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SEMICLASSICAL STATIONARY STATES FOR NONLINEAR
SCHRÖDINGER EQUATIONS UNDER A STRONG EXTERNAL

MAGNETIC FIELD

JONATHAN DI COSMO AND JEAN VAN SCHAFTINGEN

Abstract. We construct solutions to the nonlinear magnetic Schrödinger equation{
−ε2∆A/ε2 u + V u = |u|p−2u in Ω,

u = 0 on ∂Ω,

in the semiclassical régime under strong magnetic fields. In contrast with the well-studied
mild magnetic field régime, the limiting energy depends on the magnetic field allowing to
recover the Lorentz force in the semi-classical limit. Our solutions concentrate around global or
local minima of a limiting energy that depends on the electric potential and on the magnetic
field. Our results cover unbounded domains, fast-decaying electric potential and unbounded
electromagnetic fields. The construction is variational and is based on an asymptotic analysis
of solutions to a penalized problem following the strategy of M. del Pino and P. Felmer.

1. Introduction

The nonlinear Schrödinger equation that models the evolution of a wave-function ψ of a charged
particle in RN under an external electromagnetic field reads as

(1) i~∂tψ = − ~2

2m∆A/~ψ + Uψ − |ψ|p−2ψ.

Here m is the mass of the particle, 2π~ = h is the Planck constant, the function U : RN → R
is an external electric potential, the differential form A : RN →

∧1 RN is an external magnetic
vector potential, ∆A is the covariant Laplacian with respect to the connexion induced by A and
given for ψ ∈ C2(RN ;C) by

−∆Aψ
4= −∆ψ − 2ı(Dψ|A)− ı(d∗A)ψ + |A|2ψ,

with d∗A(x) =
∑n
i=1DA(x)[ei, ei], and −|ψ|p−2 is a focusing self-interaction potential. Stationary

solutions to this problem have been studied in various settings [3, 12,13,26].
In the semi-classical limit, that is when the scale of the problem is large compared to the

Planck constant, one expects physically the motion to reduce to the classical Newtonian dynamics
of a charged particle under the Lorentz force
(2) F = q(dU + vydA),
where q is the electric charge and v the velocity vector of the charged particle. The inner product
and the exterior derivative are given by vydA(x)[w] = dA(x)[v, w] = DA(x)[v, w]−DA(x)[w, v].
(In the three-dimensional Gibbs formalism, the formula (2) corresponds to F = q(∇U+v×∇×A).)
In particular, standing wave solutions should correspond to particles at rest (v = 0) at critical
points of the electric potential U . In this situation the magnetic potential thus does not play
any role. The corresponding stationary problem in the semi-classical limit has been the object of
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2 JONATHAN DI COSMO AND JEAN VAN SCHAFTINGEN

numerous studies in the last decade [1, 4–7,11,14–19,25,30, 38]. (The complete Lorentz force (2)
can be recovered by studying the soliton dynamics [39].)

Since the standing waves in the régime presented above do not interact with the magnetic field,
they do not allow to derive in the semi-classical limit the magnetic contribution to the Lorentz
force. Even if the Lorentz force does not act on charges at rest, it does act on magnetic dipoles at
rest according to the law

(3) F = q dU + d〈dA, µ〉,

where the bivector µ ∈
∧2 RN is the magnetic moment of the dipole [29, (1)]. (In the three-

dimensional space in the Gibbs formalism, this is F = q∇U+∇(µ ·∇×A).) Whereas the magnetic
moment does not vanish in general, it does not play any role in the stationary semi-classical limit.
This can be explained as follows: if a wave-packet is concentrated at a length-scale ` ≈ ~/

√
mE0

(where E0 is the groundstate energy of the sytem), then the electric charge is of the order `N
whereas the magnetic dipole is at most of the order `N+1. In order to study the interaction
between the magnetic dipole and the magnetic field for stationary solutions, we propose to take
an external magnetic potential of the order `−1, in a what we call the strong magnetic field régime.
The interaction with the magnetic field should be comparable to the interaction with the electric
field. This should allow to determine whether the classical Lorentz interaction of a charged
magnetic dipole with an electromagnetic fied (3) is recovered in the stationary semi-classical limit.

By adimensionalization of the problem (1), we are lead to study the mathematical problem

(Pε)
{
−ε2∆A/ε2u+ V u = |u|p−2u in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN and ε > 0 is a small real parameter. The action functional associated to the
problem (Pε) is

Fε(u) 4= 1
2

∫
Ω
ε2|DA/ε2u|2 + V |u|2 − 1

p

∫
Ω
|u|p;

and is defined (with possibly the value −∞) on the completion H1
V,A/ε2(Ω) of the set of compactly

supported continuously differentiable functions C1
c (Ω;C) with respect to the Euclidean norm ‖·‖

defined for every u ∈ C1
c (Ω;C) by

‖u‖ 4=
(∫

Ω
ε2|DA/ε2u|2 + V |u|2

) 1
2
,

where the covariant derivative DA/ε2 is defined as

DA/ε2u
4= Du+ ıuA/ε2.

In order to describe the limiting behaviour of solutions, given a real number V∗ ∈ (0,∞) and a
form A∗ ∈ L(RN ;

∧1 RN ), we define the limiting action functional IV∗,A∗ : H1
V∗,A∗

(RN )→ R for
every v ∈ H1

V∗,A∗
(RN ) by

IV∗,A∗(v) 4= 1
2

∫
RN
|DA∗u|2 + V∗|u|2 −

1
p

∫
RN
|u|p.

We consider the action of the limiting problem

(4) E(V∗, A∗)
4= inf

{
IV∗,A∗(v) | v ∈ H1

V∗,A∗(R
N ) \ {0} and 〈I ′V∗,A∗(v), v〉 = 0

}
,

that is, the infimum of the functional IV∗,A∗ on its Nehari manifold. The infimum in the definition
of the function E is achieved at minimizers [26] that satisfy the limiting equation

(RV∗,A∗) −∆A∗v + V∗v = |v|p−2v.

