
Available at:
http://hdl.handle.net/2078/158349

[Downloaded 2019/04/19 at 06:47:21]

"Adapt-First: a MDE Transformation Approach
for Supporting User Interface Adaptation"

Khaddam, Iyad ; Mezhoudi, Nesrine ; Vanderdonckt, Jean

Abstract

Adapting user interfaces to different contexts of use is essential to enhance
usability. Adaptation enhances user satisfaction by meeting changing context
of use requirements. However, given the variety of contexts of use, and
the significant amount of involved information and contextual treatments,
transformations of user interface models that consider adaptation become
complex. This complexity becomes a challenge when trying to add new
adaptation rules or modify the transformation. In this paper, we present “Adapt-
first”, an adaptation approach intended to simplify adaptation within model based
user interfaces. It capitalizes on differentiating adaptations and concretization
via two transformation techniques: concretization and translation. First-Adapt
approach aims at reducing complexity and maintenance efforts of transformations
from a model to another.

Document type : Communication à un colloque (Conference Paper)

Référence bibliographique

Khaddam, Iyad ; Mezhoudi, Nesrine ; Vanderdonckt, Jean. Adapt-First: a MDE Transformation
Approach for Supporting User Interface Adaptation.2nd IEEE World Symposium on Web
Applications and Networking (WSWAN'2015) (Sousse, du 21/03/2015 au 23/03/2015).
In: Proceedings of 2nd IEEE World Symposium on Web Applications and Networking
(WSWAN'2015), IEEE Computer Society Press : Piscataway2015

DOI : 10.1109/WSWAN.2015.7209080

Adapt-First: a MDE transformation approach for sup-
porting User Interface Adaptation

Iyad Khaddam, Nesrine Mezhoud, Jean Vanderdonckt
Louvain Interaction Laboratory, Louvain School of Management (LSM) − Place des Doyens, 1

Université catholique de Louvain (UCL) − B-1348 Louvain-la-Neuve, Belgium
{iyad.khaddam, nesrine.mezhoudi, jean.vanderdonckt}@uclouvain.be

Abstract—Adapting user interfaces to different contexts of
use is essential to enhance usability. Adaptation enhances user
satisfaction by meeting changing context of use requirements.
However, given the variety of contexts of use, and the significant
amount of involved information and contextual treatments,
transformations of user interface models that consider
adaptation become complex. This complexity becomes a
challenge when trying to add new adaptation rules or modify the
transformation. In this paper, we present “Adapt-first”, an
adaptation approach intended to simplify adaptation within
model based user interfaces. It capitalizes on differentiating
adaptations and concretization via two transformation
techniques: Concretization and translation. First-Adapt
approach aims at reducing complexity and maintenance efforts
of transformations from a model to another.

Keywords— User Interfaces, Adaptation, Model Driven
Engineering, Transformation, Reification

I. INTRODUCTION
Model-based user interface (MB-UI) development

approaches gained a lot of attention due to their potential
benefits during the past decades. Such assets are mainly
inherited from model-based development and Model-Driven
Engineering (MDE) [1,2]. One of the main potential benefits is
the support of exploring alternative designs which allow the
production of different designs for different contexts of use
while maintaining consistency [3].

On the other hand, in the expanding world of
communications and technologies, UI context-awareness
becomes a necessity. Adapting the interface in the context of
user enhances the user’s experience and improves the UI
quality and usability [4,5]. Cameleon Reference Framework
(CRF) defines the context of use as the triplet: < user, platform,
and environment> [6].

MBUI development process is based mainly on Models and
transformations. Where models denote abstract specifications
of the interface and transformation present the mappings
relationship inter and intra abstraction levels. An extensive
description of potential transformations in CRF are presented
in [7]. Fours transformations are identified: concretization,
abstraction, translation, and reflexion.

Figure 1. The Cameleon Reference Framework.

• Concretization transforms a particular model into
another one of a lower level of abstraction, until
executable/interpretable code is reached.

• Abstraction is an operation that transforms a UI
representation from any level of abstraction to a higher
level. Reverse engineering of user interfaces is a typical
example of abstraction.

