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Abstract

Given a compact manifold Nn, an integer k ∈ N∗ and an exponent 1 ≤ p <∞,
we prove that the class C∞(Q

m
;Nn) of smooth maps on the cube with values into

Nn is dense with respect to the strong topology in the Sobolev space W k,p(Qm;Nn)
when the homotopy group πbkpc(Nn) of order bkpc is trivial. We also prove the
density of maps that are smooth except for a set of dimension m− bkpc − 1, without
any restriction on the homotopy group of Nn.

Published in J. Eur. Math. Soc. (JEMS) 17 (2015), 763–817, by the European Mathe-
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1 Introduction
There are two natural approaches to define Sobolev maps with values in a compact
manifold. More precisely, let Nn be a compact connected smooth manifold of dimension
n imbedded in Rν for some ν ≥ 1 [42,43], k ∈ N∗ and 1 ≤ p < +∞. One can first define
W k,p(Qm;Nn) as the set{

u ∈W k,p(Qm;Rν) : u ∈ Nn a.e.
}
,

where Qm ⊂ Rm is the open unit cube. The other possibility is to define Hk,p(Qm;Nn)
as the completion of the class of smooth maps C∞(Q

m
;Nn) with respect to the Sobolev
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metric

dk,p(u, v) = ‖u− v‖Lp(Qm) +

k∑
i=1

‖Diu−Div‖Lp(Qm).

These spaces are the natural framework for the study of harmonic maps [23,34,38,49],
biharmonic maps [15, 39, 47, 51, 52] and polyharmonic maps [1, 21, 24, 25, 33] with values
into manifolds. They also arise in some physical models [8,35]. For instance, maps into the
sphere, the projective space and other manifolds appear in liquid cristal models [2,9,40,41].

In contrast with the real-valued case [16, 36], these spaces may be different. For
instance, H1,p(Q2;S1) = W 1,p(Q2;S1) if and only if p ≥ 2 [4, Theorem 3]. The goal of
this paper is to determine when Hk,p(Qm;Nn) = W k,p(Qm;Nn).

This always happens when kp ≥ m [48, Section 4, Proposition], as W k,p(Rm) ∩
L∞(Rm) is imbedded into the space of functions with vanishing mean oscillation VMO(Rm)
[13, Example 1, Eq. (7)]. The main result of this paper completely solves the problem in
the case kp < m. It is remarkable that such an analytical question has a purely topological
answer:

Theorem 1. If kp < m, thenHk,p(Qm;Nn) = W k,p(Qm;Nn) if and only if πbkpc(Nn) '
{0}.

We denote by bkpc the integral part of kp and by πbkpc(Nn) the bkpcth homotopy
group of Nn; the topological condition πbkpc(Nn) ' {0} means that every continuous
map f : Sbkpc → Nn on the bkpc dimensional sphere is homotopic to a constant map.
The necessity of this assumption has been known for some time [4, Theorem 2] [17,
Theorem 3] [48, Section 4, Example] [37, Theorem 4.4].

The case k = 1 of Theorem 1 is the main result of Bethuel’s seminal work [3,
Theorem 1] (see also [27, 28]). The case k ≥ 2 cannot be handled by merely adapting
Bethuel’s tools due to the rigidity of W k,p and requires new ideas. A typical issue one
faces when dealing with two maps in W k,p is that they cannot be glued together under the
sole assumption that their traces coincide. Results concerning strong density of smooth
maps in higher order Sobolev maps have been known in some cases situations where Nn

is a sphere [37, Theorem 5] [11, Theorem 4] [17, Theorem 2].

In the case πbkpc(Nn) 6' {0}, we prove that W k,p(Qm;Nn) is the completion of
a set of maps that are smooth outside a small singular set. For this purpose, given i ∈
{0, . . . ,m − 1} we denote by Ri(Qm;Nn) the set of maps u : Q

m → Nn which are
smooth on Q

m \ T , where T is a finite union of i dimensional planes, and such that for
every j ∈ N∗ and x ∈ Qm \ T ,

|Dju(x)| ≤ C

dist (x, T )
j

for some constant C ≥ 0 depending on u and j.

Theorem 2. If kp < m and πbkpc(Nn) 6' {0}, then W k,p(Qm;Nn) is the completion of
Ri(Q

m;Nn) with respect to the Sobolev metric dk,p if and only if i = m− bkpc − 1.
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This result was known for an arbitrary manifold Nn only in the case k = 1 [3,
Theorem 2] (see also [28, Theorem 1.3]). It is a fundamental tool in the study of the weak
density of smooth maps in Sobolev spaces and in the study of topological singularities
of Sobolev maps [5, 22, 23, 29, 31, 45]. Counterparts of Theorems 1 and 2 for fractional
Sobolev spaces W s,p(Qm;Nn) such that 0 < s < 1 have been investigated by Brezis and
Mironescu [12].

We explain the strategy of the proofs of Theorems 1 and 2 under the additional
assumption kp > m − 1. Given a decomposition of Qm in cubes of size η > 0, we
distinguish them between good cubes and bad cubes — a notion reminiscent from [3] —
as follows: for a map u ∈W k,p(Qm;Nn) and a cube σmη in Qm of radius η > 0, σmη is a
good cube if

1

ηm−kp

∫
σmη

|Du|kp . 1,

which means that u does not oscillate too much in σmη ; otherwise σmη is a bad cube. The
main steps in the proof of Theorem 2 are the following:
Opening We construct a map uop

η which is continuous on a neighborhood of the m− 1
dimensional faces of the bad cubes, and equal to u elsewhere. This map, which takes
its values into Nn, is close to u with respect to the W k,p distance because there are
not too many bad cubes. Since kp > m− 1, W k,p maps are continuous on faces of
dimension m− 1.

Adaptive smoothing By convolution with a smooth kernel, we then construct a smooth
map usm

η ∈W k,p(Qm;Nn). The scale of convolution is chosen to be of the order
of η on the good cubes, and close to zero in a neighborhood of the faces of the bad
cubes. On the union of these sets, we are thus ensuring that usm

η takes its values in a
small neigborhood of Nn.

Thickening We propagate diffeomorphically the values of usm
η near the faces of the bad

cubes to the interior of these cubes. The resulting map uth
η coincides with usm

η on
the good cubes and near the faces of the bad cubes, is close to u with respect to
the W k,p distance and takes its values in a neighborhood of Nn. This construction
creates at most one singularity at the center of each bad cube.

The map obtained by projecting uth
η from a neighborhood ofNn intoNn itself belongs

to the class R0(Qm;Nn) and converges strongly to u with respect to the Sobolev distance
dk,p as η → 0. This argument works regardless of the bkpcth homotopy group of Nn; see
Theorem 3 in Section 5 below.

The sketch of the proof we have announced in a previous work [6] for k = 2 and
2p > m− 1 is based on the strategy above but was organized differently following [46]
(see also [20]). The opening technique was introduced by Brezis and Li [10] in their study
of homotopy classes of W 1,p(Qm;Nn).

The proof of Theorem 1 in the case kp ≥ m− 1 relies on the fact that R0(Qm;Nn)
is strongly dense in W k,p(Qm;Nn) with respect to the Sobolev distance dk,p. The ap-
proximation of a map u ∈ R0(Qm;Nn) by a map in C∞(Q

m
;Nn) in this case goes as

follows:
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Continuous extension property By the assumption on the homotopy group of Nn, for
any µ < 1 there exists a smooth map uex

µ with values into Nn which coincides with
u outside a neighborhood of radius µη of the singular set of u. As a drawback, uex

µ

may be far from u with respect to the W k,p distance.
Shrinking We propagate diffeomorphically the values of uex

µ in the neighborhood of
radius µη of each singularity of u into a smaller neighborhood of radius τµη for
τ < 1. Since kp < m, we obtain a map ush

τ,µ which is still smooth but now close to
u with respect to the W k,p distance. This construction is reminiscent of thickening
but does not create singularities.

The smooth map ush
τ,µ converges strongly to u with respect to the W k,p distance as

τ → 0 and µ → 0. The role of this continuous extension property in the case of W 1,p

approximation of maps u with higher dimensional singularities has been clarified by Hang
and Lin [28].
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2 Opening
For a ∈ Rm and r > 0, we denote by Qmr (a) the cube of radius r with center a; by radius
of the cube we mean half of the length of one of its edges. When a = 0, we abbreviate
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Qmr = Qmr (0).

Definition 2.1. A family of closed cubes Sm is a cubication of A ⊂ Rm if all cubes have
the same radius, if

⋃
σm∈Sm

σm = A and if for every σm1 , σ
m
2 ∈ Sm which are not disjoint,

σm1 ∩ σm2 is a common face of dimension i ∈ {0, . . . ,m}.

The radius of a cubication is the radius of any of its cubes.

Definition 2.2. Given a cubication Sm of A ⊂ Rm and ` ∈ {0, . . . ,m}, the skeleton of
dimension ` is the set S` of all ` dimensional faces of all cubes in Sm. A subskeleton of
dimension ` of Sm is a subset of S`.

Given a skeleton S`, we denote by S` the union of all elements of S`,

S` =
⋃

σ`∈S`
σ`.

For a given map u ∈ W k,p(Um;Rν) on some subskeleton Um and for any ` ∈
{0, . . . ,m − 1}, we are going to construct a map u ◦ Φ ∈ W k,p(Um;Rν) which is
constant along the normals to U ` in a neighborhood of U `. In this region, the map u ◦ Φ
will thus be essentially a W k,p map of ` variables. Hence, if kp > `, then u ◦ Φ will be
continuous there, whereas in the critical case ` = kp, the map u◦Φ need not be continuous
but will still have vanishing mean oscillation. In this construction the map Φ depends
on u and is never injective. This idea of opening a map has been inspired by a similar
construction of Brezis and Li [10].

Given a map Φ : Rm → Rm, we denote by Supp Φ the geometric support of Φ,
namely the closure of the set {x ∈ Rm : Φ(x) 6= x}. This should not be confused with
the analytic support suppϕ of a function ϕ : Rm → R which is the closure of the set
{x ∈ Rm : ϕ(x) 6= 0}.

Proposition 2.1. Let ` ∈ {0, . . . ,m− 1}, η > 0, 0 < ρ < 1
2 , and U` be a subskeleton of

Rm of radius η. Then, for every u ∈ W k,p(U ` + Qm2ρη;Rν), there exists a smooth map
Φ : Rm → Rm such that

(i) for every i ∈ {0, . . . , `} and for every σi ∈ U i, Φ is constant on the m − i
dimensional cubes of radius ρη which are orthogonal to σi,

(ii) Supp Φ ⊂ U ` +Qm2ρη and Φ(U ` +Qm2ρη) ⊂ U ` +Qm2ρη ,

(iii) u ◦ Φ ∈W k,p(U ` +Qm2ρη;Rν), and for every j ∈ {1, . . . , k},

ηj‖Dj(u ◦ Φ)‖Lp(U`+Qm2ρη) ≤ C
j∑
i=1

ηi‖Diu‖Lp(U`+Qm2ρη),

for some constant C > 0 depending on m, k, p and ρ,
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(iv) for every σ` ∈ U` and for every j ∈ {1, . . . , k},

ηj‖Dj(u ◦ Φ)‖Lp(σ`+Qm2ρη) ≤ C ′
j∑
i=1

ηi‖Diu‖Lp(σ`+Qm2ρη),

for some constant C ′ > 0 depending on m, k, p and ρ.

In the case of W 2,p maps, the quantity ‖D(u ◦ Φ)‖Lp can be estimated in terms of
‖Du‖Lp ; hence there is no explicit dependence of η. However, concerning the second-order
term, estimate in (iii) reads

‖D2(u ◦ Φ)‖Lp(U`+Qm2ρη) ≤ C‖D2u‖Lp(U`+Qm2ρη) +
C

η
‖Du‖Lp(U`+Qm2ρη).

The factor 1
η which comes naturally from a scaling argument is one of the differences

with respect to the opening of W 1,p maps. In the proof of Theorem 1, we shall use the
Gagliardo-Nirenberg interpolation inequality to deal with this extra term.

Since the map u in the statement is defined almost everywhere, the map u ◦ Φ need
not be well-defined by standard composition of maps. By u ◦ Φ, we mean a map v in
W k,p such that there exists a sequence of smooth maps (un)n∈N converging to u in W k,p

such that (un ◦ Φ)n∈N converges to v in W k,p. By pointwise convergence, this map u ◦ Φ
inherits several properties of Φ and of u. For instance, if Φ is constant in a neighborhood of
some point a, then so is u ◦Φ. One can show that under some assumptions on Φ which are
satisfied in all the cases that we consider u ◦ Φ does not depend on the sequence (un)n∈N,
but we shall not make use of this fact. The only property we shall need from u ◦ Φ is that
its essential range is contained in the essential range of u; this is actually the case in view
of Lemma 2.3 (ii) below. In particular, if u is a map with values into the manifold Nn,
then u ◦ Φ is also a map with values into Nn.

The following proposition is the main tool in the proof of Proposition 2.1.

Proposition 2.2. Let ` ∈ {0, . . . ,m− 1}, η > 0, 0 < ρ < ρ and A ⊂ R` be an open set.
For every u ∈W k,p(A×Qm−`ρη ;Rν), there exists a smooth map ζ : Rm−` → Rm−` such
that

(i) ζ is constant in Qm−`ρη ,

(ii) Supp ζ ⊂ Qm−`ρη and ζ(Qm−`ρη ) ⊂ Qm−`ρη ,

(iii) if Φ : Rm → Rm is defined for every x = (x′, x′′) ∈ R` × Rm−` by

Φ(x) = (x′, ζ(x′′))

then u ◦ Φ ∈W k,p(A×Qm−`ρη ;Rν), and for every j ∈ {1, . . . , k},

ηj‖Dj(u ◦ Φ)‖Lp(A×Qm−`ρη ) ≤ C
j∑
i=1

ηi‖Diu‖Lp(A×Qm−`ρη ),

for some constant C > 0 depending on m, k, p, ρ and ρ.
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The proof of Proposition 2.2 is based on a Fubini type argument, which gives some
flexibility on the choice of ζ. In particular, given finitely many measurable subsets
A1, . . . , As ⊂ A, the map ζ can be chosen such that we have in addition, for every
r ∈ {1, . . . , s} and for every j ∈ {1, . . . , k},

ηj‖Dj(u ◦ Φ)‖Lp(Ar×Qm−`ρη ) ≤ C
j∑
i=1

ηi‖Diu‖Lp(Ar×Qm−`ρη ).

We will temporarily accept this proposition and the observation that follows it, and we
prove the main result of the section:

Proof of Proposition 2.1. We first take a finite sequence (ρi)0≤i≤` such that

ρ = ρ` < . . . < ρi < . . . < ρ0 < 2ρ.

We construct by induction on i ∈ {0, . . . , `} a map Φi : Rm → Rm such that

(a) for every r ∈ {0, . . . , i} and every σr ∈ Ur, Φi is constant on the m− r dimensional
cubes of radius ρiη which are orthogonal to σr,

(b) Supp Φi ⊂ U i +Qm2ρη and Φi(U i +Qm2ρη) ⊂ U i +Qm2ρη ,

(c) u ◦ Φi ∈W k,p(U ` +Qm2ρη;Rν),

(d) for every σi ∈ U i and for every j ∈ {1, . . . , k},

ηj‖Dj(u ◦ Φi)‖Lp(σi+Qm2ρη) ≤ C
j∑

α=1

ηα‖Dαu‖Lp(σi+Qm2ρη),

for some constant C > 0 depending on m, k, p and ρ.

The map Φ` will satisfy the conclusion of the proposition.

If i = 0, then U0 consists of all vertices of cubes in Um. To construct Φ0, we apply
Proposition 2.2 to the map u around each σ0 ∈ U0 with parameters ρ0 < 2ρ and ` = 0: in
this case, the setA×Qm−`ρη in Proposition 2.2 is simplyQm2ρ. This gives a map Φ0 such that
for every σ0 ∈ U0, Φ0 is constant on σ0+Qmρ0η and Φ0 = Id outsideU0+Qm2ρη . Moreover,
u ◦ Φ0 ∈W k,p(U ` +Qm2ρη;Rν) and for every σ0 ∈ U0 and for every j ∈ {1, . . . , k},

ηj‖Dj(u ◦ Φi)‖Lp(σ0+Qm2ρη) ≤ C
j∑

α=1

ηα‖Dαu‖Lp(σ0+Qm2ρη),

Assume that the maps Φ0, . . . ,Φi−1 have been constructed. To define Φi, we first
apply Proposition 2.2, for each σi ∈ U i, to the map u ◦ Φi−1 with A = σi and parameters
ρi < ρi−1 . This gives a smooth map Φσi : Rm → Rm such that Φσi is constant on the
m− i dimensional cubes of radius ρiη which are orthogonal to σi.
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Let Φi : Rm → Rm be defined for x ∈ Rm by

Φi(x) =

{
Φi−1(Φσi(x)) if x ∈ σi +Qmρi−1η where σi ∈ U i,
Φi−1(x) otherwise.

We first explain why Φi is well-defined. For this purpose, let

x ∈ (σi1 +Qmρi−1η) ∩ (σi2 +Qmρi−1η)

for some σi1 ∈ U i and σi2 ∈ U i such that σi1 6= σi2. In particular, σi1 and σi2 are not disjoint,
and there exists a smallest dimension r ∈ {0, . . . , i− 1} such that

x ∈ τ r +Qmρi−1η and τ r ⊂ σi1 ∩ σi2
for some τ r ∈ Ur. By the formula of Φσij given in Proposition 2.2, the points x, Φσi1(x)

and Φσi2(x) belong to the samem−r dimensional cube of radius ρi−1η which is orthogonal
to τ r. Since by induction hypothesis Φi−1 is constant on the m− r dimensional cubes of
radius ρi−1η which are orthogonal to τ r, we have

Φi−1(x) = Φi−1(Φσi1(x)) = Φi−1(Φσi2(x)).

This implies that Φi is well-defined. Moreover, Φi is smooth and satisfies properties
(a)–(c).

