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Abstract

Given a compact manifold N™, an integer k¥ € N, and an exponent 1 < p < oo,
we prove that the class C'*° (@m; N™) of smooth maps on the cube with values into
N™ is dense with respect to the strong topology in the Sobolev space W*?(Q™; N™)
when the homotopy group 7|, (N™) of order |kp] is trivial. We also prove the
density of maps that are smooth except for a set of dimension m — |kp] — 1, without
any restriction on the homotopy group of N".

Published in J. Eur. Math. Soc. (JEMS) 17 (2015), 763-817, by the European Mathe-
matical Society.
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1 Introduction

There are two natural approaches to define Sobolev maps with values in a compact
manifold. More precisely, let N™ be a compact connected smooth manifold of dimension
n imbedded in R” for some v > 1 [42,43], k € N, and 1 < p < +o00. One can first define
WHP(Q™; N™) as the set

{ue WHEP(Q™;RY) : u e N" ae.},

where () C R™ is the open unit cube. The other possibility is to define H kp(@Qm; N™)
as the completion of the class of smooth maps C'*° (Qm; N™) with respect to the Sobolev
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metric
k

di p(u,0) = [u = vl| Lo (gm) + D_ID'u = D0l| 1 (gm).-

i=1

These spaces are the natural framework for the study of harmonic maps [23,34,38,49],
biharmonic maps [15,39,47,51,52] and polyharmonic maps [1,21,24,25,33] with values
into manifolds. They also arise in some physical models [8,35]. For instance, maps into the
sphere, the projective space and other manifolds appear in liquid cristal models [2,9,40,41].

In contrast with the real-valued case [16, 36], these spaces may be different. For
instance, H'?(Q?;S') = WbP(Q?;S!) if and only if p > 2 [4, Theorem 3]. The goal of
this paper is to determine when H*?(Q™; N") = WkP(Q™; N™).

This always happens when kp > m [48, Section 4, Proposition], as W*?(R™) N
L*°(R™) is imbedded into the space of functions with vanishing mean oscillation VMO (R™)
[13, Example 1, Eq. (7)]. The main result of this paper completely solves the problem in
the case kp < m. It is remarkable that such an analytical question has a purely topological
answer:

Theorem 1. Ifkp < m, then H*P(Q™; N™) = W*P(Q™; N™) ifand only if || (N™) ~
{0}.

We denote by |kp] the integral part of kp and by 75, (N™) the |kp]th homotopy
group of N"; the topological condition 7|, (N™) ~ {0} means that every continuous
map f : SL¥P) — N™ on the |kp| dimensional sphere is homotopic to a constant map.
The necessity of this assumption has been known for some time [4, Theorem 2] [17,
Theorem 3] [48, Section 4, Example] [37, Theorem 4.4].

The case £k = 1 of Theorem 1 is the main result of Bethuel’s seminal work [3,
Theorem 1] (see also [27,28]). The case £ > 2 cannot be handled by merely adapting
Bethuel’s tools due to the rigidity of WP and requires new ideas. A typical issue one
faces when dealing with two maps in %7 is that they cannot be glued together under the
sole assumption that their traces coincide. Results concerning strong density of smooth
maps in higher order Sobolev maps have been known in some cases situations where N"
is a sphere [37, Theorem 5] [11, Theorem 4] [17, Theorem 2].

In the case 75, |(N™) % {0}, we prove that W"?(Q™; N™) is the completion of
a set of maps that are smooth outside a small singular set. For this purpose, given i €
{0,...,m — 1} we denote by R;(Q™; N™) the set of maps u : Q" — N™ which are
smooth on @m \ T, where T is a finite union of ¢ dimensional planes, and such that for
every j € N, andxeém\T,

|Diu(r)] < ————
dist (=, T)’

for some constant C' > 0 depending on u and j.

Theorem 2. If kp < m and 7|1, | (N™) # {0}, then W*(Q™; N™) is the completion of
R;(Q™; N™) with respect to the Sobolev metric dy, ,, if and only ifi = m — |kp| — 1.
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This result was known for an arbitrary manifold N™ only in the case k¥ = 1 [3,
Theorem 2] (see also [28, Theorem 1.3]). It is a fundamental tool in the study of the weak
density of smooth maps in Sobolev spaces and in the study of topological singularities
of Sobolev maps [5,22,23,29,31,45]. Counterparts of Theorems 1 and 2 for fractional
Sobolev spaces W*P(Q™; N™) such that 0 < s < 1 have been investigated by Brezis and
Mironescu [12].

We explain the strategy of the proofs of Theorems 1 and 2 under the additional
assumption kp > m — 1. Given a decomposition of Q™ in cubes of size n > 0, we
distinguish them between good cubes and bad cubes — a notion reminiscent from [3] —
as follows: for a map u € W*?(Q™; N™) and a cube o, in Q™ of radiusn > 0, 07" is a

good cube if
1
o 10U S,
U

m
oy

which means that u does not oscillate too much in 0177”; otherwise UZ]” is a bad cube. The
main steps in the proof of Theorem 2 are the following:

Opening We construct a map ;P which is continuous on a neighborhood of the m — 1
dimensional faces of the bad cubes, and equal to u elsewhere. This map, which takes
its values into N™, is close to u with respect to the WP distance because there are
not too many bad cubes. Since kp > m — 1, W*P maps are continuous on faces of
dimension m — 1.

Adaptive smoothing By convolution with a smooth kernel, we then construct a smooth
map uy™ € WkP(Q™; N™). The scale of convolution is chosen to be of the order
of 17 on the good cubes, and close to zero in a neighborhood of the faces of the bad
cubes. On the union of these sets, we are thus ensuring that u;™ takes its values in a
small neigborhood of N™.

Thickening We propagate diffeomorphically the values of u;™ near the faces of the bad
cubes to the interior of these cubes. The resulting map u%h coincides with u;™ on
the good cubes and near the faces of the bad cubes, is close to u with respect to
the W*P distance and takes its values in a neighborhood of N™. This construction
creates at most one singularity at the center of each bad cube.

The map obtained by projecting uﬁlh from a neighborhood of N into N™ itself belongs
to the class Ro(Q™; N™) and converges strongly to u with respect to the Sobolev distance
dp as 7 — 0. This argument works regardless of the | kp|th homotopy group of N™; see
Theorem 3 in Section 5 below.

The sketch of the proof we have announced in a previous work [6] for k& = 2 and
2p > m — 1 is based on the strategy above but was organized differently following [46]
(see also [20]). The opening technique was introduced by Brezis and Li [10] in their study
of homotopy classes of W1P(Q™; N™).

The proof of Theorem 1 in the case kp > m — 1 relies on the fact that Ro(Q™; N™)
is strongly dense in WP (Q™; N™) with respect to the Sobolev distance dj, ,,. The ap-
proximation of a map u € Ro(Q™; N™) by amap in C>(Q""; N™) in this case goes as
follows:
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Continuous extension property By the assumption on the homotopy group of N, for
any /1 < 1 there exists a smooth map w;;* with values into N™ which coincides with
u outside a neighborhood of radius pn of the singular set of u. As a drawback, uj;
may be far from v with respect to the W+ distance.

Shrinking We propagate diffeomorphically the values of uj; in the neighborhood of
radius un of each singularity of v into a smaller neighborhood of radius 7un for
7 < 1. Since kp < m, we obtain a map ui‘j ,, which is still smooth but now close to
u with respect to the W*? distance. This construction is reminiscent of thickening
but does not create singularities.

The smooth map uih) ., converges strongly to u with respect to the WkP distance as

7 — 0 and p — 0. The role of this continuous extension property in the case of WP

approximation of maps u with higher dimensional singularities has been clarified by Hang

and Lin [28].

Contents
1 Introduction 1
2 Opening 5
3 Adaptive smoothing 20
4 Thickening 24
5 Density of the class R, _|1p)—1(Q™; N™) 38
6 Proof of Theorem 2 48
7 Continuous extension property 50
8 Shrinking 53
9 Proof of Theorem 1 64
10 Concluding remarks 67
10.1 Otherdomains . . . . . . . . . . .o v i ittt e e 67
10.2 Complete manifolds . . . . . . . ... ... ... 67
10.3 |kp| simply connected manifolds . . . . .. ... ... .. .. .. ... 68
References 68
2 Opening

For a € R™ and r > 0, we denote by Q7" (a) the cube of radius r with center a; by radius
of the cube we mean half of the length of one of its edges. When a = 0, we abbreviate
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Q7 = Qr(0).

Definition 2.1. A family of closed cubes S™ is a cubication of A C R™ if all cubes have

the same radius, if |J o™ = A and if for every o}, o3* € 8™ which are not disjoint,
omeS™
o™ N of* is a common face of dimension ¢ € {0, ..., m}.

The radius of a cubication is the radius of any of its cubes.

Definition 2.2. Given a cubication S™ of A C R™ and ¢ € {0,...,m}, the skeleton of
dimension ¢ is the set S¢ of all £ dimensional faces of all cubes in S™. A subskeleton of
dimension ¢ of S™ is a subset of S*.

Given a skeleton S¥, we denote by S* the union of all elements of S*,

St = U o’

oteSt

For a given map v € WH*P(U™;R") on some subskeleton /™ and for any ¢ €
{0,...,m — 1}, we are going to construct a map u o ® € WP (U™;R") which is
constant along the normals to U in a neighborhood of U*. In this region, the map u o ®
will thus be essentially a Whkop map of ¢ variables. Hence, if kp > ¢, then v o ® will be
continuous there, whereas in the critical case ¢ = kp, the map u o ® need not be continuous
but will still have vanishing mean oscillation. In this construction the map ® depends
on v and is never injective. This idea of opening a map has been inspired by a similar
construction of Brezis and Li [10].

Given a map ® : R™ — R™, we denote by Supp @ the geometric support of ®,
namely the closure of the set {x € R™ : ®&(x) # z}. This should not be confused with
the analytic support supp ¢ of a function ¢ : R™ — R which is the closure of the set

{x e R™: ¢(z) # 0}.

Proposition 2.1. Let £ € {0,...,m — 1}, > 0,0 < p < %, and U* be a subskeleton of
R™ of radius 1. Then, for every u € WP (U* + Q% RY), there exists a smooth map
® : R™ — R™ such that

(i) for every i € {0,...,L} and for every o € U', ® is constant on the m — i
dimensional cubes of radius pn which are orthogonal to o*,

(ii) Supp® C U’ + Q3,, and QU+ Qy,) CcU +Qn

2pn 2pm

(iii) wo ® € WhP(U* + Q5 ;RY), and for every j € {1,...,k},

2pm>

J
WD (wo @) Lowesqp ) < C Y 0 IDullLowerag, ),
i=1

for some constant C > 0 depending on m, k, p and p,
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(iv) for every o € U and for every j € {1,... k},

J
D7 (uo @)oo rqp,) < C' > 01D ull oo rqg, )

2pn
i=1

for some constant C' > 0 depending on m, k, p and p.
In the case of W2 maps, the quantity || D(u o ®)||z» can be estimated in terms of
|| Dw]| e ; hence there is no explicit dependence of 7). However, concerning the second-order
term, estimate in (474) reads

2pn 2pn 2pn

C
||D2(u [©] ‘b)HLp(Ue+Qm ) S CHDQUHLP(U‘Lka ) + g||Du||Lp(Ue+Qm )

The factor % which comes naturally from a scaling argument is one of the differences

with respect to the opening of W* maps. In the proof of Theorem 1, we shall use the
Gagliardo-Nirenberg interpolation inequality to deal with this extra term.

Since the map u in the statement is defined almost everywhere, the map v o ® need
not be well-defined by standard composition of maps. By v o &, we mean a map v in
W¥P such that there exists a sequence of smooth maps (,,)nen converging to u in 5P
such that (u,, o ®),en converges to v in WP, By pointwise convergence, this map u o ®
inherits several properties of ® and of u. For instance, if ® is constant in a neighborhood of
some point a, then so is u o ®. One can show that under some assumptions on ® which are
satisfied in all the cases that we consider u o ® does not depend on the sequence (uy, )nen,
but we shall not make use of this fact. The only property we shall need from u o ® is that
its essential range is contained in the essential range of u; this is actually the case in view
of Lemma 2.3 (i¢) below. In particular, if v is a map with values into the manifold N™,
then u o ® is also a map with values into N™.

The following proposition is the main tool in the proof of Proposition 2.1.

Proposition 2.2. Let{ € {0,...,m —1},n>0,0<p<pand AC R? be an open set.

For every u € WP (A x Q%’:fz; RY), there exists a smooth map ¢ : R™ ¢ — R™~* such
that

m—L
en

(i) Cis constant in
(1) Supp¢ © Q™" and ((Q5,7") € Q5
(iii) if ® : R™ — R™ is defined for every x = (z',2") € R* x R™~* by
o(z) = (2/,¢(2"))
thenuo ® € WkP(A x Q%’;]*Z;R”), and for every j € {1,...,k},
. . J . .
|| D? (u o q))HLp(AXQ’;W*’-’) <C Z nl‘lDluHLzs(Ang’*f)a
i=1

for some constant C' > 0 depending on m, k, p, p and p.



Density for higher order Sobolev spaces into compact manifolds 7

The proof of Proposition 2.2 is based on a Fubini type argument, which gives some
flexibility on the choice of (. In particular, given finitely many measurable subsets
Aq,...,A; C A, the map ¢ can be chosen such that we have in addition, for every
re{l,...,s}tandforevery j € {1,...,k},

J
|| DY (uo (I))”LP(Aerg’T';e) < CZ771||DZ“||LP(AT><Q;:]*Z)~

=1

We will temporarily accept this proposition and the observation that follows it, and we
prove the main result of the section:

Proof of Proposition 2.1. We first take a finite sequence (p;)o<;<¢ such that
p=pe<...<p;i<...<pg<2p.
We construct by induction oni € {0, ..., ¢} amap ®¢ : R™ — R™ such that

(a) forevery r € {0,...,i} and every 0" € U", @ is constant on the m — r dimensional
cubes of radius p;n which are orthogonal to o”,

(b) Supp @’ C U' + Q% and ®'(U' + Q%) C U' + Q%2
(©) uod e W (U’ +Qf, s R”),

(d) forevery o € U’ and forevery j € {1,...,k},

J
WID (w0 &)l oioirag ) < C S ID ull s ),

2pm 2pm
a=1

for some constant C' > 0 depending on m, k, p and p.