• Translation is an operation that transforms a description
intended for a particular context of use into a
description at the same level of abstraction.

• Reflexion is an operation that transforms a model into
another one at the same level of abstraction for the same
context of use (as opposed to different contexts of use
as for translation).

The literature convoys several examples on adaptive
model-driven UIs. Many works in MB-UI refer to the
Cameleon Reference Framework (CRF). Several have been
applied over the user interfaces engineering process, in
compliance with different UI abstraction levels and the CRF.
These researches focus on the definition of languages covering
different abstraction levels describing the UI, and also the
correspondences between levels (mappings) and

transformations. An overview and evaluation of these systems
is reported by [8].

Models can be exploited at runtime to recognize context
changes and support on the fly adaptation [1]. Model based UI
are intended to reproduce all potential benefits of model-based
development and Model-Driven Engineering (MDE) in
general. Almost all benefits and shortcoming of Model-Based
User Interfaces are reported by W3C in [1]. We would refer to
the following advantages:

• To reduce the gap between requirements and
implementation: Since models are able to define
precisely functional requirement to better match user
expectations.

• To improve the communication between stakeholders
by explicit models, this explicitness enhances mainly
the use (understanding, perceiving, comparing…) of
models and define semantics of each models.

• To enhance the productivity via the generation of code,
the possibility of reuse and reducing errors…

• To consider context evolution at runtime and enable on
the fly adaptation.

Still, building the perfect model for UIs looks far beyond
reach. Adding flexibility to modeling and supporting
customization of the UI is vital to the success of MDE
approaches. Support for context-awareness, flexibility and
customization is usually implemented in the reification
transformation, which results in increasing complexity of the
reification. This increased complexity leads to difficulties in
incorporating later modifications and updates on the
transformation engine which affects the ability to improve
adaptation with newly acquired established rules on adaptation
to contexts of use.

We believe that simplifying the reification transformation
improves the ability of the UI to support new context rules.
Improvements include reducing the complexity and the
maintenance efforts to accommodate new contexts of use.
Accordingly, we propose an approach, Adapt-First, that aims at
simplifying the reification process.

Our approach considers the adaptation as a translation
(model-to-self transformation), while the concretization is the
transformation from an abstract model to a lower one. Thus,
the reification process passes through two steps: (1) the
adaptation (translation): to adapt the UI to the context of use,
and (2) the concretization: transform the model to a more
concrete one. An intermediate model is employed to enable the
passage from one step to the other.

The remainder of this paper is structured as follows. The
following section refers to related works in the MB-UI domain.
The third section presents the adapt-first approach, the method
to apply the approach and some illustrative examples on how
to apply the method on two adaptation cases at two different
levels of abstraction. Section four shows a case study and
implementation. We give an overview on the tools used and the
transformation tool design (the translation and the
concretization) and illustrate the implementation of three

adaptation rules to culture and to platform. We conclude and
explain future works in section five.

II. RELATED WORKS
Many UI models were developed since the 1980’s,

Researches in [9,10] propose model-based approaches for
developing and adapting UIs at design-time and run-time. Such
approaches generally use techniques of model-driven
engineering (MDE) for the automatic generation of the UI.
Addressing issues concerning the simplification of the process
of user interface generation, and providing an infrastructure to
allow applications to run in different contextual circumstances
with different capabilities is a common purpose in [11]. To that
end, different approaches have been proposed addressing
adaptation problems; many of them stimulate adaptation via an
adaptive behavior [12, 13, 14, 9]. Generally, for model based
approaches, the stepwise development life cycle put forward a
separation of concerns providing a good basis for producing a
well-structured system, besides facilitating implementation
itself as well as maintenance. Several adaptations have been
applied over the UI engineering process, in compliance with
diverse abstraction levels and the CRF. Investigations were
focused on the definition of languages covering different
abstraction levels describing the UI, rather than
correspondences between levels (mappings) and transformation
functions. Usixml is an example [15].