We prove the estimates given by (d). If e1, . . . , em is an orthonormal basis of Rm
compatible with the skeleton U`, then by abuse of notation we denote by σi ×Qm−iαη the
parallelepiped given by{

x+

m−i∑
s=1

tsers : x ∈ σi and |ts| ≤ αη
}
,

where er1 , . . . , erm−i are orthogonal to σi. Note that for every σi ∈ U i,

σi +Qm2ρη = (σi ×Qm−i2ρη ) ∪ (∂σi +Qm2ρη),

where ∂σi denotes the i−1 dimensional skeleton of σi. By property (iii) of Proposition 2.2,∫
σi×Qm−iρi−1η

ηjp|Dj(u ◦ Φi−1 ◦ Φσi)|p ≤ C1

j∑
α=1

∫
σi×Qm−iρi−1η

ηαp|Dα(u ◦ Φi−1)|p,

and then, since Φi = Φi−1 ◦Φσi on (σi×Qm−i2ρη ) \ (∂σi +Qm2ρη) and since the geometric
support Supp Φσi is contained in σi ×Qm−iρi−1η , we have∫

(σi×Qm−i2ρη )\(∂σi+Qm2ρη)

ηjp|Dj(u ◦ Φi)|p

≤ C1

j∑
α=1

∫
σi×Qm−i2ρη

ηαp|Dα(u ◦ Φi−1)|p. (2.1)
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We claim that the maps Φσi can be chosen such that the additional property holds: for
every j ∈ {1, . . . , k},∫

∂σi+Qm2ρη

ηjp|Dj(u ◦ Φi)|p ≤ C2

j∑
α=1

∫
∂σi+Qm2ρη

ηαp|Dα(u ◦ Φi−1)|p. (2.2)

Indeed, by the remark following Proposition 2.2, for every σi ∈ U i we may further
require that Φσi satisfies for every i − 1 dimensional cube τ i−1 ⊂ ∂σi and for every
j ∈ {1, . . . , k},∫

[(τ i−1+Qm2ρη)∩σi]×Qmρi−1η

ηjp|Dj(u ◦ Φi−1 ◦ Φσi)|p

≤ C3

j∑
α=1

∫
[(τ i−1+Qm2ρη)∩σi]×Qmρi−1η

ηαp|Dα(u ◦ Φi−1)|p.

Next, given τ i−1 ⊂ ∂σi, denote by σi1, . . . , σ
i
θ the i dimensional cubes in U i containing

τ i−1 in their boundaries. In this case,

τ i−1 +Qm2ρη ⊂
( θ⋃
β=1

[(τ i−1 +Qm2ρη)∩σiβ ]×Qmρi−1η

)
∪
{
x ∈ Rm : Φi(x) = Φi−1(x)

}
.

Since for every β ∈ {1, . . . , θ}, Φi = Φi−1 ◦Φσiβ on [(τ i−1 +Qm2ρη) ∩ σiβ ]×Qmρi−1η , by
the previous estimate on each cube σiβ and by additivity of the integral, we get∫

τ i−1+Qm2ρη

ηjp|Dj(u ◦ Φi)|p ≤ C4

j∑
α=1

∫
τ i−1+Qm2ρη

ηαp|Dα(u ◦ Φi−1)|p.

Adding both sides of this inequality over the i − 1 dimensional cubes τ i−1 ⊂ ∂σi, we
deduce estimate (2.2) as we claimed.

By additivity of the integral and by estimates (2.1) and (2.2), we then obtain∫
σi+Qm2ρη

ηjp|Dj(u ◦ Φi)|p ≤ C5

j∑
α=1

∫
σi+Qm2ρη

ηαp|Dα(u ◦ Φi−1)|p.

Since by induction hypothesis Φi−1 coincides with the identity map outside U i−1 +Qm2ρη ,
for every α ∈ {1, . . . , j} we have∫
σi+Qm2ρη

ηαp|Dα(u ◦ Φi−1)|p

=

∫
∂σi+Qm2ρη

ηαp|Dα(u ◦ Φi−1)|p +

∫
(σi+Qm2ρη)\(∂σi+Qm2ρη)

ηαp|Dαu|p.
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By induction hypothesis, for every i− 1 dimensional face τ i−1 of ∂σi,∫
τ i−1+Qm2ρη

ηαp|Dα(u ◦ Φi−1)|p ≤ C6

α∑
β=1

∫
τ i−1+Qm2ρη

ηβp|Dβu|p.

Since the number of overlaps of the sets τ i−1 +Qm2ρη is bounded from above by a constant
only depending on m, we have by additivity of the integral,∫

∂σi+Qm2ρη

ηαp|Dα(u ◦ Φi−1)|p ≤ C7

α∑
β=1

∫
∂σi+Qm2ρη

ηβp|Dβu|p.

Therefore, ∫
σi+Qm2ρη

ηjp|Dj(u ◦ Φi)|p ≤ C8

j∑
α=1

∫
σi+Qm2ρη

ηαp|Dαu|p.

The map Φ` satisfies properties (i)–(iv). The estimate of property (iii) is a conse-
quence of (iv) and the additivity of the integral.

We proceed to prove Proposition 2.2 by making precise the meaning of u ◦ Φ in the
statement.

Given a continuous function Ψ : U ×V →W and z ∈ V , we denote by Ψz : U →W
the map defined for every x ∈ U by

Ψz(x) = Ψ(x, z).

For every measurable function g : W → R, the composition g ◦Ψz is well-defined and
gives a measurable function defined on W for every z.

Lemma 2.3. Let U,W ⊂ Rm and V ⊂ Rl be measurable sets and let Ψ : U × V →W
be a continuous map such that for every measurable function g : W → R,∫

V

‖g ◦Ψz‖L1(U) dz ≤ C‖g‖L1(W ).

If u ∈ Lp(W ;Rν) and if (un)n∈N is a sequence of measurable functions converging to u
in Lp(W ;Rν), then there exists a subsequence (uni)i∈N such that for almost every z ∈ V ,

(i) the sequence (uni ◦Ψz)i∈N converges in Lp(U ;Rν) to a function which we denote
by u ◦Ψz ,

(ii) the essential range of u ◦Ψz is contained in the essential range of u.

Proof. Let (un)n∈N be a sequence of measurable functions in W converging to u in
Lp(W ;Rν). Given a sequence (εn)n∈N of positive numbers, let (uni)i∈N be a subsequence
such that for every i ∈ N,

‖uni+1 − uni‖Lp(W ) ≤ εi.
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By the assumption on Ψ,∫
V

‖uni+1
◦Ψz − uni ◦Ψz‖pLp(U) dz ≤ C‖uni+1

− uni‖
p
Lp(W ) ≤ Cε

p
i .

Given a sequence (αn)n∈N of positive numbers, let

Yi =
{
z ∈ V : ‖uni+1 ◦Ψz − uni ◦Ψz‖Lp(U) > αi

}
.

If the series
∞∑
i=0

αi converges, then for every t ∈ N and for every z 6∈
∞⋃
i=t

Yi, the sequence

(uni ◦Ψz)i∈N is a Cauchy sequence in Lp(U ;Rν).
By the Chebyshev inequality,

αpi |Yi| ≤
∫
Yi

‖uni+1
◦Ψz − uni ◦Ψz‖pLp(U) dz ≤ Cεpi .

Hence, for every t ∈ N, ∣∣∣ ∞⋃
i=t

Yi

∣∣∣ ≤ C ∞∑
i=t

( εi
αi

)p
.

Taking the sequences (εn)n∈N and (αn)n∈N such that both series
∞∑
i=0

αi and
∞∑
i=0

(εi/αi)
p

converge, then the set E =
∞⋂
t=0

∞⋃
i=t

Yi is negligible and for every z ∈ V \E, (uni ◦Ψz)i∈N

is a Cauchy sequence in Lp(U ;Rν). This proves assertion (i).

It suffices to prove assertion (ii) when W has finite Lebesgue measure. For every
z ∈ V \ E, we denote by u ◦Ψz the limit in Lp(U ;Rν) of the sequence (uni ◦Ψz)i∈N.

Let θ : Rν → R be a continuous function such that θ−1(0) is equal to the essential
range of u and 0 ≤ θ ≤ 1 in Rν . For every i ∈ N,∫

V

‖θ ◦ (uni ◦Ψz)‖L1(U) dz ≤ C‖θ ◦ uni‖L1(W ).

By Fatou’s lemma,∫
V

‖θ ◦ (u ◦Ψz)‖L1(U) dz ≤ lim inf
i→∞

∫
V

‖θ ◦ (uni ◦Ψz)‖L1(U) dz.

Since W has finite Lebesgue measure and θ is bounded, as i tends to infinity we get∫
V

‖θ ◦ (u ◦Ψz)‖L1(U) dz ≤ C‖θ ◦ u‖L1(W ) = 0.

Therefore, for almost every z ∈ V , ‖θ ◦ (u ◦Ψz)‖L1(U) = 0, whence the essential range
of u ◦Ψz is contained in the essential range of u.
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From the previous lemma, we can prove the following property for maps in W k,p:

Lemma 2.4. Let U,W ⊂ Rm and V ⊂ Rl be open sets and let Ψ : U × V → W be a
smooth map such that for every measurable function g : W → R,∫

V

‖g ◦Ψz‖L1(U) dz ≤ C‖g‖L1(W ).

If u ∈ W k,p(W ;Rν) and if (un)n∈N is a sequence of smooth functions converging to
u in W k,p(W ;Rν), then there exists a subsequence (uni)i∈N such that for almost every
z ∈ V the sequence (uni ◦ Ψz)i∈N converges to u ◦ Ψz in W k,p(U ;Rν), and for every
j ∈ {1, . . . , k},

∫
V

‖Dj(u ◦Ψz)‖Lp(U) dz ≤ C ′|V |1−
1
p

j∑
i=1

‖Diu‖Lp(W ),

for some constant C ′ > 0 depending on m, p, k, C and max
1≤j≤k

sup
z∈V
‖DjΨz‖L∞(U).

Proof. Let (un)n∈N be a sequence of smooth functions in W k,p(W ;Rν) converging to
u in W k,p(W ;Rν). By the previous lemma, there exists a subsequence (uni)i∈N such
that for almost every z ∈ V , (uni ◦ Ψz)i∈N converges to u ◦ Ψz in Lp and for every
j ∈ {1, . . . , k}, ((Djuni) ◦Ψz)i∈N converges to (Dju) ◦Ψz in Lp.

For every v ∈ C∞(W ;Rν), for every z ∈ V and for each j ∈ {1, . . . , k},

|Dj(v ◦Ψz)(x)| ≤ C1

j∑
i=1

∑
1≤t1≤...≤ti
t1+···+ti=j

|Div(Ψz(x))||Dt1Ψz(x)| · · · |DtiΨz(x)|

≤ C2

j∑
i=1

|Div(Ψz(x))|,

whence

‖Dj(v ◦Ψz)‖pLp(U) ≤ C3

j∑
i=1

‖|Div|p ◦Ψz‖L1(U).

This implies that for almost every z ∈ V , (uni ◦ Ψz)i∈N is a Cauchy sequence in
W k,p(U ;Rν), thus (uni ◦Ψz)i∈N converges to u ◦Ψz in W k,p(U ;Rν). Moreover, inte-
grating with respect to z the above estimate and using the assumption on Ψ we get

∫
V

‖Dj(v ◦Ψz)‖pLp(U) dz ≤ C3

j∑
i=1

∫
V

‖|Div|p ◦Ψz‖L1(U) dz

≤ C4

j∑
i=1

‖|Div|p‖L1(W ) = C4

j∑
i=1

‖Div‖pLp(W ).
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Thus, by Hölder’s inequality,

∫
V

‖Dj(v ◦Ψz)‖Lp(U) dz ≤ |V |1−
1
p

(
C4

j∑
i=1

‖Div‖pLp(W )

) 1
p

≤ C5|V |1−
1
p

j∑
i=1

‖Div‖Lp(W ).

We obtain the desired estimate by taking v = uni and letting ni tend to infinity.

We now show that the functional estimate in Lemma 2.3 and 2.4 is satisfied for maps
Ψ of the form

Ψ(x, z) = ζ(x+ z)− z.

The strategy is based on an averaging device due to Federer and Fleming [18] and adapted
by Hardt, Kinderlehrer and Lin [30] in the context of Sobolev maps. It relies on the
following lemma:

Lemma 2.5. Let U, V,W ⊂ Rl be measurable sets and let ζ : U + V → Rl be a
continuous map such that for every x ∈ U and for every z ∈ V , ζ(x+ z)− z ∈W . Then,
for every measurable function g : W → R,∫

V

(∫
U

|g(ζ(x+ z)− z)|dx
)

dz ≤ |U + V |
∫
W

|g(x)|dx.

Proof. Let ξ : (U + V )× V → Rl be the function defined by

ξ(x, z) = ζ(x+ z)− z.

By Fubini’s theorem,∫
V

(∫
U

|(g ◦ ξ)(x, z)|dx
)

dz =

∫
U

(∫
V

|g(ζ(x+ z)− z)|dz
)

dx.

Applying the change of variables z̃ = x+ z in the variable z and Fubini’s theorem,∫
V

(∫
U

|(g ◦ ξ)(x, z)|dx
)

dz =

∫
U

( ∫
x+V

|g(ζ(z̃) + x− z̃)|dz̃
)

dx

=

∫
U+V

( ∫
(z̃−V )∩U

|g(ζ(z̃) + x− z̃)|dx
)

dz̃.

We now apply the change of variables x̃ = ζ(z̃) + x − z̃ in the variable x, and use the
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assumption on W to conclude∫
V

(∫
U

|(g ◦ ξ)(x, z)|dx
)

dz =

∫
U+V

( ∫
ζ(z̃)−(V ∩(z̃−U))

|g(x̃)|dx̃
)

dz̃

≤
∫

U+V

(∫
W

|g(x̃)|dx̃
)

dz̃

= |U + V |
∫
W

|g(x̃)|dx̃.

This gives the desired estimate.

Proof of Proposition 2.2. By scaling, it suffices to establish the result when η = 1. We fix
ρ̂ such that 2ρ̂ < ρ− ρ.

Let ζ̃ : Rm−` → Rm−` be the smooth map defined by

ζ̃(y) = (1− ϕ(y))y,

where ϕ : Rm−` → [0, 1] is a smooth function such that

− for y ∈ Qm−`ρ+ρ̂ , ϕ(y) = 1,

− for y ∈ Rm−` \Qm−`ρ−ρ̂ , ϕ(y) = 0.

For any z ∈ Qm−`ρ̂ , the function ζ : Rm−` → Rm−` defined for x′′ ∈ Rm−` by

ζ(x′′) = ζ̃(x′′ + z)− z

satisfies properties (i)–(ii).
We claim that for some z ∈ Qm−`ρ̂ , the function Φ : Rm → Rm defined for x =

(x′, x′′) ∈ R` × Rm−` by
Φ(x) = (x′, ζ(x′′))

satisfies property (iii).
For this purpose, let Ψ : Rm×Qm−`ρ̂ → Rm be the function defined for x = (x′, x′′) ∈

R` × Rm−` and z ∈ Qm−`ρ̂ by

Ψ(x, z) = (x′, ζ̃(x′′ + z)− z).

For every measurable function f : A×Qm−`ρ → R, we have by Fubini’s theorem,∫
Qm−`ρ̂

‖f ◦Ψz‖L1(A×Qm−`ρ ) dz

=

∫
A

[ ∫
Qm−`ρ̂

( ∫
Qm−`ρ

∣∣f(x′, ζ̃(x′′ + z)− z)
∣∣dx′′)dz

]
dx′.
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Given x′ ∈ A, we apply Lemma 2.5 with U = Qm−`ρ , V = Qm−`ρ̂ , W = Qm−`ρ , and ζ̃.
We deduce that∫

Qm−`ρ̂

( ∫
Qm−`ρ

∣∣f(x′, ζ̃(x′′ + z)− z)
∣∣dx′′)dz ≤ C1

∫
Qm−`ρ

|f(x′, x′′)|dx′′.

Thus, ∫
Qm−`ρ̂

‖f ◦Ψz‖L1(A×Qm−`ρ ) dz ≤ C1‖f‖L1(A×Qm−`ρ ).

By Lemma 2.4, for almost every z ∈ Qm−`ρ̂ , u ◦Ψz ∈W k,p(A×Qm−`ρ ;Rν) and for
every j ∈ {1, . . . , k},∫

Qm−`ρ̂

‖Dj(u ◦Ψz)‖Lp(A×Qm−`ρ ) dz ≤ C2

j∑
i=1

‖Diu‖Lp(A×Qm−`ρ ).

We may thus find some z ∈ Qm−`ρ̂ such that u ◦ Ψz ∈ W k,p(A × Qm−`ρ ;Rν) and for
every j ∈ {1, . . . , k},

‖Dj(u ◦Ψz)‖Lp(A×Qm−`ρ ) ≤ C3

j∑
i=1

‖Diu‖Lp(A×Qm−`ρ ).

The function ζ defined in terms of this point z satisfies the required properties.

Addendum 1 to Proposition 2.1. Let Km be a cubication containing Um and let q ≥ 1.
If u ∈ W 1,q(Km + Qm2ρη;Rν), then the map Φ : Rm → Rm can be chosen with the
additional property that u ◦ Φ ∈W 1,q(Km +Qm2ρη;Rν) and for every σm ∈ Km,

‖D(u ◦ Φ)‖Lq(σm+Qm2ρη) ≤ C ′′‖Du‖Lq(σm+Qm2ρη),

for some constant C ′′ > 0 depending on m, q and ρ.

Proof. Since u ∈ W 1,q(U ` +Qm2ρη;Rν), we may apply Proposition 2.1 with k = 1 and
p = q in order to obtain a map Φ : Rm → Rm such that u ◦ Φ ∈ W 1,q(U ` +Qm2ρη;Rν)

and for every σ` ∈ U`,

‖D(u ◦ Φ)‖Lq(σ`+Qm2ρη) ≤ C‖Du‖Lq(σ`+Qm2ρη).

Since the choice of the point z in the proof of Proposition 2.2 can be done in a set of
positive measure, we may do so by keeping the properties we already have for W k,p.