The map ®* will satisfy the conclusion of the proposition.

If i = 0, then U° consists of all vertices of cubes in ™. To construct ®°, we apply
Proposition 2.2 to the map u around each ¢° € U with parameters py < 2p and £ = 0: in
this case, the set A x Qgﬁ;z in Proposition 2.2 is simply Q3. This gives a map @9 such that
for every o9 € YO, dY is constant on o0 +Q;’}m and Y = Id outside U° +Qg},n. Moreover,
uo® e Whr(U* + Q3,;R”) and for every 0 € U and for every j € {1,...,k},

J
7 ||DJ (u o (Pl)“L”(UOJFQSZT,) <C Z na||DauHLP(UO+Q’g;n)7

a=1

Assume that the maps ®°, ..., ®*~! have been constructed. To define ®, we first
apply Proposition 2.2, for each o¢ € U?, to the map u o ®*~! with A = ¢* and parameters
pi < pi—1 . This gives a smooth map ®,: : R™ — R such that ®,: is constant on the
m — 4 dimensional cubes of radius p;n which are orthogonal to o?.



8 Pierre Bousquet, Augusto C. Ponce, Jean Van Schaftingen

Let ® : R™ — R™ be defined for z € R™ by

i2) = PN Pyi(x)) ifzeo’+Q) |, whereo' €U,
oi1(x) otherwise.

We first explain why ®° is well-defined. For this purpose, let
€ (01 + Q) N (e + Q)

for some ot € U and o} € U such that 0% # o}. In particular, o} and o} are not disjoint,
and there exists a smallest dimension r € {0, ...,7 — 1} such that
and 7" C o} Nab

T m
reT +Qu .y

for some 7" € U". By the formula of @ given in Proposition 2.2, the points z, ®: (2)
and ®; (z) belong to the same m —r dimensional cube of radius p; 17 which is orthogonal
to 7". Since by induction hypothesis ®*~! is constant on the m — r dimensional cubes of
radius p;_17n which are orthogonal to 7", we have
i1 — di-1(d . — &P ,
O (2) = T (Dyy (2)) = @ (D ().

This implies that ®' is well-defined. Moreover, ®° is smooth and satisfies properties
(a)—(c).

We prove the estimates given by (d). If eq,...,e,, is an orthonormal basis of R™
compatible with the skeleton /¢, then by abuse of notation we denote by o' x Q" i the
parallelepiped given by

m—i
{:c + Z tser, 1 X € o' and |t,| < an},

s=1

where e, , ..., e, _. are orthogonal to o*. Note that for every o € U,
U + Qan (U X QQpn ) (80’1 + Qg/]l)n)a
where o’ denotes the i—1 dimensional skeleton of o, By property (iii) of Proposition 2.2,

/ PP DY (uo o d \p<clz / 1P| D (wo &P,

= m—i ol m—i
aIXQpi 1n oIXQp " n

and then, since ®* = ®*~1 o ®_: on (a X 2p,7 Y\ (8" + Q3. ) and since the geometric

2pn
support Supp @, is contained in 0" x Q'™ i

s WE have

/ 17| D9 (0 B[P
(@ X QTN +Qy,,)

J
_Clz / n°P|D*(wo @ NP, (2.1)

m 7
a' ><Q2/377
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We claim that the maps ®,: can be chosen such that the additional property holds: for
every j € {1,...,k},

/ JP\DJ(uo@)|P<CQZ / n°P|D*(wo & NP, (2.2)

i m % m
oo +Q2p,] 80' +Q2p,]

Indeed, by the remark following Proposition 2.2, for every 0! € U* we may further
require that ®,. satisfies for every i — 1 dimensional cube 7°~' C Jo? and for every

jed{l,... .k},
WP|D? (uo @1 o d,.)[P

(ri=14Qg, )Noi]x Q.

—1n

J
<o} / 77| D% (wo &)

(i1 4QF, )N X Q.

Next, given 7°~! C o, denote by o, . . ., o the i dimensional cubes in U containing
7t=1 in their boundaries. In this case,
0
QY C ( Ul + Qs nebl < Q. )U{x €R™: di(z) = " (2)}.
p=1

Since for every 8 € {1,...,0},®" = d~1o ®,: on (Tt +Q5,) Nojl x Q.. by

the previous estimate on each cube aé and by additivity of the integral, we get

/ Jp|DJ(u0¢, ‘p<c4z / n°?|D*( uo(bz 1)|

1 i—1
T +Q29n TL +Q2P77

Adding both sides of this inequality over the i — 1 dimensional cubes 7'~ C do', we
deduce estimate (2.2) as we claimed.
By additivity of the integral and by estimates (2.1) and (2.2), we then obtain

/ Jp|DJ(uo<I>)\p<C5Z/ 0P| D™ (1 0 B[P,

) ) a=1
it om GiLO™M
i +Qy, o'+Q35,,

Since by induction hypothesis ®*~* coincides with the identity map outside U*~" + Q3 .
forevery a € {1,...,j} we have

[ wrprwen
o' +Q3,,
= [ wriprwen e / yoP| Dol

001 +QL, (01 +Qz, N\ (90 +QF,)
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By induction hypothesis, for every i — 1 dimensional face 7°~! of do?,

(o7
[ wmprwer ey [ wrptup
T1‘71+Qg;m 'leTi*l"‘Q;’;n

Since the number of overlaps of the sets 761 + Q73 is bounded from above by a constant
only depending on m, we have by additivity of the integral,

/ n°?|D(u o ¢i71)|p < Cy Z / nﬂp|D6u\p.

801'-',-@’2”';77 ﬂ:160i+QgLn

Therefore,

J
/ W7D (o &) < Cs 3 / 7P| DO ul?.

) a=1 .
i m i m
- +Q29n o +Q2pn

The map ®* satisfies properties (i)—(iv). The estimate of property (744) is a conse-
quence of (7v) and the additivity of the integral. O

We proceed to prove Proposition 2.2 by making precise the meaning of u o ® in the
statement.

Given a continuous function ¥ : U XV — W and z € V,we denoteby ¥, : U — W
the map defined for every z € U by

U, (z) = U(z, 2).

For every measurable function g : W — R, the composition g o ¥, is well-defined and
gives a measurable function defined on W for every z.

Lemma 2.3. Let U, W C R™ and V. C R! be measurable sets and let W : U x V. — W
be a continuous map such that for every measurable function g : W — R,

/ 190 9. i) d= < Cllgllsaw).
1%

Ifu e LP(W;RY) and if (un)nen is a sequence of measurable functions converging to u
in LP(W;RY), then there exists a subsequence (U, );cn such that for almost every z € V,

(i) the sequence (un,; o U, );en converges in LP(U;RY) to a function which we denote
byuoV,,

(i1) the essential range of u o WV, is contained in the essential range of u.

Proof. Let (un)nen be a sequence of measurable functions in W converging to u in
L?(W;R"). Given a sequence (&, )nen of positive numbers, let (u,, );en be a subsequence
such that for every ¢ € N,

||u7li+1 — Un, ||L”(W) < &
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By the assumption on W,

]ZP(W) < Ceb.

K3

/Huni+1 © \IJZ — Up,; © \IIZHZP(U) dz < CHuni+1 — Unp,
\%

Given a sequence (o, )nen of positive numbers, let

Y, = {z €V i|un,y, 0V, — tpn, oW, | oy > al}.

If the series Y . «; converges, then for every ¢ € N and for every z ¢ |J Y, the sequence
i=0 i=t
(un,; o ¥,)en is a Cauchy sequence in LP(U; RY).
By the Chebyshev inequality,

aﬂYzl < /Humﬂ oW, —up, © \IIZ||I£p(U) dz < CE?'
Y;

Hence, for every t € N,

sy
iL:Jt ; Qg
Taking the sequences (¢, )nen and (&, ) nen such that both series > «; and > (g;/cv;)?
i=0 i=0
converge, then the set E = () |J Y; is negligible and for every z € V \ E, (uy, 0 U, );en

t=0i=t
is a Cauchy sequence in L?(U;R"). This proves assertion (7).

It suffices to prove assertion (i) when W has finite Lebesgue measure. For every
z € V' \ E, we denote by u o ¥, the limit in L”(U;R") of the sequence (up,; o ¥, );en.

Let § : R” — R be a continuous function such that #~*(0) is equal to the essential
range of uand 0 < # < 1in R”. Forevery i € N,

J160 (a0 Wlls) dz < 00 wn sy
J

By Fatou’s lemma,
/||¢9 o (u ] \I’z)HLl(U) dz < hmlnf/”@ o (unL o \I/z)HLl(U) dz.
71— 00
i v
Since W has finite Lebesgue measure and 6 is bounded, as ¢ tends to infinity we get

/H@O (uo \I/Z)”Ll(U) dz < CHHOUHLl(W) =0.
\4

Therefore, for almost every z € V., [|f o (w0 W )|| 1 () = 0, whence the essential range
of u o U, is contained in the essential range of u. O
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From the previous lemma, we can prove the following property for maps in W*::

Lemma 2.4. Let U, W C R™ and V C R be open sets and let V : U x V. — W be a
smooth map such that for every measurable function g : W — R,

/||9 oV.l[L1wydz < CllgllLrw)-
1%

Ifu € WrEP(W;RY) and if (up)nen is a sequence of smooth functions converging to
w in WhP(W;RY), then there exists a subsequence (u,, )icn such that for almost every
z € V the sequence (u,, oV, );cn converges to u o V., in WEP(U;RY), and for every
jed{l,... .k},

/HDJ (wo W)l dz < C V]I~ ZHD allzr

=1

for some constant C' > 0 depending on m, p, k, C and max sup || D’ V|| o 0y
1<5<k ey

Proof. Let (uy,)nen be a sequence of smooth functions in W (WW; R¥) converging to
w in W*P(W;RY). By the previous lemma, there exists a subsequence (u, );en such
that for almost every z € V, (uy, o ¥, );en converges to u o ¥, in LP and for every
je{l,....k}, (DIuy,) o ¥, );en converges to (D/u) o U, in LP.

For every v € C*°(W;R"), for every z € V and for each j € {1,...,k},

Do )(@)| <1 Y. Y IDW(V. ()| DV, ()| | DN ()

i=1 1<t <...<t;
i+ +ti=j

J
<Gy |D'o(¥
i=1
whence

J
103 (00 W2,y < Cs S D[P 0 .10
i=1

This implies that for almost every z € V, (u,, o ¥,);en is a Cauchy sequence in
WkP(U;RY), thus (u,, o ¥, );en converges to u o ¥, in W*P(U; R¥). Moreover, inte-
grating with respect to z the above estimate and using the assumption on ¥ we get

/||D] (0o W)L dz < CBZ/|||DW|”°‘I’ Izt ) d

zlv

< Oy Z\||Div|p\|L1(W) Ca ZHD l% 0wy

i=1
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Thus, by Holder’s inequality,

J1D9wo W lusioy az < V- (O4ZIID - )
1%

J
_1 i
<GV > 1Dl ey
i=1
We obtain the desired estimate by taking v = wu,,, and letting n; tend to infinity. O

We now show that the functional estimate in Lemma 2.3 and 2.4 is satisfied for maps
¥ of the form

\I'(.’E,Z) = C(.’IJ + Z) -
The strategy is based on an averaging device due to Federer and Fleming [18] and adapted
by Hardt, Kinderlehrer and Lin [30] in the context of Sobolev maps. It relies on the
following lemma:
Lemma 2.5. Let U,V,W C R'! be measurable sets and let { : U +V — R! be a

continuous map such that for every x € U and for every z € V, ((x + z) — z € W. Then,
for every measurable function g : W — R,

/(/Q(C(:chz)z)dm) dz < |U+V|/|g(;p)|dx.
|4 U W

Proof. Let¢ : (U +V) x V — R! be the function defined by

§(x,2) =z +2) -

By Fubini’s theorem,

V/((J/(gof)(l‘,z)dm> dZ:U/<V/|9(C($+z)—z)|dz> dz.

Applying the change of variables Z = = + z in the variable z and Fubini’s theorem,

v/<z/|(gog)(x7z)|d$) dz:/(/ 9(4(2)+x—z)dg) da
-/ ( / x_z)|dw>d2

U+v  (z—

We now apply the change of variables & = ((Z) + « — Z in the variable z, and use the
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assumption on W to conclude

/(/'gog mz)dz)‘lz— / ( / 19 (i)|d53>d2

U+V  ((2)—(VN(z2-U))

< ([

u+v. w

=Vl [ lg@)da.

This gives the desired estimate. O

Proof of Proposition 2.2. By scaling, it suffices to establish the result when = 1. We fix
psuch that 2p < p — p.
Let E : R™=¢ — R™* be the smooth map defined by

() = (1 —2y))y.
where ¢ : R™~¢ — [0, 1] is a smooth function such that
— fory € Qp+p,<p( ) =1,
— fory e R™~ K\Qp p,(p(y) 0.
For any z € Q;"_é, the function ¢ : R™~¢ — R™~¢ defined for 2" € R™ ¢ by
C(IE”) _ 5(%” + Z) o
satisfies properties (i)—(3).
We claim that for some z € le—e, the function ® : R™ — R™ defined for z =
(2',2") € R* x R™m~* by
P(z) = (2, ¢(2"))
satisfies property (ii4).
For this purpose, let ¥ : R™ x QZL_Z — R™ be the function defined for z = (2/,2") €
R x R™~*and z € Q7" by

U(z,z) = (¢, C(a" +2) — 2).