In this paper we focus on model transformation. Quite few
studies addressed transformation from different perspectives.
An extensive domain analysis of existing transformation
techniques is presented by [Krzysztof]. The study result in a
taxonomy-based classification of the existing model-to-model
transformation approaches into direct manipulation
approaches, relational approaches, graph-transformation-based
approaches, structure-driven approaches, and hybrid
approaches [16].

The analysis of existing approaches revealed several
limitations, such as the complexity in case of graph-
transformation-based approach, and the limited applicability of
structure driven approaches. However relational Approaches
showed a high effectiveness in balancing between flexibility
and declarative expression [16]. This category groups
declarative approaches where the main concept is mathematical
relations (like declarative approaches and mapping rules).

Figure 2 Features of transformation rules [16].

However, despite its advantages compared to other
approaches, UI model-based approaches addressing adaptation
suffers from complex transformation engine. This complexity

limits their extensibility and ability to incorporate increasingly
acquired adaptation knowledge. Research in [4] highlights the
traceability as a requirement for reuse and evolution. In order
to overcome this shortcoming, we present a new relational
transformation approach aimed at specifying transformation as
a composition of clearly separated concerns

Adapt-first transformation approach addresses the
requirement for reducing complexity by separating
transformation concerns. In what follow, we present Adapt-
first approach dealing with transformation complexity via
separating adaptation and mapping concerns.

III. ADAPT-FIRST APPROACH
In this section, we present Adapt-First approach supporting

transformations in model-based user interfaces development.
The transformation is illustrated through different examples
from USIXML project.

A. Overview
As we are using UsiXML models, it would be appropriate

to give a slight background of UsiXML before we go further.
UsiXML contains a set of models: Task model, Abstract User
Interface (AUI), Concrete User Interface (CUI), Final User
Interface (FUI), Resource Model, Context Model and others.
These models are aimed to, when employed together, design an
interactive UI that can be transformed into an executable final
UI. More information can be found on the official site:
www.usixml.org. UsiXML follows the CRF which represents a
framework to define the design steps needed to describe a UI,
including the features: Multi-level abstraction, Modality
independence, among others.

The main principle in the adapt-first approach is to perform
all the adaptations on the source model creating an
intermediate model, and then transform the intermediate model
to the destination model. The approach overview is depicted in
figure 3.

Figure 3. The Adapt-First approach

Adapt first capitalize on two main phases. the first
represent an horizontal transformation (translation) this ensure
the adaptation of the source model to the context of user the of
this phase is an enriched model (intermediate) the second

phase is a concretization from the adapted intermediate model
to an adapted target model.

The translation might be cascaded, in that several
translations can be run to reach the final intermediate model
(the adapted model). This cascading can be fruitful to prioritize
adaptation rules: what rule should be executed before others?

B. The method to employ adapt-first
In the following, we enlist the steps needed to apply the

adapt-first approach in order to support contextual adaptation
during transformation and UI generation:

1- Classify: Classify the adaptation rule at the
appropriate/desired level of application: task, AUI,
CUI. For instance, adaptation rules that split/merge
widgets could be placed on the AUI level. Although
splitting can be made also at the CUI level, the UI
designer may prefer to apply it at the AUI level
because it is the first place a logical grouping of
elements is defined. Presentation rules that consider
the color, text and other properties of widgets are
placed at the CUI level. These attributes are defined at
this level since they rely more on a concretization of
the UI.

2- Analyze: Analyzing the adaptation rule: understand
exactly what input is needed from the source and
context model. In addition to understanding exactly the
implications of this adaptation rule on the destination
model: what elements are affected and what are the
changes. For instance, take the case of the adaptation
rule to the environment: change the widgets colors to
meet light conditions (day and night). This rule is
classified at the CUI level because it affects the colors
properties. It needs as input CUI widgets and the
context of use (day or night). It modifies the color
property in the destination model (the FUI). Another
example is the choice of interaction unit (the UI
widget) based on the screen size. On small screens, a
drop-down box might be favored over a list box to
reserve the space. This adaptation is classified at the
CUI level and affects the type of UI widget to choose.