For every σm ∈ Km, if σm,` denotes the skeleton of dimension ` of σm, then by
additivity of the integral,

‖D(u ◦ Φ)‖Lq((σm,`∩U`)+Qm2ρη) ≤ C‖Du‖Lq((σm,`∩U`)+Qm2ρη).
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Since Φ coincides with the identity map in (σm +Qm2ρη) \ ((σm,` ∩ U `) +Qm2ρη),

‖D(u ◦ Φ)‖Lq(σm+Qm2ρη) ≤ C‖Du‖Lq(σm+Qm2ρη).

This concludes the proof.

Addendum 2 to Proposition 2.1. Let Km be a cubication containing Um. If u ∈
W 1,kp(Km + Qm2ρη;Rν), then the map Φ : Rm → Rm given by Proposition 2.1 and
Addendum 1 above with q = kp satisfies

lim
r→0

sup
Qmr (a)⊂U`+Qmρη

r
`
kp−1

|Qmr |2

∫
Qmr (a)

∫
Qmr (a)

|u ◦ Φ(x)− u ◦ Φ(y)|dxdy = 0

and for every σm ∈ Um and for every a ∈ σm such that Qmr (a) ⊂ U ` +Qmρη ,

1

|Qmr |2

∫
Qmr (a)

∫
Qmr (a)

|u ◦ Φ(x)− u ◦ Φ(y)|dx dy ≤ C ′′′r1− `
kp

η
m−`
kp

‖Du‖Lkp(σm+Qm2ρη),

for some constant C ′′′ > 0 depending on m, kp and ρ.

If kp ≥ `, then the limit above implies that u ◦ Φ belongs to the space of functions
of vanishing mean oscillation VMO(U ` +Qmρη;Rν) and the estimate yields an estimate
on the BMO seminorm on the domain U ` +Qmρη as defined by Jones [32]. If kp > ` > 0,

then the estimate implies that u ◦ Φ ∈ C0,1− `
kp (U ` +Qmρη;Rν) with an upper bound on

the C0,1− `
kp seminorm of u ◦Φ [14]. The estimates of this addendum are not really useful

when kp < ` since in this case lim
r→0

r1− `
kp = +∞.

Proof of Addendum 2. FixQmr (a) ⊂ U `+Qmρη . Then a ∈ U `+Qmρη−r. Hence there exists
an ` dimensional face τ ` ∈ U` such that Qmr (a) ⊂ τ ` +Qmρη. Without loss of generality,
we may assume that τ ` = Q`η × {0m−`} ⊂ R` × Rm−`. From Proposition 2.1 (i), the
map Φ is constant on the m− ` dimensional cubes of radius ρη which are orthogonal to
Q`(1+ρ)η × {0

m−`}. Writing Qmr (a) = Q`r(a
′)×Qm−`r (a′′), then u ◦ Φ only depends on

the first ` dimensional variables in Qmr (a). Let v : Q`(1+ρ)η → Rν be the function defined
by

v(x′) = (u ◦ Φ)(x′, a′′).

By Addendum 1 above with q = kp, u ◦ Φ ∈W 1,kp(Q`(1+ρ)η ×Q
m−`
ρη ;Rν), whence

v ∈W 1,kp(Q`(1+ρ)η;Rν).

Note that

1

|Qmr |2

∫
Qmr (a)

∫
Qmr (a)

|u ◦ Φ(x)− u ◦ Φ(y)|dx dy

=
1

|Q`r|2

∫
Q`r(a′)

∫
Q`r(a′)

|v(x′)− v(y′)|dx′ dy′.
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By the Poincaré-Wirtinger inequality,

1

|Q`r|2

∫
Q`r(a′)

∫
Q`r(a′)

|v(x′)− v(y′)|dx′ dy′ ≤ C1r
1− `

kp ‖Dv‖Lkp(Q`r(a′)).

Thus,

1

|Qmr |2

∫
Qmr (a)

∫
Qmr (a)

|u ◦ Φ(x)− u ◦ Φ(y)|dx dy ≤ C1r
1− `

kp ‖Dv‖Lkp(Q`r(a′))

and this implies the first part of the conclusion.
In order to get the estimate of the oscillation of u ◦Φ in terms of ‖D(u ◦Φ)‖Lkp , note

that
‖D(u ◦ Φ)‖Lkp(Q`r(a′)×Qm−`ρη (a′′)) = (2ρη)

m−`
kp ‖Dv‖Lkp(Q`r(a′)).

This implies for any σm ∈ Um such that τ ` ⊂ σm

‖Dv‖Lkp(Q`r) =
1

(2ρη)
m−`
kp

‖D(u ◦ Φ)‖Lkp(Q`r×Q
m−`
ρη )

≤ 1

(2ρη)
m−`
kp

‖D(u ◦ Φ)‖Lkp(σ`+Qmρη)

≤ 1

(2ρη)
m−`
kp

‖D(u ◦ Φ)‖Lkp(σm+Qmρη).

Thus,

1

|Qmr |2

∫
Qmr (a)

∫
Qmr (a)

|u ◦ Φ(x)− u ◦ Φ(y)|dxdy ≤ C2r
1− `

kp

(ρη)
m−`
kp

‖D(u ◦ Φ)‖Lkp(σm+Qmρη).

By Addendum 1 above,

‖D(u ◦ Φ)‖Lkp(σm+Qmρη) ≤ C3‖Du‖Lkp(σm+Qm2ρη).

This proves the estimate that we claimed.

3 Adaptive smoothing
Given u ∈W k,p(Ω;Rν), we would like to consider a convolution of u with a parameter
which may depend on the point where we compute the convolution itself. The main reason
is that we want to choose the convolution parameter by taking into account the mean
oscillation of u: we choose a large parameter where u does not oscillate too much and a
small parameter elsewhere.

For this purpose, consider a function u ∈ L1(Ω;Rν). Let ϕ be a mollifier, in other
words,

ϕ ∈ C∞c (Bm1 ), ϕ ≥ 0 in Bm1 and
∫
Bm1

ϕ = 1.
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For every s ≥ 0 and for every x ∈ Ω such that d(x, ∂Ω) ≥ s, we may consider the
convolution

(ϕs ∗ u)(x) =

∫
Bm1

ϕ(z)u(x+ sz) dz.

We may keep in mind that with this definition,

(ϕ0 ∗ u)(x) =

∫
Bm1

ϕ(z) dz u(x) = u(x).

This way of writing the convolution has the advantage that we may treat the cases s = 0
and s > 0 using the same formula.

We now introduce a nonconstant parameter in the convolution given by a nonnegative
function ψ ∈ C∞(Ω). The convolution

ϕψ ∗ u :
{
x ∈ Ω : dist (x, ∂Ω) ≥ ψ(x)

}
→ Rν

is well-defined and if ψ(a) > 0 and |Dψ(a)| < 1 at some point a ∈ Ω, then by a change
of variable in the integral the map ϕψ ∗ u is smooth in a neighborhood of a.

Proposition 3.1. Let ϕ ∈ C∞c (Bm1 ) be a mollifier and let ψ ∈ C∞(Ω) be a nonnegative
function such that ‖Dψ‖L∞(Ω) < 1. Then, for every u ∈ Lp(Ω;Rν) and for every open
set ω ⊂

{
x ∈ Ω : dist (x, ∂Ω) ≥ ψ(x)

}
, ϕψ ∗ u ∈ Lp(ω;Rν),

‖ϕψ ∗ u‖Lp(ω) ≤
1

(1− ‖Dψ‖L∞(ω))
1
p

‖u‖Lp(Ω),

and
‖ϕψ ∗ u− u‖Lp(ω) ≤ sup

v∈Bm1
‖τψvu− u‖Lp(ω),

where τψvu(x) = u(x+ ψ(x)v).

For p > 1, it is possible to obtain an estimate for ‖ϕψ∗u‖Lp(ω) without any dependence
on ψ by the theory of the Hardy-Littlewood maximal function [50]; this approach fails for
p = 1.

In the context of the proposition above, one can prove in a standard way the following
statement: given u ∈ Lp(Ω;Rν), 0 ≤ β < 1 and ε > 0, there exists δ > 0 such that for
any nonnegative function ψ ∈ C∞(Ω) satisfying ‖ψ‖L∞(Ω) ≤ δ and ‖Dψ‖L∞(Ω) ≤ β,
and for every open set ω ⊂

{
x ∈ Ω : dist (x, ∂Ω) ≥ ψ(x)

}
,

sup
v∈Bm1

‖τψvu− u‖Lp(ω) ≤ ε.

We may pursue these estimates for maps in W k,p(Ω;Rν):

Proposition 3.2. Let ϕ ∈ C∞c (Bm1 ) be a mollifier and let ψ ∈ C∞(Ω) be a nonnegative
function such that ‖Dψ‖L∞(Ω) < 1. For every k ∈ N∗, for every u ∈ W k,p(Ω;Rν) and
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for every open set ω ⊂
{
x ∈ Ω : dist (x, ∂Ω) ≥ ψ(x)

}
, ϕψ ∗ u ∈ W k,p(ω;Rν) and for

every j ∈ {1, . . . , k},

ηj‖Dj(ϕψ ∗ u)‖Lp(ω) ≤
C

(1− ‖Dψ‖L∞(ω))
1
p

j∑
i=1

ηi‖Diu‖Lp(Ω),

and

ηj‖Dj(ϕψ ∗ u)−Dju‖Lp(ω)

≤ sup
v∈Bm1

ηj‖τψv(Dju)−Dju‖Lp(ω) +
C ′

(1− ‖Dψ‖L∞(ω))
1
p

j∑
i=1

ηi‖Diu‖Lp(A),

for some constants C > 0 and C ′ > 0 depending on m, k and p, where

A =
⋃

x∈ω∩suppDψ

Bmψ(x)(x)

and η > 0 is such that for every j ∈ {2, . . . , k},

ηj‖Djψ‖L∞(ω) ≤ η.

Proof. We only prove the second estimate. We assume for simplicity that u ∈ C∞(Ω;Rν).
For every x ∈ ω,

(ϕψ ∗ u)(x)− u(x) =

∫
Bm1

ϕ(z)
[
u(x+ ψ(x)z)− u(x)] dz.

For every j ∈ {1, . . . , k}, we have by the chain rule for higher order derivatives,

|Dj(ϕψ ∗ u)(x)−Dju(x)|

≤
∫
Bm1

ϕ(z)
∣∣Dju(x+ ψ(x)z) ◦ (Id +Dψ(x)⊗ z)j −Dju(x)

∣∣dz
+ C1

j−1∑
i=1

∑
α1+2α2+···+jαj=j
α1+α2+···+αj=i

(1 + |Dψ(x)|)α1 |D2ψ(x)|α2 · · · |Djψ(x)|αj×

×
∫
Bm1

ϕ(z)|Diu(x+ ψ(x)z)|dz.

Since ‖Dψ‖L∞(Ω) ≤ 1, for every z ∈ Bm1 ,∣∣(Id +Dψ(x)⊗ z)j − Id
∣∣ ≤ C2|Dψ(x)|,
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and we have

|Dj(ϕψ ∗ u)(x)−Dju(x)|

≤
∫
Bm1

ϕ(z)
∣∣Dju(x+ψ(x)z)−Dju(x)

∣∣dz+C2|Dψ(x)|
∫
Bm1

ϕ(z)
∣∣Dju(x+ψ(x)z)

∣∣dz
+ C1

j−1∑
i=1

∑
α1+2α2+···+jαj=j
α1+α2+···+αj=i

(1 + |Dψ(x)|)α1 |D2ψ(x)|α2 · · · |Djψ(x)|αj×

×
∫
Bm1

ϕ(z)|Diu(x+ ψ(x)z)|dz.

The second and the third terms in the right hand side are supported on suppDψ since
αs 6= 0 for some s > 1. Moreover, by the choice of η,

(1 + |Dψ(x)|)α1 |D2ψ(x)|α2 · · · |Djψ(x)|αj ≤ (1 + 1)α1

( η
η2

)α2

· · ·
( η
ηj

)αj
= 2α1

ηα1+α2+···+αj

ηα1+2α2+···+jαj
= 2α1

ηi

ηj
≤ 2j

ηi

ηj
.

Therefore,

|Dj(ϕψ ∗ u)(x)−Dju(x)| ≤
∫
Bm1

ϕ(z)
∣∣Dju(x+ ψ(x)z)−Dju(x)

∣∣dz
+ C3

j∑
i=1

ηi

ηj
χsuppDψ(x)

∫
Bm1

ϕ(z)|Diu(x+ ψ(x)z)|dz.

By the Minkowski inequality,

(∫
ω

( ∫
Bm1

ϕ(z)|Dju(x+ ψ(x)z)−Dju(x)|dz
)p

dx

) 1
p

≤
∫
Bm1

(∫
ω

|Dju(x+ ψ(x)z)−Dju(x)|p dx

) 1
p

ϕ(z) dz

≤ sup
v∈Bm1

‖τψv(Dju)−Dju‖Lp(ω)

∫
Bm1

ϕ(z) dz

= sup
v∈Bm1

‖τψv(Dju)−Dju‖Lp(ω),
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and for every i ∈ {1, . . . , j}, we also have( ∫
ω∩suppDψ

( ∫
Bm1

ϕ(z)|Diu(x+ ψ(x)z)|dz
)p

dx

) 1
p

≤
∫
Bm1

ϕ(z)

( ∫
ω∩suppDψ

|Diu(x+ ψ(x)z)|p dx

) 1
p

dz.

Using the change of variable y = x+ ψ(x)z with respect to the variable x, we deduce by
definition of A that( ∫

ω∩suppDψ

( ∫
Bm1

ϕ(z)|Diu(x+ ψ(x)z)|dz
)p

dx

) 1
p

≤
∫
Bm1

ϕ(z)

(
1

1− ‖Dψ‖L∞(ω)

∫
A

|Diu(y)|p dy

) 1
p

dz

=
1

(1− ‖Dψ‖L∞(ω))
1
p

‖Diu‖Lp(A).

This gives the desired estimate for u ∈ C∞(Ω;Rν). The case of functions in W k,p(Ω;Rν)
follows by density.

4 Thickening
Given a map u ∈ W k,p(Um;Rν) which behaves nicely near the skeleton U `, we would
like to construct a map u ◦ Φ that does not depend on the values of u away from the
skeleton U `. The price to pay is that the map u ◦ Φ will be singular on the dual skeleton
T `
∗
; these singularities will however be mild enough to allow u ◦ Φ to be in R`∗(Um;Rν)

and to satisfy W k,p estimates for kp < ` + 1. The thickening construction is related to
homogenization of functions on cubes that are used in the study of density problems for
k = 1 [3, 4, 28].

The precise meaning of dual skeleton we use is the following:

Definition 4.1. Given ` ∈ {0, . . . ,m−1} and the ` dimensional skeleton S` of a cubication
Sm, the dual skeleton T `∗ of S` is the skeleton of dimension `∗ = m− `− 1 composed
of all cubes of the form σ`

∗
+ x− a, where σ`

∗ ∈ S`∗ , a is the center and x the vertex of
a cube of Sm.

The integer `∗ gives the greatest dimension such that S` ∩ T `∗ = ∅.
The proposition below provides the main properties of the map Φ:

Proposition 4.1. Let ` ∈ {0, . . . ,m− 1}, η > 0, 0 < ρ < 1, Sm be a cubication of Rm
of radius η, Um be a subskeleton of Sm and T `∗ be the dual skeleton of U`. There exists a
smooth map Φ : Rm \ T `∗ → Rm such that
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(i) Φ is injective,

(ii) for every σm ∈ Sm, Φ(σm \ T `∗) ⊂ σm \ T `∗ ,

(iii) Supp Φ ⊂ Um +Qmρη and Φ(Um \ T `∗) ⊂ U ` +Qmρη ,

(iv) for every j ∈ N∗ and for every x ∈ Rm \ T `∗ ,

|DjΦ(x)| ≤ Cη(
dist(x, T `∗)

)j ,
for some constant C > 0 depending on j, m and ρ,

(v) for every 0 < β < `+ 1, for every j ∈ N∗ and for every x ∈ Rm \ T `∗ ,

ηj−1|DjΦ(x)| ≤ C ′
(
jac Φ(x)

) j
β ,

for some constant C ′ > 0 depending on β, j, m and ρ.

This proposition gives W k,p bounds on u ◦ Φ for every W k,p function u. The proposi-
tion and the corollary below will be applied in the proof of Theorem 2 with ` = bkpc.

Corollary 4.2. Let Φ : Rm\T `∗ → Rm be the map given by Proposition 4.1. If `+1 > kp,
then for every u ∈W k,p(Um +Qmρη;Rν), u ◦ Φ ∈W k,p(Um +Qmρη;Rν) and for every
j ∈ {1, . . . , k},

ηj‖Dj(u ◦ Φ)‖Lp(Um+Qmρη) ≤ C ′′
j∑
i=1

ηi‖Diu‖Lp(Um+Qmρη),

for some constant C ′′ > 0 depending on m, k, p and ρ.

Proof. We first establish the estimate for a map u in C∞(Um +Qmρη;Rν). By the chain
rule for higher-order derivatives, for every j ∈ {1, . . . , k} and for every x ∈ Um \ T `∗ ,

|Dj(u ◦ Φ)(x)|p ≤ C1

j∑
i=1

∑
1≤t1≤...≤ti
t1+···+ti=j

|Diu(Φ(x))|p|Dt1Φ(x)|p · · · |DtiΦ(x)|p.

Let 0 < β < ` + 1. If 1 ≤ t1 ≤ . . . ≤ ti and t1 + · · · + ti = j, then by property (v) of
Proposition 4.1,

|Dt1Φ(x)|p · · · |DtiΦ(x)|p ≤ C2

(
jac Φ(x)

) t1p
β

η(t1−1)p
· · ·
(
jac Φ(x)

) tip
β

η(ti−1)p
= C2

(
jac Φ(x)

) jp
β

η(j−i)p .

Since kp < `+ 1, we may take β = jp. Thus,

|Dt1Φ(x)|p · · · |DtiΦ(x)|p ≤ C2
jac Φ(x)

η(j−i)p
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and this implies

ηjp|Dj(u ◦ Φ)(x)|p ≤ C3

j∑
i=1

ηip|Diu(Φ(x))|p jac Φ(x).

Since Φ is injective and Supp Φ ⊂ Um+Qmρη , we have Φ
(
(Um+Qmρη)\T `∗

)
⊂ Um+Qmρη .