For every measurable function f : A x Q%”*Z — R, we have by Fubini’s theorem,

/ 1 0 Wl 1 sty 2

. :/[/ (/yf (@ +2) - )|dm”>dz]dx’

A Q;n—l QT 2
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Given 2’ € A, we apply Lemma 2.5 with U = Q%”_Z, V= Qg“_e, W = Qg‘_e, and C.
We deduce that

/(/’f(a?’,ét(ac”—i—z)—z)\dx”)dzéCl / \f(a,2")| dz”.

m—~£ m—£ m—£
Qrt Qr Qr

Thus,

[ 170 %lisianap 9% < Cull s az
Q"

P

By Lemma 2.4, for almost every z € Qg%e, uo W, € WhP(A x Q%”*Z; R”) and for
every j € {1,...,k},

J
/ | D7 (u o \IIZ)”LP(AXQ%"’Z) dz < Cy Z”DZUHLP(AXQ%"%)'
1=1
Qrt

We may thus find some z € Qg"”[ such that w o ¥, € WHP(A x Q%”*Z; R¥) and for
every j € {1,...,k},

J
| D (uo \IJZ)”LP(AXQQ*Z) <Cs Z”DZUHLP(AXQQ*H
i=1

The function ¢ defined in terms of this point z satisfies the required properties. O

Addendum 1 to Proposition 2.1. Let K" be a cubication containing U™ and let ¢ > 1.
Ifu € Whi(K™ 4 Q3! ;RY), then the map ® : R™ — R™ can be chosen with the
additional property that uo ® € Wha(K™ + Q5 RY) and for every o™ € K™,

ID(uo @)l Laomrqy,) < C"IIDullaomrag, ),

2pn 2pn
Sor some constant C"" > 0 depending on m, q and p.

Proof. Since u € Wh4(U* + Q3,,; R”), we may apply Proposition 2.1 with k£ = 1 and
p = ¢ in order to obtain a map ® : R™ — R™ such that u o ® € Wha(U* + Qs R")
and for every o € U¢,
[D(uwo ®)||La@rrqy, ) < CllDullLaorrqp, )

Since the choice of the point z in the proof of Proposition 2.2 can be done in a set of
positive measure, we may do so by keeping the properties we already have for W5,

For every ™ € K™, if 0™ denotes the skeleton of dimension £ of o™, then by
additivity of the integral,

|D(u o @)”Lq((D—?‘H,ZQU@)J’,Q;ﬂpT,) < CHDUHLq((a-'rn,émUl)JrQ’g;n).
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Since @ coincides with the identity map in (6" + Q%%,) \ ((e™*NU*) + Q52,.),

[D(uwo @)|La@miqy,) < CllDullLaom 1oz

2pn 2pn

This concludes the proof. O

Addendum 2 to Proposition 2.1. Let K™ be a cubication containing U™. If u €
Whkp(Km 4 Q3p,; RY), then the map ® : R™ — R™ given by Proposition 2.1 and
Addendum 1 above with q = kp satisfies

£
rrp L

/ / luo®(x) —uod(y)|dudy =0

Q () Q1 (a)

lim sup —_—
=0 Qma)cUut+Qm, Q|2

and for every c™ € U™ and for every a € o™ such that Q™ (a) C U* + Qyy

C///rl—ki

[ [ et -uoatldsdy < DUl oo,
Q7 (@) Q7 (a) g

1
Q7

for some constant C""" > 0 depending on m, kp and p.

If kp > /, then the limit above implies that u o ® belongs to the space of functions
of vanishing mean oscillation VMO(U* + Qun; R") and the estimate yields an estimate
on the BMO seminorm on the domain U* + @}, as defined by Jones [32]. If kp > £ > 0,

then the estimate implies that u o ® € CcOl-wp (U* + Q}y; R”) with an upper bound on

the 00,1—7@ seminorm of u o ® [14]. The estimates of this addendum are not really useful

. L. . _L
when kp < £ since in this case hmO T = +o0.
r—

Proof of Addendum 2. Fix Q7"(a) C U'+Q7. Thena € U*+Q, .. Hence there exists
an ¢ dimensional face 7 € U* such that Q" (a) C 7° 4 Q7. Without loss of generality,
we may assume that 7¢ = Qf; x {0~} c R x R™~*. From Proposition 2.1 (i), the
map P is constant on the m — ¢ dimensional cubes of radius pn which are orthogonal to
Qf11 )y X 0™} Writing @} (a) = Qr.(a) x Q;*~*(a”), then u o ® only depends on
the first £ dimensional variables in Q" (a). Let v : Qf — R” be the function defined
by

1+p)n

v(@') = (uwo®)(z',a").

By Addendum 1 above with g = kp, uo ® € W' (Qf,, | x Qm~";R¥), whence

NS lekp(Qflde)n;Ru).

Note that
1
W luo ®(x) —uod(y)|drdy
" or@aer
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By the Poincaré-Wirtinger inequality,

1 _ £
QL2 [o(z') = v(y)|da’ dy" < Cvr' ™ || Dol Lrw (e (ar) -
" Qe Qtar)
Thus,
_ 1 _ £
Q2 / / [uo ®(x) —uo dy)|dzdy < Crr'™ % | Dvll pin (e ()
" Qr(a) Qri(a)

and this implies the first part of the conclusion.
In order to get the estimate of the oscillation of w o ® in terms of || D(u o ®)||z»», note
that

m—¢t
[D(uo q’)||Lkp(Qg‘(a/)XQ;';;Z(,,,//)) = (2pn) * || Dvl| e (@t (ar)) -

This implies for any o™ € U™ such that 7¢ C o™

| Dv|| Lr(qey = WlD(U ° )l Lrn(qexgmy
< WID(uo D))
< W|D<uo ®)24s (o 1)
Thus,
@ / / |uo®(z) —uo®(y)|dedy < WHD(U o (I))“Lkp(am+Qg¢7)-

Q7 (a) Q7 (a)

By Addendum 1 above,
||D(’LL o (I)) ||Lkp(o-7n+Q:)1?’,7) S OgHDuHLkp(o.m,_;'_Qg’;n).

This proves the estimate that we claimed. O

3 Adaptive smoothing

Given u € WFP(Q;R¥), we would like to consider a convolution of u with a parameter
which may depend on the point where we compute the convolution itself. The main reason
is that we want to choose the convolution parameter by taking into account the mean
oscillation of u: we choose a large parameter where u does not oscillate too much and a
small parameter elsewhere.

For this purpose, consider a function v € L'(Q;RY). Let o be a mollifier, in other
words,

p € CX(BI"), ¢>0inBy" and /¢:1.

m
By
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For every s > 0 and for every z € € such that d(z,9) > s, we may consider the
convolution

(ps *u)(x) = / p(2)u(z + sz)dz.

B

We may keep in mind that with this definition,

(or @) = [ o) dzule) = uo).
Bm™
This way of writing the convolution has the advantage that we may treat the cases s = 0
and s > 0 using the same formula.

We now introduce a nonconstant parameter in the convolution given by a nonnegative
function ¢ € C'*°(£2). The convolution

oy xu: {z € Q:dist(z,00) > ¢(z)} - R”

is well-defined and if ¢)(a) > 0 and |Dy(a)| < 1 at some point a € 2, then by a change
of variable in the integral the map (., * u is smooth in a neighborhood of a.

Proposition 3.1. Ler ¢ € C°(BI") be a mollifier and let 1» € C> () be a nonnegative
function such that | DV|| ) < 1. Then, for every u € LP($;R") and for every open
setw C {z € Q: dist (z,00) > ¥(x)}, oy *u € LP(w;RY),
1
1
(1= DYl Lo ()™

ey * ull Loy < [l o (),
and
[y *u —ul[Lrw) < sup [Tyt — ullLe(w),
veB

where Ty, u(z) = u(z + P (z)v).

For p > 1, itis possible to obtain an estimate for ||y *u| »(.,) Without any dependence
on v by the theory of the Hardy-Littlewood maximal function [50]; this approach fails for
p=1

In the context of the proposition above, one can prove in a standard way the following
statement: given u € LP(Q;RY), 0 < 8 < 1 and € > 0, there exists 6 > 0 such that for
any nonnegative function ¢ € C°°(Q) satisfying |||~ () < 0 and || Dy| 1) < B,
and for every open setw C {z € Q : dist (z,0Q) > ¢(z)},

sup- [ Tpott = ul| r ) < €.
1

We may pursue these estimates for maps in W*?(€; RY):

Proposition 3.2. Let p € C2°(B7") be a mollifier and let 1 € C*° () be a nonnegative
function such that | Dv|| () < 1. For every k € N,, for every u € W*?(Q; R”) and
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for every open set w C {x € 0 : dist (z,00) > ()}, py x u € WHP(w;RY) and for
everyj € {1,...,k},

C I
T ZWHDZUHLP(Q),

11D (py )| o (w) <
(1- ||D¢||L°C(w))" i=1

and

1 |D7 (o % u) — DIl o)

c' i
= Y ' Dl Lo ay,

< sup |7y (D7u) — DIl Loy +
veBy (1= IDY||poe(w))? =3

Jor some constants C' > 0 and C' > 0 depending on m, k and p, where

A= U BZZf(w) (x)

xrEwNsupp DY
and 1 > 0 is such that for every j € {2,...,k},
77j||Dj7/)||L<x>(w) <.

Proof. We only prove the second estimate. We assume for simplicity that u € C*°(Q; R”).
For every = € w,

(o u)(e) = ule) = [ o) [ule +0(@)2) = uw)] .

For every j € {1, ..., k}, we have by the chain rule for higher order derivatives,

| D7 (0 * ) () — D u(w)]

< / @(2)| D7 u(z + ¢ (x)2) o (Id + Dip(z) @ 2)7 — DVu(x)| dz

By

j—1
LYY @+ D@D D) - (D)
i=1 a1 +200++jo;=j
a1+a2+"'+0¢j:i
x /w(Z)IDiU(a:+¢(x)z)\dz.
B’{n

Since || Dt || L () < 1, forevery z € BY",

|(1d + Dy(z) ® z)7 —1d| < Cs|Dy(z)],
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and we have

| D7 (g * ) () — Du(w)]

< /90(2)|DjU(w+1/J(x)Z)*DjU($)|dZ+Cle1/J(w)|/¢(2)|DjU(ff+l/f(x)Z)|dZ

7j—1
+Clz Z (14 |Dyp(2)|)** | D*ap(x)|*2 - - - | DIgp(x)|* x
i=1 a1 +2az+--+jo;=j
O¢1+a2+...+aj:i

« / o(2)| Dl + (x)2)]| d=.

B

The second and the third terms in the right hand side are supported on supp D1} since
ag # 0 for some s > 1. Moreover, by the choice of 7,

(L 1Du () ) D)2 (D)l < 1+ ™ () ()

aitoag+-Haj % )

__ 9Qaj n ! 2 ’ _ a177 377
=2 =2 = < 27—
na1+2a2+-~~+ja,- Jj — J

3
3

Therefore,

1D (py +u)(z) = DVu(z)| < / (2)| D7u(z + 4 (x)z) — DVu(z)|dz

m
B 1

i |
+C3) %Xsnpp Dy() / o(2)| D' u(z + 9 (x)z)| dz.
i=1

By
By the Minkowski inequality,

</ < / o(2)|Diu(x + (z)2) —DjU(x)dz>pdx)

w By

3 =

1
< / </|D7u(:c + ¢Y(x)z) — Dju(x)\p dx) pgo(z) dz
B w
< sup (D) = Doy [ o(2)ds
veB
B

= sup ||TwU(Dju) —Dju||Lp(w),
veEB
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and forevery ¢ € {1,...,j}, we also have

< / (/ga(z)|Diu(x+1/J(a:)z)|dz)pd:c>;

wnsupp Dy BY"
< / ©(2) ( / |Diu(x + b(x)2)|P dx) ’ dz.

BY wNsupp Dy

Using the change of variable y = x + v (z)z with respect to the variable x, we deduce by
definition of A that

( / (/¢(z)|Diu(x+w(x)z)|dz)pdx>;

wnsupp Dy BT"
1 1
< | o) ————— Diuy”dy) dz
/”(1—||Dmm<w> D)
Bp A

1 ,
= T ||D7'U/||Lp(A)
(1- ||D¢\|Loc(w))”
This gives the desired estimate for u € C°°(£2;R¥). The case of functions in WP (Q; R¥)
follows by density. O

4 Thickening

Given a map v € WHP(U™; R") which behaves nicely near the skeleton U*, we would
like to construct a map u o ¢ that does not depend on the values of u away from the
skeleton U*. The price to pay is that the map u o ® will be singular on the dual skeleton
T*"; these singularities will however be mild enough to allow u o ® to be in Ry- (U™; R¥)
and to satisfy WP estimates for kp < ¢ + 1. The thickening construction is related to
homogenization of functions on cubes that are used in the study of density problems for
k=113,4,28].
The precise meaning of dual skeleton we use is the following:

Definition 4.1. Given ¢ € {0, ..., m—1} and the ¢ dimensional skeleton S¢ of a cubication
S™, the dual skeleton 7¢" of S* is the skeleton of dimension £* = m — £ — 1 composed
of all cubes of the form o¢” + z — a, where ot € S*", a is the center and z the vertex of
a cube of ™.

The integer £* gives the greatest dimension such that S N T = (.
The proposition below provides the main properties of the map ®:

Proposition 4.1. Ler £ € {0,....,m — 1}, 7> 0,0 < p < 1, 8™ be a cubication of R™
of radius n, U™ be a subskeleton of S™ and T*" be the dual skeleton of U. There exists a
smooth map ® : R™ \ T — R™ such that
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(1) ® is injective,

(i) for every o™ € 8™, ®(a™ \ T ) C a™\ T,

c s m m m * L m
(iii) Supp® C U™ + Q}; and @(U™\T" ) C U+ Q};,
(iv) for every j € N, and for every x € R™ \ T*,
D) < —
(dist(z, 7))’

for some constant C > 0 depending on j, m and p,

(v) forevery 0 < B < £ +1, for every j € N, and for every x € R™ \ T*,

wfe

DI (2)] < O (jac @ () 7,
for some constant C' > 0 depending on 3, j, m and p.

This proposition gives W bounds on u o ® for every WP function u. The proposi-
tion and the corollary below will be applied in the proof of Theorem 2 with ¢ = | kp].

Corollary 4.2. Let ® : Rm\T‘Z* — R™ be the map given by Proposition4.1. If {+1 > kp,
then for every u € WFP(U™ + Qi RY), uo® € Wkp(U™ + Q)3 RY) and for every
jed{l,....k},

J
TIJ HD] (’u o (I))HLP(U’”+Q;'}”) S C// Z 771’HD7’U|‘LP(U7”+Q;'}”)7

i=1
Sor some constant C"" > 0 depending on m, k, p and p.