3- Establish the intermediate meta-model:

a. The intermediate model is specified within
the same abstraction level of the source
model. It consists on a contextualized version
providing more information about the UI
description. Additional attributes could be
added to provide an enriched version.

b. Abstract the implications of rule(s) in the
intermediate model. The starting meta-model
of the intermediate model can be the meta-
model of the source model. For instance, to
incorporate the adaptation rule on colors, the
intermediate model can use the same meta-
model for the CUI model (the source).
Implications of this rule are reflected on the
intermediate model by changing the color

attribute of the concerned widgets.

c. The intermediate meta-model might be
modified to incorporate the adaptation rule.
This is the case when the source model and
the destination model don’t use the same
concepts, or when the destination model
employs a wider point of view than the source
model. For instance, adaptation to Arabic
culture requires changing the reading
direction of the screen to right-to-left [17].
CUI model doesn’t support the direction
attribute in UsiXML. On the other side, Java
(as an example of the FUI) supports this
attribute on UI widgets. This direction
attribute can be added to the intermediate
model (a change on the meta-model). The
result of applying the language adaptation
rule should affect this newly-added attribute
in the intermediate model. We present another
example later on the need to modify the
intermediate meta-model.

d. The decision to modify the intermediate
meta-model should be wisely taken
considering simplifying the concretization
transformation. The simplest form for
concretization is to a mapping from the
source to the destination. This means,
modifications to the intermediate model
should be meaningful to the destination
model and clear enough to directly pass from
the intermediate model to the destination.

4- Design the translation:

a. Cascade translations: Not all adaptation rules
affect directly the destination model. For
instance, users may perform the same task
differently on a desktop or a mobile device.
This type of adaptation employs an
intermediate model that has the same task
meta-model. Such rules should be applied at
first. Adaptation rules that affect the
destination model directly should be
conducted later, resulting in another
translation from the intermediate model to
another intermediate model, like in figure
below. Thus, Translation could be cascaded
in order to prioritize adaptation rules.

b. If an adaptation rule depends on the result of
another adaptation rule, cascading employed.

5- Design the concretization: the concretization should be
straight forward to keep it simple. A transformation
decisions should be taken based on: the element we are
transforming, the parents of the entity in the source
model, and the already-generated entities in the target
model. This serves the purpose of extending the
transformation engine easily when the
input/intermediate model is enriched or modified.

C. Illustrations
We will present two examples to clarify the new approach.

First Example: Generating AUI from Task Model
Tran et al [18] explained an algorithm to transform task

model to AUI based on weights given to tasks depending on
their type and the weight given to the targeted platform (weight
is calculated based on screen dimensions, processing power,
memory, screen type…). Based on these weights, the algorithm
chooses the appropriate grouping of tasks to be transformed
into the same AUI container. We note the coupling between
adaptation and the concretizations in the transformation
process.

Let’s apply the adapt-first method on the above case.

1- Classify: AUI containers should consider the targeted
platform. The same task can generate different AUI
containers according to the platform. we choose to
apply this rule on the task model because it is the
origin for AUI containers.

2- Analyze: the rule considers the task elements in the
source model and group them according to the targeted
platform. It affects the generation of AUI containers in
the destination model.

3- Establish the intermediate model: the algorithm
proposed by Tran determines the groups of tasks. we
can then modify the intermediate meta-model (which
is the task meta-model) to add the attribute
“AUIContainer” on the task entity. This attribute will
contain the result of the execution of Tran’s algorithm.
This property can be used easily in the concretization
of the intermediate model.

4- Design the translation: for this rule, there is no need to
cascade the translations. Anyway, tasks might be
conducted by end-users differently on a mobile
application or on a desktop. If we want to incorporate
such rule in the adaptation, the task model should be
adapted before generating the AUI. This can be
achieved by cascading translations: from task model to
an intermediate model (task model) and then to our
proposed intermediate model in step 3.

5- Design the concretization: part of the algorithm of
Tran proposed to generate AUIs from the task model
using mapping rules. This part is simple enough to
concretize the intermediate into the AUI model.