Thus, by the change of variable formula,∫
(Um+Qmρη)\T `∗

ηjp|Dj(u ◦ Φ)|p ≤ C3

j∑
i=1

∫
(Um+Qmρη)\T `∗

ηip|(Diu) ◦ Φ|p jac Φ

≤ C3

j∑
i=1

∫
Um+Qmρη

ηip|Diu|p

and u ◦ Φ ∈ W k,p((Um +Qmρη) \ T `∗ ;Rν). Since ` > 0, the dimension of the skeleton
T `
∗

is strictly less than m−1. Thus, u◦Φ ∈W k,p(Um+Qmρη;Rν). By density of smooth
maps in W k,p(Um +Qmρη;Rν), we deduce that for every u ∈W k,p(Um +Qmρη;Rν), the
function u ◦ Φ also belongs to this space and satisfies the estimate above.

We describe the construction of the map Φ given by Proposition 4.1 in the case of only
one ` dimensional cube:

Proposition 4.3. Let ` ∈ {1, . . . ,m}, η > 0, 0 < ρ < ρ < ρ < 1 and T = {0`}×Qm−`ρη .
There exists a smooth function λ : Rm \ T → [1,∞) such that if Φ : Rm \ T → Rm is
defined for x = (x′, x′′) ∈ (R` × Rm−`) \ T by

Φ(x) = (λ(x)x′, x′′),

then

(i) Φ is injective,

(ii) Supp Φ ⊂ Q`(1−ρ)η ×Q
m−`
ρη ,

(iii) Φ
(
(Q`(1−ρ)η ×Q

m−`
ρη ) \ T

)
⊂ (Q`(1−ρ)η \Q

`
(1−ρ)η)×Qm−`ρη ,

(iv) for every j ∈ N∗ and for every x = (x′, x′′) ∈ (Q`(1−ρ)η ×Q
m−`
ρη ) \ T ,

|DjΦ(x)| ≤ Cη

|x′|j
,

for some constant C > 0 depending on j, m, ρ, ρ and ρ,

(v) for every 0 < β < `, for every j ∈ N∗ and for every x ∈ (Q`(1−ρ)η ×Q
m−`
ρη ) \ T ,

ηj−1|DjΦ(x)| ≤ C ′
(
jac Φ(x)

) j
β ,

for some constant C ′ > 0 depending on β, j, m, ρ, ρ and ρ.



24 Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen

We temporarily admit Proposition 4.3 and we prove Proposition 4.1.

Proof of Proposition 4.1. We first introduce finite sequences (ρi)`≤i≤m and (τi)`≤i≤m
such that

0 < ρm < τm−1 < ρm−1 < . . . < ρ`+1 < τ` < ρ` = ρ.

For i = m, we take Φm = Id. Using downward induction, we shall define for every
i ∈ {`, . . . ,m− 1} smooth maps Φi : Rm \ T i∗ → Rm such that

(a) Φi is injective,

(b) for every σm ∈ Sm and for every r ∈ {i∗, . . . ,m− 1}, Φi(σ
m \ T r) ⊂ σm \ T r,

(c) Supp Φi ⊂ Um +Qmρiη ,

(d) Φi(U
m \ T i∗) ⊂ U i +Qmρiη ,

(e) for every x ∈ Rm \ T i∗ and for every r ∈ {i∗, . . . ,m− 2},

dist(Φi(x), T r) dist(x, T r+1) = dist(Φi(x), T r+1) dist(x, T r),

(f) for every j ∈ N∗ and for every x ∈ Rm \ T i∗ ,

|DjΦi(x)| ≤ Cη(
dist(x, T i∗)

)j ,
for some constant C > 0 depending on j, m and ρ,

(g) for every 0 < β < i+ 1, for every j ∈ N∗ and for every x ∈ Rm \ T i∗ ,

ηj−1|DjΦi(x)| ≤ C ′
(
jac Φi(x)

) j
β ,

for some constant C ′ > 0 depending on β, j, m and ρ.

The map Φ` will satisfy the conclusion of the proposition.

Let i ∈ {` + 1, . . . ,m} and let Θi be the map obtained from Proposition 4.3 with
parameters ρ = ρi, ρ = τi−1, ρ = ρi−1 and ` = i. Given σi ∈ U i, we may identify σi

with Qiη×{0m−i} and T (i−1)∗ ∩ (σi +Qmτi−1η) with {0i}×Qm−iτi−1η . The map Θi induces
by isometry a map which we shall denote by Θσi .

Let Ψi : Rm \ T (i−1)∗ → Rm be defined for every x ∈ Rm \ T (i−1)∗ by

Ψi(x) :=

{
Θσi(x) if x ∈ σi +Qmτi−1η for some σi ∈ U i,
x otherwise.

We first explain why Ψi is well-defined. Since Θσi coincides with the identity map on
∂σi + Qmτi−1η, then for every σi1, σ

i
2 ∈ U i, if x ∈ (σi1 + Qmτi−1η) ∩ (σi2 + Qmτi−1η) and

σi1 6= σi2, then
Θσi1

(x) = x = Θσi2
(x).
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One also verifies directly that Ψi is smooth on Rm \ T (i−1)∗ .
Assuming that Φi has been defined satisfying properties (a)–(g), we let

Φi−1 = Ψi ◦ Φi.

The map Φi−1 is well-defined on Rm \ T (i−1)∗ since Φi(Rm \ T (i−1)∗) ⊂ Rm \ T (i−1)∗ .
We now check that Φi−1 satisfies all required properties.

Proof of Property (a). The map Φi−1 is injective since Ψi and Φi are injective.

Proof of Property (b). For every r ∈ {(i− 1)∗, . . . ,m− 1} and for every σm ∈ Sm, we
have by induction hypothesis Φi(σ

m \ T r) ⊂ σm \ T r. Moreover, for any σm ∈ Sm and
any σ̃i ∈ U i, the formula of Θi implies that Θσ̃i(σ

m \ T r) ⊂ σm \ T r.

Proof of Property (c). By induction hypothesis Φi coincides with the identity map outside
Um +Qmρiη. By construction, Ψi coincides with the identity map outside Um +Qmτi−1η

(see Proposition 4.3, property (ii)). Since ρi < τi−1 < ρi−1, we deduce that Supp Φi−1 ⊂
Um +Qmρi−1η .

Proof of Property (d). By induction hypothesis (property (d))

Φi(U
m \ T i

∗
) ⊂ U i +Qmρiη

and (property (b))
Φi(Rm \ T (i−1)∗) ⊂ Rm \ T (i−1)∗ .

Since T (i−1)∗ ⊃ T i∗ , we have

Φi(U
m \ T (i−1)∗) ⊂ (U i +Qmρiη) \ T (i−1)∗ .

By construction of Θi (see Proposition 4.3, property (iii)), for every σi ∈ U i,

Θσi
(
(σi +Qmρiη) \ T (i−1)∗

)
⊂ ∂σi +Qmρi−1η.

Taking the union over all faces σi ∈ U i, we get

Ψi

(
(U i +Qmρiη) \ T (i−1)∗

)
⊂ U i−1 +Qmρi−1η.

Combining the information for Φi and Ψi, we obtain

Φi−1(Um \ T (i−1)∗) ⊂ U i−1 +Qmρi−1η.

Proof of Property (e). Let r ∈ {(i−1)∗, . . . ,m−2} and x ∈ Rm\T (i−1)∗ . If Φi−1(x) =
Φi(x), then the conclusion follows by induction. If Φi−1(x) 6= Φi(x), then there exists
σi ∈ U i such that Φi(x) ∈ σi + Qmτi−1η and Φi−1(x) = Θσi(Φi(x)). Since Φi(x) ∈
Supp Ψi,

Φi(x) ∈ (σi +Qmτi−1η) \ (∂σi +Qmτi−1η).
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Up to an isometry, we may assume that σi = Qiη × {0m−i}. For every 0 < λ < 1 and
for every y = (y′, y′′) ∈ Qi(1−λ)η ×Q

m−i
λη ,

dist(y, T r) = dist
(
(y′, 0), T r ∩ (Qi(1−λ)η × {0

m−i})
)
.

In view of the formula of Θi, we deduce that for every y ∈ (σi+Qmτi−1η)\(∂σi×Qmτi−1η),

dist(Θσi(y), T r) dist(y, T r+1) = dist
(
Θσi(y), T r+1) dist(y, T r

)
;

this identity is reminiscent of Thales’ intercept theorem from Euclidean geometry. By
induction hypothesis, we then get

dist(Φi−1(x), T r) dist(x, T r+1) = dist(Θσi(Φi(x)), T r) dist(x, T r+1)

= dist(Θσi(Φi(x)), T r+1) dist(x, T r)

= dist(Φi−1(x)), T r+1) dist(x, T r).

This gives the conclusion.

Proof of Property (f). Let x ∈ Rm \ T (i−1)∗ . If Ψi coincides with the identity map in a
neighborhood of Φi(x), then DjΦi−1(x) = DjΦi(x) and the conclusion follows from the
induction hypothesis and the fact that T (i−1)∗ ⊃ T i∗ .

If Ψi does not coincide with the identity map in a neighborhood of Φi(x), then there
exists σi ∈ U i such that

Φi(x) ∈ (σi +Qmτi−1η) \ (∂σi +Qmτi−1η)

and Φi−1(x) = Θσi(Φi(x)). By the chain rule for higher order derivatives,

|DjΦi−1(x)| ≤ C1

j∑
r=1

∑
1≤t1≤...≤tr
t1+···+tr=j

|DrΘσi(Φi(x))| |Dt1Φi(x)| · · · |DtrΦi(x)|.

By construction of Θi (see Proposition 4.3, property (iv)), we have for any y = (y′, y′′) ∈
(Qi(1−τi−1)η ×Q

m−i
τi−1η) \ ({0i} ×Qm−iτi−1η),

|DrΘi(y)| ≤ C2η

|y′|r
.

This implies

|DrΘσi(Φi(x))| ≤ C2η

(dist
(
Φi(x), T (i−1)∗)

)r .
By the induction hypothesis, for every 1 ≤ t1 ≤ . . . ≤ tr such that t1 + · · ·+ tr = j,

|Dt1Φi(x)| · · · |DtrΦi(x)|

≤ C3
η(

dist(x, T i∗)
)t1 · · · η(

dist(x, T i∗)
)tr = C3

ηr(
dist(x, T i∗)

)j .
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Thus,

|DjΦi−1(x)| ≤ C4

j∑
r=1

ηr+1(
dist(Φi(x), T (i−1)∗)

)r(
dist(x, T i∗)

)j .
We recall that by property (f),

dist(Φi(x), T (i−1)∗) dist(x, T i
∗
) = dist(x, T (i−1)∗) dist(Φi(x), T i

∗
).

Since Φi(x) ∈ (σi +Qmτi−1η) \ (∂σi +Qmτi−1η),

dist(Φi(x), T i
∗
) ≥ (1− τi−1)η ≥ (1− ρ)η.

Thus,(
dist(Φi(x), T (i−1)∗)

)r(
dist(x, T i

∗
)
)j

=
(

dist(x, T (i−1)∗) dist(Φi(x), T i
∗
)
)r(

dist(x, T i
∗
)
)j−r

≥
(

dist (x, T (i−1)∗)
)r(

(1− ρ)η)r
(

dist(x, T i
∗
)
)j−r

.

Since T i
∗ ⊂ T (i−1)∗ , we conclude that

|DjΦi−1(x)| ≤ C5
η(

dist(x, T (i−1)∗)
)j .

Proof of Property (g). Let j ∈ N∗ and let x ∈ Rm \ T (i−1)∗ . If Ψi coincides with
the identity map in a in a neighborhood of Φi(x), then DjΦi−1(x) = DjΦi(x) and
jac Φi−1(x) = jac Φi(x). The conclusion then follows from the induction hypothesis.

Assume that Ψi does not coincides with the identity map in a neighborhood of Φi(x).
Let 0 < β < i and r ∈ {0, . . . , j}. By induction hypothesis, if 1 ≤ t1 ≤ . . . ≤ tr and
t1 + · · ·+ tr = j, then

|Dt1Φi(x)| · · · |DtrΦi(x)| ≤ C1
(jac Φi(x))

t1
β

ηt1−1
· · · (jac Φi(x))

tr
β

ηtr−1
= C1

(jac Φi(x))
j
β

ηj−r
.

Let σi ∈ U i be such that

Φi(x) ∈ (σi +Qmτi−1η) \ (∂σi +Qmτi−1η)

and Φi−1(x) = Θσi ◦ Φi(x). By construction of Θi (see Proposition 4.3, property (v)),
we have for any y ∈ (Qi(1−τi−1)η ×Q

m−i
τi−1η) \ ({0i} ×Qm−iτi−1η),

ηr−1|DrΘi(y)| ≤ C2(jac Θi(y))
r
β r
j = C2(jac Θi(y))

j
β .

Thus,

|DrΘσi(Φi(x))| |Dt1Φi(x)| · · · |DtrΦi(x)| ≤ C3
(jac Θσi(Φi(x)))

j
β

ηr−1

(jac Φi(x))
j
β

ηj−r

=
C3

ηj−1

(
jac Φi−1(x)

) j
β .
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Therefore, by the chain rule for higher order derivatives,

|DjΦi−1(x)| ≤ C4

ηj−1

(
jac Φi−1(x)

) j
β .

This gives the conclusion.

By downward induction, we conclude that properties (a)–(g) hold for every i ∈
{`, . . . ,m}. In particular, Φ` satisfies properties (i)–(v) of Proposition 4.1.

We establish a couple of lemmas in order to prove Proposition 4.3:

Lemma 4.4. Let ` ∈ {1, . . . ,m}, let η > 0, let 0 < ρ < ρ < ρ < 1 and 0 < κ < 1− ρ.
There exists a smooth function λ : Rm → [1,∞) such that if Φ : Rm → Rm is defined for
x = (x′, x′′) ∈ R` × Rm−` by

Φ(x) = (λ(x)x′, x′′),

then

(i) Φ is a diffeomorphism,

(ii) Supp Φ ⊂ Q`(1−ρ)η ×Q
m−`
ρη ,

(iii) Φ
(
(Q`η \Q`κη)×Qm−`ρη

)
⊂ (Q`η \Q`(1−ρ)η)×Qm−`ρη ,

(iv) for every j ∈ N∗ and for every x ∈ Rm,

ηj−1|DjΦ(x)| ≤ C,

for some constant C > 0 depending on j, m, ρ, ρ, ρ and κ,

(v) for every j ∈ N∗ and for every x ∈ Rm,

C ′ ≤ jac Φ(x) ≤ C ′′,

for some constants C ′, C ′′ > 0 depending on m, ρ, ρ, ρ and κ.

Proof. By scaling, we may assume that η = 1. Let ψ : R→ [0, 1] be a smooth function
such that

− ψ is nonincreasing on R+ and nondecreasing on R−,

− for |t| ≤ 1− ρ, ψ(t) = 1,

− for |t| ≥ 1− ρ, ψ(t) = 0.

Let θ : R→ [0, 1] be a smooth function such that

− for |t| ≤ ρ, θ(t) = 1,

− for |t| ≥ ρ, θ(t) = 0.
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Let ϕ : Rm → R be the function defined for x = (x1, . . . , xm) ∈ Rm by

ϕ(x) =
∏̀
i=1

ψ(xi)
m∏

i=`+1

θ(xi).

Thus,

− for every x ∈ Rm \ (Q`1−ρ ×Qm−`ρ ), ϕ(x) = 0,

− for every x ∈ Q`1−ρ ×Qm−`ρ , ϕ(x) = 1.

We shall define the map Φ in terms of its inverse Ψ: let Ψ : Rm → Rm be the function
defined for x = (x′, x′′) ∈ R` × Rm−` by

Ψ(x) =
(
(1− αϕ(x))x′, x′′

)
,

where α ∈ R. In particular,

− for every x ∈ Rm \ (Q`1−ρ ×Qm−`ρ ), Ψ(x) = x,

− for every x = (x′, x′′) ∈ Q`1−ρ ×Qm−`ρ , Ψ(x) = ((1− α)x′, x′′).

In view of this second property, taking α = 1 − κ
1−ρ , we deduce that Ψ is a bijection

between Q`1−ρ ×Qm−`ρ and Q`κ ×Qm−`ρ .
We now prove that Ψ is injective. If x, y ∈ R` × Rm−` satisfy Ψ(x) = Ψ(y), then

y′′ = x′′ and y′ = tx′ for some t > 0. Since α ∈ (0, 1), the function

g : s ∈ [0,∞) 7−→ s(1− αϕ(sx′, x′′))

is the product of an increasing function with a nondecreasing positive function. Thus,
g is increasing, whence Ψ is injective. Since g(0) = 0 and lim

t→+∞
g(t) = +∞, by the

Intermediate value theorem, g([0,∞)) = [0,∞). Thus, Ψ is surjective. Therefore, the map
Ψ is a bijection.

We claim that for every x ∈ Rm,DΨ(x) is invertible. Indeed, for every x = (x′, x′′) ∈
R` × Rm−` and for every v = (v′, v′′) ∈ R` × Rm−`,

DΨ(x)[v] =
(
(1− αϕ(x))v′ − αDϕ(x)[v]x′, v′′

)
.

The Jacobian of Ψ can be computed as the determinant of a nilpotent perturbation of a
diagonal linear map to be

jac Ψ(x) = (1− αϕ(x))`−1
(
1− αϕ(x)− αDϕ(x)[(x′, 0)]

)
.

Since ψ is nonincreasing on R+ and nondecreasing on R−, Dϕ(x)[(x′, 0)] ≤ 0. Thus,

jac Ψ(x) ≥ (1− αϕ(x))` ≥ (1− α)` > 0.