Proof. We first establish the estimate for a map u in C*°(U™ + Q};; R”). By the chain
rule for higher-order derivatives, for every j € {1,..., k} and for every x € U™ \ T*",

IDi(uo®)(@)P <Ciy > [D'u(@(@))|D®()|”- - | D" (x)[.

i=1 1<t <...<t;
titt+ti=j

Let0< 8 <l+1.If1<t; <...<t;andt; +---+t; = j, then by property (v) of
Proposition 4.1,

ur . tip A ip
|Dt1‘I)(.r)|p . ID“@(%HP <C (JaC CD(:L')) B o (JaC @((E)) B _ (JaC CI)(.’K)) B
= e E—Dp T

Since kp < £ + 1, we may take § = jp. Thus,

jac ®(z)

t P...|Dt P
| D" ()] | D" ®(x)|P < Cy nG=0p
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and this implies

W7D (w0 )(2)? < Cs Y 0P| D'u(®(x))|? jac &(x).
i=1

Since @ is injective and Supp ® C U™ +Q™

™ wehave ®((U™+Qm)\T"") C U™+Q™m,
Thus, by the change of variable formula,

J
/ 7P| DY (w0 ®)|P < Cs Z / n?|(D'u) o P jac O
(Um+Qp)\T*" ERCART I

P
< Oy Z / 0P| DiulP
ilem_;’_Qg;]
anduo® e WhP((U™+ Q) \ T ;R¥). Since £ > 0, the dimension of the skeleton
T is strictly less than m — 1. Thus, uo ® € W*» (U™ 4 Q7 RY). By density of smooth
maps in W*P (U™ + Qi

R"), we deduce that for every u € W2 (U™ + Q1 : R"), the
function u o ® also belongs to this space and satisfies the estimate above. O

We describe the construction of the map ® given by Proposition 4.1 in the case of only

one ¢ dimensional cube:

Proposition4.3. Let( € {1,...,m},n >0,0<p<p<p<landT ={0°} x Qm~".
There exists a smoothfuncnon )\ R™\ T — [1,00) such that if ® : R™"\ T — Rm ]
defined for x = (x',2") € (R* x R™=)\ T by

®(z) = (\(z)2',2"),
then
(i) ® is injective,
(1) Supp® C Q(,_,), X Qp ",
(i11) @((Qf1—pyn X Qpy INT) C QL1 pyy \ Qlupyy) * Qi
(iv) forevery j € N, and for every x = (2',2") € (Qfl_p)77 x QuH\ T
Cn

Da(@)] <
for some constant C' > 0 depending on j, m, p, p and p,

(v) forevery 0 < B < {, for every j € N, and for every x € (Qfl_p)n X :)nn—f) \T,

PYDId()] < O (jac () 7,

for some constant C' > 0 depending on f3, j, m, p, p and p.
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We temporarily admit Proposition 4.3 and we prove Proposition 4.1.

Proof of Proposition 4.1. We first introduce finite sequences (p;)e<i<m and (7;)e<i<m
such that
0<pm <Tm-1<pm-1<...<pey1 <7 <pe=p.

For i = m, we take ®,, = Id. Using downw*ard induction, we shall define for every
ie{l,...,m— 1} smooth maps ®; : R™\ T — R™ such that

(a) P, is injective,

(b) for every 0™ € 8™ and for every r € {i*,...,m — 1}, ®,(¢™ \T") C o™\ T",
(¢) Supp®;, Cc U™ + Q™

pin’

(d) (U™ \T) CcU 4+ Q™

pin’

(e) forevery z € R™ \ T% and for every r € {i*,...,m — 2},

dist(®;(x), T7) dist(z, T"T) = dist(®;(z), T" 1) dist(x, T"),

(f) forevery j € N, and for every x € R™ \ T,

Cn

D7 ®;i(2)] < ———
(dist(z, T7"))

for some constant C' > 0 depending on j, m and p,

(g) forevery 0 < 8 < i+ 1, forevery j € N, and for every z € R™ \ T*",
W DD, (x)] < O (jac By(x)) 7,
for some constant C’ > 0 depending on j, j, m and p.

The map @, will satisfy the conclusion of the proposition.

Leti € {¢{+1,...,m} and let ©; be the map obtained from Proposition 4.3 with
parameters p = p;, p = T;_1, p = pi_1 and £ = i. Given o € U*, we may identify o
with Qf x {0™~*} and 701" N (0! + Q) with {0°} x Q7'~', . The map ©; induces
by isometry a map which we shall denote by © ..

Let ¥; : R™\ T(—D" — R™ be defined for every z € R™ \ T~V by

Wi(z) = {@(,i (x) ifxe (.J'i + Q1 for some o' € U,
x otherwise.
We first explain why ¥; is well-defined. Since ©,: coincides with the identity map on
do' 4+ Q7 . then for every of,05 € U',if x € (o} + Q7 )N (05 + Q7 ) and
ot # ob, then
Oyi(z) =z =60, ().



Density for higher order Sobolev spaces into compact manifolds 25

One also verifies directly that ¥; is smooth on R™ \ 7¢=1)",
Assuming that ®; has been defined satisfying properties (a)—(g), we let

(I)ifl = \I/Z 9 (I)z

The map ®;_ is well-defined on R™ \ TG~ since &;(R™ \ T¢-17) c R™ \ 70D,
We now check that ®,_; satisfies all required properties.

Proof of Property (a). The map ®;_; is injective since W; and ®; are injective. O

Proof of Property (b). Forevery r € {(i — 1)*,...,m — 1} and for every ™ € S™, we
have by induction hypothesis ®;(c™ \ T") C ¢™ \ T". Moreover, for any ¢ € 8™ and
any 6 € U, the formula of ©; implies that O (™ \ T") C o™ \ T". O

Proof of Property (c). By induction hypothesis ®; coincides with the identity map outside
U™+ @), By construction, ¥; coincides with the identity map outside U™ + Q7 |,
(see Proposition 4.3, property (ii)). Since p; < 7;—1 < p;—1, we deduce that Supp ®;_; C
Um+Qm H

pPi—1Mm*°

Proof of Property (d). By induction hypothesis (property (d))

@l(Um \Tﬁ) c Uz +Qm

pin

and (property (b))
O;(R™\ 70Dy c R™\ 76D,

Since T¢—1" 5 T we have
O (Um\ TV c (U + Q) \TEY".
By construction of ©; (see Proposition 4.3, property (#ii)), for every % € U°,

O (0" + Q) \TU™D") C 00" +Qp_,.

pin
Taking the union over all faces o* € U*, we get

U (U +QUI\NT )y cu=t +Q

pi—1m"

Combining the information for ®; and ¥;, we obtain

O (UT\TE )y cUu=t+ Q1. O
Proof of Property (e). Letr € {(i—1)*,...,m—2}andz € R™\TU-D" If®;_;(z) =
®,(x), then the conclusion follows by induction. If ®;_;(x) # ®;(x), then there exists
o' € U" such that ®;(z) € o' + Q' |, and ®;_1(x) = O, (P;(x)). Since ¥;(z) €

Supp ¥, 4
Qi(z) € (0" + Q7 )\ (90" + Q7 ).
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Up to an isometry, we may assume that o' =Qp x{0™ "} Forevery 0 < A < 1and
forevery y = (¥, y") € Q(;_»y, x Q% "

dist(y, T") = dist ((v',0),7" N (Qfl_k)n x {0™71}).

In view of the formula of ©;, we deduce that for every y € (o" + Q1 |, )\ (9o x Q7 ),

Ti—17
dist(0,: (y), T") dist(y, T" ") = dist (O, (y), T" ") dist(y, T");

this identity is reminiscent of Thales’ intercept theorem from Euclidean geometry. By
induction hypothesis, we then get
dist(®;_1(x), T") dist(z, T" 1) = dist(0,: (®;(x)), T") dist(x, T" )
= dist (0, (®;(z)), T" 1) dist(z, T")
= dist(®;_1(z)), T" ) dist(z, T7).

This gives the conclusion. O

Proof of Property (f). Let z € R™ \ TG~V If ¥, coincides with the identity map in a
neighborhood of ®;(z), then D7 ®; 1 (z) = D’®;(z) and the conclusion follows from the
induction hypothesis and the fact that 70¢—1" > 77"

If ¥; does not coincide with the identity map in a neighborhood of ®;(x), then there
exists o € U’ such that

CI)Z(I') (0 +Q‘r, 177)\ (80 +Q‘r7 177)
and ®;_1(z) = O,,(P;(z)). By the chain rule for higher order derivatives,

J
Do,y (@)| <O Y. Y D70, (Pi(x)| D1 @ ()| - | DY@ ().
r=11<t;<...<t,
tite At tr=j

By construction of ©; (see Proposition 4. 3 property (iv)), we have for any y = (y',y") €

( (1—=7i—1)n X ;’ILL 1177) \ ({OZ}' 627—1 177
Can

ly'I"

[D"0i(y)| <

This implies
Can

(dist (@ (), TE-D"))"
By the induction hypothesis, forevery 1 <t; < ... <t,suchthatt; +---+1¢, = J,

D704 (®i(2))] <

D" ®;(z)| -+ | D' @i ()]

T

U N — (4 "

S 03 R 2 , i A j°
(dist(z, T7")) (dist(z, T%))" (dist(z,T7))
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Thus,
r4+1

|DJ11 i ,77

(dist(®; (), TE-D"))" (dist(z, T))”
We recall that by property (f),

dist(®; (), TV dist(x, T ) = dist (2, TCV") dist(®; (), T ).
Since ®;(z) € (0" + Q7)) \ (90" + Q).

dist(®;(z),T") > (1 —7i_1)n > (1 — p)n.

(dlst(q)l(x)’T(zfl)*))r(dlst(x’T@*))J
= (dist(:c,T(i_l)*)dist(q’i(x),Ti*))T(diSt(x7Ti*))j_
> (dist (z, TD7)) (1~ p)n)" (dist(z, 7))’ "

T

Since 7% ¢ T=1" we conclude that

n

|Dj¢)i_1($)| S 05 - = .
(dist(x, T(=D"))’

O

Proof of Property (g). Let j € N, and let z € R™ \ TU-1"_If ¥; coincides with
the identity map in a in a neighborhood of ®;(z), then D'®, ;(x) = D ®;(x) and
jac ®;_1(z) = jac ®;(x). The conclusion then follows from the induction hypothesis.

Assume that ¥; does not coincides with the identity map in a neighborhood of ®;(x).
Let0 < 8 <iandr € {0,...,j}. By induction hypothesis, if 1 < ¢; < ... < ¢, and
ti +---+t. = 7, then

acP;(x 3 jac ®; (x F ac P; %
D) Do) < € PR G0 SENT g eSO,

Let o € U* be such that

(I)l(x) (0 +QT; 17])\(80 +Q7—7 117)

and ®;_;(x) = ©,, 0o ®;(z). By construction of O; (see Proposition 4.3, property (v)),
we have forany y € (Q(,_,, ), x Q7" mi )\ ({0 x Q).

T

WYD" O(y)| < Ca(jacOs(y))*7 = CaljacO4(y))?.
Thus,
D70, (2,(2))||D"@(2)] - - | D" @ <>|<0(Jac®(’§ff(x)))é (jaci’ff”%

m\w.

:170 (jac®;_1(z))”.
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Therefore, by the chain rule for higher order derivatives,

s

1DI®;_ ()] < C (jac®;—1(z))".

= it

This gives the conclusion.

Jean Van Schaftingen

O

By downward induction, we conclude that properties (a)—(g) hold for every ¢ €
{¢,...,m}. In particular, , satisfies properties (¢)—(v) of Proposition 4.1. O

We establish a couple of lemmas in order to prove Proposition 4.3:

Lemmadd. Letl € {1,...,m}, letn>0,let0<p<p<p<land0 <k <1l—p.
There exists a smooth function A : R™ — [1, 00) such that if ® : R™ — R™ is defined for

r=(z',2") e RE x Rm~* by

then

(1) ® is a diffeomorphism,

(#) Supp® C Qfl_p)n x Qmt,
(i11) @((Q7 \ Qrn) X Q") C(Q)\ Qf_p),) X Q"
(iv) for every j € N, and for every z € R™,

WD 0()| < C,
for some constant C' > 0 depending on j, m, p, p, p and k,
(v) forevery j € N, and for every x € R™,

O’ <jacd(x) < C”,

for some constants C',C" > 0 depending on'm, p, p, p and k.

Proof. By scaling, we may assume that n = 1. Let ¢ : R — [0, 1] be a smooth function

such that

— 1) is nonincreasing on R and nondecreasing on R_,
— for|t| <1—7p,¢(() =1,

— for[t| > 1—p,9(t) =0.

Let 6 : R — [0, 1] be a smooth function such that

— for [t| < p, 0(t) = 1,

— for [t| > p, 0(t) = 0.
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Let ¢ : R™ — R be the function defined for x = (z1,...,2,) € R™ by

@) = TTv(e) T 0
=1 i=0+1

Thus,
— forevery z € R™ \ ( li,p X QZ’J), p(x) =0,

— forevery xz € Qiﬁ X Q:}‘*Z, p(z) =1.

We shall define the map ® in terms of its inverse W: let ¥ : R™ — R™ be the function
defined for z = (2/,2") € RY x R™~¢ by

U(z) = ((1 - ap(z))a’,2"),
where a € R. In particular,
— forevery z € R™\ (Qf_, x Qp™"), ¥(x) = x,
— forevery z = (¢/,2") € Qf_; x Q)" ¥(z) = (1 - a)a’, 2").

In view of this second property, taking « = 1 — -£=, we deduce that W is a bijection

-5
between Qf , x Q7" and Qf, x Q"

We now prove that W is injective. If z,y € RY x R™~* satisfy ¥(x) = ¥(y), then
y"” = 2" and y' = ta’ for some ¢ > 0. Since @ € (0, 1), the function

g:s€[0,00) — s(1 —ap(sx’,z"))

is the product of an increasing function with a nondecreasing positive function. Thus,
g is increasing, whence W is injective. Since g(0) = 0 and , liin g(t) = 400, by the
— 00

Intermediate value theorem, g([0, 00)) = [0, 00). Thus, ¥ is surjective. Therefore, the map
U is a bijection.