The function E is continuous (see proposition 3.4 below).
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The concentration function C : Ω→ R is defined at every point x ∈ Ω by

C(x) 4= E
(
V (x), DA(x)

)
= E

(
V (x), dA(x)/2

)
.

The second equality comes from the gauge invariance of the limiting problem. This function C is
continuous as soon as 1

2 −
1
N < 1

p <
1
2 , V is continuous and A is continuously differentiable.

Theorem 1. Assume that 1
2 −

1
N < 1

p <
1
2 , Ω ⊂ RN is bounded and inf V > 0. If V ∈ C(Ω̄),

A ∈ C1(Ω̄) and Ω has a C1 boundary in a neighbourhood, then there exists a family of solutions
(uε)ε>0 of (Pε) in H1

V,A/ε2(Ω) and a family of points (xε)ε>0 in Ω such that

lim
R→∞
ε→0

‖uε‖L∞(Ω\Bρ(xε)) = 0, lim
ε→0

ε−NFε(uε) = lim
ε→0
C(xε) = inf

Ω
C.

Since the concentration function C is continuous and the set Ω̄ is compact, the function C
achieves its minimum on the set Ω̄. Theorem 1 can be rephrased by saying that the solution has
a single spike that concentrates as ε→ 0 towards the set of minimum points of the function C on
the set Ω̄.

In the particular case where the potential V is constant, the point of concentration is determined
by the magnetic field dA alone. In particular, if the magnetic field dA vanishes somewhere, then
the solutions concentrate around its zeroes. The known properties of E are summarized in
section 3.

The result allows to obtain that the Lorentz force given by (3) vanishes in the semi-classical
limit. Indeed, if x∗ ∈ Ω is a cluster point of the family (xε)ε>0, then by taking a sequence we
can assume that the sequence (xεn)n∈N converges to x∗ and, by the results in section 4, that
the translated rescaled sequence (uεn(xεn + εn·))n∈N converges to a solution v∗ of the limiting
problem (RV∗,A∗). By proposition 3.5, the equation (3) is satisfied with q and µ being the
quantum mechanical charge and magnetic moment.

Mathematically, the existence of solutions to (Pε) is classical [26]. The study of the asymptotics
of solutions as ε→ 0 brings several problems. First the structure of the set of minimizers in (4)
is not known. In fact, there is no reason to believe that minimizers should be nondegenerate or
unique up to translations, or even that they should be radial. We will thus develop arguments
that do not depend on any structure of the set of groundstates of the limiting problem.

A second difficulty is that the strong magnetic field is large enough to be an obstacle to
regularity estimates on rescaled solutions. To illustrate this, we observe that if, to fix the ideas,
Ω = RN , then the function vε defined for y ∈ RN by vε(y) = uε(εy) satisfies for each y ∈ RN the
equation

−∆vε(y)− 2ı
ε2 (Dvε(y)|A(εy))− ıd∗A(εy)

ε
vε(y) + |A(εy)|2

ε4 vε(y) + V (εy)vε(y) = |vε(y)|p−2vε(y).

Even if we may assume by a suitable gauge transformation that |A(εy)| ≤ C|εy| for small y, we
still do not have locally uniformly bounded coefficients. In order to bypass this problem, we will
arrange our proof in order to limit the use of regularity theory to estimates on the modulus |vε|
in L∞ by the Kato inequality and by the De Giorgi–Nash–Moser regularity theory. In particular,
instead of having compactness in the uniform norm, we will just have some sufficient condition
for uniform convergence to 0.

A last challenge is that there is no notion of positive solutions for limiting problems like
(RV∗,A∗). This rules out Liouville-type theorem based on comparison and prevents us in fact of
using Liouville theorems in blowup arguments.

Our second result is a local concentration result.
Theorem 2. Assume that 1

2 −
1
N < 1

p <
1
2 and that either Ω ⊆ RN is bounded, 1

p < 1 − 2
N or

that
lim inf
|x|→∞

V (x)|x|2 > 0.
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If Λ ⊂ Ω is open, bounded and not empty, and satisfies
inf
∂Λ
C > inf

Λ
C,

if V ∈ C(Λ̄), infΛ V > 0, A ∈ C1(Λ̄) and Ω has a C1 boundary in a neighbourhood of Λ̄, then
there exists a family of solutions (uε)ε>0 of (Pε) and a family of points (xε)ε>0 such that

lim
R→∞
ε→0

‖uε‖L∞(Ω\Bρ(xε)) = 0, lim
ε→0

ε−NFε(uε) = lim
ε→0
C(xε) = inf

Λ
C.

In the two-dimensional case, the first assumption reduces to Ω bounded or
lim inf
|x|→∞

V (x)|x|2 > 0.

It also follows from the assumption infΛ V > 0 and the diamagnetic inequality that
inf
Λ
C ≥ inf

Λ
E(V, 0) > 0.

As for theorem 1, the Lorentz force given by (3) vanishes in the semiclassical limit ε→ 0.
When A = 0, this reduces to the nonmagnetic case [33, 34]. In that case it has been shown

that the assumption on the decay of V cannot be substantially improved.
Our construction of the solutions is variational. We follow the penalization scheme which was

developped by M. del Pino and P.Felmer for the nonlinear Schrödinger equation [20–22] and
adapted to critical frequency for fast-decaying potentials [8–10,23, 24, 34, 44] and to the nonlinear
Schrödinger equation with a mild magnetic field [1, 19].

We combine both adaptations for the first time. After defining the penalization and proving
existence of solutions to the penalized problem, we need to show that solutions are small enough
in the penalized region to satisfy the original unpenalized problem. The classical strategy is
to obtain asymptotic estimates on the action, which give some information about the decay
of integrals on the solutions on balls of radius of the order of ε. In the mild magnetic field
régime, those can be improved by local uniform Schauder estimates [19]; as mentioned above the
coefficients of the rescaled linear operator are not controlled sufficiently to have uniform Schauder
estimates. When the concentration points are global minimizers of the electric potential in the
mild magnetic field régime, the limiting functional bounds from below the penalized functional,
allowing to show the strong convergence of rescaled solutions to a solution of the limiting problem
in the energy space; uniform bounds can be derived by a suitable Moser iteration scheme on outer
domains [1]. In the strong magnetic field régime we rely instead on comparison principles for the
modulus by Kato’s inequality [28].