The map Φ = Ψ−1 satisfies all the desired properties.
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Lemma 4.5. Let ` ∈ {1, . . . ,m}, η > 0, 0 < ρ < ρ < ρ < 1 and T = {0`} × Qm−`ρη .
There exists a smooth function λ : Rm \ T → [1,∞) such that if Φ : Rm \ T → Rm is
defined for x = (x′, x′′) ∈ (R` × Rm−`) \ T by

Φ(x) = (λ(x)x′, x′′),

then

(i) Φ is injective,

(ii) Supp Φ ⊂ B`(1−ρ)η ×Q
m−`
ρη ,

(iii) Φ
(
(B`(1−ρ)η ×Q

m−`
ρη ) \ T

)
⊂ (B`(1−ρ)η \B

`
(1−ρ)η)×Qm−`ρη ,

(iv) for every j ∈ N∗ and for every x = (x′, x′′) ∈ (B`(1−ρ)η ×Q
m−`
ρη ) \ T ,

|DjΦ(x)| ≤ Cη

|x′|j
,

for some constant C > 0 depending on j, m, ρ, ρ and ρ,

(v) for every 0 < β < `, for every j ∈ N∗ and for every x ∈ Rm \ T ,

ηj−1|DjΦ(x)| ≤ C ′
(
jac Φ(x)

) j
β ,

for some constant C ′ > 0 depending on β, j, m, ρ, ρ and ρ.

Proof. By scaling, we may assume that η = 1. Given b > 0, let ϕ : (0,∞)→ [1,∞) be a
smooth function such that

− for 0 < s ≤ 1− ρ, ϕ(s) =
1− ρ
s

(
1 + b

ln 1
s

)
,

− for s ≥ 1− ρ, ϕ(s) = 1,

− the function s ∈ (0,∞) 7→ sϕ(s) is increasing.

This is possible for any b > 0 such that

(1− ρ)
(

1 +
b

ln 1
1−ρ

)
< 1− ρ.

Let θ : Rm−` → [0, 1] be a smooth function such that

− for y ∈ Qm−`ρ , θ(y) = 0,

− for y ∈ Rm−` \Qm−`ρ , θ(y) = 1.
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We now introduce for x = (x′, x′′) ∈ R` × Rm−`,

ζ(x) =

√
|x′|2 + θ

(
x′′
)2
.

Let λ : Rm \ T → R be the function defined for x = (x′, x′′) ∈ Rm \ T by

λ(x) = ϕ(ζ(x)).

Since ζ 6= 0 in Rm \ T , the function λ is well-defined and smooth. In addition, λ ≥ 1.
We now check that the map Φ defined in the statement satisfies all the required

properties.

Proof of Property (i). In order to check that Φ is injective, we first observe that if x =
(x′, x′′), y = (y′, y′′) ∈ B`1 × Qm−`ρ and Φ(x) = Φ(y), then x′′ = y′′, and there exists
t > 0 such that y′ = tx′. The conclusion follows from the fact that the function

h : s ∈ [0,∞) 7−→ sϕ
(√

s2 + θ(x′′)2
)

is increasing.

Proof of Property (ii). For every x = (x′, x′′) ∈ (R` × Rm−`) \ T , if x′ 6∈ B`1−ρ or if
x′′ 6∈ Qm−`ρ , then ζ(x) ≥ 1− ρ. Thus, λ(x) = ϕ(ζ(x)) = 1 and Φ(x) = x. We then have
Supp Φ ⊂ B`1−ρ ×Qm−`ρ .

Proof of Property (iii). We first observe that since the function s ∈ (0,∞) 7→ sϕ(s) is
increasing and lim

s→0
sϕ(s) = 1− ρ, for every s > 0,

sϕ(s) ≥ 1− ρ.

Since for every x = (x′, x′′) ∈ (B`1−ρ×Qm−`ρ ) \ T , we have ζ(x) = |x′|, we deduce that

|λ(x)x′| = ϕ(|x′|)|x′| ≥ 1− ρ.

On the other hand, since the function h defined above is increasing,

|λ(x)x′| = h(|x′|) ≤ h(1− ρ) = 1− ρ.

We conclude that λ(x)x′ ∈ B`1−ρ \B`1−ρ.

Proof of Property (iv). By the chain rule,

|Djλ(x)| ≤ C1

j∑
i=1

∑
1≤t1≤...≤ti
t1+···+ti=j

|ϕ(i)(ζ(x))| |Dt1ζ(x)| · · · |Dtiζ(x)|.

For every i ∈ N∗ and for every s > 0,

|ϕ(i)(s)| ≤ C2

si+1
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and for every x ∈ (B`1 × Rm−`) \ T ,

|Diζ(x)| ≤ C3

ζ(x)i−1
.

Thus, for every 1 ≤ t1 ≤ . . . ≤ ti such that t1 + · · ·+ ti = j,

|Dt1ζ(x)| · · · |Dtiζ(x)| ≤ C4

ζ(x)t1−1 · · · ζ(x)ti−1
=

C4

ζ(x)j−i
.

By the chain rule,

|Djλ(x)| ≤ C5

j∑
i=1

1

ζ(x)i+1

1

ζ(x)j−i
=

C5j

ζ(x)j+1
.

Hence, by the Leibniz rule, for any x ∈ (B`1 × Rm−`) \ T ,

|DjΦ(x)| ≤ C6

ζ(x)j
. (4.1)

Since ζ(x) ≥ |x′|, the conclusion follows.

Proof of Property (v). For every x = (x′, x′′) ∈ (R` × Rm−`) \ T and v = (v′, v′′) ∈
R` × Rm−`,

DΦ(x)[v] =
(
ϕ
(
ζ(x)

)
v′ + ϕ(1)

(
ζ(x)

)x′ · v′ + θ(x′′)Dθ(x′′)[v′′]

ζ(x)
x′, v′′

)
.

The Jacobian can be computed as the determinant of a nilpotent perturbation of a diagonal
linear map to be

jac Φ(x) = ϕ(ζ(x))`−1
(
ϕ(ζ(x)) + ϕ(1)(ζ(x))

|x′|2

ζ(x)

)
= ϕ(ζ(x))`−1

(
ϕ(ζ(x))

(
1− |x

′|2

ζ(x)2

)
+
(
ϕ(1)(ζ(x))ζ(x) + ϕ(ζ(x))

) |x′|2
ζ(x)2

)
.

Since for every s > 0,

sϕ(1)(s) + ϕ(s) = (sϕ(s))(1) ≥ 0

and since there exists c1 > 0 such that for every s > 0,

ϕ(s) ≥ c1
s
,

we have

jac Φ(x) ≥ ϕ(ζ(x))`
(

1− |x
′|2

ζ(x)2

)
≥ c2
ζ(x)`

(
1− |x

′|2

ζ(x)2

)
.
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If |x′| ≤ θ(x′′), then ζ(x) ≥
√

2|x′| and we get

jac Φ(x) ≥ c3
ζ(x)`

.

On the other hand, by direct inspection, for every α < 1, there exists a constant c4 > 0
depending on α such that for every s > 0,

sϕ(1)(s) + ϕ(s) ≥ c4
sα
.

Thus,

jac Φ(x) ≥ ϕ(ζ(x))`−1
(
ϕ(1)(ζ(x))ζ(x) + ϕ(ζ(x))

) |x′|2
ζ(x)2

≥ c5
ζ(x)`−1+α

|x′|2

ζ(x)2
.

If |x′| > θ(x′′), then ζ(x) ≤
√

2|x′| and we get

jac Φ(x) ≥ c6
ζ(x)`−1+α

.

In both cases, we deduce that for every β < ` and for every x ∈ Rm \ T ,

jac Φ(x) ≥ c7
ζ(x)β

.

Thus, by estimate (4.1) in the proof of property (iv) above, when x ∈ (B`1−ρ×Qm−`ρ )\T ,

|DjΦ(x)| ≤ C5

ζ(x)j
≤ C5

(c7)
j
β

(jac Φ(x))
j
β .

The proof of Lemma 4.5 is complete.

Proof of Proposition 4.3. Define Φ to be the composition of the map Φ1 given by Lemma 4.4
with any parameter κ ≤ 1−ρ√

`
together with the map Φ2 given by Lemma 4.5; more precisely,

Φ = Φ1 ◦ Φ2. By composition, the map Φ is injective and Supp Φ ⊂ Q`(1−ρ)η ×Q
m−`
ρη .

Moreover, the choice of κ implies that Q`κη ⊂ B`(1−ρ)η . Hence,

Φ
(
(Q`(1−ρ)η ×Q

m−`
ρη ) \ T

)
⊂ (Q`(1−ρ)η \Q

`
(1−ρ)η)×Qm−lρη .

By the chain rule for higher order derivatives and by the estimate of the derivatives of Φ1

(Lemma 4.4, see property (iv)),

|DjΦ(x)| ≤ C1

j∑
i=1

∑
1≤t1≤...≤ti
t1+···+ti=j

|DiΦ1(Φ2(x))| |Dt1Φ2(x)| · · · |DtiΦ2(x)|

≤ C2

j∑
i=1

∑
1≤t1≤...≤ti
t1+···+ti=j

|Dt1Φ2(x)| · · · |DtiΦ2(x)|
ηi−1

.

The estimate for DjΦ is a consequence of the estimates of the derivatives of Φ2 (see
Lemma 4.5, property (iv)). The estimate for jac Φ is a consequence of the estimate for
jac Φ2 given by property (v) of Lemma 4.5 and the lower bound for jac Φ1 given by
property (v) of Lemma 4.4.
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5 Density of the class Rm−bkpc−1(Q
m;Nn)

In this section, we prove that the class Rm−bkpc−1(Qm;Nn) is dense in W k,p(Qm;Nn)
regardless of the topology of the manifold Nn.

Theorem 3. If kp < m, then Rm−bkpc−1(Qm;Nn) is strongly dense in W k,p(Qm;Nn).

This result implies the if part of Theorem 2.

Proof of Theorem 3. First observe that if u ∈W k,p(Qm;Nn), then the restrictions to Qm

of the maps uγ ∈W k,p(Qm1+2γ ;Nn) defined for x ∈ Qm1+2γ by uγ(x) = u(x/(1 + 2γ))

converge strongly to u in W k,p(Qm;Nn) when γ tends to 0. We can thus assume from
the beginning that u ∈W k,p(Qm1+2γ ;Nn). We apply successively the opening, smoothing
and thickening constructions to this map u.

We divide the proof in four parts:

Part 1. Construction of a map uth
η ∈W k,p(Qm1+γ ;Rν) ∩ C∞(Qm1+γ \ T `

∗

η ;Rν) such that
for every j ∈ {1, . . . , k},

ηj‖Djuth
η −Dju‖Lp(Qm1+γ)

≤ sup
v∈Bm1

ηj‖τψηv(Dju)−Dju‖Lp(Qm1+γ) + C

j∑
i=1

ηi‖Diu‖Lp(Umη +Qm2ρη),

where Umη is a subskeleton of Qm1+γ and T `∗η is the dual skeleton of U`η .

Using the terminology presented in the Introduction, the subskeleton Umη will be
chosen to be the set of all bad cubes together with the set of good cubes which intersect
some bad cube. The precise choice of Umη will be made in Part 2.

Let Kmη be a cubication of Qm1+γ of radius 0 < η ≤ γ and let Umη be a subskeleton of
Kmη . Let 0 < ρ < 1

2 ; thus,
2ρη ≤ γ.

Given ` ∈ {0, . . . ,m− 1}, we begin by opening the map u in a neighborhood of U `η . More
precisely, let Φop : Rm → Rm be the smooth map given by Proposition 2.1 and consider
the map

uop
η = u ◦ Φop.

In particular, uop
η ∈ W k,p(Qm1+2γ ;Nn) and uop

η = u in the complement of U `η + Qm2ρη.
For every j ∈ {1, . . . , k},

ηj‖Djuop
η −Dju‖Lp(Qm1+2γ) = ηj‖Djuop

η −Dju‖Lp(U`η+Qm2ρη)

≤ ηj‖Djuop
η ‖Lp(U`η+Qm2ρη) + ηj‖Dju‖Lp(U`η+Qm2ρη)

≤ C1

j∑
i=1

ηi‖Diu‖Lp(U`η+Qm2ρη).

(5.1)
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We next consider a smooth function ψη ∈ C∞(Qm1+2γ) such that

0 < ψη ≤ ρη.

Given a mollifier ϕ ∈ C∞c (Bm1 ), let for every x ∈ Qm1+γ+ρη ,

usm
η (x) = (ϕψη(x) ∗ uop

η )(x).

Since 0 < ψη ≤ ρη, the map usm
η : Qm1+γ+ρη → Rν is well-defined and smooth. If

‖Dψη‖L∞(Qm1+2γ) ≤ β

for some β < 1 and if for every i ∈ {2, . . . , k},

ηi‖Diψη‖L∞(Qm1+2γ) ≤ η,

then by Proposition 3.2 with ω = Qm1+γ , we have for every j ∈ {1, . . . , k},

ηj‖Djusm
η −Djuop

η ‖Lp(Qm1+γ)

≤ sup
v∈Bm1

ηj‖τψηv(Djuop
η )−Djuop

η ‖Lp(Qm1+γ) + C2

j∑
i=1

ηi‖Diuop
η ‖Lp(A),

where A =
⋃

x∈Qm1+γ∩suppDψη

Bmψη(x)(x). For every v ∈ Bm1 ,

ηj‖τψηv(Djuop
η )−Djuop

η ‖Lp(Qm1+γ)

≤ ηj‖τψηv(Djuop
η )− τψηv(Dju)‖Lp(Qm1+γ)

+ ηj‖τψηv(Dju)−Dju‖Lp(Qm1+γ) + ηj‖Djuop
η −Dju‖Lp(Qm1+γ)

and, by the change of variable formula,

‖τψηv(Djuop
η )− τψηv(Dju)‖Lp(Qm1+γ) ≤ C3‖Djuop

η −Dju‖Lp(Qm1+2γ).

If we further assume that
suppDψη ⊂ Umη ,

then since ψη ≤ ρη, we have A ⊂ Umη +Qmρη . By Proposition 2.1, we then have

j∑
i=1

ηi‖Diuop
η ‖Lp(A) ≤

j∑
i=1

ηi‖Diuop
η ‖Lp(Umη +Qmρη) ≤ C4

j∑
i=1

ηi‖Diu‖Lp(Umη +Qm2ρη).

Thus, for every j ∈ {1, . . . , k},

ηj‖Djusm
η −Djuop

η ‖Lp(Qm1+γ)

≤ sup
v∈Bm1

ηj‖τψηv(Dju)−Dju‖Lp(Qm1+γ) + C5

j∑
i=1

ηi‖Diu‖Lp(Umη +Qm2ρη). (5.2)
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Given 0 < ρ < ρ, we apply thickening to the map usm
η in a neighborhood of U `η of size

ρη. More precisely, denote by Φth : Rm → Rm the smooth map given by Proposition 4.1
with the parameter ρ and let

uth
η = usm

η ◦ Φth.

Then, uth
η = usm

η in the complement of Umη +Qmρη . Assuming in addition that

`+ 1 > kp,

then by Corollary 4.2, uth
η ∈W k,p(Km

η ;Rν) and for every j ∈ {1, . . . , k},

ηj‖Djuth
η −Djusm

η ‖Lp(Km
η ) ≤ ηj‖Djuth

η −Djusm
η ‖Lp(Umη +Qmρη)

≤ ηj‖Djuth
η ‖Lp(Umη +Qmρη) + ηj‖Djusm

η ‖Lp(Umη +Qmρη)

≤ C6

j∑
i=1

ηi‖Diusm
η ‖Lp(Umη +Qmρη).

Thus, by Proposition 3.2 and by Proposition 2.1,

ηj‖Djuth
η −Djusm

η ‖Lp(Km
η ) ≤ C7

j∑
i=1

ηi‖Diuop
η ‖Lp(Umη +Qm

(ρ+ρ)η
)

≤ C8

j∑
i=1

ηi‖Diu‖Lp(Umη +Qm2ρη).

(5.3)

By the triangle inequality, we deduce from (5.1), (5.2) and (5.3) that for every j ∈
{1, . . . , k},

ηj‖Djuth
η −Dju‖Lp(Km

η )

≤ sup
v∈Bm1

ηj‖τψηv(Dju)−Dju‖Lp(Qm1+γ) + C

j∑
i=1

ηi‖Diu‖Lp(Umη +Qm2ρη).

This gives the estimate we claimed since Km
η = Qm1+γ . We observe that uth

η is smooth
except on (Umη +Qmρη)∩T `∗η where T `

∗

η is the dual skeleton corresponding to the cubication
Kmη .

The map uth
η need not have its values on the manifold Nn, so we need to estimate the

distance between the image of uth
η and Nn.

Part 2. The directed Hausdorff distance from the image of the map uth
η to the manifold

Nn satisfies the estimate

DistNn (uth
η (Km

η \ T `
∗

η )) ≤ max

{
max

σm∈Kmη \Emη

C ′

η
m
kp−1

‖Du‖Lkp(σm+Qm2ρη),

sup
x∈U`η+Qmρη

C ′′

|Qms |2

∫
Qms (x)

∫
Qms (x)

|uop
η (y)− uop

η (z)|dy dz

}
,
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where the directed Hausdorff distance from a set S ⊂ Rν to Nn is

DistNn (S) = sup
{

dist (x,Nn) : x ∈ S
}
,

Emη is a subskeleton of Umη , and 0 < s < η.
The subskeleton Emη will be chosen at the end of Part 2 as the set of bad cubes and

Kmη \ Emη will be the set of good cubes. This estimate implies that for every η > 0

sufficiently small, the image of uth
η is contained in a small tubular neighborhood of Nn.

We first observe that by Proposition 4.1 (ii), Φth(Km
η \ (T `

∗ ∪ Umη )) ⊂ Km
η \ Umη

while by Proposition 4.1 (iii), Φth(Umη \ T `
∗
) ⊂ U `η +Qmρη . Hence,

Φth(Km
η \ T `

∗

η ) ⊂ (Km
η \ Umη ) ∪ (U `η +Qmρη).

In terms of the directed Hausdorff distance we have

DistNn (uth
η (Km

η \ T `
∗

η )) ≤ DistNn
((
usm
η

(
(Km

η \ Umη ) ∪ (U `η +Qmρη)
))
.

Since the image of the map uop
η obtained by opening u is contained inNn (see Lemma 2.3),

for every x ∈ Km
η we have

dist (usm
η (x), Nn) ≤ 1

|Qmψη(x)|

∫
Qm
ψη(x)

(x)

|usm
η (x)− uop

η (z)|dz.

