^{m} is a cube and if $\pi_{\ell}\left(N^{n}\right) \simeq\{0\}$, then for every $u \in C^{0}\left(K^{\ell} ; N^{n}\right)$ there exists $f \in C^{0}\left(K^{m} ; N^{n}\right)$ such that $\left.f\right|_{K^{\ell}}=u$.

We will use the fact that it is always possible to find a continuous extension, regardless of N^{n}, by losing one dimension. This property has been introduced as the ℓ extension property by Hang and Lin [28, Definition 2.3].

Proposition 7.3. Let \mathcal{K}^{m} be a skeleton of radius $\eta>0$ and $\ell \in\{0, \ldots, m-1\}$. If K^{m} is a cube, then for every $u \in C^{0}\left(K^{\ell+1} ; N^{n}\right)$, there exists $g \in C^{0}\left(K^{m} ; N^{n}\right)$ such that $\left.g\right|_{K^{\ell}}=\left.u\right|_{K^{\ell}}$.

In the proof of Proposition 7.3, we shall assume that if K^{m} is a cube, then the identity map on K^{ℓ} is homotopic to a constant with respect to $K^{\ell+1}$:

Fact 7.2. If K^{m} is a cube, then there exists a continuous homotopy $G_{\ell}:[0,1] \times K^{\ell} \rightarrow$ $K^{\ell+1}$ such that
(i) for every $x \in K^{\ell}, G_{\ell}(0, x)=x$,
(ii) there exists $a \in K^{\ell}$ such that for every $x \in K^{\ell}, G_{\ell}(1, x)=a$.

Proof of Proposition 7.3. Let $\varphi: K^{m} \rightarrow[0,1]$ be a continuous function such that

- for every $x \in K^{\ell}, \varphi(x)=0$,
- for every $x \in T^{\ell^{*}}, \varphi(x)=1$.

We define $g: K^{m} \rightarrow N^{n}$ by

$$
g(x)= \begin{cases}u\left(G_{\ell}\left(\varphi(x), H_{\ell}(1, x)\right)\right) & \text { if } x \in K^{m} \backslash T^{\ell^{*}} \\ u(a) & \text { if } x \in T^{\ell^{*}}\end{cases}
$$

where $H_{\ell}:[0,1] \times K^{m} \backslash T^{\ell^{*}} \rightarrow K^{m} \backslash T^{\ell^{*}}$ is the homotopy retraction of Fact 7.1. The map g is continuous and by property (iii) of Fact 7.1 we have for every $x \in K^{\ell}$, $g(x)=u(x)$.

Proof of Proposition 7.2. Let $u \in C^{0}\left(K^{\ell} ; N^{n}\right)$. Since $\pi_{\ell}\left(N^{n}\right) \simeq\{0\}$, for every $\sigma^{\ell+1} \in$ $\mathcal{K}^{\ell+1}$, the restriction $\left.u\right|_{\partial \sigma^{\ell+1}}$ has a continuous extension $u_{\sigma^{\ell+1}}$ to $\sigma^{\ell+1}$. Let $v: K^{\ell+1} \rightarrow$ N^{n} be the map defined for every $x \in K^{\ell+1}$ by $v(x)=u_{\sigma^{\ell+1}}(x)$, where $\sigma^{\ell+1} \in \mathcal{K}^{\ell+1}$ is such that $x \in \sigma^{\ell+1}$. The map v is well-defined and continuous; moreover, $\left.v\right|_{K^{\ell}}=u$. By Proposition 7.3 applied to v, there exists $f: K^{m} \rightarrow N^{n}$ such that $\left.f\right|_{K^{\ell}}=\left.v\right|_{K^{\ell}}$; hence f is a continuous extension of u to K^{m}.

8 Shrinking

Given a map $u \in W^{k, p}\left(K^{m} ; \mathbb{R}^{\nu}\right)$ whose energy is controlled outside a neighborhood of the dual skeleton $T^{\ell^{*}}$, we construct for every $\tau>0$ a map $u \circ \Phi$ whose energy will be controlled on the whole K^{m} when τ is small enough. This shrinking construction is very similar to the thickening construction. In both cases, the dimension of the dual skeleton $T^{\ell^{*}}$ must satisfy $\ell^{*}<m-k p$, or equivalently, $l+1>k p$. The main differences are that shrinking only acts in a neighborhood of the dual skeleton $T^{\ell^{*}}$ and does not create singularities. Shrinking can be thought of as desingularized thickening and requires more careful estimates.

As for thickening, we begin by constructing the diffeomorphism Φ regardless of u :
Proposition 8.1. Let $\ell \in\{0, \ldots, m-1\}, \eta>0,0<\mu<\frac{1}{2}, 0<\tau<\frac{1}{2}$, \mathcal{S}^{m} be a cubication of \mathbb{R}^{m} of radius η and $\mathcal{T}^{\ell^{*}}$ be the dual skeleton of \mathcal{S}^{ℓ}. There exists a smooth map $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ such that
(i) Φ is injective,
(ii) for every $\sigma^{m} \in \mathcal{S}^{m}, \Phi\left(\sigma^{m}\right) \subset \sigma^{m}$,
(iii) Supp $\Phi \subset T^{\ell^{*}}+Q_{2 \mu \eta}^{m}$ and $\Phi\left(T^{\ell^{*}}+Q_{\tau \mu \eta}^{m}\right) \supset T^{\ell^{*}}+Q_{\mu \eta}^{m}$,
(iv) for every $0<\beta<\ell+1$, for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m}$,

$$
(\mu \eta)^{j-1}\left|D^{j} \Phi(x)\right| \leq C(\operatorname{jac} \Phi(x))^{\frac{j}{p}}
$$

for some constant $C>0$ depending on β, j and m,
(v) for every $0<\beta<\ell+1$, for every $j \in \mathbb{N}_{*}$ and for every $x \in \Phi^{-1}\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)$,

$$
(\mu \eta)^{j-1}\left|D^{j} \Phi(x)\right| \leq C^{\prime} \tau^{j\left(\frac{\ell+1}{\beta}-1\right)}(\operatorname{jac} \Phi(x))^{\frac{j}{\beta}}
$$

for some constant $C^{\prime}>0$ depending on β, j and m.
As a consequence of the estimates of Proposition 8.1, we have the following $W^{k, p}$ estimates that will be applied in the proof of Theorem 1 with $\ell=\lfloor k p\rfloor$.

Corollary 8.2. Let $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be the map given by Proposition 8.1 and let \mathcal{K}^{m} be a subskeleton of \mathcal{S}^{m}. If $\ell+1>k p$, then for every $u \in W^{k, p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) ; \mathbb{R}^{\nu}\right)$, $u \circ \Phi \in W^{k, p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) ; \mathbb{R}^{\nu}\right)$ and for every $j \in\{1, \ldots, k\}$,

$$
\begin{aligned}
& (\mu \eta)^{j}\left\|D^{j}(u \circ \Phi)\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)} \\
& \leq C^{\prime \prime} \sum_{i=1}^{j}(\mu \eta)^{i}\left\|D^{i} u\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) \backslash\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)} \\
& \quad+C^{\prime \prime} \tau^{\frac{\ell+1-k p}{p}} \sum_{i=1}^{j}(\mu \eta)^{i}\left\|D^{i} u\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)}
\end{aligned}
$$

for some constant $C^{\prime \prime}>0$ depending on m, k and p.
Proof. We first establish the estimate for a map u in $C^{\infty}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) ; \mathbb{R}^{\nu}\right)$. By the chain rule for higher-order derivatives, for every $j \in\{1, \ldots, k\}$ and for every $x \in K^{m}$,

$$
\left|D^{j}(u \circ \Phi)(x)\right|^{p} \leq C_{1} \sum_{i=1}^{j} \sum_{\substack{1 \leq t_{1} \leq \ldots \leq t_{i} \\ t_{1}+\cdots+t_{i}=j}}\left|D^{i} u(\Phi(x))\right|^{p}\left|D^{t_{1}} \Phi(x)\right|^{p} \cdots\left|D^{t_{i}} \Phi(x)\right|^{p} .
$$