The lack of information concerning the limiting problem has forced us to prove the results
with relying on the minimal properties that we could await from it. We do not even require
the existence of solutions to the limiting problem; the only property that we use is the upper
semicontinuity of the action of the limiting problem.

Our method is quite flexible, allowing us to treat unbounded domains, fast-decaying electric
potentials and unbounded electromagnetic fields.

We have made two choices in the presentation that might be unusual in the community of
analysts but that we think should highlight the geometrical features of the problem. First, we
used derivatives and differential forms instead of gradients and vector fields. Next, we work
on C as a two-dimensional Euclidean vector field — in particular all the scalar products are
real — except for the multiplication by the imaginary unit ı which can be thought in fact as the
application of a skew-symmetric linear mapping.

2. Construction of solutions to a penalized problem

2.1. Definition of the penalized problem. In order to prepare the proof of theorem 2, we
define and solve a penalized problem following the strategy of M. del Pino and P.Felmer [20]
and its adaptation to critical potentials [10, 34, 44] and to the stationary magnetic nonlinear
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Schrödinger equation [1, 19]. The reader only interested in the proof of theorem 1 can go directly
to section 4.

Without loss of generality, we assume that 0 ∈ Λ. Following V.Moroz and J.Van Schaftingen
[8, §3; 24, §2.1; 33, (12); 34, §3.1 and §6.1], the penalization potential H : Ω→ R is defined at
every point x ∈ Ω by

H(x) 4=
χΩ\Λ(x)

(
log ρ

ρ0

)β
4|x|2

(
log |x|ρ0

)2+β ,

where the point x0 ∈ Λ and the radius ρ > 0 are choosen so that Bρ(x0) ⊂ Λ, the parameters
β > 0 and ρ0 ∈ (0, ρ) are fixed, and χΩ\Λ denotes the characteristic function of the set Ω \ Λ.
If Λ = Ω, as it will be the case in the proof of theorem 1, the penalization potential vanishes
identically on its whole domain Ω.

By the classical Hardy inequality, the operator −∆ − H satisfies a positivity principle [24,
lemma 2.1; 34, lemma 3.1].

Lemma 2.1 (Smallness and compactness of the penalization potential). There exists ε̄ > 0 such
that for every ε ∈ (0, ε̄] and each function ϕ ∈ C1

c (Ω;R),∫
Ω
ε2H|ϕ|2 ≤

∫
Ω
ε2|Dϕ|2 + V |ϕ|2.

Moreover the corresponding embedding H1
V (Ω) ⊂ L2(Ω, H(x) dx) is compact.

The weighted Sobolev space H1
V (Ω) is defined to be the completion of C1

c (Ω) with respect to
the norm defined for every function ϕ ∈ C1

c (Ω) by(∫
Ω
|Dϕ|2 + V |ϕ|2

) 1
2
.

Proof of lemma 2.1. There exists a constant C > 0 such that for every test function ϕ ∈ C1
c (Ω)

[34, lemma 6.1],

1
4

∫
Ω

|ϕ(x)|2

|x|2
(

log |x|ρ0

)2 dx ≤
∫

Ω
|Dϕ|2 + C

∫
Bρ\Bρ0

|ϕ|2;

the inequality follows since infBρ V > 0. Since the embedding H1
loc(Ω) ⊂ L2

loc(Ω) is compact, the
potential H is bounded and lim|x|→∞H(x)|x|2(log|x|)2 = 0, we conclude that the embedding
H1
V (Ω) ⊂ L2(Ω, H(x) dx) is compact. �

For each ε > 0, we define the penalized nonlinearity gε : Ω× C→ C for every (x, s) ∈ Ω× C
by [1, (2.3); 19, (21)–(22)]

gε(x, s)
4= χΛ(x)|s|p−2s+ χΩ\Λ(x) min

(
ε2µH(x), |s|p−2)s.

The penalized nonlinearity gε is variational, that is, for every (x, s) ∈ Ω× C,

gε(x, s) = ∇sGε(x, s),

where the function Gε : Ω× C→ R is defined for every (x, s) ∈ Ω× C by

Gε(x, s) = χΛ(x) |s|
p

p
+ χΩ\Λ(x)

∫ |s|
0

min
(
µε2H(x)t, tp−1) dt.
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The penalized nonlinearity has the following properties: for every ε > 0,
gε(x, s) = o(|s|) as s→ 0+ uniformly on compact subsets of RN ;(g1)
|gε(x, s)| ≤ |s|p−1 for every (x, s) ∈ Ω× C;(g2)
|gε(x, s)| ≤ µε2H(x)|s| for every (x, s) ∈ Λ× C;(g3)
2Gε(x, s) ≤ (s|gε(x, s)) for every (x, s) ∈ Ω× C;(g4)
pGε(x, s) ≤ (s|gε(x, s)) for every (x, s) ∈ Λ× C;(g5)
Gε(x, s) > 0 for every (x, s) ∈ Ω×

(
C \ {0}

)
.(g6)

We also denote by gε and Gε the corresponding superposition operators, that is, for every function
u : Ω→ R, the functions gε(u) : Ω→ C and Gε(u) : Ω→ R are defined for every x ∈ Ω by

gε(u)(x) = gε(x, u(x)) and Gε(u)(x) = gε(x, u(x)).
Since gε and Gε are Carathéodory functions, the measurability of u implies the measurability of
the functions gε(u) and Gε(u).

2.2. Existence of solutions to the penalized problem. The penalized functional Gε is defined
on the space H1

V,A/ε2(Ω)(Ω;C) for every function u ∈ H1
V,A/ε2(Ω) by

Gε(u) 4= 1
2

∫
RN

ε2|DA/ε2u|2 + V |u|2 −
∫
RN

Gε(u).

In contrast with the nonmagnetic case, the domain of the penalized functional Gε depends in
general on the parameter ε.