 Figure 4 demonstrates how the transformation is simplified
using the adapt-first approach. The figure shows how the
adaptation is separated from the concretization. It also shows
the modification to the task meta-model to add the attribute
“AUIContainer” (values for this attribute are depicted by
different colors). Concretization employs this attribute to
generate AUI containers.

If we prefer to employ another algorithm to generate AUI
containers from the task model, like the “Presentation Task
Set” algorithm which is implemented in the TERESA tool [19].
We need to adapt the algorithm to reflect the results into the

newly-added attribute. The concretization part won’t be
affected.

The intermediate model provides also a way for
incorporating customization and user-involvement in the
adaptation. If the UI designer needs to manually tweak the
adaptation, he can manually change the intermediate model.
This can also be incorporated in a model-driven engineering
approach by adding the customization as a rule. Customization
rules could be incorporated at the ending stage of the
translation step, or after completion of each translation step
when cascading intermediate models.

Figure 4. Generating AUI from Task using Tran’s algorithm

following the Adapt-First Approach .

Second Example: Adaptation to Culture
One of the important adaptations to culture is adapting the

reading and writing direction to the user's language. Supporting
reading and writing direction in UsiXML (the CUI model) was
discussed in details in [17], where authors propose to add a
new property to UIComponent element that holds the reading
and writing direction of that UI component. Authors also
explained the semantics regarding transformation support for
this property. In brief: this property is inherited. The recursive
algorithm to calculate the value is: (1) if a UIComponent has
an explicit value, use it, (2) if not, use value of the parent. (3) If
the root parent doesn't have a value, use the default value
imposed by the culture.

Let’s apply the adapt-first method on this adaptation to
culture example:

1- Classify: According to CRF, AUI is platform-
independent, modality-independent. The adaptation
rule is dedicated to Graphical GUI, thus it is modality-
dependent and affects the CUI model.

2- Analyze: the rule considers CUI elements in the source

model and modify their reading and writing direction.
The implications affect the reading and writing
direction attribute (the “direction”) on each graphical
component.

3- Establish the intermediate model: the intermediate
meta-model is the same as the CUI meta-model. There
is no need for modifications.

4- Design the translation: for this rule, there is no need to
cascade the translations.

5- Design the concretization: map a CUI element type
with the appropriate value for the directions with the
corresponding FUI element. Depending on the FUI
model and its support for different reading and writing
directions, the mapping can be configured to either
generate a different FUI component or change an
attribute in the component.

IV. IMPLEMENTATION
The implementation we provide here is a proof of concept

of the approach. We demonstrate how to apply the approach on
the CUI model. A case study on “car rental” UI is
demonstrated. The case study shows how to adapt the UI to
culture and adaptation to screen size following the adapt-first
approach.

Firstly, we describe the case study, the architecture and
then explain how adaptation is implemented.

A. Overview
Car Rental is a UI for a client willing to rent a car. The UI

allows the user to determine his options. The specification of
the case study is:

"The car rental case study consists in a scenario in which
the interactive system supports users in the task of renting a
car. In this sense, various context information can be used to
adapt application aspects, and to properly display the list of
cars to rent, enabling users to make choices and to accomplish
the main task."

Figure.5 illustrates the hierarchical task analysis (HTA) for
the car rental case study. Basically, users must provide
information about the car (i.e. category, color, model, and
engine), then their own information (i.e. name, surname,
address, city, ZIP code, country, gender, birthday and email),
and finally other information (i.e. commentaries, and
maximum budget). Once the preferences are set and the request
is submitted, users access the service and the results. To
conclude the rental, users select a car, and define the period of
interest. This task model is merely illustrative, and serves as a
basis for the implementations, mainly because some of the
context-aware adaptations envisaged affect the tasks’ sequence,
so specializations of this model are expected. The figure
illustrates a simplified representation of the CUI focusing on
key elements for this case study. The CUI is described using an
XML file. The figure also shows an excerpt of this xml for
illustration purposes. The FUI uses Java Swing to render the
CUI model.