As in the proof of Corollary 4.2 , if $1 \leq t_{1} \leq \ldots \leq t_{i}$ and $t_{1}+\cdots+t_{i}=j$, then for every $x \in K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)$,

$$
\left|D^{t_{1}} \Phi(x)\right|^{p} \cdots\left|D^{t_{i}} \Phi(x)\right|^{p} \leq C_{2} \frac{\operatorname{jac} \Phi(x)}{\eta^{(j-i) p}}
$$

and this implies

$$
\eta^{j p}\left|D^{j}(u \circ \Phi)(x)\right|^{p} \leq C_{3} \sum_{i=1}^{j} \eta^{i p}\left|D^{i} u(\Phi(x))\right|^{p} \operatorname{jac} \Phi(x) .
$$

Let $\sigma^{m} \in \mathcal{K}^{m}$. Since Φ is injective, by the change of variable formula,

$$
\begin{aligned}
& \int_{\Phi^{-1}\left(\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) \backslash\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)}(\mu \eta)^{j p}\left|D^{j}(u \circ \Phi)\right|^{p} \\
& \leq C_{3} \sum_{i=1}^{j} \int_{\Phi^{-1}\left(\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) \backslash\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)}(\mu \eta)^{i p}\left|\left(D^{i} u\right) \circ \Phi\right|^{p} \mathrm{jac} \Phi \\
& \leq C_{3} \sum_{i=1}^{j} \int_{\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) \backslash\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)}(\mu \eta)^{i p}\left|D^{i} u\right|^{p} .
\end{aligned}
$$

Let $0<\beta<\ell+1$. If $1 \leq t_{1} \leq \ldots \leq t_{i}$ and $t_{1}+\cdots+t_{i}=j$, then by property (v) of Proposition 8.1 we have for every $x \in \Phi^{-1}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)$,

$$
\begin{aligned}
\left|D^{t_{1}} \Phi(x)\right|^{p} \cdots \mid D^{t_{i}} & \left.\Phi(x)\right|^{p} \\
& \leq C_{4} \tau^{t_{1} p\left(\frac{\ell+1}{\beta}-1\right)} \frac{(\operatorname{jac} \Phi(x))^{\frac{t_{1} p}{\beta}}}{(\mu \eta)^{\left(t_{1}-1\right) p}} \cdots \tau^{t_{i} p\left(\frac{\ell+1}{\beta}-1\right)} \frac{(\operatorname{jac} \Phi(x))^{\frac{t_{i} p}{\beta}}}{(\mu \eta)^{\left(t_{i}-1\right) p}} \\
& =C_{4} \tau^{j p\left(\frac{\ell+1}{\beta}-1\right)} \frac{(\operatorname{jac} \Phi(x))^{\frac{j p}{\beta}}}{(\mu \eta)^{(j-i) p}}
\end{aligned}
$$

Taking $\beta=j p$, we have

$$
\left|D^{t_{1}} \Phi(x)\right|^{p} \cdots\left|D^{t_{i}} \Phi(x)\right|^{p} \leq C_{4} \tau^{\ell+1-j p} \frac{\operatorname{jac} \Phi(x)}{(\mu \eta)^{(j-i) p}}
$$

and this implies

$$
(\mu \eta)^{j p}\left|D^{j}(u \circ \Phi)(x)\right|^{p} \leq C_{5} \tau^{\ell+1-j p} \sum_{i=1}^{j}(\mu \eta)^{i p}\left|D^{i} u(\Phi(x))\right|^{p} \operatorname{jac} \Phi(x)
$$

Since Φ is injective, by the change of variable formula,

$$
\begin{aligned}
\int_{\Phi^{-1}\left(\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)} & (\mu \eta)^{j p}\left|D^{j}(u \circ \Phi)\right|^{p} \\
& \leq C_{5} \tau^{\ell+1-j p} \sum_{i=1}^{j} \int_{\Phi^{-1}\left(\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)}(\mu \eta)^{i p}\left|\left(D^{i} u\right) \circ \Phi\right|^{p} \operatorname{jac} \Phi \\
& =C_{5} \tau^{\ell+1-j p} \sum_{i=1}^{j} \int_{\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)}(\mu \eta)^{i p}\left|D^{i} u\right|^{p} .
\end{aligned}
$$

Since $\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) \subset \Phi^{-1}\left(\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)$, by additivity of the integral we then have

$$
\begin{aligned}
& \int_{\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)}(\mu \eta)^{j p}\left|D^{j}(u \circ \Phi)\right|^{p} \\
& \leq C_{3} \sum_{i=1}^{j} \int_{\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) \backslash\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)}(\mu \eta)^{i p}\left|D^{i} u\right|^{p} \\
& +C_{5} \tau^{\ell+1-j p} \sum_{i=1}^{j} \int_{\sigma^{m} \cap\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)}(\mu \eta)^{i p}\left|D^{i} u\right|^{p} .
\end{aligned}
$$

We may take the union over all faces $\sigma^{m} \in \mathcal{K}^{m}$ and we deduce the estimate for smooth maps. By density of smooth maps in $W^{k, p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) ; \mathbb{R}^{\nu}\right)$, we deduce that for every u in $W^{k, p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) ; \mathbb{R}^{\nu}\right)$, the function $u \circ \Phi$ also belongs to this space and satisfies the estimate above.

We first describe the construction of the map Φ in the case of only one ℓ dimensional cube.

Proposition 8.3. Let $\ell \in\{1, \ldots, m\}, \eta>0,0<\underline{\mu}<\mu<\bar{\mu}<1$ and $0<\tau<\underline{\mu} / \mu$. There exists a smooth function $\lambda: \mathbb{R}^{m} \rightarrow[1, \infty)$ such that if $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is define \bar{d} for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ by

$$
\Phi(x)=\left(\lambda(x) x^{\prime}, x^{\prime \prime}\right),
$$

then
(i) Φ is injective,
(ii) $\operatorname{Supp} \Phi \subset Q_{\mu \eta}^{\ell} \times Q_{(1-\mu) \eta}^{m-\ell}$,
(iii) $\Phi\left(Q_{\tau \mu \eta}^{\ell} \times Q_{(1-\bar{\mu}) \eta}^{m-\ell}\right) \supset Q_{\underline{\mu} \eta}^{\ell} \times Q_{(1-\bar{\mu}) \eta}^{m-\ell}$,
(iv) for every $0<\beta<\ell$, for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m}$,

$$
(\mu \eta)^{j-1}\left|D^{j} \Phi(x)\right| \leq C(\operatorname{jac} \Phi(x))^{\frac{j}{\beta}}
$$

for some constant $C>0$ depending on $\beta, j, m, \mu / \underline{\mu}$ and $\bar{\mu} / \mu$,
(v) for every $\beta>0$, for every $j \in \mathbb{N}_{*}$ and for every $x \in Q_{\tau \mu \eta}^{\ell} \times Q_{(1-\bar{\mu}) \eta}^{m-\ell}$,

$$
(\mu \eta)^{j-1}\left|D^{j} \Phi(x)\right| \leq C^{\prime} \tau^{j\left(\frac{\ell}{\beta}-1\right)}(\operatorname{jac} \Phi(x))^{\frac{j}{\beta}}
$$

for some constant $C^{\prime}>0$ depending on $\beta, j, m, \mu / \underline{\mu}$ and $\bar{\mu} / \mu$.