We shall construct weak solutions to the penalized problem

(Qε)
{
−ε2∆A/ε2uε + V uε = gε(uε) in Ω,

uε = 0 on ∂Ω,

that is, uε ∈ H1
A/ε2(Ω) and for every v ∈ H1

A/ε2(Ω)∫
Ω
ε2(DA/ε2uε|DA/ε2v) + V (uε|v) =

∫
Ω

(gε(uε)|v).

We first prove that the penalized functional Gε is well-defined and continuously differentiable.

Lemma 2.2 (Well-definiteness and continuous differentiability of the functional). The functional
Gε is well defined and continuously differentiable on the space H1

V,A/ε2(Ω). Its critical points are
weak solutions of the penalized problem (Qε).

Before proving the lemma, we recall the diamagnetic inequality which is a powerful tool to
study magnetic problems.

Lemma 2.3 (Diamagnetic inequality (see for example [26, (2.3); 31, theorem 7.21])). If u ∈
H1
V,A/ε2(Ω), then |u| ∈ H1

V (Ω) and

|D|u|| ≤ |DA/ε2u|

Thanks to the diamagnetic inequality, we prove a counterpart of the Hardy-type inequality of
lemma 2.6 in magnetic spaces.

Lemma 2.4 (Smallness and compactness of the penalization potential on magnetic spaces). For
every ε ∈ (0, ε̄] and u ∈ H1

0,V,A/ε2(Ω), we have u|Ω\Λ ∈ L2(Ω \ Λ;H(x) dx) and∫
Ω\Λ

ε2H|u|2 ≤
∫
RN

ε2|DA/ε2u|2 + V |u|2.

Moreover the corresponding embedding H1
V,A/ε2(Ω) ⊂ L2(Ω \ Λ;H(x) dx) is compact.
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Proof. The inequality follows from the corresponding statement for scalar functions lemma 2.1
and the diamagnetic inequality (lemma 2.3).

For the compactness of the embedding, we assume that un ⇀ 0 weakly in H1
V,A/ε2(Ω) as

n → ∞. By the previous inequality the sequence (un)n∈N is bounded in L2
loc(Ω), and thus, as

the vector potential A is continuous, (Dun)n∈N is bounded in L2
loc(Ω). By the classical Rellich

compactness theorem un → 0 strongly in L2
loc(Ω) and thus |un| → 0 strongly in L2

loc(Ω) as n→∞.
By the diamagnetic inequality (lemma 2.3), the sequence (|un|)n∈N is bounded in H1

V (Ω), and
thus |un| ⇀ 0 weakly in H1

V (Ω) as n → ∞. By the compactness of the corresponding scalar
embedding (lemma 2.1), |un| → 0 strongly in L2(Ω, H(x) dx) as n→∞ and we conclude that
un → 0 strongly in L2(Ω, H(x) dx) as n→∞. �

We also prove a compact Sobolev embedding with a control on the norm.

Lemma 2.5 (Rescaled magnetic Sobolev inequality). There exists a constant C > 0 such that
for every ε > 0 and u ∈ H1

V,A/ε2(Ω), then u|Λ ∈ Lp(Λ) and∫
Λ
|u|p ≤ C

εN( p2−1)

(∫
RN

ε2|DA/ε2u|2 + V |u|2
) p

2
.

Moreover, the corresponding embedding H1
V,A/ε2(Ω) ⊂ Lp(Λ) is compact.

Proof. Since Λ is bounded, inf V > 0 and V is uniformly continuous on Λ, there exists a function
ψ ∈ C1(Ω) such that ψ ≥ 0 in Ω, ψ = 1 on Λ, infsuppψ V > 0 and Dψ ∈ L∞(Ω). We have
then |ψu| ∈ H1(RN ) and by the classical Sobolev embedding and the diamagnetic inequality of
lemma 2.3 ∫

Λ
|u|p ≤

∫
Ω
|ψu|p ≤ C

εN( p2−1)

(∫
RN

ε2∣∣D|ψu|∣∣2 + |ψu|2
) p

2

≤ C ′

ε( p2−1)N

(∫
Ω
ε2∣∣D|u|∣∣2 + V |u|2

) p
2

≤ C ′

ε( p2−1)N

(∫
Ω
ε2|DA/ε2u|2 + V |u|2

) p
2
.

The compactness is proved as in the proof of lemma 2.4. �

Proof of lemma 2.2. This follows from the properties (g2) and (g3), and the estimates in magnetic
spaces (lemmas 2.4 and 2.5). �

Another propery of the functional that we need is its coerciveness: the norm of u in the space
H1
V,A/ε2(Ω) is controlled by the functional Gε(u) and its radial derivative 〈G′ε(u), u〉.

Lemma 2.6 (Coerciveness of the functional). For every ε ∈ (0, ε̄] and each u ∈ H1
V,A/ε2(Ω),(1

2 −
1
p

)
(1− µ)

∫
Ω
ε2|DA/ε2u|2 + V |u|2 ≤ Gε(u)− 1

p
〈G′ε(u), u〉.

Proof. We compute by definition of the functional Gε,(1
2 −

1
p

)(∫
RN

ε2|DA/ε2u|2 + V |u|2
)
− Gε(u) + 1

p
〈G′ε(u), u〉 =

∫
RN

Gε(u)− (gε(u)|u)
p

.

In view of first the properties (g5) and (g4), and then the property (g3), we have∫
RN

Gε(u)− (gε(u)|u)
p

≤
(1

2 −
1
p

)∫
RN\Λ

(gε(u)|u) ≤
(1

2 −
1
p

)
µ

∫
RN\Λ

ε2H|u|2.

and the conclusion comes from the smallness property of the penalization potential (lemma 2.4).
�

We now show the existence of a suitable critical point of the functional Gε.
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Proposition 2.7 (Existence of solutions to the penalized problem). For every ε > 0, there exists
a solution uε ∈ H1

0,V,A/ε2(Ω)(RN ;C) of the penalized problem (Qε) such that

Gε(u) = cε
4= inf
γ∈Γε

max
t∈[0,1]

Gε
(
γ(t)

)
,

where
Γε
4=
{
γ ∈ C

(
[0, 1];H1

0,V,A/ε2(Ω)
)
| γ(0) = 0 and Gε

(
γ(1)

)
< 0
}
.