Concretization

Translation :
Adaptation

using Tran’s
algorithm

Task Model

AUI

The intermediate mta-model is
an enriched version of the Task
meta-model: It has a new
attribute called AUIContainer.

White: AUIContainer =0
Grey: AUIContainer =1
Black: AUIContainer =2

Concretization Uses the
AUIContainer attribute to
generate AUI containers

Intermediate
Model

	

The	
 case	
 study	
 task	
 model	

	

A	
 simplified	
 Illustration	
 of	
 CUI	
 model	

Figure 5. Car Rental: The hierarchical task analysis

This case study handle diverse adaptation scenarios, we
present in this section three adaptation rules:

1- Adaptation to reading and writing direction of the
user's language.

2- Translation of text and resources according to the
user's language.

3- Adaptation to large and small screen. On small
screens, replace the list box (depicted in figure 4) by a
combo box to reserve space.

Windo
w GridBagBox

TabbedItem
Identity GridBagBox

Output Name
Input Name
Output LastName
Input LastName
Output Gender
RadioButton Mrs

Output Email
…..
..…

RadioButton Mr

TabbedItem
Address GridBagBo
x Output

Street

TabbedItem
Preferences GridBagBo
x Output

Category

…..
..…

RadioButton Economy
RadioButton Break
RadioButton Van

Output
Color ListBox
Color Item Red

Item Green
Item Blue

TabbedItem
Comments …..

..…

Item Yellow
 Item White
 Item Black

The transformation tool from CUI to FUI is developed
following the adapt-first approach. It recognizes the separation
between the translation and the concretization.

B. Implementing the translation:
Translation is concerned with adaptation to context of use

and implementing adaptation rules. For this purpose, the rule-
engine tool: the Java Expert System Shell (Jess) [20]. Jess
leads the adaptation based on Event-Action rules. Actions
manipulate the intermediate model for adaptation.

Jess engine was integrated in the translation as shown in
Figure 6. The UsiXML file is parsed and loaded in the
memory, then the CUI model is parsed and each element is
injected in Jess rule engine as a fact. The other supporting
models: resource, context are injected as facts equally. The
adaptation starts explicitly by the "adapt" event where jess
rules would be fired according to elicited context of use facts.
The resulting model is the intermediate model, which
represents the adapted CUI model.

Figure 6. The translation Design

C. Implementing the concretization
The concretization engine follows a simple architecture,

where it has as input the intermediate model and the mapping
schema that is used to resolve the generation of each element in
the input model to the corresponding element in the destination
model. Figure 6 shows the architecture of the concretization
part. It has two main components: the Cui Model Traversal,
which simply traverses the adapted Cui model elements (the
intermediate model), and the widget selector which generates
the corresponding element in the target model according to the
mapping schema stored in the file (map.xml). The mapping file
is an xml file that relates an element from the Cui model with a
snippet of code that will be executed under a specific
condition. Figure 7 shows an example of generating Swing
java code from the "Window" Cui Element.

D. Implementing adaptation rules
To adapt to the reading and writing direction, a rule was

implemented in Jess to set the “direction” attribute on every

CUI component to “Right To Left” if the language is Arabic
and to “Left To Right” if the language is English. The
intermediate model is guaranteed to have a value for this
attribute on every CUI component, which facilitates the work
of the concretization later by avoiding the recursive calculation
for this property (explained in the previous section).

To translate the text, another rule was added into Jess. This
rule modifies the display text of each CUI component by the
appropriate translation per to the user’s language.

Adaptation to screen size requires changing the list box in
the “preferences” tab into a combo box to preserve space. This
is achieved by adding another rule to Jess.

Figure 7. The concretization design.

Figure 8 depicts part of the transformation from CUI to FUI
using the approach and the tools. Due to space limits, we
introduce only part of the case study: the preferences tab of the
main screen. The figure shows the CUI model in the initial
state (as designed). Adaptation is performed cascaded into two
translations: the first adapts to the screen size and the second
adapts to culture. This cascading is to prioritize the three
adaptation rules employed in the case study. This cascading
helps to ensure that the replaced combo-box is well-adapted to
language by executing the adaptation to language rules after
the replacement. Changes imposed by adaptation rules are
depicted in the figure in red color. We also demonstrate the
FUI and changes after each adaptation.