We postpone the proof of Proposition 8.3 and we proceed to establish Proposition 8.1.
Proof of Proposition 8.1. We first introduce finite sequences $\left(\mu_{i}\right)_{\ell \leq i \leq m}$ and $\left(\nu_{i}\right)_{\ell \leq i \leq m}$ such that

$$
0<\mu_{\ell}=\mu<\nu_{\ell+1}<\mu_{\ell+1}<\ldots<\mu_{m-1}<\nu_{m}<\mu_{m} \leq 2 \mu
$$

Let $\Phi_{m}=$ Id. Using downward induction, we shall define maps $\Phi_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ for $i \in\{\ell, \ldots, m-1\}$ such that Φ_{i} satisfies the following properties:
(a) Φ_{i} is injective,
(b) for every $\sigma^{m} \in \mathcal{S}^{m}, \Phi_{i}\left(\sigma^{m}\right) \subset \sigma^{m}$,
(c) $\operatorname{Supp} \Phi_{i} \subset T^{i^{*}}+Q_{2 \mu \eta}^{m}$,
(d) for every $r \in\left\{i^{*}, \ldots, m-1\right\}, \Phi_{i}\left(T^{r}+Q_{\tau \mu \eta}^{m}\right) \supset T^{r}+Q_{\tau \mu \eta}^{m}$,
(e) $\Phi_{i}\left(T^{i^{*}}+Q_{\tau \mu \eta}^{m}\right) \supset T^{i^{*}}+Q_{\mu_{i} \eta}^{m}$,
(f) for every $0<\beta<i+1$, for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m}$,

$$
(\mu \eta)^{j-1}\left|D^{j} \Phi_{i}(x)\right| \leq C\left(\operatorname{jac} \Phi_{i}(x)\right)^{\frac{j}{\beta}}
$$

for some constant $C>0$ depending on β, j, and m,
(g) for every $0<\beta<i+1$, for every $j \in \mathbb{N}_{*}$ and for every $x \in \Phi_{i}^{-1}\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)$,

$$
(\mu \eta)^{j-1}\left|D^{j} \Phi_{i}(x)\right| \leq C^{\prime} \tau^{j\left(\frac{i+1}{\beta}-1\right)}\left(\operatorname{jac} \Phi_{i}(x)\right)^{\frac{j}{\beta}}
$$

for some constant $C^{\prime}>0$ depending on β, j, and m.
The map Φ_{ℓ} will satisfy the conclusion of the proposition.
Let $i \in\{\ell+1, \ldots, m\}$ and let Θ_{i} be the map obtained from Proposition 8.3 with parameters $\ell=i, \underline{\mu}=\mu_{i-1}, \mu=\nu_{i}, \bar{\mu}=\mu_{i}$ and $\frac{\tau \mu}{\nu_{i}}$. Given $\sigma^{i} \in \mathcal{S}^{i}$, we may identify σ^{i} with $Q_{\eta}^{i} \times\left\{0^{m-i}\right\}$ and $T^{(i-1)^{*}} \cap\left(\sigma^{i}+Q_{2 \mu \eta}^{m}\right)$ with $\left\{0^{i}\right\} \times Q_{2 \mu \eta}^{m-i}$. The map Θ_{i} induces by isometry a map which we shall denote by $\Theta_{\sigma^{i}}$.

Let $\Psi_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be defined for every $x \in \mathbb{R}^{m}$ by

$$
\Psi_{i}(x):= \begin{cases}\Theta_{\sigma^{i}}(x) & \text { if } x \in \sigma^{i}+Q_{\left(1-\nu_{i}\right) \eta}^{m} \text { for some } \sigma^{i} \in \mathcal{S}^{i} \\ x & \text { otherwise }\end{cases}
$$

We explain why Ψ_{i} is well-defined. Since $\Theta_{\sigma^{i}}$ coincides with the identity map on $\partial \sigma^{i}+$ $Q_{\left(1-\nu_{i}\right) \eta}^{m}$, then for every $\sigma_{1}^{i}, \sigma_{2}^{i} \in \mathcal{S}^{i}$, if $x \in\left(\sigma_{1}^{i}+Q_{\left(1-\nu_{i}\right) \eta}^{m}\right) \cap\left(\sigma_{2}^{i}+Q_{\left(1-\nu_{i}\right) \eta}^{m}\right)$ and $\sigma_{1}^{i} \neq \sigma_{2}^{i}$, then

$$
\Theta_{\sigma_{1}^{i}}(x)=x=\Theta_{\sigma_{2}^{i}}(x) .
$$

One also verifies that Ψ_{i} is smooth.

Assuming that Φ_{i} has been defined satisfying properties (a)-(g), we let

$$
\Phi_{i-1}=\Psi_{i} \circ \Phi_{i} .
$$

We check that Φ_{i-1} satisfies all required properties. Up to an exchange of coordinates, for every $\sigma^{i} \in \mathcal{S}^{i}$, we may assume that $\sigma^{i}=Q_{\eta}^{i} \times\left\{0^{m-i}\right\}$ and $\Theta_{\sigma^{i}}$ can be written as $\Theta_{\sigma^{i}}(x)=\left(\lambda(x) x^{\prime}, x^{\prime \prime}\right)$, with $\lambda(x) \geq 1$. Hence, for every $0<s \leq 1$ and every $r \in\{0, \ldots, m-1\}$,

$$
\begin{equation*}
\Psi_{i}\left(T^{r}+Q_{s \eta}^{m}\right) \supset T^{r}+Q_{s \eta}^{m} \tag{8.1}
\end{equation*}
$$

Moreover, in the new coordinates, the set

$$
\begin{equation*}
\left(\sigma^{i} \times Q_{\eta}^{m-i}\right) \cap\left(\left(T^{(i-1)^{*}}+Q_{\tau \mu \eta}^{m}\right) \backslash\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)\right) \tag{8.2}
\end{equation*}
$$

becomes

$$
\begin{equation*}
Q_{\tau \mu \eta}^{i} \times Q_{\left(1-\mu_{i}\right) \eta}^{m-i} . \tag{8.3}
\end{equation*}
$$

In view of properties (i) and (iii) of Proposition 8.3,

$$
\Theta_{\sigma^{i}}\left(Q_{\tau \mu \eta}^{i} \times Q_{\left(1-\mu_{i}\right) \eta}^{m-i}\right) \supset Q_{\mu_{i-1} \eta}^{i} \times Q_{\left(1-\mu_{i}\right) \eta}^{m-i}
$$

Since this property holds for every $\sigma^{i} \in \mathcal{S}^{i}$,

$$
\begin{equation*}
\Psi_{i}\left(\left(T^{(i-1)^{*}}+Q_{\tau \mu \eta}^{m}\right) \backslash\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)\right) \supset\left(T^{(i-1)^{*}}+Q_{\mu_{i-1} \eta}^{m}\right) \backslash\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right) \tag{8.4}
\end{equation*}
$$

Proof of Property (d). Let $r \in\left\{(i-1)^{*}, \ldots, m-1\right\}$. By induction hypothesis and by equation (8.1) with $s=\tau \mu$,

$$
\Phi_{i-1}\left(T^{r}+Q_{\tau \mu \eta}^{m}\right) \supset \Psi_{i}\left(T^{r}+Q_{\tau \mu \eta}^{m}\right) \supset T^{r}+Q_{\tau \mu \eta}^{m}
$$

Proof of Property (e). By induction hypothesis (properties (d) and (e)),

$$
\Phi_{i}\left(T^{(i-1)^{*}}+Q_{\tau \mu \eta}^{m}\right) \supset\left(T^{(i-1)^{*}}+Q_{\tau \mu \eta}^{m}\right) \cup\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right) .
$$

Thus,

$$
\Phi_{i-1}\left(T^{(i-1)^{*}}+Q_{\tau \mu \eta}^{m}\right) \supset \Psi_{i}\left(T^{(i-1)^{*}}+Q_{\tau \mu \eta}^{m}\right) \cup \Psi_{i}\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)
$$