We claim that for every x € R™, DU (z) is invertible. Indeed, for every z = (2/,2") €
R x R™~* and for every v = (v',v") € Rf x R™~¥,

DV(z)[v] = ((1 — ap(z))v — aDp(z)[v]a’,v").

The Jacobian of ¥ can be computed as the determinant of a nilpotent perturbation of a
diagonal linear map to be

jac¥(x) = (1 — ap(@))" ' (1 — ap(z) — aDp(z)[(«',0)]).
Since 1) is nonincreasing on R and nondecreasing on R_, Dy(x)[(z’,0)] < 0. Thus,
jac¥(z) > (1 — ap(x))’ > (1 —a)* > 0.

The map ® = ¥~ satisfies all the desired properties. O
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Lemma4.5. Let{ € {1,...,m},n>0,0<p<p<p<landT ={0"} x Qp "

There exists a smoothﬁmctlon A:R™\T — [1,00) such that if ® : R™ \ T — R™ is
defined for x = (2',2") € (R x R™=)\ T by

b(z) = (\z)2',2"),
then
(i) @ is injective,
(7) Supp® C Bfl_p)n x Qmt,
(i18) ®((Bfy_,, * oy INT) C (Bly_yy \ Bli_zy) * Qpy "

(iv) for every j € N, and for every x = (z',2") € (B¢ (—pyn X Qpy” H\T

D)< L

for some constant C' > 0 depending on j, m, p, p and p,

(v) forevery 0 < B < {, for every j € N, and for every x € R™ \ T,

sk

DI (a)] < O (jac ®(x)) 7,
for some constant C' > 0 depending on f3, j, m, p, p and p.

Proof. By scaling, we may assume that n = 1. Given b > 0, let ¢ : (0,00) — [1,00) be a
smooth function such that

1-3

— f0r0<s§1—ﬁ,<p(s):7p(l+lbl),
s s

— fors >1—p, p(s) =1,

— the function s € (0,00) — sp(s) is increasing.

This is possible for any b > 0 such that

b
(1- )(1 + ) <1-p.
In —
p
Let 6§ : R™~¢ — [0, 1] be a smooth function such that

— fory € Q?’Z, 0(y) =0,

— fory e R™“\ Q4. 0(y) =
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We now introduce for z = (z/,z2") € Rf x Rm~,

C(x) = /22 + 0(a")".

Let A : R™\ T — R be the function defined for z = (2/,2") € R™ \ T by

Since ¢ # 0 in R™ \ T, the function ) is well-defined and smooth. In addition, A > 1.
We now check that the map ® defined in the statement satisfies all the required
properties.

Proof of Property (i). In order to check that ® is injective, we first observe that if z =
(',2"),y = (¥,y") € Bf x Q" and ®(x) = ®(y). then z”" = y”, and there exists
t > 0 such that ¢y = ¢2’. The conclusion follows from the fact that the function

h:s€[0,00) — sp(yv/s2 +6(z")?)
is increasing. O

Proof of Property (ii). Forevery z = (2/,2") € (R* x R\ T,if 2’ ¢ Bffp or if
2" & Q! then ((x) > 1 — p. Thus, M(z) = ¢(¢(x)) = 1 and ®(z) = 2. We then have
Supp® C Bf_p X Q;”’e. O

Proof of Property (iii). We first observe that since the function s € (0, 00) — sp(s) is
increasing and 1in% sp(s) =1 —p, forevery s > 0,
s—

sp(s) > 1—p.

Since for every z = («/,2") € (Bf_, x QZ"K) \ T, we have {(z) = |z’|, we deduce that
(AM@)a'| = e(|a'D]a’| = 1 —p.
On the other hand, since the function h defined above is increasing,
@) = B(a'l) < B(1—p) =1 —p.
We conclude that A(z)z" € B{_, \ B{_. O
Proof of Property (iv). By the chain rule,
IDIA@)I <O Y Y @)D ()] DY ().

i=11<t1<...<t;
tibe ot ti=g

For every ¢ € N, and for every s > 0,

i Cy
o (s)] < RS
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and for every x € (Bf x R™~4)\ T,

C3
((z)i=t

Thus, forevery 1 <t¢; < ... <t;suchthatt; +--- 4+ ¢, = 7,

|D'¢(x)] <

t1 z)| - t; T C4 _ C4
[D7 ¢ ()] (D" ¢(@)] < ()=t . ((x)ti—1 C(m)j—i'

By the chain rule,

\Dj)\(x)|<0i ! L G
= @)y () )

Hence, by the Leibniz rule, for any z € (Bf x R™~)\ T,

Cs
. 41
Cwy @D

Since ¢(z) > |2, the conclusion follows. O

DY@ ()] <

Proof of Property (v). Forevery z = (2/,2") € (R* x R™ )\ T and v = (v',0v") €
RY x R™—¢,

DU,
((x) ’

The Jacobian can be computed as the determinant of a nilpotent perturbation of a diagonal
linear map to be

Do()[e] = (¢(¢(@)0 + ¢ (¢())

Ll

jae @(2) = $(¢(2) ™ (@) + (€@ )

Since for every s > 0,

s (s) + o(s) = (s(s))D 2 0

and since there exists ¢; > 0 such that for every s > 0,

we have




Density for higher order Sobolev spaces into compact manifolds 33

If || < ("), then {(z) > v/2|2'| and we get

. C3
jac ®(z) > .
()
On the other hand, by direct inspection, for every a < 1, there exists a constant ¢4 > 0
depending on « such that for every s > 0,

sV (s) + o(s) = =2

Thus,

jac®(2) > p(¢(2)) " (0! (C(2))¢ () + p(¢(2)))

|.’L‘l|2 s |.%'/|2

(@)~ Ca) e ((a)>

If |2'| > 6(2"), then ((x) < v/2|2’| and we get
__%
((z)FTte”

In both cases, we deduce that for every 8 < £ and for every x € R™ \ T,

jac ®(z) >

. 7
Jac q)(l’) Z W
Thus, by estimate (4.1) in the proof of property (iv) above, when 2 € (B}_ p X Q;”’Z) \T,
Did()| < 27 < D _(jaca(a))t. 0
C(l‘)J (07) B
The proof of Lemma 4.5 is complete. O

Proof of Proposition 4.3. Define ® to be the composition of the map ®; given by Lemma 4.4
with any parameter x < 1_75 together with the map @, given by Lemma 4.5; more precisely,
® = @1 o $5. By composition, the map P is injective and Supp ¢ C Qfl—p)n X Q%—é.

¢
(1-p)

(b((Qfl*P)n x QZ?_({) \ T) = (Qflfp)n \Qflfﬁ)n) x Z:?_l'

By the chain rule for higher order derivatives and by the estimate of the derivatives of &
(Lemma 4.4, see property (iv)),

Moreover, the choice of « implies that Qﬁn CB - Hence,

J
D) <CL Y Y (DB (Ra(a))] |DN Bo ()] - | DY Pa(2)]
i=1 1<t,<...<t;
tit+ti=j

SCQZ]: 3 | D" @y ()| - - | D" @o ()|

i—1
i=1 1<t <...<t; N
tit+-tti =g

The estimate for D7 ® is a consequence of the estimates of the derivatives of ®, (see
Lemma 4.5, property (iv)). The estimate for jac ® is a consequence of the estimate for
jac @, given by property (v) of Lemma 4.5 and the lower bound for jac ®; given by
property (v) of Lemma 4.4. O
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5 Density of the class R,,,_|,|—1(Q™; N")

In this section, we prove that the class R,;,_|p|—1(Q™; N™) is dense in Wk2(Qm; N™)
regardless of the topology of the manifold N ™.

Theorem 3. If kp < m, then Ry, |1y —1(Q™; N™) is strongly dense in WkP(Q™; N™).
This result implies the if part of Theorem 2.

Proof of Theorem 3. First observe that if u € W*P(Q™; N™), then the restrictions to Q™
of the maps u, € WHP(QT",.,; N™) defined for z € QY5 by u(z) = u(z/(1+ 27))
converge strongly to u in W*P(Q™; N™) when ~ tends to 0. We can thus assume from
the beginning that u € Wk’p(QT+2,Y; N™). We apply successively the opening, smoothing
and thickening constructions to this map u.
We divide the proof in four parts:

Part 1. Construction of a map uff € W*P(QT,_;RY) N C=(QT,, \ T ; R¥) such that
forevery j € {1,...,k},

o )
,,7JHDJuf7 _D]U”L”(Qﬂw)

J
< Se%pm 77j||7—¢n”(Dj“) - D]ulle(Q’in+’y) +C E 771|‘D1u||Lp(U;7n+Qg;n)7
veby i=1

where U is a subskeleton of Q7" , and ’T,f* is the dual skeleton of Z/{f;.
Using the terminology presented in the Introduction, the subskeleton Uy" will be

chosen to be the set of all bad cubes together with the set of good cubes which intersect
some bad cube. The precise choice of U,* will be made in Part 2.

Let k7" be a cubication of Q7" , of radius 0 < 7 <~y and let ;" be a subskeleton of
m 1.
IC77 .Let 0 < p < 3; thus,
2pm <.
Given ¢ € {0, ..., m — 1}, we begin by opening the map « in a neighborhood of Uﬁ. More
precisely, let ®°P : R™ — R™ be the smooth map given by Proposition 2.1 and consider
the map

uzp =1 o P°P.

In particular, ugP € WHhP(QT" 5,; N™) and ugP = u in the complement of U} + Q3?,.
Forevery j € {1,...,k},

WD — Diull gy, ) = I = Diull e sy )

2pn

< HDjuzplle(UngQg;n) + 77j||Dju||LP(U£+Q’"

J
<G ZWZ”DZU”LP(U§+Q*" )

2pm
i=1

(5.1)
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We next consider a smooth function ¢, € C*°(Q7" 5, ) such that

0 <oy < pn.

Given a mollifier ¢ € C2°(BT"), let for every z € QT 4 .,

sm

uy" () = (g, (2) * up”) ().

Since 0 < ¢y, < pn, the map up™ : Q74 ,, — R” is well-defined and smooth. If

DUyl L= (qp,,,) < B

for some 5 < 1 and if forevery i € {2,...,k},

niHDiwnHLm(Qﬂ%) <n,

then by Proposition 3.2 with w = Q7" ., we have for every j € {1,...,k},

,,7] HDJu;m _ Djugp ||LP(Q;"+_Y)

J
)+ Ca ) i | DMuPl| e a,

< sup [y, o(D7u5P) — D7 Lo
vEBY" i=1

m
Ty

where A = U By () (x). Forevery v € By",
IGQ{@W Nsupp Dy, K
P 17,0 (D7 up®) — DIuSP o or, )

< P |70 (D ugP) = 70 (D7) | Lo,
+ 17 || 7,0 (D7) — DjUHLp(Q;nM) + 1 | D ugP — DjuHLP(Qﬁ_W)
and, by the change of variable formula,

||7—1/;,,11(Dju%p) — TwnU(Dju)HLP(Q;n+,Y) S C3||D]u$,p — D]u”Lp( m )

142~

If we further assume that

’supp Dy, C U, ‘

then since 1, < pn, we have A C U + Q7. By Proposition 2.1, we then have

J J J
D 0 1D P Lo a) < ZU1||DZUZP||LP(U:L+Q;;:,) <Cy ZWHDZUHLP(U;WQ;’;")-
i=1 i=1

i=1

Thus, for every j € {1,...,k},

7 [D7uy™ = DIuiPll e )

J
< sup 1|7y, (DY) — DjuHLp(Qﬁw) + Cs an||Dlu||Lp(U%n+Qm ). (5.2)

m 2pm
vEBY i—1
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Given 0 < p < p, we apply thickening to the map u;™ in a neighborhood of Uf; of size
pn. More precisely, denote by oth : R™ — R™ the smooth map given by Proposition 4.1
with the parameter p and let
u:]h _ u:‘]m ° @‘ch.
Then, u'? = uy™ in the complement of Up" + QE?' Assuming in addition that

n

then by Corollary 4.2, uf!' € W"?(K]";R”) and for every j € {1,...,k},
o o o o
PIDA — D gy < LD — DI sy

< 77jHDjUf7hHLP(U;n+QE;) + 77j||DjU§,m||LP(U;;n+Qg;7)

i
< Co Y ' D"uy™ o +ap,)-
=1

Thus, by Proposition 3.2 and by Proposition 2.1,

j
W | DIu = DIus™ | o sy < Cr Y 0 [ DUl Loz 4

- Egﬂ))n)
1;1 (5.3)
< Cs Y nlID"ul| oy rop,)-

i=1

By the triangle inequality, we deduce from (5.1), (5.2) and (5.3) that for every j €
{1,...,k},

. th .
nJHDJu,] — D‘]UHLP(K;”)

J
< sup |y, o(D7u) = Dulliaap, ) + C ) 0 1Dl nwyp+ay,,)-
vePby i=1

This gives the estimate we claimed since K" = Q7" . We observe that uﬁ,h is smooth
except on (U;" +Qp) ﬂTg " where T,f " is the dual skeleton corresponding to the cubication
Ky O

The map uf!

distance between the image of u%h and N™.

need not have its values on the manifold N, so we need to estimate the

Part 2. The directed Hausdorff distance from the image of the map u}ih to the manifold
N satisfies the estimate

/

« C
. h ¢
Distyn (uy' (K" \ T, ) < max{gmé%?:(\g# FHDuHLkP(W%Q&n),

C//
s oo [ o) - wpeaya),
zGUf;-‘rQZi, s Qm(z) O (2)
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where the directed Hausdorff distance from a set S C R” to N" is
Distyn (S) = sup { dist (z, N") : z € S},

&," is a subskeleton of Uy, and 0 < s < 7.

The subskeleton E,;” will be chosen at the end of Part 2 as the set of bad cubes and
Ky \ &, will be the set of good cubes. This estimate implies that for every n > 0

sufficiently small, the image of u%h is contained in a small tubular neighborhood of N™.