V. CONCLUSIONS AND FUTURE WORKS
We presented in this paper the adapt-first approach. It

consists of a set of concepts (model translation transformation,
intermediate model, model concretization transformation) a
method (adapt then transform) and tools to support this
approach. The purpose of this approach is to simplify the
transformation engine which enhances ability to incorporate
further adaptation rules. This is achieved by separating the
translation (the adaptation to the context of use) from the
concretization: transforming the model to a more concrete

CuiRenderingEngine

U
siX

M
L

File

Intermediate model

M
ap.xm

l

Widget
 Selector

Cui Model
Traversal

FUI

U
siX

M
L

File

CUI Model

Context,
Resource

CUI
Traverse

Jess
Rules

Jess
Facts

Jess Engine

Adap
t

model (like from CUI to FUI).

	

	

Concretization	

	

Figure	
 8.	
 Adapt-­‐first	
 approach	
 applied	
 on	
 the	
 “Preferences”	
 tab	
 of	
 the	
 case	
 study	

	

	

The case study shows that a simple mapping concretization
can be created that is independent of the adaptation. The
intermediate meta-model might be modified to support
adaptation rules. A wise design of these modifications while
and considering the implication on the concretization can lead
to manageable changes on the concretization part.

The complexity of the context of use and implication on the

UI model are eased by employing the intermediate model, and
scaled/prioritized by employing cascading intermediate
models.

More work on the tools is needed to enhance customize of
adaptation and user feedback. One possible direction is to
create a “beautification tool”. The beautification tool would
allow the UI designer (and maybe the end-user) to override the

TabbedItem
Preferences GridBagBo
x Output

Category RadioButton
Economy RadioButton
Break RadioButton
Van Output

Color ListBox
Color Item

Red Item
Green Item
Blue Item
Yellow

Item

White

Item
Black

TabbedItem
Preferences GridBagBo
x Output

Category RadioButton
Economy RadioButton
Break RadioButton
Van Output

Color ComboBox
Color Item

Red Item
Green Item
Blue Item
Yellow

Item

White

Item
Black

TabbedItem
 GridBagBox تفضیيلاتت

Output االتصنیيف
RadioButton االكفاءةة

 RadioButton االاقتصاددیية
 شاحنة صغیيرةة RadioButton االمكابح

Output Color
ComboBox االلونن

Item
 Item أأحمر
 Item أأخضر
 Item أأززررقق
 أأصفر

Item
 أأبیيض

Item
 أأسودد

CUI Model Intermediate Model 1 Intermediate Model 2

Translate
Context : small screen

Translate
Context : Arabic

result of an adaptation rule by explicitly/manually tweaking the
concerned elements in intermediate model. It should enable
also enabling/disabling rules. On another side, the
beautification tool would allow managing priorities of rules,
thus controlling the cascading translation.

REFERENCES
[1] Hutchinson, J., Whittle, J., Rouncefield, M., and Kristoffersen, S. (2011)

Empirical assessment of MDE in industry, Proceedings of the 33rd
International Conference on Software Engineering ICSE'2011, ACM
Press, New York, pp. 471-480.

[2] http://www.w3.org/TR/mbui-intro/
[3] Pilemalm, S., Hallberg, N., Sparf, M., and Niclason, T. (Dec. 2012)

Practical experiences of model-based development: Case studies from
the Swedish Armed Forces, Systems Engineering , Volume 15 Issue 4,
pp. 407-421.

[4] Mezhoudi N, PerezMedina JL, and Vanderdonckt Jean. Towards a
Conceptual Model for UIs Context-Aware Adaptation. In proc. the
2nd World Congress on Multimedia and Computer
Science, January 2015, International Conference on Computer
Information Systems. ISBN: 978-9938-9563-2-0.