By inclusion (8.4) and by inclusion (8.1) with $r=i^{*}$ and $s=\mu_{i}$,

$$
\begin{aligned}
\Phi_{i-1}\left(T^{(i-1)^{*}}+Q_{\tau \mu \eta}^{m}\right) & \supset\left(\left(T^{(i-1)^{*}}+Q_{\mu_{i-1} \eta}^{m}\right) \backslash\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)\right) \cup\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right) \\
& =T^{(i-1)^{*}}+Q_{\mu_{i-1} \eta}^{m}
\end{aligned}
$$

This gives the conclusion.
Proof of Property (g). Let $j \in \mathbb{N}_{*}$ and $0<\beta<i$. By the chain rule for higher order derivatives, we have for every $x \in \mathbb{R}^{m}$,

$$
\left|D^{j} \Phi_{i-1}(x)\right| \leq C_{1} \sum_{\substack{r=1}}^{j} \sum_{\substack{1 \leq t_{1} \leq \cdots \leq t_{r} \\ t_{1}+\cdots+t_{r}=j}}\left|D^{r} \Psi_{i}\left(\Phi_{i}(x)\right)\right|\left|D^{t_{1}} \Phi_{i}(x)\right| \cdots\left|D^{t_{r}} \Phi_{i}(x)\right| .
$$

Let $x \in \Phi_{i-1}^{-1}\left(T^{(i-1)^{*}}+Q_{\mu_{i-1} \eta}^{m}\right)$. By induction hypothesis (property (f)), for every $r \in\{1, \ldots, j\}$, if $1 \leq t_{1} \leq \ldots \leq t_{r}$ and $t_{1}+\cdots+t_{r}=j$, then

$$
\left|D^{t_{1}} \Phi_{i}(x)\right| \cdots\left|D^{t_{r}} \Phi_{i}(x)\right| \leq C_{2} \frac{\left(\operatorname{jac} \Phi_{i}(x)\right)^{\frac{j}{\beta}}}{(\mu \eta)^{j-r}}
$$

If in addition $x \in \Phi_{i-1}^{-1}\left(\left(T^{(i-1)^{*}}+Q_{\mu_{i-1} \eta}^{m}\right) \backslash\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)\right)$, then $\Phi_{i}(x) \in \Psi_{i}^{-1}\left(\left(T^{(i-1)^{*}}+\right.\right.$ $\left.\left.Q_{\mu_{i-1} \eta}^{m}\right) \backslash\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)\right)$. By the correspondence between the sets given by (8.2) and (8.3), by inclusion (8.4), and by property (v) of Proposition 8.3, we have for every $0<\alpha<i$,

$$
\left|D^{r} \Psi_{i}\left(\Phi_{i}(x)\right)\right| \leq C_{3} \tau^{r\left(\frac{i}{\alpha}-1\right)} \frac{\left(\operatorname{jac} \Psi_{i}\left(\Phi_{i}(x)\right)\right)^{\frac{r}{\alpha}}}{(\mu \eta)^{r-1}}
$$

Take $\alpha=\beta \frac{r}{j}$. Since $r \leq j$ and $\tau \leq 1$, we get

$$
\left|D^{r} \Psi_{i}\left(\Phi_{i}(x)\right)\right| \leq C_{3} \tau^{r\left(\frac{i j}{\beta r}-1\right)} \frac{\left(\operatorname{jac} \Psi_{i}\left(\Phi_{i}(x)\right)\right)^{\frac{j}{\beta}}}{(\mu \eta)^{r-1}} \leq C_{3} \tau^{j\left(\frac{i}{\beta}-1\right)} \frac{\left(\operatorname{jac} \Psi_{i}\left(\Phi_{i}(x)\right)\right)^{\frac{j}{\beta}}}{(\mu \eta)^{r-1}}
$$

Thus, for every $x \in \Phi_{i-1}^{-1}\left(\left(T^{(i-1)^{*}}+Q_{\mu_{i-1} \eta}^{m}\right) \backslash\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)\right)$,

$$
\begin{aligned}
\left|D^{j} \Phi_{i-1}(x)\right| & \leq C_{4} \tau^{j\left(\frac{i}{\beta}-1\right)} \frac{\left(\operatorname{jac} \Psi_{i}\left(\Phi_{i}(x)\right)\right)^{\frac{j}{\beta}}}{(\mu \eta)^{r-1}} \frac{\left(\operatorname{jac} \Phi_{i}(x)\right)^{\frac{j}{\beta}}}{(\mu \eta)^{j-r}} \\
& =C_{4} \tau^{j\left(\frac{i}{\beta}-1\right)} \frac{\left(\operatorname{jac} \Phi_{i-1}(x)\right)^{\frac{j}{\beta}}}{(\mu \eta)^{j-1}}
\end{aligned}
$$

On the other hand, if $x \in \Phi_{i-1}^{-1}\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)$, then $\Phi_{i}(x) \in \Psi_{i}^{-1}\left(T^{i^{*}}+Q_{\mu_{i} \eta}^{m}\right)$. By inclusion (8.1) with $r=i^{*}$ and $s=\mu_{i}, \Phi_{i}(x) \in T^{i^{*}}+Q_{\mu_{i} \eta}^{m}$. By induction hypothesis (property (g)), we deduce that for every $r \in\{1, \ldots, j\}$, if $1 \leq t_{1} \leq \ldots \leq t_{r}$ and $t_{1}+\cdots+t_{r}=j$, then

$$
\left|D^{t_{1}} \Phi_{i}(x)\right| \cdots\left|D^{t_{r}} \Phi_{i}(x)\right| \leq C_{5} \tau^{j\left(\frac{i}{\beta}-1\right)} \frac{\left(\operatorname{jac} \Phi_{i}(x)\right)^{\frac{j}{\beta}}}{(\mu \eta)^{j-r}}
$$

By property (iv) of Proposition 8.3,

$$
\left|D^{r} \Psi_{i}\left(\Phi_{i}(x)\right)\right| \leq C_{6} \frac{\left(\operatorname{jac} \Psi_{i}\left(\Phi_{i}(x)\right)\right)^{\frac{j}{\beta}}}{(\mu \eta)^{r-1}}
$$

We deduce as above that

$$
\left|D^{j} \Phi_{i-1}(x)\right| \leq C_{7} \tau^{j\left(\frac{i}{\beta}-1\right)} \frac{\left(\mathrm{jac} \Phi_{i-1}(x)\right)^{\frac{j}{\beta}}}{(\mu \eta)^{j-1}}
$$

This gives the conclusion.

The other properties can be checked as in the proof of Proposition 4.1.
By downward induction, we conclude that properties (a)-(g) hold for every $i \in$ $\{\ell, \ldots, m-1\}$. In particular, we deduce properties $(i)-(v)$ of Proposition 8.3.

We need a couple of lemmas in order to prove Proposition 8.3:
Lemma 8.4. Let $\eta>0$, let $0<\mu<\mu<\bar{\mu}<1$ and $0<\kappa<\mu / \mu$. There exists a smooth function $\lambda: \mathbb{R}^{m} \rightarrow[1, \infty)$ such that if $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in$ $\mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ by

$$
\Phi(x)=\left(\lambda(x) x^{\prime}, x^{\prime \prime}\right),
$$

then
(i) Φ is a diffeomorphism,
(ii) $\operatorname{Supp} \Phi \subset Q_{\mu \eta}^{\ell} \times Q_{(1-\mu) \eta}^{m-\ell}$,
(iii) $\Phi\left(Q_{\kappa \mu \eta}^{\ell} \times Q_{(1-\bar{\mu}) \eta}^{m-\ell}\right) \supset Q_{\mu \eta}^{\ell} \times Q_{(1-\bar{\mu}) \eta}^{m-\ell}$,
(iv) for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m}$,

$$
(\mu \eta)^{j-1}\left|D^{j} \Phi(x)\right| \leq C,
$$

for some constant $C>0$ depending on $j, m, \mu / \underline{\mu}, \bar{\mu} / \mu$ and κ,
(v) for every $j \in \mathbb{N}_{*}$ and every $x \in \mathbb{R}^{m}$,

$$
C^{\prime} \leq \operatorname{jac} \Phi(x) \leq C^{\prime \prime},
$$

for some constants $C^{\prime}, C^{\prime \prime}>0$ depending on $m, \mu / \underline{\mu}, \bar{\mu} / \mu$ and κ.
Proof. By scaling, we may assume that $\mu \eta=1$. Let $\psi: \mathbb{R} \rightarrow[0,1]$ be a smooth function such that

- the function ψ is nonincreasing on \mathbb{R}_{+}and nondecreasing on \mathbb{R}_{-},
- for $|t| \leq \underline{\mu} / \mu, \psi(t)=1$,
- for $|t| \geq 1, \psi(t)=0$.