We first observe that by Proposition 4.1 (i), " (K™ \ (T U um) c Ky \ut
while by Proposition 4.1 (iii), (U™ \ ) C Uf + Q7. Hence,

th m 0" m m 4 m
i} (K,] \T,] ) C (K,] \U,] U (U,,+Q£,7).
In terms of the directed Hausdorff distance we have
Distyn (u (K \ 7)) < Distvn (g (K \ Uz U (Uf + Q) )

Since the image of the map u,P obtained by opening  is contained in N™ (see Lemma 2.3),
forevery x € K" we have

: sm n 1 sm [e)
dist (up™ (), N™) < o [us™ (z) — ugP(2)] dz.
"[)77(13) Q:},l,,](m)(x)
On the other hand, since uflm is the convolution of u?lp with a mollifier,
1 T —y
U (2) — P (2)] < [ e = wpelay
! ! Yy(z)™ Yn(z) /" K
B @
Gy 0 o
<G [ el
¥y (@) m (z)
b ()
Thus,
. sm n Cl op op
dist (up™(z), N™) < o TNE lupP(y) — upP(2)[dydz.  (5.4)
hy (z)

Q@Tn(m)(m) Q:]jl

@)

Since N™ is a compact subset of R”, u is bounded. By the Gagliardo-Nirenberg
interpolation inequality (see [19,44]), Du € L*?( T 2,)- By the Poincaré-Wirtinger
inequality,

1 o o
|Qm |2 / / ‘unp(y) - unp(z)l dy dz
@ o
Q@) QL (@)

_ G
Wy ()b

< DU llzer @y oy )-
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Since ¢, < pn,if o™ € K} is such that x € o™, then Q:’;’]m (z) C o™ + Q). Hence,

Cs o
Py (z) %! I Du e @y,
Cs
Qpn(x)kﬂp_l

Thus, by Addendum 1 to Proposition 2.1,

dist (u™(z), N") <

||Du?]p||Lkp(gnL+Q;r}n).

Cy
¢||DU||LI«p(Um,+Qm .

P () o

We rewrite this estimate for every € K" as

dist (up™(z), N™) <

. sm n n Fp 1 Cy
dist (uy"(z), N™) < <¢n($)) ’ nﬁfl“DuHLk”(fm‘*Q%)' (5.5)

Ifz € (U5 + Q) NU", then z € o™ for some cube o™ € Uy If

Yn(z) < (p—p)n,

then Q7 (x) C Ug + @Q},- By Addendum 2 to Proposition 2.1, we have

1 o o
|Qm |2 / ‘unp(y) - unp(z)| dy dz
’L,D”(I) m m
@) QE (@)
_ L 05
< (W) 2 | Dull s o s,
n ke
Therefore,

dist (uS™(2), N™) < (i ()75 22

n ke

We rewrite this estimate for every x € (U} 4+ QJ) N U™ as

V(@) -5 Cj

; ) e | Dull oo s g, (5.6)

We now describe the function 1), that we shall take. Given two parameters 0 < s < ¢
and given a function ¢ € C*(Q7".,, ), we define

¥y =t +s(1 - ().

More precisely, let £, be a subskeleton of 4, such that

m 3 m

in the relative topology of Q7" . Since dist (E}", K;" \ U}") > 7, we take a function
¢ € C*°(K]") such that

m—t ||Du||Lkp(am+Qg;;n)~

dist (uS™ (), N") < (
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(1) 0< Lin K7,
(4) ¢=1in K"\ U;",
(iii) ¢ =0in E}",
)

(iv) forevery j € {1,...,k}, n7||Di¢||z~ < C, for some constant C' > 0 depending
only on m.

Thus, supp Dy, C U, and
| D74y~ < Ct.
In order to apply Proposition 3.2 and to have 1, < (p — p)n, we choose

t m'{ﬁ }
= 1m4q =, — ;
G P ep

for some fixed number 0 < K < 1.
Since ¢, =t in K" \ U™ and t > cn for some constant ¢ > 0 independent of 7, we
have from (5.5),

) C
Distys (" (7 \UP)) <, max g NDulusniom s,

Since 1, = s in EZ,”, we have from (5.4),
Distn (™ ((Us + Q) N E'))
C
< swp oo [ e e
:EEU,‘H-QZ;] ‘Qs ‘
£ QT (z) Qr (x)
Finally, if

then by (5.6) and by the estimate ¢, (x) < t = C7n, we get

Cs
: sm 14 m m m
Disty» (un (U + Q) N (U \ E; )) < (,menllﬁnx\gm TBE-1 1Dull Lo om+ -

Since we have already required that £ + 1 > kp, we are thus led to take

L= |kp]|.

We deduce that

/

. C
: th 0
Dist (uf (K" \ T2 )) < mx{n’rlcx\ e Tt Il o1

B M OR ()dydz}

QI () QT (2)

sup
ceUL+Qm,
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This gives the estimate we claimed.

The nearest point projection II onto N™ is well-defined and smooth on a tubular
neighborhood of N™ of radius ¢« > 0. We now choose the subskeleton £ used in the
definition of ¢ and 1y, as the set of cubes ¢ € K} such that

!

FHDUHLICP(U"LJ'_QQ;W) > (L.

Thus,

/

max ﬁ||Du||Lk:p(Um,+Q

m ) <.
omeRT\ET nkp 2em

We then take the subskeleton ¢, used in the constructions of opening and thickening
as the the set of cubes ¢ € ICnm which intersect some cube in 5,’]”; in particular int E;” C
U, in the relative topology of Q7" .

In view of the uniform limit of Addendum 2 to Proposition 2.1, since £ < kp, for every
s > 0 small enough,

C//
sup [ ] e -wreiaes.

ceUltgm |QT]2
TR TS @) Qi)

We conclude that u$" (K7™ \ Tg*) is contained in a tubular neighborhood of N™ of radius
L O

Part 3. The maps I o uflh converge to u in W*P(Q7*; N™) as 7 tends to 0.
Using the estimate from Part 1, we show that for every j € {1,...,k},

.  th i
%%\\D]u% = Dul[pe(qp, ) = 0.

By continuity of the translation operator in L? (see the remark following Proposition 3.1),

1' ‘7 — ‘7 m == . .
771—% USEuBl?” ”7-1/;7]1;(1) u) D uHLp(QlJr'y) 0 (5 7)

We now need to show that
: i—j 7 o
71]1_%2’7 I1D*ull ey +qy,,) = O-
i—

By the Gagliardo-Nirenberg interpolation inequality, for every i € {1,...,k — 1}, D'u €
Lp

L7 (QT 5, ). By Holder’s inequality, for every i € {1,...,k} we have

o o k—i .
i J||D7quLp(U;7n+Qg};n) <IN + Qy| ||Dzu||L%(Um+Qén
n P

k—1
i UTVL + QTVL Tp i
_ nk—] (| n 2pn> HDzuH . )

77]“’ Lo (U +Q3,,)
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From this estimate, we need that |U;" + Q3| = O(n*?) as n — 0. We observe that
|U;" + Q3| satisfies the following estimate in terms of the number of elements #4," of
the subskeleton Z/{]7”,

U7+ Qihy | <27 (0 + 20m)™ (#Uy") = Crn™ (#Uy").

Note that for every cube o™ € U,", if 7™ € & intersects o™, then 7™ + Q3
0" +Q5(, 4 ), Denoting o™ by Q' (a), we have 7" +Q%),, C Qm]( a), where o = 3—|—2p,
whence

" + Qg:)n C QZLn(a‘) N an-i-?v'
By the definition of £,

/ !

C C
L < F”DUHLIGP(T’"L_’_Q%W) < »,7 ||DU||Lkp(Qm (Q)WQHM)
Thus, for every Q)" (a) € U,

C
1< [ D

nm—kp
Qm, (A)NQT .,

Since the cubes Q7' (a) intersect each other finitely many times and the number of overlaps
only depend on « and on the dimension m,

02 k 03 k
U< S D / DUl < o / | Duf™.
Ql,”(a)GZ/I;”QTn(a)mQT+M Qs
‘We deduce that
U7+ QB | < Can™ [ 1upr=catr [ g

m m
142+ 142+

This means that
U + (22
| 2pn <

lim sup o

n—0

Hence, by Lebesgue’s dominated convergence theorem,

11m||D u|| kp =0.

(U +Q5,)

In view of (5.7) and the estimate from Part 1, we have lim ||Djuth - DjuHLp(Qm )y =

Recall that uth = uy" in the complement of U;" + Qm Since uy™ — w in measure

th

and |U" + Q) \%Oasn%(} u I 4 in measure as 7 — 0. Hence, Uy

win LP (Q1+7) and

converges to

}]lin [ ullwrrgp, ) =0
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Therefore,
: th _
%E}I})HHOUT] 7uHWk,p(Q71‘ﬂ+’y) —0

This gives the conclusion of this part. O
Part 4. The map IT o u" belongs to the class Ry (Q™; N™).

It suffices to prove the pointwise estimates of D7 (IT o uf"). Since IT o uf! = (Il o

uflm) o ®'h and the map II o uy™ is smooth in K", by the chain rule for higher order
derivatives,

J
DiMou™) <Y S Do ut™)||DM @t . | Dot
i=1 1< <...<a;
a1+ tai=j

J
<CeY, Y. DM DM,
i=11<a;<...<ay
a1+ Fai=j

By Proposition 4.1 (iv), we have for z € K" \ T,

J
Dj II th < C n I n _
|DI(I o uh)(x)] < 7;@;%( Tt T (@ o T
ar+ta;=j

< G
 (dist (2, 78))"

This concludes the proof of the theorem. O

6 Proof of Theorem 2

Let kp < m. It is a consequence of Theorem 3 that R,,_ |1, —1(Q™; N") is dense in
WHEP(Q™; N™). In this section, we prove that if 7y, (N™) % {0} andif i € {0,...,m—
1} is such that

(a) Ri(QM™;N™) C WEP(Q™;N™),

(b) R;(Q™; N™)is dense in WkP(Q™; N™),

then i = m — |kp| — 1.

We first prove that ¢ < m — | kp]. For this purpose, lety: R — N™ be a geodesic in
N™. Giveni > m— |kp|,themapu : Q" — N defined forz = (2/,2") € Q" ' x Q"
by

u(z) = y(log|a'|)
belongs to R;(Q™; N™). Taking ~ parametrized by arc-length, we have
1

IDu(e) = 7
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Since i > m — |kp], it follows that Du ¢ LL*?J(Q™). By the Gagliardo-Nirenberg
interpolation inequality, we deduce that R;(Q™; N™) ¢ Wk?(Q™; N™).

We now prove that i > m — |kp| — 2. Given a smooth map ¢ : S*?) — N, we
define u : @m S N" for z = (x’7x”) c @Lkm+1 % am_tkm_l by

/

x
u(e) = #(17):
Then, u € W*P(Q™; N™). Giveni € {0,...,m — |kp| — 2}, assume by contradiction
that there exists a sequence (u;);en in R;(Q™; N™) converging to u in W*P(Q™; N™).
Passing to a subsequence if necessary, for almost every z” € Q™ *PI=1 and for al-
most every p € (0, 1), the sequence (Uj|S‘L)ka X{z,,})jeN converges to “‘S},’““
Wk (SEP); N), whence in BMO(SS™); N™).
For every j € N, denote by T a finite union of 7 dimensional planes such that
uj € C°(Q"\Ty; N™). Since i < m— | kp| —2, forevery (2, p) € Q™ FP)=1x (0, 1)
such that S5} x {2} ¢ Q™ \ T}, there exist a € Q" \ T} and a continuous map
h 1 [0,1] x (SE) x {2”7}) — Q™ \ T such that for every y € SY™) x {2}, n(0,y) = y
and h(1,y) = a. This implies that u,; |S,L)k~pj o) is homotopic to a constant.
We recall that homotopy classes are preserved under BMO convergence:

x{z'"} m

Claim. Let (v;);cn be a sequence in C°(SFP); N™) which converges tov € C°(SFl; N™)
in BMO(SW’J ; N™). Then, for every j € N sufficiently large, v; is homotopic to v in
CO(Stkrl; N™),

This claim is essentially [13, Lemma A.19] but we present a proof for the convenience
of the reader.

Proof of the Claim. For every ¢ > 0, we consider the map v, : SL*?) — N" defined for
x € StF») by

1
ve(x) = 7‘D€U€PJ @ / v

DL*?l(z)

where DLFP) (x) = Skl n QGUW I+ (). Accordingly, for every j € N we define v; ., with
v replaced by v;.

The nearest point projection II is well-defined and smooth on a tubular neighborhood
of N™ of radius ¢+ > 0. Since v, converges uniformly to v as € tends to 0, there exists
€1 > 0 such that for every 0 < € < ¢, IT o v, is well-defined and is homotopic to v.

Next, for every j € N and for every « € Slk?] since vj(z) € N,

1
0~ i, ]

DIl (2) DIl (2)

< lv; — vllgmotsesy +2 sup  [u(y) — v(z)].
yeDP (z)

: n 1
dist (vje(x), N™) < 7(33” / dy

|D€U€PJ
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Since the sequence (v;) ey converges to v in BMO(S#?)) and v is uniformly continuous,
there exist J € N and e; > 0 such that for every 7 > J and for every 0 < € < €9,

dist (vj.e(x), N*) < ¢

In particular, II o v; . is well-defined and the continuous extension of the function ¢ €
(0,1] = IT o v 4 gives a homotopy between IT o v; . and v;.