It is known in critical point theory, that it suffices to prove that the minimax level is nonde-
generate cε ∈ (0,∞) and that the functional Gε satisfies the Palais–Smale condition [2, theorem
2.1; 36, theorem 2.2; 40, theorem 6.1; 43, theorem 2.10].

Lemma 2.8 (Nondegeneracy of the critical level). For every ε ∈ (0, ε̄],

0 < cε <∞.

Proof. In order to prove that cε < ∞, since the set Λ is open and not empty, we take u ∈
H1

0,V,A/ε2(Ω) \ {0} such that u = 0 on Ω \ Λ. By the property (g5), we have for every (x, s) ∈
Λ × C and t ≥ 1, G(x, ts) ≥ tpG(x, s), and thus by (g6), for every (x, s) ∈ Λ × C \ {0},
lim supt→∞ t−pG(x, ts) > 0. Since p > 2, this implies that limt→∞ Gε(tu) = −∞. In particular
Γε 6= ∅ and cε <∞.

For the other inequality, we observe that for every u ∈ H1
V,A/ε2(Ω), by the properties (g2) and

(g3),

Gε(u) ≥ 1
2

∫
Ω
ε2|DA/ε2u|2 + V |u|2 − 1

p

∫
Λ
|u|p − µ

2

∫
Ω\Λ

H|u|2.

In view of the Hardy and Sobolev inequalities in magnetic Sobolev spaces (lemmas 2.4 and 2.5),
we have

Gε(u) ≥ 1− µ
2

∫
Ω
ε2|DA/ε2u|2 + V |u|2 − C

ε(p−1)N

(∫
Ω
ε2|DA/ε2u|2 + V |u|2

) p
2
.

It follows since p > 2 that 0 is a strict local minimizer of Gε (with respect to the strong topology
of H1

V,A/ε2(Ω)) and thus we conclude that cε > 0. �

Next, we prove that the functional Gε satisfies the Palais–Smale condition.

Lemma 2.9 (Palais–Smale condition). Let (un)n∈N be a sequence in H1
0,V,A/ε2(Ω) such that

Gε(un)→ c, and G′ε(un)→ 0 in
(
H1

0,V,A/ε2(Ω)
)∗
,

then, up to a subsequence, the sequence (un)n∈N converges strongly in H1
V,A/ε2(Ω).

Compared to other penalizations choices [1, 19, 20], the use of the penalization potential
simplifies considerably the proof of the Palais–Smale condition [34, remark 3.5]. Indeed G′ε
is a compact perturbation of the duality map from H1

0,V,A/ε2(Ω) to
(
H1

0,V,A/ε2(Ω)
)∗ and the

bounded Palais–Smale condition follows by a general argument [36, proof of proposition B.35;
40, proposition 2.2].

Proof of lemma 2.9. By the coerciveness of the functional (lemma 2.6), the sequence (un)n∈N
is bounded in H1

V,A/ε2(Ω). Hence, there exists u ∈ H1
V,A/ε2(Ω) such that, up to a subsequence

un ⇀ u weakly in H1
0,V,A/ε2(Ω) as n → ∞. By the compactness part of the embeddings of

magnetic spaces (lemma 2.5 and lemmas 2.4), since 1
2 −

1
N < 1

p <
1
2 , un → u strongly as n→∞

in L2(Ω \ Λ;H(x) dx) and in Lp(Λ). Therefore, by the properties (g2) and (g3), gε(un)→ gε(u)



NONLINEAR SCHRÖDINGER EQUATION 9

in L
p
p−1 (Λ) and in L2(Ω \Λ; dx/H(x)) as n→∞. In particular, for every ϕ ∈ H1

V,A/ε2(Ω;C), we
have ∫

Ω
ε2(DA/ε2u|DA/ε2ϕ) + V (u|ϕ) = lim

n→∞

∫
Ω
ε2(DA/ε2un|DA/ε2ϕ) + V (un|ϕ)

= lim
n→∞

∫
Ω

(gε(un)|ϕ) =
∫

Ω
(gε(u)|ϕ),

and thus u solves (Qε), or by lemma 2.2, G′ε(u) = 0. We observe now that since G′ε(un)→ 0 as
n→∞, since G′ε(u) = 0 and since the sequence (un)n∈N is bounded, as n→∞,∫

Ω
ε2|DA/ε2(un − u)|2 + V |un − u|2

= 〈G′ε(un)− G′ε(u), un − u〉+
∫
RN

(un − u|gε(un)− gε(u))→ 0. �

3. Properties of the limiting functional

In this section we study the properties of the limiting problem (RV∗,A∗). The existence of
solutions to this problem has been studied in the seminal work of M.Esteban and P.-L. Lions [26].
The next result is a reformulation of a part of their results [26, theorem 3.1].

Proposition 3.1 (Existence of groundstates for the limiting problem). Let A∗ ∈ L(RN ;
∧1 RN )

and V∗ > 0, there exists v∗ ∈ H1(A) that satisfies the limiting equation (RV∗,A∗) and such that
IV∗,A∗(v∗) = E(V∗, A∗).

Moreover,
E(V∗, A∗) =

( 1
2 −

1
p

)
inf

v∈H1
V∗,A∗

(RN )
SV∗,A∗(v)

p
p−2 .

where the Sobolev functional SV∗,A∗ : H1
A(RN ) \ {0} → R is defined for every v ∈ H1

A(RN ) by

SV∗,A∗(v) 4=

∫
RN
|DA∗v|2 + V∗|v|2(∫

RN
|v|p
) 2
p

.

Proof. The existence of a minimizer of a minimizer of the functional SV∗,A∗ was proved by
M.Esteban and P.-L. Lions [26, theorem 3.1]. Up to multiplication by a positive constant, it can
be chosen to satisfy the equation (RV∗,A∗).