Let $\theta: \mathbb{R} \rightarrow[0,1]$ be a smooth function such that

- for $|t| \leq \frac{1-\bar{\mu}}{\mu}, \theta(t)=1$,
- for $|t| \geq \frac{1-\mu}{\mu}, \theta(t)=0$.

Since $\frac{1-\mu}{\mu}-\frac{1-\bar{\mu}}{\mu}=\bar{\mu} / \mu-1$, we may require that for every $j \in \mathbb{N}_{*}$ and for every $t \geq 0$, $\left|D^{j} \theta(t)\right| \leq C$, for some constant $C>0$ depending only on j and $\bar{\mu} / \mu$.

Let $\varphi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be the function defined for $x=\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$ by

$$
\varphi(x)=\prod_{i=1}^{\ell} \psi\left(x_{i}\right) \prod_{i=\ell+1}^{m} \theta\left(x_{i}\right)
$$

Let $\Psi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be the function defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ by

$$
\Psi(x)=\left((1-\alpha \varphi(x)) x^{\prime}, x^{\prime \prime}\right)
$$

where $\alpha \in \mathbb{R}$. In particular, for every $x=\left(x^{\prime}, x^{\prime \prime}\right) \in Q_{\underline{\mu} / \mu}^{\ell} \times Q_{\frac{1-\mu}{\mu}}^{m-\ell}$,

$$
\Psi(x)=\left((1-\alpha) x^{\prime}, x^{\prime \prime}\right)
$$

Taking $\alpha=1-\frac{\kappa \mu}{\underline{\mu}}$, we deduce that Ψ is a bijection between $Q_{\underline{\mu} / \mu}^{\ell} \times Q_{\frac{1-\bar{\mu}}{\mu}}^{m-\ell}$ and $Q_{\kappa}^{\ell} \times Q_{\frac{1-\bar{\mu}}{\mu}}^{m-\ell}$. As in Lemma 4.4 we can prove that $\Phi=\Psi^{-1}$ satisfies the required properties.

Lemma 8.5. Let $\ell \in\{1, \ldots, m\}, \eta>0,0<\underline{\mu}<\mu<\bar{\mu}<1$ and $0<\tau<\underline{\mu} / \mu$. There exists a smooth function $\lambda: \mathbb{R}^{m} \rightarrow[1, \infty)$ such that if $\Phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ is defined for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$ by

$$
\Phi(x)=\left(\lambda(x) x^{\prime}, x^{\prime \prime}\right)
$$

then
(i) Φ is injective,
(ii) $\operatorname{Supp} \Phi \subset Q_{\mu \eta}^{\ell} \times Q_{(1-\mu) \eta}^{m-\ell}$,
(iii) $\Phi\left(B_{\tau \mu \eta}^{\ell} \times Q_{(1-\bar{\mu}) \eta}^{m-\ell}\right) \supset B_{\underline{\mu} \eta}^{\ell} \times Q_{(1-\bar{\mu}) \eta}^{m-\ell}$,
(iv) for every $0<\beta<\ell$, for every $j \in \mathbb{N}_{*}$ and for every $x \in \mathbb{R}^{m}$,

$$
(\mu \eta)^{j-1}\left|D^{j} \Phi(x)\right| \leq C(\operatorname{jac} \Phi(x))^{\frac{j}{\beta}}
$$

for some constant $C>0$ depending on $\beta, j, m, \mu / \underline{\mu}$ and $\bar{\mu} / \mu$,
(v) for every $\beta>0$, for every $j \in \mathbb{N}_{*}$ and for every $x \in B_{\tau \mu \eta}^{\ell} \times Q_{(1-\bar{\mu}) \eta}^{m-\ell}$,

$$
(\mu \eta)^{j-1}\left|D^{j} \Phi(x)\right| \leq C^{\prime} \tau^{j\left(\frac{\ell}{\beta}-1\right)}(\operatorname{jac} \Phi(x))^{\frac{j}{\beta}}
$$

for some constant $C^{\prime}>0$ depending on $\beta, j, m, \mu / \underline{\mu}$ and $\bar{\mu} / \mu$.
Proof. By scaling, we may assume that $\mu \eta=1$. Given $\varepsilon>0$ and $b>0$, let $\varphi:(0, \infty) \rightarrow$ $[1, \infty)$ be a smooth function such that

- for $0<s \leq \tau \sqrt{1+\varepsilon}, \varphi(s)=\frac{\mu / \mu}{s} \sqrt{1+\varepsilon}\left(1+\frac{b}{\ln \frac{1}{s}}\right)$,
- for $s \geq 1, \varphi(s)=1$,
- the function $s \in(0, \infty) \mapsto s \varphi(s)$ is increasing.

Note that such function φ exists if we take $\varepsilon>0$ such that

$$
(\underline{\mu} / \mu) \sqrt{1+\varepsilon}<1
$$

and thus $\tau \sqrt{1+\varepsilon}<1$ and if we take $b>0$ such that

$$
(\underline{\mu} / \mu) \sqrt{1+\varepsilon}\left(1+\frac{b}{\ln \frac{1}{(\underline{\mu} / \mu) \sqrt{1+\varepsilon}}}\right)<1 .
$$

Let $\theta: \mathbb{R}^{m-\ell} \rightarrow[0,1]$ be a smooth function such that

- for $y \in Q_{\frac{1-\mu}{\mu}}^{m-\ell}, \theta(y)=0$,
- for $y \in \mathbb{R}^{m-\ell} \backslash Q_{\frac{1-\mu}{\mu}}^{m-\ell}, \theta(y)=1$.

We now introduce for $x=\left(x^{\prime}, x^{\prime \prime}\right) \in \mathbb{R}^{\ell} \times \mathbb{R}^{m-\ell}$,

$$
\zeta(x)=\sqrt{\left|x^{\prime}\right|^{2}+\theta\left(x^{\prime \prime}\right)^{2}+\varepsilon \tau^{2}}
$$

Let $\lambda: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be the function defined for $x \in \mathbb{R}^{m}$ by

$$
\lambda(x)=\varphi(\zeta(x))
$$

As in the proof of Lemma 4.5, one may check that the map Φ defined in the statement satisfies all the required properties:

Proof of statement (iii). Let $x \in B_{\underline{\mu} / \mu}^{\ell} \times Q_{\frac{1-\bar{\mu}}{m}}^{m-\ell}$. For every $s \geq 0$,

$$
\Phi\left(s x^{\prime}, x^{\prime \prime}\right)=\left(s \varphi\left(\sqrt{s^{2}\left|x^{\prime}\right|^{2}+\varepsilon \tau^{2}}\right) x^{\prime}, x^{\prime \prime}\right)
$$

Consider the function $h:[0, \infty) \rightarrow \mathbb{R}$ defined by

$$
h(s)=s \varphi\left(\sqrt{s^{2}+\varepsilon \tau^{2}}\right)
$$

Then, assuming that $x^{\prime} \neq 0$,

$$
\Phi\left(s x^{\prime}, x^{\prime \prime}\right)=\left(h\left(s\left|x^{\prime}\right|\right) \frac{x^{\prime}}{\left|x^{\prime}\right|}, x^{\prime \prime}\right)
$$