On the other hand, since usm
η is the convolution of uop

η with a mollifier,

|usm
η (x)− uop

η (z)| ≤ 1

ψη(x)m

∫
Bm
ψη(x)

(x)

ϕ
( x− y
ψη(x)

)
|uop
η (y)− uop

η (z)|dy

≤ C1

|Qmψη(x)|

∫
Qm
ψη(x)

(x)

|uop
η (y)− uop

η (z)|dy.

Thus,

dist (usm
η (x), Nn) ≤ C1

|Qmψη(x)|2

∫
Qm
ψη(x)

(x)

∫
Qm
ψη(x)

(x)

|uop
η (y)− uop

η (z)|dy dz. (5.4)

Since Nn is a compact subset of Rν , u is bounded. By the Gagliardo-Nirenberg
interpolation inequality (see [19, 44]), Du ∈ Lkp(Qm1+2γ). By the Poincaré-Wirtinger
inequality,

1

|Qmψη(x)|2

∫
Qm
ψη(x)

(x)

∫
Qm
ψη(x)

(x)

|uop
η (y)− uop

η (z)|dy dz

≤ C2

ψη(x)
m
kp−1

‖Duop
η ‖Lkp(Qm

ψη(x)
(x)).
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Since ψη ≤ ρη, if σm ∈ Kmη is such that x ∈ σm, then Qmψη(x)(x) ⊂ σm +Qmρη . Hence,

dist (usm
η (x), Nn) ≤ C3

ψη(x)
m
kp−1

‖Duop
η ‖Lkp(Qm

ψη(x)
(x))

≤ C3

ψη(x)
m
kp−1

‖Duop
η ‖Lkp(σm+Qmρη).

Thus, by Addendum 1 to Proposition 2.1,

dist (usm
η (x), Nn) ≤ C4

ψη(x)
m
kp−1

‖Du‖Lkp(σm+Qm2ρη).

We rewrite this estimate for every x ∈ Km
η as

dist (usm
η (x), Nn) ≤

( η

ψη(x)

) m
kp−1 C4

η
m
kp−1

‖Du‖Lkp(σm+Qm2ρη). (5.5)

If x ∈ (U `η +Qmρη) ∩ Umη , then x ∈ σm for some cube σm ∈ Umη . If

ψη(x) ≤ (ρ− ρ)η,

then Qmψη(x)(x) ⊂ U `η +Qmρη . By Addendum 2 to Proposition 2.1, we have

1

|Qmψη(x)|2

∫
Qm
ψη(x)

(x)

∫
Qm
ψη(x)

(x)

|uop
η (y)− uop

η (z)|dy dz

≤ (ψη(x))1− `
kp

C5

η
m−`
kp

‖Du‖Lkp(σm+Qm2ρη).

Therefore,

dist (usm
η (x), Nn) ≤ (ψη(x))1− `

kp
C5

η
m−`
kp

‖Du‖Lkp(σm+Qm2ρη).

We rewrite this estimate for every x ∈ (U `η +Qmρη) ∩ Umη as

dist (usm
η (x), Nn) ≤

(ψη(x)

η

)1− `
kp C5

η
m
kp−1

‖Du‖Lkp(σm+Qm2ρη). (5.6)

We now describe the function ψη that we shall take. Given two parameters 0 < s < t
and given a function ζ ∈ C∞(Qm1+2γ), we define

ψη = tζ + s(1− ζ).

More precisely, let Emη be a subskeleton of Umη such that

Emη ⊂ intUmη

in the relative topology of Qm1+γ . Since dist (Emη ,K
m
η \ Umη ) ≥ η, we take a function

ζ ∈ C∞(Km
η ) such that
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(i) 0 ≤ ζ ≤ 1 in Km
η ,

(ii) ζ = 1 in Km
η \ Umη ,

(iii) ζ = 0 in Emη ,

(iv) for every j ∈ {1, . . . , k}, ηj‖Djζ‖L∞ ≤ C̃, for some constant C̃ > 0 depending
only on m.

Thus, suppDψη ⊂ Umη and
ηj‖Djψη‖L∞ ≤ C̃t.

In order to apply Proposition 3.2 and to have ψη ≤ (ρ− ρ)η, we choose

t = min
{ κ
C̃
, ρ− ρ

}
η,

for some fixed number 0 < κ < 1.
Since ψη = t in Km

η \ Umη and t ≥ cη for some constant c > 0 independent of η, we
have from (5.5),

DistNn
(
usm
η (Km

η \ Umη )
)
≤ max
σm∈Kmη \Umη

C6

η
m
kp−1

‖Du‖Lkp(σm+Qm2ρη).

Since ψη = s in Emη , we have from (5.4),

DistNn
(
usm
η

(
(U `η +Qmρη) ∩ Emη

))
≤ sup
x∈U`η+Qmρη

C1

|Qms |2

∫
Qms (x)

∫
Qms (x)

|uop
η (y)− uop

η (z)|dy dz.

Finally, if
` ≤ kp,

then by (5.6) and by the estimate ψη(x) ≤ t = C7η, we get

DistNn
(
usm
η

(
(U `η +Qmρη) ∩ (Umη \ Emη

))
≤ max
σm∈Umη \Emη

C8

η
m
kp−1

‖Du‖Lkp(σm+Qm2ρη).

Since we have already required that `+ 1 > kp, we are thus led to take

` = bkpc.

We deduce that

DistNn (uth
η (Km

η \ T `
∗

η )) ≤ max

{
max

σm∈Kmη \Emη

C ′

η
m
kp−1

‖Du‖Lkp(σm+Qm2ρη),

sup
x∈U`η+Qmρη

C ′′

|Qms |2

∫
Qms (x)

∫
Qms (x)

|uop
η (y)− uop

η (z)|dy dz

}
.
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This gives the estimate we claimed.
The nearest point projection Π onto Nn is well-defined and smooth on a tubular

neighborhood of Nn of radius ι > 0. We now choose the subskeleton Emη used in the
definition of ζ and ψη as the set of cubes σm ∈ Kmη such that

C ′

η
m
kp−1

‖Du‖Lkp(σm+Qm2ρη) > ι.

Thus,

max
σm∈Kmη \Emη

C ′

η
m
kp−1

‖Du‖Lkp(σm+Qm2ρη) ≤ ι.

We then take the subskeleton Umη used in the constructions of opening and thickening
as the the set of cubes σm ∈ Kmη which intersect some cube in Emη ; in particular intEmη ⊂
Umη in the relative topology of Qm1+γ .

In view of the uniform limit of Addendum 2 to Proposition 2.1, since ` ≤ kp, for every
s > 0 small enough,

sup
x∈U`η+Qmρη

C ′′

|Qms |2

∫
Qms (x)

∫
Qms (x)

|uop
η (y)− uop

η (z)|dy dz ≤ ι.

We conclude that uth
η (Km

η \ T `
∗

η ) is contained in a tubular neighborhood of Nn of radius
ι.

Part 3. The maps Π ◦ uth
η converge to u in W k,p(Qm1 ;Nn) as η tends to 0.

Using the estimate from Part 1, we show that for every j ∈ {1, . . . , k},

lim
η→0
‖Djuth

η −Dju‖Lp(Qm1+γ) = 0.

By continuity of the translation operator in Lp (see the remark following Proposition 3.1),

lim
η→0

sup
v∈Bm1

‖τψηv(Dju)−Dju‖Lp(Qm1+γ) = 0. (5.7)

We now need to show that

lim
η→0

j∑
i=1

ηi−j‖Diu‖Lp(Umη +Qm2ρη) = 0.

By the Gagliardo-Nirenberg interpolation inequality, for every i ∈ {1, . . . , k − 1}, Diu ∈
L
kp
i (Qm1+2γ). By Hölder’s inequality, for every i ∈ {1, . . . , k} we have

ηi−j‖Diu‖Lp(Umη +Qm2ρη) ≤ ηi−j |Umη +Qm2ρη|
k−i
kp ‖Diu‖

L
kp
i (Umη +Qm2ρη)

= ηk−j
( |Umη +Qm2ρη|

ηkp

) k−i
kp

‖Diu‖
L
kp
i (Umη +Qm2ρη)

.
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From this estimate, we need that |Umη + Qm2ρη| = O(ηkp) as η → 0. We observe that
|Umη +Qm2ρη| satisfies the following estimate in terms of the number of elements #Umη of
the subskeleton Umη ,∣∣Umη +Qm2ρη

∣∣ ≤ 2m(η + 2ρη)m(#Umη ) = C1η
m(#Umη ).

Note that for every cube σm ∈ Umη , if τm ∈ Emη intersects σm, then τm + Qm2ρη ⊂
σm+Qm2(1+ρ)η . Denoting σm byQmη (a), we have τm+Qm2ρη ⊂ Qmαη(a),whereα = 3+2ρ,
whence

τm +Qm2ρη ⊂ Qmαη(a) ∩Qm1+2γ .

By the definition of Emη ,

ι <
C ′

η
m
kp−1

‖Du‖Lkp(τm+Qm2ρη) ≤
C ′

η
m
kp−1

‖Du‖Lkp(Qmαη(a)∩Qm1+2γ).

Thus, for every Qmη (a) ∈ Umη ,

1 <
C2

ηm−kp

∫
Qmαη(a)∩Qm1+2γ

|Du|kp.

Since the cubesQmαη(a) intersect each other finitely many times and the number of overlaps
only depend on α and on the dimension m,

#Umη ≤
C2

ηm−kp

∑
Qmη (a)∈Umη

∫
Qmαη(a)∩Qm1+2γ

|Du|kp ≤ C3

ηm−kp

∫
Qm1+2γ

|Du|kp.

We deduce that∣∣Umη +Qm2ρη
∣∣ ≤ C4η

m 1

ηm−kp

∫
Qm1+2γ

|Du|kp = C4η
kp

∫
Qm1+2γ

|Du|kp.

This means that

lim sup
η→0

∣∣Umη +Qm2ρη
∣∣

ηkp
<∞.

Hence, by Lebesgue’s dominated convergence theorem,

lim
η→0
‖Diu‖

L
kp
i (Umη +Qm2ρη)

= 0.

In view of (5.7) and the estimate from Part 1, we have lim
η→0
‖Djuth

η −Dju‖Lp(Qm1+γ) = 0.

Recall that uth
η = usm

η in the complement of Umη +Qmρη. Since usm
η → u in measure

and |Umη +Qmρη| → 0 as η → 0, uth
η → u in measure as η → 0. Hence, uth

η converges to
u in Lp(Qm1+γ) and

lim
η→0
‖uth

η − u‖Wk,p(Qm1+γ) = 0.
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Therefore,
lim
η→0
‖Π ◦ uth

η − u‖Wk,p(Qm1+γ) = 0.

This gives the conclusion of this part.
Part 4. The map Π ◦ uth

η belongs to the class R`∗(Qm;Nn).

It suffices to prove the pointwise estimates of Dj(Π ◦ uth
η ). Since Π ◦ uth

η = (Π ◦
usm
η ) ◦ Φth and the map Π ◦ usm

η is smooth in Km
η , by the chain rule for higher order

derivatives,

|Dj(Π ◦ uth
η )| ≤ C5

j∑
i=1

∑
1≤α1≤...≤αi
α1+···+αi=j

|Di(Π ◦ usm
η )||Dα1Φth| · · · |DαiΦth|

≤ C6

j∑
i=1

∑
1≤α1≤...≤αi
α1+···+αi=j

|Dα1Φth| · · · |DαiΦth|.

By Proposition 4.1 (iv), we have for x ∈ Km
η \ T `

∗

η ,

|Dj(Π ◦ uth
η )(x)| ≤ C7

j∑
i=1

∑
1≤α1≤...≤αi
α1+···+αi=j

η(
dist (x, T `∗η )

)α1
· · · η(

dist (x, T `∗η )
)αi

≤ C8(
dist (x, T `∗η )

)j .
This concludes the proof of the theorem.

6 Proof of Theorem 2
Let kp < m. It is a consequence of Theorem 3 that Rm−bkpc−1(Qm;Nn) is dense in
W k,p(Qm;Nn). In this section, we prove that if πbkpc(Nn) 6' {0} and if i ∈ {0, . . . ,m−
1} is such that

(a) Ri(Q
m;Nn) ⊂W k,p(Qm;Nn),

(b) Ri(Q
m;Nn) is dense in W k,p(Qm;Nn),

then i = m− bkpc − 1.

We first prove that i < m− bkpc. For this purpose, let γ : R→ Nn be a geodesic in
Nn. Given i ≥ m−bkpc, the map u : Q

m → Nn defined for x = (x′, x′′) ∈ Qm−i×Qi

by
u(x) = γ

(
log |x′|

)
belongs to Ri(Qm;Nn). Taking γ parametrized by arc-length, we have

|Du(x)| = 1

|x′|
.
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Since i ≥ m − bkpc, it follows that Du 6∈ Lbkpc(Qm). By the Gagliardo-Nirenberg
interpolation inequality, we deduce that Ri(Qm;Nn) 6⊂W k,p(Qm;Nn).

We now prove that i > m − bkpc − 2. Given a smooth map ϕ : Sbkpc → Nn, we

define u : Q
m → Nn for x = (x′, x′′) ∈ Qbkpc+1 ×Qm−bkpc−1

by

u(x) = ϕ
( x′
|x′|

)
.

Then, u ∈ W k,p(Qm;Nn). Given i ∈ {0, . . . ,m− bkpc − 2}, assume by contradiction
that there exists a sequence (uj)j∈N in Ri(Qm;Nn) converging to u in W k,p(Qm;Nn).
Passing to a subsequence if necessary, for almost every x′′ ∈ Qm−bkpc−1 and for al-
most every ρ ∈ (0, 1), the sequence (uj |Sbkpcρ ×{x′′})j∈N converges to u|Sbkpcρ ×{x′′} in

W k,p(Sbkpcρ ;Nn), whence in BMO(Sbkpcρ ;Nn).
For every j ∈ N, denote by Tj a finite union of i dimensional planes such that

uj ∈ C∞(Q
m\Tj ;Nn). Since i ≤ m−bkpc−2, for every (x′′, ρ) ∈ Qm−bkpc−1×(0, 1)

such that Sbkpcρ × {x′′} ⊂ Q
m \ Tj , there exist a ∈ Q

m \ Tj and a continuous map
h : [0, 1]× (Sbkpcρ ×{x′′})→ Q

m \Tj such that for every y ∈ Sbkpcρ ×{x′′}, h(0, y) = y
and h(1, y) = a. This implies that uj |Sbkpcρ ×{x′′} is homotopic to a constant.

We recall that homotopy classes are preserved under BMO convergence:

Claim. Let (vj)j∈N be a sequence inC0(Sbkpc;Nn) which converges to v ∈ C0(Sbkpc;Nn)
in BMO(Sbkpc;Nn). Then, for every j ∈ N sufficiently large, vj is homotopic to v in
C0(Sbkpc;Nn).

This claim is essentially [13, Lemma A.19] but we present a proof for the convenience
of the reader.

Proof of the Claim. For every ε > 0, we consider the map vε : Sbkpc → Nn defined for
x ∈ Sbkpc by

vε(x) =
1

|Dbkpcε (x)|

∫
D
bkpc
ε (x)

v

where Dbkpcε (x) = Sbkpc ∩Qbkpc+1
ε (x). Accordingly, for every j ∈ N we define vj,ε, with

v replaced by vj .
The nearest point projection Π is well-defined and smooth on a tubular neighborhood

of Nn of radius ι > 0. Since vε converges uniformly to v as ε tends to 0, there exists
ε1 > 0 such that for every 0 < ε ≤ ε1, Π ◦ vε is well-defined and is homotopic to v.

Next, for every j ∈ N and for every x ∈ Sbkpc, since vj(x) ∈ Nn,

dist (vj,ε(x), Nn) ≤ 1

|Dbkpcε (x)|

∫
D
bkpc
ε (x)

∣∣∣∣vj(y)− 1

|Dbkpcε (x)|

∫
D
bkpc
ε (x)

vj

∣∣∣∣dy
≤ ‖vj − v‖BMO(Sbkpc) + 2 sup

y∈Dbkpcε (x)

|v(y)− v(x)|.
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Since the sequence (vj)j∈N converges to v in BMO(Sbkpc) and v is uniformly continuous,
there exist J ∈ N and ε2 > 0 such that for every j ≥ J and for every 0 < ε ≤ ε2,

dist (vj,ε(x), Nn) ≤ ι.

In particular, Π ◦ vj,ε is well-defined and the continuous extension of the function t ∈
(0, 1] 7→ Π ◦ vj,tε gives a homotopy between Π ◦ vj,ε and vj .

Finally, for every ε > 0 the sequence (vj,ε)j∈N converges uniformly to vε. For 0 <
ε < min {ε1, ε2} and for j ≥ J , the functions Π ◦ vj,ε are well-defined and converge
uniformly to Π ◦ vε as j tends to infinity. Thus, there exists J ≥ J such that for every
j ∈ N with j ≥ J , Π ◦ vj,ε is homotopic to Π ◦ vε. By transitivity of the homotopy relation,
we conclude from the above that for every such j, vj is homotopic to v.

We deduce from the claim that u|Sbkpcρ ×{x′′} is homotopic to a constant, whence

ϕ : Sbkpc → Nn is homotopic to a constant. Since πbkpc(Nn) 6' {0} andϕ : Sbkpc → Nn

is an arbitrary smooth function, we get a contradiction. This completes the proof of
Theorem 2.

7 Continuous extension property
From Theorem 3 we are able to approximate a map by another map which is smooth except
on a dual skeleton of dimension bkpc∗. We would like to modify our approximation near
this singular set in order to obtain a smooth map. An important tool will be the following:

Proposition 7.1. Let Km be a skeleton of radius η > 0, ` ∈ {0, . . . ,m− 1}, T `∗ be the
dual skeleton of K` and let u ∈ C∞(Km \ T `∗ ;Nn). If there exists f ∈ C0(Km;Nn)
such that f |K` = u|K` , then for every 0 < µ < 1, there exists v ∈ C∞(Km;Nn) such
that v = u on Km \ (T `

∗
+Qmµη).