Finally, if v ∈ H1(A), and 〈IV∗,A∗(v), v〉 = 0, then

IV∗,A∗(u) =
( 1

2 −
1
p

)(
SV∗,A∗(v)

) p
p−2 ,

and thus we conclude that
E(V∗, A∗) =

( 1
2 −

1
p

)
inf

v∈H1
A

(RN )
S(v)

p
p−2 . �

The results of M.Esteban and P.-L. Lions covers in fact the more general case V∗ > −|dA∗|.
Lemma 3.2 (Characterization of the limiting action by smooth test functions). For every
V∗ ∈ R+ and A∗ ∈ L(RN ;

∧1 RN ),

E(A) = inf
v∈C1

c (RN ;C)\{0}
sup
t>0
IV∗,A∗(tv) =

( 1
2 −

1
p

)
inf

v∈C1
c (RN ;C)\{0}

SV∗,A∗(v)
p
p−2 .

This lemma is proved by a direct density argument. The main interest is that the class of
functions appearing in the variational principle does not depend on the magnetic potential A∗.
Proposition 3.3 (Properties of the action of the limiting problem). Let V∗ ∈ R+ and A∗ ∈
L(RN ;

∧1 RN ).
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(i) (invariance under isometries) If ι : RN → RN is a linear isometry, then

E(V∗, ι#A∗) = E(V∗, A∗).

(ii) (gauge invariance) If dA∗ = dÃ∗, then

E(V∗, Ã∗) = E(V∗, A∗),

(iii) (scaling of the electromagnetic potential) For every λ > 0,

E(λ2V∗, λA∗) = λ
4
p−2−(N−2)E(V∗, A∗),

(iv) (monotonicity with respect to the electric potential) If Ṽ∗ > V∗, then

E(Ṽ∗, A∗) > E(V∗, A∗),

(v) (diamagnetic inequality) If dA∗ 6= 0, then

E(V∗, A∗) > E(V∗, 0),

In this statement ι#A denotes the pull-back of the differential form A by the map ι: for every
x ∈ RN and v ∈ RN ,

ι#A∗(x)[v] = A(ι(x))
[
Dι[v]

]
.

In our particular case, since ι is linear it can be written simply as ι#A(x)[v]A∗(ι(x))
[
ι[v]
]
. We

also note that since A∗ is linear, dA∗(x)[v, w] = A(v)[w]−A(w)[v].

Proof of proposition 3.3. The invariance under isometries (i) follows from the fact that Dι#A∗(v ◦
ι) = (DA∗v) ◦ ι. For the gauge property (ii), recall that for every y ∈ RN and every k, h ∈ RN ,

dA∗(y)[h, k] = A∗(h)[k]−A∗(k)[h].

and therefore
Ã∗(y)[k] = A∗(y)−Dϕ(y),

where the quadratic form ϕ : RN → R is defined for every y ∈ RN by

ϕ(y) 4= A∗(y)[y]− Ã∗(y)[y].

The conclusion follows then from the fact that for every v ∈ H1
V∗,A∗

(RN ), eıϕv ∈ H1
V∗,Ã∗

(RN ) and

DÃ∗
(eıϕv) = DA∗v

and the statement follows.
The scaling statement (iii) follows by noting that for every v ∈ H1

λ2V∗,λA∗
(RN ), the function

vλ : RN → C defined for every y ∈ RN by

vλ(y) 4= λ
2
p−2 v(λy)

is in the space H1
V∗,A∗

(RN ) and

Iλ2V∗,λA∗(vλ) = λ
4
p−2−(N−2)IV∗,A∗(v).

For the monotonicity with respect to the electric field (iv), for every v ∈ H1
Ṽ∗,A∗

(RN ), we have
v ∈ H1

V∗,A∗
(RN ) and

IṼ∗,A∗(v) > IV∗,A∗(v).

Since the infimum E(Ṽ∗, A∗) is achieved by proposition 3.1, we conclude that E(Ṽ∗, A∗) >
E(V∗, A∗).

Finally, for the diamagnetic inequality (v), for every v ∈ H1
V∗,A∗

(RN ), by the diamagnetic
inequality (lemma 2.3),

IV∗,0(|v|) ≤ IV∗,A∗(v).
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It follows then that E(V∗, 0) ≤ E(V∗, A∗). If there is equality, then by proposition 3.1 E(V∗, A∗) is
achieved by some v∗ ∈ H1

V∗,A∗
(RN ). Moreover,

(5)
∫
RN
|D|v∗||2 + V∗|v∗|2 =

∫
RN
|DA∗v∗|2 + V∗|v∗|2.

In particular |v|∗ achieves E(V∗, 0). By the corresponding Euler-Lagrange equation (RV∗,A∗),
regularity theory and the strong maximum principle the function |v∗| is locally bounded away
from 0. Therefore, there exists ϕ ∈ H1

loc(RN ) such that v∗ = eıϕ|v∗|. By (5), we have Dϕ+A∗ = 0
almost everywhere in RN , which is a contradiction if dA∗ 6= 0. �

Finally, the action of the limiting problem is a continuous function of the electromagnetic
potential.

Proposition 3.4 (Continuity of the action of the limiting problem). The function E : R+ ×
L(RN ;

∧1 RN )→ R+ is continuous.

Without a magnetic field, proposition 3.4 is due to P.Rabinowitz [37]. We mention to the
reader who is interested in the proof of theorem 1 or theorem 2, that the latter proofs only rely
on the upper semicontinuity which is the most easy part of the proof of proposition 3.4.

Proof of proposition 3.4. By lemma 3.2, the function E is upper semicontinuous as by lemma 3.2
an infimum of continuous functions on R+ × L(RN ;

∧1 RN ).
Assume that the sequence ((Vn, An))n∈N converges to (V∗, A∗) in R+ × L(RN ;

∧1 RN ). By
proposition 3.1, the problem (RVn,An) has a weak solution vn ∈ H1

Vn,An
such that IVn,An(vn) =

E(Vn, An). Since vn ∈ H1
Vn,An

(RN ) \ {0} solves the problem (RVn,An) we have

(6)
∫
RN
|DAnvn|2 + Vn|vn|2 =

∫
RN
|vn|p = 2p

p−2IVn,An(vn),

and thus by the upper semicontinuity proved above

lim sup
n→∞

∫
RN
|DAnvn|2 + Vn|vn|2 ≤ 2p

p−2IV∗,A∗(v∗).