We have $h(0)=0$ and $h(\tau)>\underline{\mu} / \mu \geq\left|x^{\prime}\right|$. By the Intermediate value theorem, there exists $t \in(0, \tau)$ such that $h(t)=\left|x^{\prime}\right|$. Thus, $t \frac{x^{\prime}}{\left|x^{\prime}\right|} \in B_{\tau}^{\ell}$ and $\Phi\left(t \frac{x^{\prime}}{\left|x^{\prime}\right|}, x^{\prime \prime}\right)=x$.
Proof of statement (v). Proceeding as in the proof of Lemma 4.5, one gets for every $x \in B_{1}^{\ell} \times \mathbb{R}^{m-\ell}$,

$$
\left|D^{j} \Phi(x)\right| \leq \frac{C_{1}}{\zeta(x)^{j}}
$$

Since $\zeta(x) \geq \tau \sqrt{\varepsilon}$, we deduce that

$$
\left|D^{j} \Phi(x)\right| \leq \frac{C_{1}}{(\tau \sqrt{\varepsilon})^{j}} \leq \frac{C_{2}}{\tau^{j}}
$$

On the other hand,
$\operatorname{jac} \Phi(x)=\varphi(\zeta(x))^{\ell-1}\left(\varphi(\zeta(x))\left(1-\frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}}\right)+\left(\varphi^{(1)}(\zeta(x)) \zeta(x)+\varphi(\zeta(x))\right) \frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}}\right)$.
Since for every $s>0, \varphi^{(1)}(s) s+\varphi(s) \geq 0$, we have

$$
\operatorname{jac} \Phi(x) \geq \varphi(\zeta(x))^{\ell}\left(1-\frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}}\right) \geq \frac{C_{3}}{\zeta(x)^{\ell}}\left(1-\frac{\left|x^{\prime}\right|^{2}}{\zeta(x)^{2}}\right)
$$

If $x \in B_{\tau}^{\ell} \times Q_{\frac{1-\bar{\mu}}{\mu}}^{m-\ell}$, then $\zeta(x) \leq \tau \sqrt{1+\varepsilon}$ and $\zeta(x)^{2} \geq(1+\varepsilon)\left|x^{\prime}\right|^{2}$. Thus,

$$
\operatorname{jac} \Phi(x) \geq \frac{C_{3}}{(\tau \sqrt{1+\varepsilon})^{\ell}} \frac{\varepsilon}{1+\varepsilon}=\frac{C_{4}}{\tau^{\ell}} .
$$

Combining the estimates of $\left|D^{j} \Phi\right|$ and jac Φ, we have the conclusion.
In order to establish the remaining properties stated in Lemma 8.5, we only need to repeat the proof of Lemma 4.5 with obvious modifications.

Proof of Proposition 8.3. Define Φ to be the composition of the map Φ_{1} given by Lemma 8.4 with $\kappa=\frac{\underline{\mu}}{\mu \sqrt{\ell}}$ together with the map Φ_{2} given by Lemma 8.5; more precisely, $\Phi=\Phi_{1} \circ \Phi_{2}$. The propeties of Φ can be established as in the case of thickening.

9 Proof of Theorem 1

Let \mathcal{K}^{m} be a cubication of Q_{1}^{m} of radius $\eta>0$ and let $\mathcal{T}^{\ell^{*}}$ be the dual skeleton with respect to \mathcal{K}^{ℓ} for some $\ell \in\{0, \ldots, m-1\}$.

Claim. Let $v \in C^{\infty}\left(K^{m} \backslash T^{\ell^{*}} ; N^{n}\right) \cap W^{k, p}\left(K^{m} ; N^{n}\right)$. If $\pi_{\ell}\left(N^{n}\right) \simeq\{0\}$ and if $\ell^{*}<$ $m-k p$, then there exists a family of smooth maps $v_{\tau_{\mu}, \mu}^{\mathrm{sh}}: K^{m} \rightarrow N^{n}$ such that

$$
\lim _{\mu \rightarrow 0}\left\|v_{\tau_{\mu}, \mu}^{\mathrm{sh}}-v\right\|_{W^{k, p}\left(K^{m}\right)}=0
$$

This claim is a removable singularity property of topological nature for $W^{k, p}$ maps. Theorem 1 follows from Theorem 3 and this claim. Indeed, by Theorem 3 the class of maps v in the claim is dense in $W^{k, p}\left(K^{m} ; N^{n}\right)$ when $\ell=\lfloor k p\rfloor$. Since the maps $v_{\tau_{\mu}, \mu}^{\text {sh }}$ are smooth and converge to v in $W^{k, p}$, we deduce that smooth maps are dense in $W^{k, p}\left(K^{m} ; N^{n}\right)$.

Proof of the Claim. Assuming that $\pi_{\ell}\left(N^{n}\right) \simeq\{0\}$, we can modify v in a neighborhood of $T^{\ell^{*}}$ in order to obtain a smooth map $v_{\mu}^{\text {ex }}: K^{m} \rightarrow N^{n}$. More precisely, for every $0<\mu<1$, by Proposition 7.1 and Proposition 7.2, there exists $v_{\mu}^{\mathrm{ex}} \in C^{\infty}\left(K^{m} ; N^{n}\right)$ such that $v_{\mu}^{\mathrm{ex}}=v$ in $K^{m} \backslash\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)$.

Although v and v_{μ}^{ex} coincide in a large set, $\left\|v_{\mu}^{\mathrm{ex}}\right\|_{W^{k, p}\left(K^{m}\right)}$ can be much larger than $\|v\|_{W^{k, p}\left(K^{m}\right)}$ since the extension is of topological nature and does not take into account the values of v in a neighborhood of $T^{\ell^{*}}$. In order to get a better extension of v, we have to shrink $T^{\ell^{*}}+Q_{\mu \eta}^{m}$ into a smaller neighborhood of $T^{\ell^{*}}$.

Assume that $\mu<\frac{1}{2}$ and take $0<\tau<\frac{1}{2}$. Let $\Phi_{\tau, \mu}^{\text {sh }}: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ be the smooth diffeomorphism given by Proposition 8.1. Define

$$
v_{\tau, \mu}^{\mathrm{sh}}=\left(v_{\mu}^{\mathrm{ex}} \circ \Phi_{\tau, \mu}^{\mathrm{sh}}\right) .
$$

In particular $v_{\tau, \mu}^{\mathrm{sh}} \in C^{\infty}\left(K^{m} ; N^{n}\right)$.
Since $v_{\tau, \mu}^{\mathrm{sh}}=v$ in the complement of $T^{\ell^{*}}+Q_{2 \mu \eta}^{m}$, for every $j \in \mathbb{N}_{*}$,

$$
\begin{aligned}
\left\|D^{j} v_{\tau, \mu}^{\mathrm{sh}}-D^{j} v\right\|_{L^{p}\left(K^{m}\right)} & =\left\|D^{j} v_{\tau, \mu}^{\mathrm{sh}}-D^{j} v\right\|_{L^{p}\left(K^{m} \cap\left(T^{e^{*}}+Q_{2 \mu \eta}^{m}\right)\right)} \\
& \leq\left\|D^{j} v_{\tau, \mu}^{\mathrm{sh}}\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)}+\left\|D^{j} v\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)} .
\end{aligned}
$$

If $\ell^{*}<m-k p$, or equivalently if $\ell+1>k p$, then by Corollary 8.2 we have for every $j \in\{1, \ldots, k\}$,

$$
\begin{aligned}
& (\mu \eta)^{j}\left\|D^{j} v_{\tau, \mu}^{\mathrm{sh}}\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)} \\
& \leq C_{1} \sum_{i=1}^{j}(\mu \eta)^{i}\left\|D^{i} v_{\mu}^{\mathrm{ex}}\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right) \backslash\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)} \\
& \quad+C_{1} \tau^{\frac{\ell+1-k p}{p}} \sum_{i=1}^{j}(\mu \eta)^{i}\left\|D^{i} v_{\mu}^{\mathrm{ex}}\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)} .
\end{aligned}
$$