Finally, for every ¢ > 0 the sequence (v, .);jen converges uniformly to v.. For 0 <
€ < min {ey, €2} and for j > J, the functions II o v, are well-defined and converge
uniformly to IT o v, as j tends to infinity. Thus, there exists J > J such that for every
j € Nwith j > J, Ilow, . is homotopic to I o v.. By transitivity of the homotopy relation,
we conclude from the above that for every such j, v; is homotopic to v. O

We deduce from the claim that “'SW | is homotopic to a constant, whence
P

X {Cl)/,}
¢ : StkP) — N™ is homotopic to a constant. Since 7y, | (N™) % {0} and ¢ : SL*?) — N7
is an arbitrary smooth function, we get a contradiction. This completes the proof of
Theorem 2. O

7 Continuous extension property

From Theorem 3 we are able to approximate a map by another map which is smooth except
on a dual skeleton of dimension |kp|*. We would like to modify our approximation near
this singular set in order to obtain a smooth map. An important tool will be the following:

Proposition 7.1. Let K™ be a skeleton of radius > 0, £ € {0,...,m — 1}, T be the
dual skeleton of K* and let u € C®°(K™ \ T* ; N™). If there exists f € CO(K™; N"™)
such that f|ge = u|ge, then for every 0 < p < 1, there exists v € C°(K™; N") such
thatv =won K™\ (T" + Q)

In the proof of Proposition 7.1, we shall rely on the fact that K¢ is a homotopy retract
of K™\ T*", that is, there exists a continuous retraction of K™ \ T*" onto K* which is
homotopic to the identity map in K™ \ 7"

Fact 7.1. There exists a continuous homotopy Hy : [0,1] x (K™ \T*) — K™\ T
such that

(i) foreveryx € K™\ T", Hy(0,2) =z,
(i) foreveryx € K™\ T, Hy(1,z) € K,
(iii) for every x € K* Hy(1,2) = x.

Proof of Proposition 7.1. Given(0 < § < § < § < p,let : K™ — [0, 1] be a continuous
function such that

o _
— foreveryz € K™\ (T* + Qg:l), o(x) =0,

— forevery z € (T + Qs p(x) = 1.



Density for higher order Sobolev spaces into compact manifolds 45

— foreveryx € T" + Qg p(z) = 0.
We define w : K™ — N by
(wo Hy)(p(x), ) ifz e K™\ (T" +QF,),

w(z) = { (f o Hy)(p(z),z) ifxe (T + Q5) \ T,
f(x) ifreT".

By properties (¢) and (i¢) of Fact 7.1, w is well-defined and continuous on K™, and w = u
on K™\ (T* + Q%’:}). Letw : R™ — R” be a continuous extension of w. Given a mollifier

© € C°(B]"), there exists a nonnegative function ) € C°°(R™) such that for any ¢ > 0,

— suppy C TV + Qs

— 4 > 0 in a neighborhood of T*" + Qf.
= oy * W = W|[ oo (mem) < 0.

If the nearest point projection II onto N™ is well-defined and smooth on a tubular neigh-
borhood of N™ of radius ¢ > 0, then the map IT o (¢, * W) restricted to K™ satisfies all
the required properties. O

The natural question that arises is whether a continuous extension of u|z¢ to K™
exists. This property depends on the skeleton ™ and on the manifold N".

Proposition 7.2. Let K™ be a skeleton of radius ) > 0and £ € {0, ..., m—1}. If K™ isa
cube and if m¢(N™) =~ {0}, then for every u € CO(K*; N™) there exists f € CO(K™; N"™)
such that f|ge = u.

We will use the fact that it is always possible to find a continuous extension, regardless
of N, by losing one dimension. This property has been introduced as the ¢ extension
property by Hang and Lin [28, Definition 2.3].

Proposition 7.3. Let K™ be a skeleton of radiusn > 0and £ € {0,...,m — 1}. IfF K™
is a cube, then for every u € CO(K**t1; N™), there exists g € C°(K™; N™) such that
9lrxe = ulge.

In the proof of Proposition 7.3, we shall assume that if K™ is a cube, then the identity
map on K* is homotopic to a constant with respect to K “*+1:

Fact 7.2. If K™ is a cube, then there exists a continuous homotopy Gy : [0,1] x K* —
K** such that

(i) foreveryxz € K Gy(0,7) =z,
(i1) there exists a € K' such that for every x € K*, G¢(1,z) = a.
Proof of Proposition 7.3. Let ¢ : K™ — [0, 1] be a continuous function such that

— forevery z € K*, ¢(z) =0,
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— forevery z € TY, p(z) = 1.

We define g : K™ — N by

(z) = u(Ge(p(z), He(1,2))) ifze K™\ T,
g = u(a) ifzeT?.

where Hy : [0,1] x K™\ T* — K™\ T* is the homotopy retraction of Fact 7.1.
The map g is continuous and by property (iii) of Fact 7.1 we have for every € K,
g(x) = u(). 0

Proof of Proposition 7.2. Letu € C°(K*; N™). Since ;(N™) ~ {0}, for every o**! €
JCt*1, the restriction u|g,¢+1 has a continuous extension u,¢+1 to o1 Let v : K1 —
N" be the map defined for every x € K**! by v(x) = uyet1(z), where o1 € K1 is
such that z € o?*1. The map v is well-defined and continuous; moreover, v|ge = u. By
Proposition 7.3 applied to v, there exists f : K™ — N such that f|ge = v|ge; hence f
is a continuous extension of u to K. O

8 Shrinking

Given a map u € W*P(K™;R") whose energy is controlled outside a neighborhood of
the dual skeleton T"", we construct for every 7 > 0 a map u o ® whose energy will be
controlled on the whole K™ when 7 is small enough. This shrinking construction is very
similar to the thickening construction. In both cases, the dimension of the dual skeleton
T must satisfy £* < m — kp, or equivalently, [ + 1 > kp. The main differences are
that shrinking only acts in a neighborhood of the dual skeleton 7" and does not create
singularities. Shrinking can be thought of as desingularized thickening and requires more
careful estimates.

As for thickening, we begin by constructing the diffeomorphism ® regardless of w:
Proposition 8.1. Let ¢ € {0,....m — 1}, n > 0,0<pu< 1 0<7 <L 8bea
cubication of R™ of radius n and T be the dual skeleton of S*. There exists a smooth
map ® : R™ — R™ such that

(i) ® is injective,
(1) forevery o™ € 8™, ®(c™) C o™,
(i) Supp® C T* + Q% and ®(T* +Qm, ) DT +Qm,

(iv) forevery0 < 8 < £+ 1, for every j € N, and for every x € R™,

(un)’ 7' D?®(x)] < C(jac @(x)) 7,

@l

for some constant C > 0 depending on 3, j and m,



Density for higher order Sobolev spaces into compact manifolds 47

(v) forevery 0 < B < £ +1, for every j € N, and for every x € ®~H(T* + Q)

(Y DI (x)| < C'rIF D (jac B(2)) ¥

Y

for some constant C' > 0 depending on 3, j and m.

As a consequence of the estimates of Proposition 8.1, we have the following WW*?
estimates that will be applied in the proof of Theorem 1 with ¢ = | kp].

Corollary 8.2. Let ® : R™ — R"™ be the map given by Proposition 8.1 and let K™ be
a subskeleton of S™. If { + 1 > kp, then for every u. € W5P(K™ N (T* + Q5 );RY),

uo® e WhP(K™N (T + Q5,,); R”) and for every j € {1,... .k},

m
2pn

() | D? (uo @) ||LP(Kmm(Tk*+Qg;m))
J
<" Z(Mn)zHDzuHLP(K"Lﬂ(TZ*+Q;’Ln)\(T”+Q%))
i=1

J
+1—kp ) .
+C'r Z(/“?)zHDluHLP(K'"ﬂ(T”+Qljﬁ7))7

i=1

Sor some constant C"' > 0 depending on m, k and p.

Proof. We first establish the estimate for a map w in C>°(K™N (T + Q5,,); R”). By the
chain rule for higher-order derivatives, for every j € {1,...,k} and for every z € K™,

J
IDi(uo®@) (@) <Ciy > [D'u(®(@)|D" & ()" D" ().
i=11<t1<...<t;
tit+ti=g

As in the proof of Corollary 4.2,if 1 <t; <...<t;andt; + ---+t; = j, then for
every z € K™ N (T" + Q%)

jac ®(z)

t1 p... ti p
DU Dha) < 0B

and this implies

W7D (wo @)(2)P < Cs Y 0P| D'u(®(x))|P jac &(x).

i=1
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Let 0™ € K™. Since ® is injective, by the change of variable formula,

()| D (w0 @) [P
1M A(TE +Qg, \(TF +Q,))

J
< Cs Z / (um)™?|(D'u) o ®|P jac ®

o1 (oma(Te +Qg, T +Q,)
J
<) / (um)#| D .
Eloma(re 1@ )\ (T Q)

Let0 < S </l+1.1f1<t; <...<t;andt; + -+ +t; = j, then by property (v)
of Proposition 8.1 we have for every z € @~ (K™ N (T + Q7).

D" ®(2)[ -+ | DY ()|”

tp ) tip
st (ac@(@) Ty (Jac®(2) T

=G () (1= (pa) =1
i Gre@) ¥
- ()=~

Taking 8 = jp, we have

DY@ ()P - - DL ()P < 047'”1_ij
(/”7)(]—1)17
and this implies

()P | D7 (u o @) ()| < C57 17PN ()P | D' u(® ()| jac ().

=1

Since @ is injective, by the change of variable formula,

(1) P | D (u 0 D)7

2= (aemN(TH +Qm)

J

< ity [ e apice
Flo-1(omn(Tr +Qm )

= Gyt Y / () ?| D

Zzlamﬂ(T[* +Q,Tn)
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Since o™ N (T + Q%) C et (e™N(T" + Qg’}m)), by additivity of the integral
we then have

()| D (wo ®)I7

omN(T* +Qy,,

<oy / (u) | Diaf?

J
=1 * *
Tlemn(T QT NTY +QT,)

J
cCrty D
Elomae +Qp)

‘We may take the union over all faces ¢™ € K™ and we deduce the estimate for smooth
maps. By density of smooth maps in W (K™ N (T*" + Q%.,,); R”), we deduce that for

every u in WFP(K™ N (T" + Q35,,,); R”), the function u o ® also belongs to this space
and satisfies the estimate above. O

We first describe the construction of the map @ in the case of only one ¢ dimensional
cube.

Proposition 8.3. Let /€ {1,...,m},n>0,0<pu<p<p<land0<T < p/p

There exists a smooth function X : R™ — [1, 00) such that if ® : R™ — R™ is defined for
r=(2/,2") e RE x R™~* by

then
(1) ® is injective,
(ii) Supp® C QY X H:i)n’
.. V4 m—{ ¥4 m—{
(i) 2(Qrpn X Qi ) D Qun X Q1 7y
(iv) forevery 0 < B <, for every j € N, and for every x € R™,
(um) D @(@)]| < Cjac®(x))”,
for some constant C > 0 depending on 3, j, m, j/p and i/ p,

(v) for every B > 0, for every j € N, and for every x € Qﬁw X ?’1’:%)”,

()~ DI ()] < O (jac @) ¥,

for some constant C' > 0 depending on (3, j, m, ju/ 1 and i/ ju.
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We postpone the proof of Proposition 8.3 and we proceed to establish Proposition 8.1.

Proof of Proposition 8.1. We first introduce finite sequences (£t;)¢<i<m and (V;)e<i<m
such that

O0<pr=p<vipr <pos1 < ..o < pfhmo1 < VU < fbm < 20,

Let ®,,, = Id. Using downward induction, we shall define maps ®; : R”™ — R™ for
i€ {l,...,m — 1} such that ®, satisfies the following properties:

(a) ®; is injective,

(b) for every o™ € 8™, ®;(c™) C o™,

(©) Supp®; C T" + Q3.

(d) forevery r € {i*,...,m —1}, ®;(T" + Q1) D T" + Q.

e &;(T" +Qm,) >T" +Qn

T pins
(f) forevery 0 < 8 < i+ 1, forevery j € N, and for every z € R™,
(k) "M DIBy(x)| < C(jac @i (x)) 7,
for some constant C' > 0 depending on 3, j, and m,

(g) forevery 0 < 8 < i+ 1, forevery j € N, and for every x € <I>i_1(Ti* + Q)

Wl

(uny "M DI ®y(x)| < €715 7Y (jac @i()) 7
for some constant C’ > 0 depending on f3, j, and m.

The map @, will satisfy the conclusion of the proposition.

Leti € {¢{+1,...,m} and let ©; be the map obtained from Proposition 8.3 with
parameters £ = i, p = j1;_1, jt = V;, i = p; and T2, Given ol € 8%, we may identify o
with Q1 x {0m~7} and TN (0" + Qyr,,,) with {0} x Q37 . The map ©; induces
by isometry a map which we shall denote by ©.:.

Let ¥; : R"™ — R™ be defined for every z € R™ by

() O,i(x) ifxreot+ Qi _,,), for some ol e S,
x otherwise.

We explain why U; is well-defined. Since ©,: coincides with the identity map on o* +
Erlwa)ln’ then for every 0,04 € S, if z € (0} + Qﬁ,yi)n) N (o5 + Q?f,yi)n) and
o} # o5, then
O, (2) =z =04 (2).

One also verifies that ¥; is smooth.
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Assuming that ®; has been defined satisfying properties (a)—(g), we let
(I)ifl = \Ifi O (I)i~

We check that ®,_; satisfies all required properties. Up to an exchange of coordinates,
for every o € S, we may assume that o' = Q! x {0™"} and ©,: can be written
as O, (x ) ( x)x',z"), with A(xz) > 1. Hence, for every 0 < s < 1 and every
re {0 -1},

U,(T" + QZL?) OT" + Q’;}?. 8.1
Moreover, in the new coordinates, the set
(@ x Q=N (T +QQu I\ (T +Qr,)) (8.2)

becomes

rn X QU (8.3)

In view of properties (i) and (4i7) of Proposition 8.3,
@Gi( :—un X Q(l i) rj) 2 th 17 Q(l Hi)1
Since this property holds for every 0% € S¢,

(T 4+ I\ (T + Qi) D (T +Qu N\ (T +Q7,). (84)

Proof of Property (d). Letr € {(¢ — 1)*,...,m — 1}. By induction hypothesis and by
equation (8.1) with s = 7,

(I)Z 1(TT + Q'rp,n) > \Ij (TT + QT/_m) oT" + Q'rp,n O
Proof of Property (e). By induction hypothesis (properties (d) and (e)),
i—1)" n i—1)* m i*
STV + Q) O (T + QL) V(T + Qi)
Thus,

;- I(T(l b’ +Q'r;m) DV, (T(l b’ +Q'r;m) Uyw; (TZ + Qum)

By inclusion (8.4) and by inclusion (8.1) with r = ¢* and s = u;,

Oy (T +Qm ) o (T +Qm NI +Qu ) u (T +Q,)
_T(Z 1) +Q

Hi—1m"
This gives the conclusion. O

Proof of Property (g). Let j € N, and 0 < 8 < . By the chain rule for higher order
derivatives, we have for every x € R™,

J
Do _1(2)| <C1 Y. Y DTU(®(2))] DV ®y(x)| - | D ().
r=11<t;<...<t,
tit ot =g
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Let z € (P;ll (T(i’l)* + Q;“Fm). By induction hypothesis (property (f)), for every
ref{l,...,j}hif1 <ty <...<t.andty +---+t. = j, then

jac ®;(z))
D' ®;(x)| -+ | DI ®;(x)| < C: Uac ®i(x))*
| @) (x)| < Co )=
Ifinadditionz € ®; ") (70D +Qm_ \(T" +Q7,)). then ®;(z) € W' ((T¢-1"+

o)\ (T + Q/Tn)) By the correspondence between the sets given by (8.2) and (8.3),

by inclusion (8.4), and by property (v) of Proposition 8.3, we have for every 0 < « < 4,

i q jac \I’i (I)i xr %
D" (D;(x))] < Cyrla™h : (W(?)T(l)))

Take o = B?. Since r < jand 7 < 1, we get

jac ‘I’i(‘bz’(l“)))% < Oy (jac Wi(@i(m)))%

Dy (@4(2))] < Cyrr
| (i)l < Ca (pm)r=1 (pm)r—1

Thus, for every z € @, (TC=V" +Qm_ )\ (T +Q1.,)).