By an inequality of P.-L. Lions [32, lemma I.1] (see also [35, lemma 2.3; 42; 43, lemma 1.21]
and by the diamagnetic inequality (lemma 2.3), we have∫

RN
|vn|p ≤ C

(
sup
a∈RN

∫
BRn (a)

|vn|p
)1− 2

p

∫
RN
|D|vn||2 + |vn|2

≤ C
(

sup
a∈RN

∫
BRn (a)

|vn|p
)1− 2

p

∫
RN
|DAnvn|2 + Vn|vn|2,

where Rn
4= 1/

√
Vn. Since vn 6= 0, we deduce that

C
(

sup
a∈RN

∫
BRn (a)

|vn|p
)1− 2

p ≥ 1

We deduce that there exists a sequence of points (an)n∈N in RN such that

lim inf
n→∞

∫
BRn (an)

|un|p > 0.

Since V∗ 6= 0, lim supn→∞Rn ≤ R∗
4= 1/

√
V∗ and thus

lim inf
n→∞

∫
B2R∗ (an)

|un|p > 0

We define now the function ṽn : RN → C for every y ∈ RN by

ṽn(y) 4= e−ıAn(an)[y]vn(y − an).
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We have ṽn ∈ H1
Vn,An

(RN ) and for every y ∈ RN ,

DAn ṽn(y) = e−ıAn(an)[y](DAnvn)(y − an)

and

(7) lim inf
n→∞

∫
B2R∗

|ṽn|p > 0.

Up to a subsequence, we can assume that the sequence (ṽn)n∈N converges weakly to some function
v∗ in L2(RN ;C) and the sequence (DAn ṽn)n∈N converges weakly to g∗ in L2(RN ;L(RN ;C)). Since
the sequence (An)n∈N converges to A∗, the sequence (Dṽn)n∈N converges weakly to g∗ − ıA∗v∗
and thus g∗ = DA∗v∗. By Rellich’s theorem, the sequence (ṽn)n∈N converges strongly to v∗ in
Lploc(RN ), and thus by the strict inequality (7) the function v∗ is a nontrivial solution to (RV∗,A∗)
and

IV∗,A∗(v∗) =
( 1

2 −
1
p

) ∫
RN
|DA∗v∗|2 + V∗|v∗|2.

Finally, we conclude by lower semicontinuity of the norm under the convergence in L2 that

lim inf
n→∞

E(Vn, An) = lim inf
n→∞

I(Vn, An) = lim inf
n→∞

( 1
2 −

1
p

) ∫
RN
|DAnvn|2 + Vn|vn|2

= lim inf
n→∞

( 1
2 −

1
p

) ∫
RN
|DAn ṽn|2 + Vn|ṽn|2

≥
( 1

2 −
1
p

) ∫
RN
|DA∗v∗|2 + V∗|v∗|2 ≥ E(V∗, A∗).

Since the function E is upper and lower semicontinuous, it is continuous. �

Finally minimal points of the concentration functions can be characterized as points at which
the Lorentz force (3) with the quantum mechanical charge and magnetic moment vanishes.

Proposition 3.5. Assume that V ∈ C1(Ω;R) and A ∈ C2(Ω;
∧1 RN ). If x∗ ∈ Ω is a local

minimum point of E 4= C(V,A) and v∗ ∈ H1
DA(x∗)(R

N ) achieves C(V (x∗), A(x∗)), then

q dV (x∗) + 〈dA, µ〉(x∗) = 0,

where the charge q ∈ R is defined by

q
4=
∫
RN
|v∗|2

and the magnetic moment µ ∈
∧2 RN is the bivector defined by

µ
4= 1

2

∫
RN

(y ∧∇DA∗(x)v∗(y)|ıv∗(y)).

Proof. First, we observe that by regularity theory for groundstates of (RV∗,A∗), the groundstate
v∗ ∈ H1

V (x∗),DA(x∗)(R
N ) satisfies ∫

RN
|v∗(y)|2|y|2 dy <∞

We define for each x ∈ Ω the function vx : RN → C for every y ∈ RN by

vx(y) = eı(DA(x∗)[y,y]−DA(x)[y,y])/2v∗(y).

We compute that

DDA(x)vx(y) = eı(DA(x∗)[y,y]−DA(x)[y,y])/2(DDA(x∗)v∗ + ı(dA(x)[y]− dA(x∗)[y])v∗(y)/2
)

and thus for every x ∈ Ω, v∗ ∈ H1
V (x),DA(x)(RN ).
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Since v∗ achieves the minimum of the Sobolev quotient SV∗(x),dA∗(x)/2 and by definition of the
limiting action E ,

d
dxSV∗(x),dA∗(x)/2(v∗)

∣∣∣
x=x∗

= 0.

Therefore, by a direct computation

0 = d
dx

∫
RN
|DDA(x∗)v∗|

2 + V (x)|v∗|2
∣∣∣
x=x∗

=
∫
RN

(DDA(x∗)v∗|ıD(dA)(x∗)v∗) +
∫
RN

DV (x∗)|v∗|2

=
∫
RN

D(dA)(x∗)[ıyv∗(y),∇DA(x∗)v∗(y)] dy +
∫
RN

DV (x∗)|v∗|2

= 1
2

∫
RN

(
D(dA)(x∗)[ıyv∗(y),∇DA(x∗)v∗(y)]−D(dA)(x∗)[∇DA(x∗)v∗(y), ıyv∗(y)]

)
dy

+
∫
RN

DV (x∗)|v∗|2

= D〈dA, µ〉(x∗) + qDV (x∗).
�

4. Asymptotics of solutions

4.1. Upper bound on the action. We begin the study of asymptotics by giving a sharp upper
bound on the critical level cε.

Proposition 4.1 (Upper bound on the action of solutions). One has
lim sup
ε→0

ε−Ncε ≤ inf
Λ
C.

The derivation of the upper bound is based on the idea of testing the functional against rescaled
test functions [10, lemma 12; 34, lemma 4.1] with the phase-shift already appearing for weak
magnetic fields [14, lemma 3.2; 19, (27)]. The strong magnetic field régime makes the computation
more delicate.