Since $v_{\mu}^{\mathrm{ex}}=v$ in the complement of $T^{\ell^{*}}+Q_{\mu \eta}^{m}$, we deduce that

$$
\begin{aligned}
(\mu \eta)^{j}\left\|D^{j} v_{\tau, \mu}^{\mathrm{sh}}-D^{j} v\right\|_{L^{p}\left(K^{m}\right)} & \leq C_{2} \sum_{i=1}^{j}(\mu \eta)^{i}\left\|D^{i} v\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)} \\
& +C_{1} \tau^{\frac{\ell+1-k p}{p}} \sum_{i=1}^{j}(\mu \eta)^{i}\left\|D^{i} v_{\mu}^{\mathrm{ex}}\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)}
\end{aligned}
$$

We show that

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} \sum_{i=1}^{j}(\mu \eta)^{i-j}\left\|D^{i} v\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)}=0 \tag{9.1}
\end{equation*}
$$

Since N^{n} is a compact subset of \mathbb{R}^{ν}, v is bounded. By the Gagliardo-Nirenberg interpolation inequality, for every $i \in\{1, \ldots, k-1\}, D^{i} v \in L^{\frac{k p}{i}}\left(K^{m}\right)$. By Hölder's
inequality, for every $i \in\{1, \ldots, k\}$ we then have

$$
\begin{aligned}
& (\mu \eta)^{i-j}\left\|D^{i} v\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)} \\
& \leq(\mu \eta)^{i-j}\left|K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right|^{\frac{k-i}{k p}}\left\|D^{i} v\right\|_{L^{\frac{k p}{i}}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)} \\
& =\eta^{i-j} \mu^{k-j+(\ell+1-k p) \frac{k-i}{k p}}\left(\frac{\left|K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right|}{\mu^{\ell+1}}\right)^{\frac{k-i}{k p}} \times \\
& \quad \times\left\|D^{i} v\right\|_{L^{\frac{k p}{i}}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right)} .
\end{aligned}
$$

Since $\left|K^{m} \cap\left(T^{\ell^{*}}+Q_{2 \mu \eta}^{m}\right)\right| \leq C_{3} \mu^{\ell+1}$, the limit follows.
For every $0<\mu<\frac{1}{2}$, take $0<\tau_{\mu}<\frac{1}{2}$ such that

$$
\begin{equation*}
\lim _{\mu \rightarrow 0} \tau_{\mu}^{\frac{\ell+1-k p}{p}} \sum_{i=1}^{j}(\mu \eta)^{i-j}\left\|D^{i} v_{\mu}^{\mathrm{ex}}\right\|_{L^{p}\left(K^{m} \cap\left(T^{\ell^{*}}+Q_{\mu \eta}^{m}\right)\right)}=0 . \tag{9.2}
\end{equation*}
$$

From (9.1) and (9.2), we deduce that for every $j \in\{1, \ldots, k\}$,

$$
\lim _{\mu \rightarrow 0}\left\|D^{j} v_{\tau_{\mu}, \mu}^{\mathrm{sh}}-D^{j} v\right\|_{L^{p}\left(K^{m}\right)}=0
$$

Since $v_{\tau_{\mu}, \mu}^{\mathrm{sh}}$ converges in measure to v as μ tends to 0 , we then have

$$
\lim _{\mu \rightarrow 0}\left\|v_{\tau_{\mu}, \mu}^{\mathrm{sh}}-v\right\|_{W^{k, p}\left(K^{m}\right)}=0
$$

This establishes the claim.

10 Concluding remarks

10.1 Other domains

The proof of Theorem 1 can be adapted to more general domains $\Omega \subset \mathbb{R}^{m}$. In order to apply the extension argument at the beginning of the proof of Theorem 3, it suffices that Ω be starshaped.

Concerning Theorem 1, the crucial tool is the extension property of Proposition 7.3. This can be enforced by assuming that for every $\ell \in\{0, \ldots,\lfloor k p\rfloor-1\}$,

$$
\pi_{\ell}(\Omega) \simeq\{0\}
$$

This contains in particular the case where Ω is starshaped. Another option is to require that for some CW-complex structure, $\bar{\Omega}$ has the $\lfloor k p\rfloor-1$ extension property with respect to N^{n}. More precisely, for every $u \in C^{0}\left(\bar{\Omega}^{\lfloor k p\rfloor} ; N^{n}\right)$, the restriction $\left.u\right|_{\bar{\Omega}^{\lfloor k p\rfloor-1}}$ of u to the skeleton of $\bar{\Omega}$ of dimension $\lfloor k p\rfloor-1$ has a continuous extension to $\bar{\Omega}$. It can be showed that this property does not depend on the CW -complex structure of $\bar{\Omega}$ (see remark following [28, Definition 2.3]).

10.2 Complete manifolds

The proofs of Theorems 1 and 3 still apply for complete manifolds N^{n} that are embedded in \mathbb{R}^{ν} and for which there exists a projection Π defined on a uniform neighborhood of size ι around N^{n}. The compactness of N^{n} ensures the Gagliardo-Nirenberg interpolation inequality that for every $i \in\{1, \ldots, k-1\}, D^{i} u \in L^{\frac{k p}{i}}\left(Q_{1}^{m}\right)$. This inequality still holds if the assumption $u \in L^{\infty}$ is replaced by $u \in W^{1, k p}$. In this case, one proves that if $\pi_{\lfloor k p\rfloor\left(N^{n}\right)} \simeq\{0\}$, then for every $u \in W^{k, p}\left(Q^{m} ; N^{n}\right) \cap W^{1, k p}\left(Q^{m} ; N^{n}\right)$ there exists a family of maps $u_{\eta} \in C^{\infty}\left(Q^{m} ; N^{n}\right)$ such that for every $i \in\{1, \ldots, k\}$,

$$
\lim _{\eta \rightarrow 0}\left\|D^{i} u_{\eta}-D^{i} u\right\|_{L^{\frac{k p}{i}}\left(Q^{m}\right)}=0
$$

and u_{η} converges to u in measure as η tends to 0 . Hence,

$$
\lim _{\eta \rightarrow 0}\left\|u_{\eta}-u\right\|_{W^{k, p}\left(Q^{m}\right) \cap W^{1, k p}\left(Q^{m}\right)}=0
$$

$10.3\lfloor k p\rfloor$ simply connected manifolds

Under the additional assumption that for every $\ell \in\{0, \ldots,\lfloor k p\rfloor\}$,

$$
\pi_{\ell}\left(N^{n}\right) \simeq\{0\}
$$

it is possible to give a simpler proof of $H^{k, p}\left(Q^{m} ; N^{n}\right)=W^{k, p}\left(Q^{m} ; N^{n}\right)$ without relying on the density of maps in $R_{m-\lfloor k p\rfloor-1}\left(Q^{m} ; N^{n}\right)$. This approach is inspired by previous works of Escobedo [17] and Hajłasz [26]; see [7] for details.

Acknowledgments. The authors would like to thank Petru Mironescu for enlightening discussions and for his encouragement. The second (ACP) and third (JVS) authors were supported by the Fonds de la Recherche scientifique-FNRS.