In the proof of Proposition 7.1, we shall rely on the fact that K` is a homotopy retract
of Km \ T `∗ , that is, there exists a continuous retraction of Km \ T `∗ onto K` which is
homotopic to the identity map in Km \ T `∗ :

Fact 7.1. There exists a continuous homotopy H` : [0, 1] × (Km \ T `∗) → Km \ T `∗

such that

(i) for every x ∈ Km \ T `∗ , H`(0, x) = x,

(ii) for every x ∈ Km \ T `∗ , H`(1, x) ∈ K`,

(iii) for every x ∈ K`, H`(1, x) = x.

Proof of Proposition 7.1. Given 0 < δ < δ < δ < µ, let ϕ : Km → [0, 1] be a continuous
function such that

− for every x ∈ Km \ (T `
∗

+Qm
δη

), ϕ(x) = 0,

− for every x ∈ ∂(T `
∗

+Qmδη), ϕ(x) = 1.
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− for every x ∈ T `∗ +Qmδη , ϕ(x) = 0.

We define w : Km → Nn by

w(x) =


(u ◦H`)(ϕ(x), x) if x ∈ Km \ (T `

∗
+Qmδη) ,

(f ◦H`)(ϕ(x), x) if x ∈ (T `
∗

+Qmδη) \ T `∗ ,
f(x) if x ∈ T `∗ .

By properties (i) and (ii) of Fact 7.1, w is well-defined and continuous onKm, and w = u
onKm\(T `∗+Qm

δη
). Letw : Rm → Rν be a continuous extension ofw. Given a mollifier

ϕ ∈ C∞c (Bm1 ), there exists a nonnegative function ψ ∈ C∞(Rm) such that for any ι > 0,

− suppψ ⊂ T `∗ +Qmµη ,

− ψ > 0 in a neighborhood of T `
∗

+Qm
δη

,

− ‖ϕψ ∗ w − w‖L∞(Rm) ≤ ι.

If the nearest point projection Π onto Nn is well-defined and smooth on a tubular neigh-
borhood of Nn of radius ι > 0, then the map Π ◦ (ϕψ ∗ w) restricted to Km satisfies all
the required properties.

The natural question that arises is whether a continuous extension of u|K` to Km

exists. This property depends on the skeleton Km and on the manifold Nn.

Proposition 7.2. LetKm be a skeleton of radius η > 0 and ` ∈ {0, . . . ,m−1}. IfKm is a
cube and if π`(Nn) ' {0}, then for every u ∈ C0(K`;Nn) there exists f ∈ C0(Km;Nn)
such that f |K` = u.

We will use the fact that it is always possible to find a continuous extension, regardless
of Nn, by losing one dimension. This property has been introduced as the ` extension
property by Hang and Lin [28, Definition 2.3].

Proposition 7.3. Let Km be a skeleton of radius η > 0 and ` ∈ {0, . . . ,m− 1}. If Km

is a cube, then for every u ∈ C0(K`+1;Nn), there exists g ∈ C0(Km;Nn) such that
g|K` = u|K` .

In the proof of Proposition 7.3, we shall assume that if Km is a cube, then the identity
map on K` is homotopic to a constant with respect to K`+1:

Fact 7.2. If Km is a cube, then there exists a continuous homotopy G` : [0, 1]×K` →
K`+1 such that

(i) for every x ∈ K`, G`(0, x) = x,

(ii) there exists a ∈ K` such that for every x ∈ K`, G`(1, x) = a.

Proof of Proposition 7.3. Let ϕ : Km → [0, 1] be a continuous function such that

− for every x ∈ K`, ϕ(x) = 0,
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− for every x ∈ T `∗ , ϕ(x) = 1.

We define g : Km → Nn by

g(x) =

{
u
(
G`(ϕ(x), H`(1, x))

)
if x ∈ Km \ T `∗ ,

u(a) if x ∈ T `∗ .

where H` : [0, 1] × Km \ T `∗ → Km \ T `∗ is the homotopy retraction of Fact 7.1.
The map g is continuous and by property (iii) of Fact 7.1 we have for every x ∈ K`,
g(x) = u(x).

Proof of Proposition 7.2. Let u ∈ C0(K`;Nn). Since π`(Nn) ' {0}, for every σ`+1 ∈
K`+1, the restriction u|∂σ`+1 has a continuous extension uσ`+1 to σ`+1. Let v : K`+1 →
Nn be the map defined for every x ∈ K`+1 by v(x) = uσ`+1(x), where σ`+1 ∈ K`+1 is
such that x ∈ σ`+1. The map v is well-defined and continuous; moreover, v|K` = u. By
Proposition 7.3 applied to v, there exists f : Km → Nn such that f |K` = v|K` ; hence f
is a continuous extension of u to Km.

8 Shrinking
Given a map u ∈W k,p(Km;Rν) whose energy is controlled outside a neighborhood of
the dual skeleton T `

∗
, we construct for every τ > 0 a map u ◦ Φ whose energy will be

controlled on the whole Km when τ is small enough. This shrinking construction is very
similar to the thickening construction. In both cases, the dimension of the dual skeleton
T `
∗

must satisfy `∗ < m − kp, or equivalently, l + 1 > kp. The main differences are
that shrinking only acts in a neighborhood of the dual skeleton T `

∗
and does not create

singularities. Shrinking can be thought of as desingularized thickening and requires more
careful estimates.

As for thickening, we begin by constructing the diffeomorphism Φ regardless of u:

Proposition 8.1. Let ` ∈ {0, . . . ,m − 1}, η > 0, 0 < µ < 1
2 , 0 < τ < 1

2 , Sm be a
cubication of Rm of radius η and T `∗ be the dual skeleton of S`. There exists a smooth
map Φ : Rm → Rm such that

(i) Φ is injective,

(ii) for every σm ∈ Sm, Φ(σm) ⊂ σm,

(iii) Supp Φ ⊂ T `∗ +Qm2µη and Φ
(
T `
∗

+Qmτµη
)
⊃ T `∗ +Qmµη ,

(iv) for every 0 < β < `+ 1, for every j ∈ N∗ and for every x ∈ Rm,

(µη)j−1|DjΦ(x)| ≤ C
(
jac Φ(x)

) j
β ,

for some constant C > 0 depending on β, j and m,
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(v) for every 0 < β < `+ 1, for every j ∈ N∗ and for every x ∈ Φ−1(T `
∗

+Qmµη),

(µη)j−1|DjΦ(x)| ≤ C ′τ j(
`+1
β −1)

(
jac Φ(x)

) j
β ,

for some constant C ′ > 0 depending on β, j and m.

As a consequence of the estimates of Proposition 8.1, we have the following W k,p

estimates that will be applied in the proof of Theorem 1 with ` = bkpc.

Corollary 8.2. Let Φ : Rm → Rm be the map given by Proposition 8.1 and let Km be
a subskeleton of Sm. If `+ 1 > kp, then for every u ∈W k,p(Km ∩ (T `

∗
+Qm2µη);Rν),

u ◦ Φ ∈W k,p(Km ∩ (T `
∗

+Qm2µη);Rν) and for every j ∈ {1, . . . , k},

(µη)j‖Dj(u ◦ Φ)‖Lp(Km∩(T `∗+Qm2µη))

≤ C ′′
j∑
i=1

(µη)i‖Diu‖Lp(Km∩(T `∗+Qm2µη)\(T `∗+Qmµη))

+ C ′′τ
`+1−kp

p

j∑
i=1

(µη)i‖Diu‖Lp(Km∩(T `∗+Qmµη)),

for some constant C ′′ > 0 depending on m, k and p.

Proof. We first establish the estimate for a map u in C∞(Km∩(T `
∗

+Qm2µη);Rν). By the
chain rule for higher-order derivatives, for every j ∈ {1, . . . , k} and for every x ∈ Km,

|Dj(u ◦ Φ)(x)|p ≤ C1

j∑
i=1

∑
1≤t1≤...≤ti
t1+···+ti=j

|Diu(Φ(x))|p|Dt1Φ(x)|p · · · |DtiΦ(x)|p.

As in the proof of Corollary 4.2, if 1 ≤ t1 ≤ . . . ≤ ti and t1 + · · ·+ ti = j, then for
every x ∈ Km ∩ (T `

∗
+Qm2µη),

|Dt1Φ(x)|p · · · |DtiΦ(x)|p ≤ C2
jac Φ(x)

η(j−i)p

and this implies

ηjp|Dj(u ◦ Φ)(x)|p ≤ C3

j∑
i=1

ηip|Diu(Φ(x))|p jac Φ(x).
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Let σm ∈ Km. Since Φ is injective, by the change of variable formula,∫
Φ−1(σm∩(T `∗+Qm2µη)\(T `∗+Qmµη))

(µη)jp|Dj(u ◦ Φ)|p

≤ C3

j∑
i=1

∫
Φ−1(σm∩(T `∗+Qm2µη)\(T `∗+Qmµη))

(µη)ip|(Diu) ◦ Φ|p jac Φ

≤ C3

j∑
i=1

∫
σm∩(T `∗+Qm2µη)\(T `∗+Qmµη)

(µη)ip|Diu|p.

Let 0 < β < `+ 1. If 1 ≤ t1 ≤ . . . ≤ ti and t1 + · · ·+ ti = j, then by property (v)
of Proposition 8.1 we have for every x ∈ Φ−1(Km ∩ (T `

∗
+Qmµη)),

|Dt1Φ(x)|p · · · |DtiΦ(x)|p

≤ C4τ
t1p(

`+1
β −1)

(
jac Φ(x)

) t1p
β

(µη)(t1−1)p
· · · τ tip(

`+1
β −1)

(
jac Φ(x)

) tip
β

(µη)(ti−1)p

= C4τ
jp( `+1

β −1)

(
jac Φ(x)

) jp
β

(µη)(j−i)p .

Taking β = jp, we have

|Dt1Φ(x)|p · · · |DtiΦ(x)|p ≤ C4τ
`+1−jp jac Φ(x)

(µη)(j−i)p

and this implies

(µη)jp|Dj(u ◦ Φ)(x)|p ≤ C5τ
`+1−jp

j∑
i=1

(µη)ip|Diu(Φ(x))|p jac Φ(x).

Since Φ is injective, by the change of variable formula,∫
Φ−1(σm∩(T `∗+Qmµη))

(µη)jp|Dj(u ◦ Φ)|p

≤ C5τ
`+1−jp

j∑
i=1

∫
Φ−1(σm∩(T `∗+Qmµη))

(µη)ip|(Diu) ◦ Φ|p jac Φ

= C5τ
`+1−jp

j∑
i=1

∫
σm∩(T `∗+Qmµη)

(µη)ip|Diu|p.
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Since σm ∩ (T `
∗

+Qm2µη) ⊂ Φ−1
(
σm ∩ (T `

∗
+Qm2µη)

)
, by additivity of the integral

we then have∫
σm∩(T `∗+Qm2µη)

(µη)jp|Dj(u ◦ Φ)|p

≤ C3

j∑
i=1

∫
σm∩(T `∗+Qm2µη)\(T `∗+Qmµη)

(µη)ip|Diu|p

+ C5τ
`+1−jp

j∑
i=1

∫
σm∩(T `∗+Qmµη)

(µη)ip|Diu|p.

We may take the union over all faces σm ∈ Km and we deduce the estimate for smooth
maps. By density of smooth maps in W k,p(Km ∩ (T `

∗
+Qm2µη);Rν), we deduce that for

every u in W k,p(Km ∩ (T `
∗

+Qm2µη);Rν), the function u ◦ Φ also belongs to this space
and satisfies the estimate above.

We first describe the construction of the map Φ in the case of only one ` dimensional
cube.

Proposition 8.3. Let ` ∈ {1, . . . ,m}, η > 0, 0 < µ < µ < µ < 1 and 0 < τ < µ/µ.
There exists a smooth function λ : Rm → [1,∞) such that if Φ : Rm → Rm is defined for
x = (x′, x′′) ∈ R` × Rm−` by

Φ(x) = (λ(x)x′, x′′),

then

(i) Φ is injective,

(ii) Supp Φ ⊂ Q`µη ×Qm−`(1−µ)η ,

(iii) Φ
(
Q`τµη ×Qm−`(1−µ)η

)
⊃ Q`µη ×Qm−`(1−µ)η ,

(iv) for every 0 < β < `, for every j ∈ N∗ and for every x ∈ Rm,

(µη)j−1|DjΦ(x)| ≤ C
(
jac Φ(x)

) j
β ,

for some constant C > 0 depending on β, j, m, µ/µ and µ/µ,

(v) for every β > 0, for every j ∈ N∗ and for every x ∈ Q`τµη ×Qm−`(1−µ)η ,

(µη)j−1|DjΦ(x)| ≤ C ′τ j(
`
β−1)

(
jac Φ(x)

) j
β ,

for some constant C ′ > 0 depending on β, j, m, µ/µ and µ/µ.
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We postpone the proof of Proposition 8.3 and we proceed to establish Proposition 8.1.

Proof of Proposition 8.1. We first introduce finite sequences (µi)`≤i≤m and (νi)`≤i≤m
such that

0 < µ` = µ < ν`+1 < µ`+1 < . . . < µm−1 < νm < µm ≤ 2µ.

Let Φm = Id. Using downward induction, we shall define maps Φi : Rm → Rm for
i ∈ {`, . . . ,m− 1} such that Φi satisfies the following properties:

(a) Φi is injective,

(b) for every σm ∈ Sm, Φi(σ
m) ⊂ σm,

(c) Supp Φi ⊂ T i
∗

+Qm2µη ,

(d) for every r ∈ {i∗, . . . ,m− 1}, Φi
(
T r +Qmτµη

)
⊃ T r +Qmτµη,

(e) Φi
(
T i
∗

+Qmτµη
)
⊃ T i∗ +Qmµiη ,

(f) for every 0 < β < i+ 1, for every j ∈ N∗ and for every x ∈ Rm,

(µη)j−1|DjΦi(x)| ≤ C
(
jac Φi(x)

) j
β ,

for some constant C > 0 depending on β, j, and m,

(g) for every 0 < β < i+ 1, for every j ∈ N∗ and for every x ∈ Φ−1
i (T i

∗
+Qmµiη),

(µη)j−1|DjΦi(x)| ≤ C ′τ j(
i+1
β −1)

(
jac Φi(x)

) j
β ,

for some constant C ′ > 0 depending on β, j, and m.

The map Φ` will satisfy the conclusion of the proposition.

Let i ∈ {` + 1, . . . ,m} and let Θi be the map obtained from Proposition 8.3 with
parameters ` = i, µ = µi−1, µ = νi, µ = µi and τµ

νi
. Given σi ∈ Si, we may identify σi

with Qiη × {0m−i} and T (i−1)∗ ∩ (σi +Qm2µη) with {0i} ×Qm−i2µη . The map Θi induces
by isometry a map which we shall denote by Θσi .

Let Ψi : Rm → Rm be defined for every x ∈ Rm by

Ψi(x) :=

{
Θσi(x) if x ∈ σi +Qm(1−νi)η for some σi ∈ Si,
x otherwise.

We explain why Ψi is well-defined. Since Θσi coincides with the identity map on ∂σi +
Qm(1−νi)η, then for every σi1, σ

i
2 ∈ Si, if x ∈ (σi1 + Qm(1−νi)η) ∩ (σi2 + Qm(1−νi)η) and

σi1 6= σi2, then
Θσi1

(x) = x = Θσi2
(x).

One also verifies that Ψi is smooth.
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Assuming that Φi has been defined satisfying properties (a)–(g), we let

Φi−1 = Ψi ◦ Φi.

We check that Φi−1 satisfies all required properties. Up to an exchange of coordinates,
for every σi ∈ Si, we may assume that σi = Qiη × {0m−i} and Θσi can be written
as Θσi(x) = (λ(x)x′, x′′), with λ(x) ≥ 1. Hence, for every 0 < s ≤ 1 and every
r ∈ {0, . . . ,m− 1},

Ψi(T
r +Qmsη) ⊃ T r +Qmsη. (8.1)

Moreover, in the new coordinates, the set

(σi ×Qm−iη ) ∩
(
(T (i−1)∗ +Qmτµη) \ (T i

∗
+Qmµiη)

)
(8.2)

becomes
Qiτµη ×Qm−i(1−µi)η. (8.3)

In view of properties (i) and (iii) of Proposition 8.3,

Θσi(Q
i
τµη ×Qm−i(1−µi)η) ⊃ Qiµi−1η ×Q

m−i
(1−µi)η.

Since this property holds for every σi ∈ Si,

Ψi

(
(T (i−1)∗ +Qmτµη) \ (T i

∗
+Qmµiη)

)
⊃ (T (i−1)∗ +Qmµi−1η) \ (T i

∗
+Qmµiη). (8.4)

Proof of Property (d). Let r ∈ {(i − 1)∗, . . . ,m − 1}. By induction hypothesis and by
equation (8.1) with s = τµ,

Φi−1(T r +Qmτµη) ⊃ Ψi(T
r +Qmτµη) ⊃ T r +Qmτµη.

Proof of Property (e). By induction hypothesis (properties (d) and (e)),

Φi(T
(i−1)∗ +Qmτµη) ⊃ (T (i−1)∗ +Qmτµη) ∪ (T i

∗
+Qmµiη).

Thus,

Φi−1(T (i−1)∗ +Qmτµη) ⊃ Ψi(T
(i−1)∗ +Qmτµη) ∪Ψi(T

i∗ +Qmµiη).

By inclusion (8.4) and by inclusion (8.1) with r = i∗ and s = µi,

Φi−1(T (i−1)∗ +Qmτµη) ⊃
(
(T (i−1)∗ +Qmµi−1η) \ (T i

∗
+Qmµiη)

)
∪
(
T i
∗

+Qmµiη
)

= T (i−1)∗ +Qmµi−1η.

This gives the conclusion.

Proof of Property (g). Let j ∈ N∗ and 0 < β < i. By the chain rule for higher order
derivatives, we have for every x ∈ Rm,

|DjΦi−1(x)| ≤ C1

j∑
r=1

∑
1≤t1≤...≤tr
t1+···+tr=j

|DrΨi(Φi(x))| |Dt1Φi(x)| · · · |DtrΦi(x)|.
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Let x ∈ Φ−1
i−1(T (i−1)∗ + Qmµi−1η). By induction hypothesis (property (f)), for every

r ∈ {1, . . . , j}, if 1 ≤ t1 ≤ . . . ≤ tr and t1 + · · ·+ tr = j, then

|Dt1Φi(x)| · · · |DtrΦi(x)| ≤ C2
(jac Φi(x))

j
β

(µη)j−r
.