[5] Motti, V. G., & Vanderdonckt, J. (2013, May). A computational
framework for context-aware adaptation of user interfaces. In Research
Challenges in Information Science (RCIS), 2013 IEEE Seventh
International Conference on (pp. 1-12). IEEE.

[6] Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., &
Vanderdonckt, J. (2003). A Unifying Reference Framework for Multi-
Target User Interfaces. Interacting with Computers , 15(3): 289–308.

[7] Bouillon, L., Vanderdonckt, J., Retargeting Web Pages to other
Computing Platforms with Vaquita, Proc. of IEEE Working Conf. on
Reverse Engineering WCRE’2002 (Richmond, 28 October-1 November
2002), A. van Deursen, E. Burd (eds.), IEEE Computer Society Press,
Los Alamitos, 2002, pp. 339-348.

[8] Akiki, Pierre A.; Bandara, Arosha K. and Yu, Yijun (2015). Adaptive
model-driven user interface de- velopment systems. ACM Computing
Surveys, 47(1) (In press).

[9] Criado, J., Iribarne, L., Padilla, N., Troya, J., and Valle- cillo, A. An
mde approach for runtime monitoring and adapting component-based
systems: Ap- plication to wimp user interface architectures. In
Euromicro Conference on Software Engineering and Advanced
Applications. 2012.

[10] Paterno,F. Santoro,C. Mantyjarvi,J. Giulio Mori, Sansone,D. Authoring

pervasive multimodal user interfaces, Int. J. Web Eng. Technol.2008,
235–261.

[11] Gajos, K. Z., Czerwinski, M., Tan, D. S., and Weld, D. S. 2006.
Exploring the design space for adaptive graphical user interfaces. In
Proc. of the Conf. on Adv. Visual Int.AVI '06.ACM, NY,USA,201-208

[12] Blumendorf, M., Lehmann, G. and Albayrak, S. 2010. Bridging Models
and Systems at Runtime to Build Adaptive User Interfaces. Proceedings
of the EICS '10

[13] Bodart, F. Hennebert, A.M. Leheureux, J.M. Provot, I. B. Sacre, J.
Vanderdonckt, Towards a systematic building of software architectures:
The TRIDENT  methodological guide, in: Design, Specification and
Verification of Interactive Systems, Springer, Wien, 1995, pp. 262–278.

[14] Mitrovic , N. Royo, J.A. and. Mena, E. Performance Analysis of an
Adaptive User Interface System Based on Mobile Agents.In Handbook
of Research on User Interface Design and Evaluation for Mobile
Technology, 2007.

[15] Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., & López-
Jaquero, V. (2005). USIXML: a language supporting multi-path
development of user interfaces. In Engineering human computer
interaction and interactive systems (pp. 200-220). Springer Berlin
Heidelberg.

[16] Czarnecki, K. Helsen, S. Classification of Model Transformation
Approaches. Workshop on Generative Techniques in the Context of
Model-Driven Architecture, OOPSLA’03. 2003.

[17] Khaddam, I. and Vanderdonckt, J. Adapting UsiXML User Interfaces to
Cultural Background. In Proc. of 1st Int. Workshop on User Interface
eXtensible Markup Language UsiXML'2010 (Berlin, 20 June 2010).
Thales Research and Technology France, Paris (2010), pp. 163–170.

[18] Tran, V., Vanderdonckt; J., Tesoriero R., Beuvens, F. (2012). An
Analytical Benchmarking of Algorithms for Generating Abstract User
Interfaces, EICS'12. Copenhagen, Denmark, June 25–28, 2012. pp. 101-
110.

[19] Berti, S., Correani, F., Paterno, F., Santoro, C., The TERESA XML
language for the Description of Interactive Systems at Multiple Levels.
In: Proc. Of the Workshop on Developing User Interfaces with XML:
Advances on User Interface Description Languages, pp. 103-110 (2004).

[20] Hill, Ernest Friedman. Jess in Action: Java Rule-Based Systems.
Manning Publications Co., Greenwich, CT, USA, 2003.