References

[1] Angelsberg, G., Pumberger, D., A regularity result for polyharmonic maps with higher integrability, Ann. Global Anal. Geom. 35 (2009), 63-81.
[2] Ball, J. M., Zarnescu, A., Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal. 202 (2011), 493-535.
[3] Bethuel, F., The approximation problem for Sobolev maps between two manifolds, Acta Math. $\mathbf{1 6 7}$ (1991), 153-206.
[4] Bethuel, F., Zheng, X. M., Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60-75.
[5] Bourgain, J., Brezis, H., Mironescu, P., Lifting, degree, and distributional jacobian revisited, Comm. Pure Appl. Math. 58 (2005), 529-551.
[6] Bousquet, P., Ponce, A. C., Van Schaftingen, J., A case of density in $W^{2, p}(M ; N)$, C. R. Math. Acad. Sci. Paris 346 (2008), 735-740.
[7] Bousquet, P., Ponce, A. C., Van Schaftingen, J., Density of smooth maps for fractional Sobolev spaces $W^{s, p}$ into ℓ simply connected manifolds when $s \geq 1$, Confluentes Math. 5 (2013), 3-22.
[8] Brezis, H., The interplay between analysis and topology in some nonlinear PDE problems, Bull. Amer. Math. Soc. (N.S.) 40 (2003), 179-201.
[9] Brezis, H., Coron, J.-M., Lieb, E. H., Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649-705.
[10] Brezis, H., Li, Y., Topology and Sobolev spaces, J. Funct. Anal. 183 (2001), 321-369.
[11] Brezis, H., Mironescu, P., On some questions of topology for S^{1}-valued fractional Sobolev spaces, RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 95 (2001), 121-143.
[12] Brezis, H., Mironescu, P., Density in $W^{s, p}\left(Q^{m} ; N^{n}\right)$, J. Funct. Anal. In press.
[13] Brezis, H., Nirenberg, L., Degree theory and BMO. I. Compact manifolds without boundaries, Selecta Math. (N.S.) 1 (1995), 197-263.
[14] Campanato, S., Proprietà di hölderianità di alcune classi di funzioni, Ann. Scuola Norm. Sup. Pisa (3) $\mathbf{1 7}$ (1963), 175-188.
[15] Chang, S.-Y. A., Wang, L., Yang, P. C., A regularity theory of biharmonic maps, Comm. Pure Appl. Math. 52 (1999), 1113-1137.
[16] Deny, J., Lions, J.-L., Les espaces du type de Beppo Levi, Ann. Inst. Fourier (Grenoble) 5 (1954), 305-370.
[17] Escobedo, M., Some remarks on the density of regular mappings in Sobolev classes of S^{M}-valued functions, Rev. Mat. Univ. Complut. Madrid 1 (1988), 127-144.
[18] Federer, H., Fleming, W. H., Normal and integral currents, Ann. of Math. (2) 72 (1960), 458-520.
[19] Gagliardo, E., Ulteriori proprietà di alcune classi di funzioni in più variabili, Ricerche Mat. 8 (1959), 24-51.
[20] Gastel, A., Nerf, A. J., Density of smooth maps in $W^{k, p}(M, N)$ for a close to critical domain dimension, Ann. Global Anal. Geom. 39 (2011), 107-129.
[21] Gastel, A., Scheven, C., Regularity of polyharmonic maps in the critical dimension, Comm. Anal. Geom. 17 (2009), 185-226.
[22] Giaquinta, M., Modica, G., Souček, J., Cartesian currents in the calculus of variations. II, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 38, Springer, Berlin, 1998.
[23] Giaquinta, M., Mucci, D., Maps into manifolds and currents: area and $W^{1,2}-, W^{1 / 2}-$, BV-energies, Centro di Ricerca Matematica Ennio De Giorgi (CRM) Series, Vol. 3, Edizioni della Normale, Pisa, 2006.
[24] Goldstein, P., Strzelecki, P., Zatorska-Goldstein, A., On polyharmonic maps into spheres in the critical dimension, Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 1387-1405.
[25] Gong, H., Lamm, T., Wang, C., Boundary partial regularity for a class of biharmonic maps, Calc. Var. Partial Differential Equations 45 (2012), 165-191.
[26] Hajłasz, P., Approximation of Sobolev mappings, Nonlinear Anal. 22 (1994), 1579-1591.
[27] Hang, F., Lin, F.-H., Topology of Sobolev mappings, II, Math. Res. Lett. 8 (2001), 321-330.
[28] Hang, F., Lin, F.-H., Topology of Sobolev mappings, II, Acta Math. 191 (2003), 55-107.
[29] Hang, F., Lin, F.-H., Topology of Sobolev mappings. III, Comm. Pure Appl. Math. 56 (2003), 1383-1415.
[30] Hardt, R., Kinderlehrer, D., Lin, F.-H., Stable defects of minimizers of constrained variational principles, Ann. Inst. H. Poincaré Anal. Non Linéaire 5 (1988), 297-322.
[31] Hardt, R., Rivière, T., Sequential weak approximation for maps of finite Hessian energy, Calc. Var. Partial Differential Equations. In press.
[32] Jones, P. W., Extension theorems for BMO, Indiana Univ. Math. J. 29 (1980), 41-66.
[33] Lamm, T., Wang, C., Boundary regularity for polyharmonic maps in the critical dimension, Adv. Calc. Var. 2 (2009), 1-16.
[34] Lin, F.-H., Wang, C., The analysis of harmonic maps and their heat flows, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008.
[35] Mermin, N. D., The topological theory of defects in ordered media, Rev. Modern Phys. 51 (1979), 591-648.
[36] Meyers, N. G., Serrin, J., $H=W$, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1055-1056.
[37] Mironescu, P., On some properties of S^{1}-valued fractional Sobolev spaces, in: Noncompact problems at the intersection of geometry, analysis, and topology, Contemp. Math., Vol. 350, Amer. Math. Soc., Providence, RI, 2004, pp. 201-207.
[38] Moser, R., Partial regularity for harmonic maps and related problems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
[39] Moser, R., A variational problem pertaining to biharmonic maps, Comm. Partial Differential Equations 33 (2008), 1654-1689.
[40] Mucci, D., Maps into projective spaces: liquid crystal and conformal energies, Discrete Contin. Dyn. Syst. Ser. B 17 (2012), 597-635.
[41] Mucci, D., Nicolodi, L., On the elastic energy density of constrained Q-tensor models for biaxial nematics, Arch. Rational Mech. Anal. 206 (2012), 853-884.
[42] Nash, J., C^{1} isometric imbeddings, Ann. of Math. (2) 60 (1954), 383-396.
[43] Nash, J., The imbedding problem for Riemannian manifolds, Ann. of Math. (2) 63 (1956), 20-63.
[44] Nirenberg, L., On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3) 13 (1959), 115-162.
[45] Pakzad, M. R., Rivière, T., Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal. 13 (2003), 223-257.
[46] Ponce, A. C., Van Schaftingen, J., Closure of smooth maps in $W^{1, p}\left(B^{3} ; S^{2}\right)$, Differential Integral Equations 22 (2009), 881-900.
[47] Scheven, C., Dimension reduction for the singular set of biharmonic maps, Adv. Calc. Var. 1 (2008), 53-91.
[48] Schoen, R., Uhlenbeck, K., Boundary regularity and the dirichlet problem for harmonic maps, J. Differential Geom. 18 (1983), 253-268.
[49] Simon, L., Theorems on regularity and singularity of energy minimizing maps, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1996.
[50] Stein, E. M., Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, NJ, 1970.
[51] Struwe, M., Partial regularity for biharmonic maps, revisited, Calc. Var. Partial Differential Equations 33 (2008), 249-262.
[52] Urakawa, H., The geometry of biharmonic maps, in: Harmonic maps and differential geometry, Contemp. Math., Vol. 542, Amer. Math. Soc., Providence, RI, 2011, pp. 159-175.

[^0]: P. Bousquet: Université de Toulouse, Institut de Mathématiques de Toulouse, CNRS UMR5219, UPS IMT, F-31062 Toulouse Cedex 9, France; e-mail: Pierre.Bousquet @ math.univ-toulouse.fr
 A. C. Ponce: Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, L7.01.02, 1348 Louvain-la-Neuve, Belgium; e-mail: Augusto.Ponce @uclouvain.be
 J. Van Schaftingen: Université catholique de Louvain, Institut de Recherche en Mathématique et Physique, Chemin du cyclotron 2, L7.01.02, 1348 Louvain-la-Neuve, Belgium; e-mail: Jean.VanSchaftingen@uclouvain.be

 Mathematics Subject Classification (2010): 58D15 (46E35, 46T20)