If in addition x ∈ Φ−1
i−1

(
(T (i−1)∗+Qmµi−1η)\(T i∗+Qmµiη)

)
, then Φi(x) ∈ Ψ−1

i

(
(T (i−1)∗+

Qmµi−1η)\ (T i
∗

+Qmµiη)
)
. By the correspondence between the sets given by (8.2) and (8.3),

by inclusion (8.4), and by property (v) of Proposition 8.3, we have for every 0 < α < i,

|DrΨi(Φi(x))| ≤ C3τ
r( iα−1)

(
jac Ψi(Φi(x))

) r
α

(µη)r−1
.

Take α = β rj . Since r ≤ j and τ ≤ 1, we get

|DrΨi(Φi(x))| ≤ C3τ
r( ijβr−1)

(
jac Ψi(Φi(x))

) j
β

(µη)r−1
≤ C3τ

j( iβ−1)

(
jac Ψi(Φi(x))

) j
β

(µη)r−1
.

Thus, for every x ∈ Φ−1
i−1

(
(T (i−1)∗ +Qmµi−1η) \ (T i

∗
+Qmµiη)

)
,

|DjΦi−1(x)| ≤ C4τ
j( iβ−1)

(
jac Ψi(Φi(x))

) j
β

(µη)r−1

(jac Φi(x))
j
β

(µη)j−r

= C4τ
j( iβ−1) (jac Φi−1(x))

j
β

(µη)j−1
.

On the other hand, if x ∈ Φ−1
i−1(T i

∗
+ Qmµiη), then Φi(x) ∈ Ψ−1

i (T i
∗

+ Qmµiη). By
inclusion (8.1) with r = i∗ and s = µi, Φi(x) ∈ T i∗ + Qmµiη. By induction hypothesis
(property (g)), we deduce that for every r ∈ {1, . . . , j}, if 1 ≤ t1 ≤ . . . ≤ tr and
t1 + · · ·+ tr = j, then

|Dt1Φi(x)| · · · |DtrΦi(x)| ≤ C5τ
j( iβ−1) (jac Φi(x))

j
β

(µη)j−r
.

By property (iv) of Proposition 8.3,

|DrΨi(Φi(x))| ≤ C6
(jac Ψi(Φi(x)))

j
β

(µη)r−1
.

We deduce as above that

|DjΦi−1(x)| ≤ C7τ
j( iβ−1) (jac Φi−1(x))

j
β

(µη)j−1
.

This gives the conclusion.
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The other properties can be checked as in the proof of Proposition 4.1.
By downward induction, we conclude that properties (a)–(g) hold for every i ∈

{`, . . . ,m− 1}. In particular, we deduce properties (i)–(v) of Proposition 8.3.

We need a couple of lemmas in order to prove Proposition 8.3:

Lemma 8.4. Let η > 0, let 0 < µ < µ < µ < 1 and 0 < κ < µ/µ. There exists a smooth
function λ : Rm → [1,∞) such that if Φ : Rm → Rm is defined for x = (x′, x′′) ∈
R` × Rm−` by

Φ(x) = (λ(x)x′, x′′),

then

(i) Φ is a diffeomorphism,

(ii) Supp Φ ⊂ Q`µη ×Qm−`(1−µ)η ,

(iii) Φ
(
Q`κµη ×Qm−`(1−µ)η

)
⊃ Q`µη ×Qm−`(1−µ)η ,

(iv) for every j ∈ N∗ and for every x ∈ Rm,

(µη)j−1|DjΦ(x)| ≤ C,

for some constant C > 0 depending on j, m, µ/µ, µ/µ and κ,

(v) for every j ∈ N∗ and every x ∈ Rm,

C ′ ≤ jac Φ(x) ≤ C ′′,

for some constants C ′, C ′′ > 0 depending on m, µ/µ, µ/µ and κ.

Proof. By scaling, we may assume that µη = 1. Let ψ : R→ [0, 1] be a smooth function
such that

− the function ψ is nonincreasing on R+ and nondecreasing on R−,

− for |t| ≤ µ/µ, ψ(t) = 1,

− for |t| ≥ 1, ψ(t) = 0.

Let θ : R→ [0, 1] be a smooth function such that

− for |t| ≤ 1−µ
µ , θ(t) = 1,

− for |t| ≥ 1−µ
µ , θ(t) = 0.

Since 1−µ
µ −

1−µ
µ = µ/µ− 1, we may require that for every j ∈ N∗ and for every t ≥ 0,

|Djθ(t)| ≤ C, for some constant C > 0 depending only on j and µ/µ.
Let ϕ : Rm → R be the function defined for x = (x1, . . . , xm) ∈ Rm by

ϕ(x) =
∏̀
i=1

ψ(xi)
m∏

i=`+1

θ(xi).
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Let Ψ : Rm → Rm be the function defined for x = (x′, x′′) ∈ R` × Rm−` by

Ψ(x) =
(
(1− αϕ(x))x′, x′′

)
,

where α ∈ R. In particular, for every x = (x′, x′′) ∈ Q`µ/µ ×Q
m−`
1−µ
µ

,

Ψ(x) = ((1− α)x′, x′′).

Taking α = 1− κµ
µ , we deduce that Ψ is a bijection betweenQ`µ/µ×Q

m−`
1−µ
µ

andQ`κ×Qm−`1−µ
µ

.

As in Lemma 4.4 we can prove that Φ = Ψ−1 satisfies the required properties.

Lemma 8.5. Let ` ∈ {1, . . . ,m}, η > 0, 0 < µ < µ < µ < 1 and 0 < τ < µ/µ. There
exists a smooth function λ : Rm → [1,∞) such that if Φ : Rm → Rm is defined for
x = (x′, x′′) ∈ R` × Rm−` by

Φ(x) = (λ(x)x′, x′′),

then

(i) Φ is injective,

(ii) Supp Φ ⊂ Q`µη ×Qm−`(1−µ)η ,

(iii) Φ(B`τµη ×Qm−`(1−µ)η) ⊃ B`µη ×Qm−`(1−µ)η ,

(iv) for every 0 < β < `, for every j ∈ N∗ and for every x ∈ Rm,

(µη)j−1|DjΦ(x)| ≤ C
(
jac Φ(x)

) j
β ,

for some constant C > 0 depending on β, j, m, µ/µ and µ/µ,

(v) for every β > 0, for every j ∈ N∗ and for every x ∈ B`τµη ×Qm−`(1−µ)η ,

(µη)j−1|DjΦ(x)| ≤ C ′τ j(
`
β−1)

(
jac Φ(x)

) j
β ,

for some constant C ′ > 0 depending on β, j, m, µ/µ and µ/µ.

Proof. By scaling, we may assume that µη = 1. Given ε > 0 and b > 0, let ϕ : (0,∞)→
[1,∞) be a smooth function such that

− for 0 < s ≤ τ
√

1 + ε, ϕ(s) =
µ/µ

s

√
1 + ε

(
1 + b

ln 1
s

)
,

− for s ≥ 1, ϕ(s) = 1,

− the function s ∈ (0,∞) 7→ sϕ(s) is increasing.
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Note that such function ϕ exists if we take ε > 0 such that

(µ/µ)
√

1 + ε < 1

and thus τ
√

1 + ε < 1 and if we take b > 0 such that

(µ/µ)
√

1 + ε
(

1 +
b

ln 1
(µ/µ)

√
1+ε

)
< 1.

Let θ : Rm−` → [0, 1] be a smooth function such that

− for y ∈ Qm−`1−µ
µ

, θ(y) = 0,

− for y ∈ Rm−` \Qm−`1−µ
µ

, θ(y) = 1.

We now introduce for x = (x′, x′′) ∈ R` × Rm−`,

ζ(x) =

√
|x′|2 + θ

(
x′′
)2

+ ετ2.

Let λ : Rm → R be the function defined for x ∈ Rm by

λ(x) = ϕ(ζ(x)).

As in the proof of Lemma 4.5, one may check that the map Φ defined in the statement
satisfies all the required properties:

Proof of statement (iii). Let x ∈ B`µ/µ ×Q
m−`
1−µ
µ

. For every s ≥ 0,

Φ(sx′, x′′) =
(
sϕ(
√
s2|x′|2 + ετ2)x′, x′′

)
.

Consider the function h : [0,∞)→ R defined by

h(s) = sϕ(
√
s2 + ετ2).

Then, assuming that x′ 6= 0,

Φ(sx′, x′′) =
(
h(s|x′|) x

′

|x′|
, x′′
)
.

We have h(0) = 0 and h(τ) > µ/µ ≥ |x′|. By the Intermediate value theorem, there
exists t ∈ (0, τ) such that h(t) = |x′|. Thus, t x

′

|x′| ∈ B
`
τ and Φ(t x

′

|x′| , x
′′) = x.

Proof of statement (v). Proceeding as in the proof of Lemma 4.5, one gets for every
x ∈ B`1 × Rm−`,

|DjΦ(x)| ≤ C1

ζ(x)j
.
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Since ζ(x) ≥ τ
√
ε, we deduce that

|DjΦ(x)| ≤ C1

(τ
√
ε)j
≤ C2

τ j
.

On the other hand,

jac Φ(x) = ϕ(ζ(x))`−1
(
ϕ(ζ(x))

(
1− |x

′|2

ζ(x)2

)
+
(
ϕ(1)(ζ(x))ζ(x) + ϕ(ζ(x))

) |x′|2
ζ(x)2

)
.

Since for every s > 0, ϕ(1)(s)s+ ϕ(s) ≥ 0, we have

jac Φ(x) ≥ ϕ(ζ(x))`
(

1− |x
′|2

ζ(x)2

)
≥ C3

ζ(x)`

(
1− |x

′|2

ζ(x)2

)
.

If x ∈ B`τ ×Qm−`1−µ
µ

, then ζ(x) ≤ τ
√

1 + ε and ζ(x)2 ≥ (1 + ε)|x′|2. Thus,

jac Φ(x) ≥ C3

(τ
√

1 + ε)`
ε

1 + ε
=
C4

τ `
.

Combining the estimates of |DjΦ| and jac Φ, we have the conclusion.

In order to establish the remaining properties stated in Lemma 8.5, we only need to
repeat the proof of Lemma 4.5 with obvious modifications.

Proof of Proposition 8.3. Define Φ to be the composition of the map Φ1 given by Lemma 8.4
with κ =

µ

µ
√
`

together with the map Φ2 given by Lemma 8.5; more precisely, Φ = Φ1◦Φ2.
The propeties of Φ can be established as in the case of thickening.

9 Proof of Theorem 1

Let Km be a cubication of Qm1 of radius η > 0 and let T `∗ be the dual skeleton with
respect to K` for some ` ∈ {0, . . . ,m− 1}.

Claim. Let v ∈ C∞(Km \ T `∗ ;Nn) ∩W k,p(Km;Nn). If π`(Nn) ' {0} and if `∗ <
m− kp, then there exists a family of smooth maps vsh

τµ,µ : Km → Nn such that

lim
µ→0
‖vsh
τµ,µ − v‖Wk,p(Km) = 0.

This claim is a removable singularity property of topological nature for W k,p maps.
Theorem 1 follows from Theorem 3 and this claim. Indeed, by Theorem 3 the class of maps
v in the claim is dense inW k,p(Km;Nn) when ` = bkpc. Since the maps vsh

τµ,µ are smooth
and converge to v in W k,p, we deduce that smooth maps are dense in W k,p(Km;Nn).
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Proof of the Claim. Assuming that π`(Nn) ' {0}, we can modify v in a neighborhood
of T `

∗
in order to obtain a smooth map vex

µ : Km → Nn. More precisely, for every
0 < µ < 1, by Proposition 7.1 and Proposition 7.2, there exists vex

µ ∈ C∞(Km;Nn) such
that vex

µ = v in Km \ (T `
∗

+Qmµη).
Although v and vex

µ coincide in a large set, ‖vex
µ ‖Wk,p(Km) can be much larger than

‖v‖Wk,p(Km) since the extension is of topological nature and does not take into account
the values of v in a neighborhood of T `

∗
. In order to get a better extension of v, we have

to shrink T `
∗

+Qmµη into a smaller neighborhood of T `
∗
.

Assume that µ < 1
2 and take 0 < τ < 1

2 . Let Φsh
τ,µ : Rm → Rm be the smooth

diffeomorphism given by Proposition 8.1. Define

vsh
τ,µ = (vex

µ ◦ Φsh
τ,µ).

In particular vsh
τ,µ ∈ C∞(Km;Nn).

Since vsh
τ,µ = v in the complement of T `

∗
+Qm2µη , for every j ∈ N∗,

‖Djvsh
τ,µ −Djv‖Lp(Km) = ‖Djvsh

τ,µ −Djv‖Lp(Km∩(T `∗+Qm2µη))

≤ ‖Djvsh
τ,µ‖Lp(Km∩(T `∗+Qm2µη)) + ‖Djv‖Lp(Km∩(T `∗+Qm2µη)).

If `∗ < m − kp, or equivalently if ` + 1 > kp, then by Corollary 8.2 we have for every
j ∈ {1, . . . , k},

(µη)j‖Djvsh
τ,µ‖Lp(Km∩(T `∗+Qm2µη))

≤ C1

j∑
i=1

(µη)i‖Divex
µ ‖Lp(Km∩(T `∗+Qm2µη)\(T `∗+Qmµη))

+ C1τ
`+1−kp

p

j∑
i=1

(µη)i‖Divex
µ ‖Lp(Km∩(T `∗+Qmµη)).

Since vex
µ = v in the complement of T `

∗
+Qmµη , we deduce that

(µη)j‖Djvsh
τ,µ −Djv‖Lp(Km) ≤ C2

j∑
i=1

(µη)i‖Div‖Lp(Km∩(T `∗+Qm2µη))

+ C1τ
`+1−kp

p

j∑
i=1

(µη)i‖Divex
µ ‖Lp(Km∩(T `∗+Qmµη)).

We show that

lim
µ→0

j∑
i=1

(µη)i−j‖Div‖Lp(Km∩(T `∗+Qm2µη)) = 0. (9.1)

Since Nn is a compact subset of Rν , v is bounded. By the Gagliardo-Nirenberg
interpolation inequality, for every i ∈ {1, . . . , k − 1}, Div ∈ L

kp
i (Km). By Hölder’s
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inequality, for every i ∈ {1, . . . , k} we then have

(µη)i−j‖Div‖Lp(Km∩(T `∗+Qm2µη))

≤ (µη)i−j
∣∣Km ∩ (T `

∗
+Qm2µη)

∣∣ k−ikp ‖Div‖
L
kp
i (Km∩(T `∗+Qm2µη))

= ηi−jµk−j+(`+1−kp) k−ikp

(∣∣Km ∩ (T `
∗

+Qm2µη)
∣∣

µ`+1

) k−i
kp

×

× ‖Div‖
L
kp
i (Km∩(T `∗+Qm2µη))

.

Since
∣∣Km ∩ (T `

∗
+Qm2µη)

∣∣ ≤ C3µ
`+1, the limit follows.

For every 0 < µ < 1
2 , take 0 < τµ <

1
2 such that

lim
µ→0

τ
`+1−kp

p
µ

j∑
i=1

(µη)i−j‖Divex
µ ‖Lp(Km∩(T `∗+Qmµη)) = 0. (9.2)

From (9.1) and (9.2), we deduce that for every j ∈ {1, . . . , k},

lim
µ→0
‖Djvsh

τµ,µ −D
jv‖Lp(Km) = 0.

Since vsh
τµ,µ converges in measure to v as µ tends to 0, we then have

lim
µ→0
‖vsh
τµ,µ − v‖Wk,p(Km) = 0.

This establishes the claim.

10 Concluding remarks

10.1 Other domains
The proof of Theorem 1 can be adapted to more general domains Ω ⊂ Rm. In order to
apply the extension argument at the beginning of the proof of Theorem 3, it suffices that Ω
be starshaped.

Concerning Theorem 1, the crucial tool is the extension property of Proposition 7.3.
This can be enforced by assuming that for every ` ∈ {0, . . . , bkpc − 1},

π`(Ω) ' {0}.

This contains in particular the case where Ω is starshaped. Another option is to require
that for some CW-complex structure, Ω has the bkpc − 1 extension property with respect

to Nn. More precisely, for every u ∈ C0(Ω
bkpc

;Nn), the restriction u|
Ω
bkpc−1 of u to

the skeleton of Ω of dimension bkpc − 1 has a continuous extension to Ω. It can be
showed that this property does not depend on the CW-complex structure of Ω (see remark
following [28, Definition 2.3]).
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10.2 Complete manifolds
The proofs of Theorems 1 and 3 still apply for complete manifolds Nn that are embedded
in Rν and for which there exists a projection Π defined on a uniform neighborhood of
size ι around Nn. The compactness of Nn ensures the Gagliardo-Nirenberg interpolation
inequality that for every i ∈ {1, . . . , k − 1}, Diu ∈ L

kp
i (Qm1 ). This inequality still holds

if the assumption u ∈ L∞ is replaced by u ∈ W 1,kp. In this case, one proves that if
πbkpc(Nn) ' {0}, then for every u ∈ W k,p(Qm;Nn) ∩W 1,kp(Qm;Nn) there exists a
family of maps uη ∈ C∞(Qm;Nn) such that for every i ∈ {1, . . . , k},

lim
η→0
‖Diuη −Diu‖

L
kp
i (Qm)

= 0

and uη converges to u in measure as η tends to 0. Hence,

lim
η→0
‖uη − u‖Wk,p(Qm)∩W 1,kp(Qm) = 0.

10.3 bkpc simply connected manifolds
Under the additional assumption that for every ` ∈ {0, . . . , bkpc},

π`(N
n) ' {0},

it is possible to give a simpler proof of Hk,p(Qm;Nn) = W k,p(Qm;Nn) without relying
on the density of maps in Rm−bkpc−1(Qm;Nn). This approach is inspired by previous
works of Escobedo [17] and Hajłasz [26]; see [7] for details.
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