1 (e Wi(@,(2)) ¥ (jac ®i(2))?
(pm)r—1 (pm)? ="

= C4TJ’<%*1)M
(pm)i—1

IDId;_y(2)| < Curi(s

On the other hand, if z € ®; ' (T"" + Q) ,), then ®;(z) € U T+ Qp,)- By
inclusion (8.1) with r = i* and s = p;, ®;(z) € T" + Q- By induction hypothesis
(property (g)), we deduce that for every r € {1,...,5},if 1 < < ... <, and
t1+---+t. =j,then

‘Dtl(bi(l‘” . |Dtrq>l(3})| < O57'j(%71) (JaC (I)L(f))ﬁ '
(km)?="
By property (iv) of Proposition 8.3,

S (jac Wi (®;(2))) ¥
(D) < O 2t S

We deduce as above that

(jac ®;_y (z))7

J . J(E-1)
D@y (x)| < Cr7?'5 ()i

This gives the conclusion. O
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The other properties can be checked as in the proof of Proposition 4.1.
By downward induction, we conclude that properties (a)—(g) hold for every i €
{¢,...,m — 1}. In particular, we deduce properties (i)—(v) of Proposition 8.3. O

We need a couple of lemmas in order to prove Proposition 8.3:

Lemma 8.4. Letn > 0,let0 < p < p <@ < land0 < k < p/p. There exists a smooth
function \ : R™ — [1,00) such that if ® : R™ — R™ is defined for v = (z',2") €
RY x R™~¢ by

o(z) = (Mx)a', 2"),

then

(i) ® is a diffeomorphism,

(i) Supp® C QL x Q1))
(i) ®(Qun X Qi ) D Qpin X Qi gy

(iv) forevery j € N, and for every x € R™,

(un)’ D7 @ ()] < C,
for some constant C' > 0 depending on j, m, p/p, [/ and k,
(v) for every j € N, and every x € R™,

C’ <jac®(x) < C”,

for some constants C',C"" > 0 depending on m, p/p, [t/ p and k.

Proof. By scaling, we may assume that un = 1. Let ¢ : R — [0, 1] be a smooth function
such that

— the function v is nonincreasing on R and nondecreasing on R_,
— for |t < p/p (1) = 1,
— for |t| > 1,4¢(t) = 0.
Let 6 : R — [0, 1] be a smooth function such that
— for [t < 1, 0(t) = 1,
— for [t| > L2£, 0(t) = 0.
1@
|Dig(t)| < C, %Lor some constant C' > 0 depending only on j and 7z/ .
Let ¢ : R™ — R be the function defined for z = (z1, ..., %, ) € R™ by

Since 1%“ - = @i/p — 1, we may require that for every j € N, and for every ¢ > 0,
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Let ¥ : R™ — R™ be the function defined for z = (z/,z") € Rf x R™~* by
U(z) = (1 - ap(@))a’,2"),

where « € R. In particular, for every z = (2/,2") € Qi/u x Q=
- M

U(z)=((1-a),2").

Taking o = 1— %, we deduce that W is a bijection between Qﬁ X QT and QL x QT
= — " m
As in Lemma 4.4 we can prove that ® = U—! satisfies the required properties. O

Lemma8.5. Let{c {1,..., m},n>0,0<p<p<m<land0 <t < p/p. There
exists a smooth function A : R™ — [1,00) such that if ® : R™ — R™ is defined for
x=(z',2") € R x R™~* by

then
(1) ® is injective,

(ii) Supp® C Q' X E’I:i)n,

m—L m—¥
(1) ®(Bruy X Qi ) 2 Bin X QU gy

(iv) forevery 0 < 8 < 4, for every j € N, and for every x € R™,
(um) D @(@)]| < C(jac ()7,

for some constant C > 0 depending on 3, j, m, j/p and i/ p,

m—~{
1=

(v) for every B > 0, for every j € N, and for every x € Bﬁun x Q
(1)’ D7®(@)| < €T (jac b)) 7,
for some constant C' > 0 depending on f3, j, m, p/p and i/ pu.

Proof. By scaling, we may assume that un = 1. Givene > 0 and b > 0, let ¢ : (0, 00) —
[1, 00) be a smooth function such that

- f0r0<5§7'\/1—|—6,g0(s)=%Vl—&—e(l—klbl),
— fors > 1, ¢(s) =1,

— the function s € (0, 00) — s¢(s) is increasing.
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Note that such function ¢ exists if we take € > 0 such that

(p/mv1i4+e<1
and thus 7v/1 + ¢ < 1 and if we take b > 0 such that
b
(1/p)V1+e (1 t——) <L
N Gu/mvite

Let # : R™~¢ — [0, 1] be a smooth function such that

— fory € QU 6(y) =0,

m

— fory € R™=\ Q71 0(y) = 1.

)

We now introduce for x = (2/,2") € R x R™¢,

¢(x) = \/|x’|2 + 9(x”)2 +e712.

Let A : R™ — R be the function defined for z € R™ by

As in the proof of Lemma 4.5, one may check that the map ® defined in the statement
satisfies all the required properties:

Proof of statement (iii). Letx € Bé/# X Qq%f. For every s > 0,
O(sx’,2") = (sap(\/m)x/,x”).
Consider the function h : [0, 00) — R defined by
h(s) = sp(\V/s? +er2).
Then, assuming that =’ # 0,
O(sa’ 2" = (h(8|x’)|i:|,x”).

We have 7(0) = 0 and h(7) > p/p > |2'|. By the Intermediate value theorem, there
exists ¢t € (0, 7) such that h(t) = |2’|. Thus, tﬁ € BY and ®(t-%:,2") = z. O

K

Proof of statement (v). Proceeding as in the proof of Lemma 4.5, one gets for every
r € Bf x R,
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Since ((z) > 74/€, we deduce that

D10 (a)| < (T\C;E)j <&
On the other hand,
joe@() = pc(@) (e (1~ 1) + (O (cew) +olc@n) 1),
((z)? C(2)?

Since for every s > 0, 30(1)(3)3 + ¢(s) > 0, we have
|1‘/|2 /|2

() > pl¢@)' (1= 165) = 27 (1= o)

If z € B! x QT>F, then ¢(x) < 7/T + € and ((z)? > (1 4 €)|’|2. Thus,

m

Cg 3 7%
(tVi+e)fl+e 78

jac ®(z) >

Combining the estimates of | D7 ®| and jac ®, we have the conclusion. O

In order to establish the remaining properties stated in Lemma 8.5, we only need to
repeat the proof of Lemma 4.5 with obvious modifications. O

Proof of Proposition 8.3. Define ® to be the composition of the map ®; given by Lemma 8.4
with kK = ML\/Z together with the map @, given by Lemma 8.5; more precisely, ® = ®; 0 P,.
The propeties of ® can be established as in the case of thickening. O

9 Proof of Theorem 1

Let K™ be a cubication of Q}* of radius 7 > 0 and let 7*  be the dual skeleton with
respect to K¢ for some £ € {0,...,m — 1}.

Claim. Letv € C®°(K™\ T ; N*) N WFP(K™; N"). If 7¢(N") ~ {0} and if ¢* <
m — kp, then there exists a family of smooth maps vi}“ u o K™ — N such that

i sh
lim 055, = vllws (rom) = 0.

This claim is a removable singularity property of topological nature for W*» maps.
Theorem 1 follows from Theorem 3 and this claim. Indeed, by Theorem 3 the class of maps
v in the claim is dense in W**(K™; N™) when £ = | kp]. Since the maps v5" , are smooth

and converge to v in W*P, we deduce that smooth maps are dense in W*?(K™; N™).
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Proof of the Claim. Assuming that m,(N™) ~ {0}, we can modify v in a neighborhood
of T*" in order to obtain a smooth map vt o K™ — N™. More precisely, for every

0 < p < 1, by Proposition 7.1 and Proposition 7.2, there exists vy € C°°(K™; N") such
that v = vin K™\ (T + Q).

Although v and vj* coincide in a large set, ||V}l x.» (=) can be much larger than

llv]|w.»(xmy since the extension is of topological nature and does not take into account

the values of v in a neighborhood of 7" . In order to get a better extension of v, we have

to shrink 7" + Q) into a smaller neighborhood of T".

Assume that p < % and take 0 < 7 < % Let CIDi}}# : R™ — R™ be the smooth

diffeomorphism given by Proposition 8.1. Define

Ui{lﬂ = (yo (b:hu)

In particular v§", € C>°(K™; N™).
sh

Since v57,, = v in the complement of T +Q for every j € N,,

m
2pn>

ID703, = D7l Lo (remy = IID703, = D70l Lo ieme e 1, )

<Dl o gemcre +ag,n 1PV Lo emacre 1oy, -

If £* < m — kp, or equivalently if £ + 1 > kp, then by Corollary 8.2 we have for every
jed{l,....k},

(Wl)j||Djvi},1#\|Lv(Kmm(Tﬂ*+Qg}m))
J
<G Z(Nny||D1'UZX||LP(K7"O(T”+Q"" NTE +Qm )

2pn
=1

J
L+1—kp ; i .ex
£ O S ) 1D o v

i=1

Since vfj‘ = v in the complement of T + QZL”, we deduce that

J
(un)? | D703, = D70l o(iemy < Co Y (un)' | D0 )| o remre 403, )

i=1
L4+1—kp J . )
+Cim e Z(/ﬂ?)zHDZUZXHLP(Kmn(TZ*+Qm))-
i=1
We show that
J
lim, i_l(Nn)i_jHDiUHLP(KWO(T”+Q§'}’m)) =0. ©.D

Since N is a compact subset of R”, v is bounded. By the Gagliardo-Nirenberg
interpolation inequality, for every i € {1,...,k — 1}, D'v € L%(Km). By Holder’s
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inequality, for every ¢ € {1,...,k} we then have

() Dl Lo xem(rer 1oz,

2pun

< (“77)%]|Km n(T" + Qg?m)’ B HDZUHkaf(Kmm(TZ*+Qm )

2pm
0* k=i
k—j+ (£+1—kp) =1 <|Km n(ITr* + ngm”) "
‘uf-i-l

=n"p
D e
L (KmA(T +Qg,,)

Since [K™ N (T* + @Q%,,,)| < Cspu*, the limit follows.
Forevery 0 < p < %, take 0 < 7, < % such that

of1—kp _J

T 7Y () DY o rem e 4 = O 9.2)

un
i=1

From (9.1) and (9.2), we deduce that for every j € {1,...,k},

) . . B
ll}gé D72}, — D?vl Lo (xemy = 0.

Since vii‘ ., converges in measure to v as u tends to 0, we then have
lim ||os? | — V|| wrp(gmy = 0.
n—0 ok
This establishes the claim. O

10 Concluding remarks

10.1 Other domains

The proof of Theorem 1 can be adapted to more general domains 2 C R™. In order to
apply the extension argument at the beginning of the proof of Theorem 3, it suffices that €2
be starshaped.

Concerning Theorem 1, the crucial tool is the extension property of Proposition 7.3.
This can be enforced by assuming that for every £ € {0, ..., |kp| — 1},

() ~ {0}

This contains in particular the case where €2 is starshaped. Another option is to require

that for some CW-complex structure, €2 has the | kp| — 1 extension property with respect
. —|k -

to N™. More precisely, for every u € C’O(QL r] ; N™), the restriction u\ﬁlm 1 of u to

the skeleton of € of dimension |kp| — 1 has a continuous extension to €2. It can be
showed that this property does not depend on the CW-complex structure of {2 (see remark
following [28, Definition 2.3]).
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10.2 Complete manifolds

The proofs of Theorems 1 and 3 still apply for complete manifolds N™ that are embedded
in R” and for which there exists a projection II defined on a uniform neighborhood of
size ¢ around N™. The compactness of N™ ensures the Gagliardo-Nirenberg interpolation
inequality that for every i € {1,...,k — 1}, D'u € L* (7). This inequality still holds
if the assumption u € L* is replaced by « € W!*P_ In this case, one proves that if
T kp)(Nm) =~ {0}, then for every u € W*P(Q™; N™) N W+ (Q™; N™) there exists a
family of maps u,, € C°°(Q™; N™) such that for every i € {1,...,k},

lim || D'u, — D'ul| kp =0
n—0 L7 (Qm)

and u,, converges to u in measure as 7 tends to 0. Hence,

}Ilil’(l)”u,, — u”wk,p(Q‘nz)le,kp(Qm) = O

10.3 | kp] simply connected manifolds

Under the additional assumption that for every ¢ € {0, ..., |kp]},
me(N") =~ {0},

it is possible to give a simpler proof of H*?(Q™; N™) = W*P(Q™; N™) without relying
on the density of maps in R,,, |, —1(Q™; N™). This approach is inspired by previous
works of Escobedo [17] and Hajtasz [26]; see [7] for details.
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