Proof of proposition 4.1. Given a point x∗ ∈ Λ and a test function v∗ ∈ C1
c (RN ;C), we define

the function uε : Ω→ R for every x ∈ Ω by

uε(x) 4= e−ıA(x∗)[x−x∗]/ε2
v∗

(x− x∗
ε

)
.

Since x∗ is an interior point of Ω and the function v has compact support, for ε > 0 sufficiently
small, uε ∈ C1

c (Ω). Moreover, for every x ∈ Ω,

εDA/ε2uε(x) = DDA(x∗)v∗
(
x−x∗
ε

)
+ ı

ε
v∗
(
x−x∗
ε

)(
A(x)−DA(x∗)[x− x∗]−A(x∗)

)
.

Therefore,

ε−N
∫

Ω
ε2|DA/ε2uε|2 =

∫
RN

∣∣∣DDA(x∗)v∗(y) + ıv∗(y)A(x∗+εy)−DA(x∗)[εy]−A(x∗)
ε

∣∣∣2 dy.

Since the differential form A is differentiable at the point x∗, by Lebesgue’s dominated convergence
theorem,

lim
ε→0

ε−N
∫

Ω
ε2|DA/ε2uε|2 =

∫
RN

∣∣DDA(x∗)v∗
∣∣2.

Similarly, since the potential V is continuous at x∗ and since v∗ ∈ L2(RN ),

lim
ε→0

ε−N
∫

Ω
V |uε|2 =

∫
RN

V (x∗)|v∗|2.

Finally, since x∗ is an interior point of Λ, if ε > 0 is sufficiently small, suppuε ⊂ Λ and

ε−N
∫

Ω
Gε(tuε) = tp

p

∫
RN
|v∗|p.
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As a consequence of the previous limits, we have that
lim sup
ε→0

sup
t>0

ε−NGε(tuε) ≤ sup
t>0
IV (x∗),DA(x∗)(tv).

Therefore,
lim sup
ε→0

ε−Ncε ≤ sup
t>0
IV (x∗),DA(x∗)(tv)

We conclude by taking the infimum over v ∈ C1
c (RN ) \ {0} and applying lemma 3.2. �

4.2. Lower bound on the action. We now study the asymptotic behaviour of sequences of
solutions in the semiclassical régime and establish a lower bound on the functional.

Proposition 4.2 (Lower bound on the action of solutions). Let (εn)n∈N be a sequence in R+ that
converges to 0, let (un)n∈N be a sequence of solutions of Qεn and let (xin)n∈N ⊂ RN , 1 ≤ i ≤M ,
be sequences of points in Ω such that xin → xi∗ ∈ Λ as n → ∞. If for every i ∈ {1, . . . ,M},
V (xi∗) > 0 and

lim inf
n→∞

1
εn

∫
Bεnρ(xin)

|un|p > 0 ,

and if for every i, j ∈ {1, . . . ,M} such that i 6= j,

lim
n→∞

|xin − xjn|
εn

= +∞ ,

then

lim inf
n→∞

ε−Nn Gεn(uεn) ≥
M∑
i=1
C(xi∗) .

Proof. Without loss of generality, we can assume that
lim inf
n→∞

ε−Nn Gεn(uεn) = lim sup
n→∞

ε−Nn Gεn(uεn) <∞.

We define the rescaled functions vin : (Ω − xin)/εn → C for every n ∈ N, i ∈ {1, . . . ,M} and
y ∈ (Ω− xin)/εn by

vin(y) 4= eıA(xin)[y−xin]/εnun(xin + εny).
We first observe that for every R > 0 and n ∈ N,∫

BR∩(Ω−xin)/εn
V in|vin|2 = 1

εNn

∫
BεnR(xin)∩Ω

V |un|2 ≤
1
εNn

∫
Ω
V |un|2,

with the rescaled potential V in : (Ω− xin)/εn → C defined for y ∈ (Ω− xin)/εn by

V in(y) 4= V (xn + εny).
Since V is continuous, we deduce that for every R > 0,

lim sup
n→∞

∫
BR∩(Ω−xin)/εn

V (xi∗)|vin|2 ≤ lim sup
n→∞

∫
Ω
V |un|2

Next we define the rescaled vector potential Ain : (Ω − xin)/εn →
∧1 RN for each point y ∈

(Ω− xin)/εn by

Ain(y) = A(xin + εny)−A(xin)
εn

,

and we observe that for every R > 0 and n ∈ N,∫
BR∩(Ω−xin)/εn

|DAin
vin|2 = 1

εNn

∫
BεnR(xin)∩Ω

ε2
n|DA/ε2

n
un| ≤

1
εNn

∫
Ω
ε2
n|DA/ε2

n
un|.

By our assumption of continuous differentiability of the differential form A, for every R > 0,
Ain −DA(xin) → DA(xi∗) uniformly on BR. Therefore, the sequence (unAn)n∈N is bounded in
L2(BR). By the classical Rellich theorem, an extraction of subsequence and a diagonal argument,
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there exists a function vi∗ ∈ H1
loc(RN ;C) such that vin → vi∗ in Lqloc(RN ) if 1

2 −
1
N < 1

q and
DAin

vin → DDA(xi∗)v
i
∗ in L2(RN ;L(RN ;C)). By lower semi-continuity of the norm, we have for

every R > 0, ∫
BR

|DDA(xi∗)v
i
∗|2 + V (xi∗)|vi∗|2 ≤ lim inf

n→∞

1
εNn

∫
Ω
|DA/ε2

n
un|2 + V |un|2.

By Lebesgue’s monotone convergence theorem we deduce that vi∗ ∈ H1
DA(x∗),V (x∗)(R

N ) and∫
RN
|DDA(xi∗)v

i
∗|2 + V (xi∗)|vi∗|2 ≤ lim inf

n→∞

1
εNn

∫
Ω
|DA/ε2

n
un|2 + V |un|2.

Since by assumption the domain Ω is smooth in a neighbourhood of xi∗, there exists a set Ωi
∗

which is either a half-space or the whole space such that ((Ω− xin)/R)n∈N converges to Ωi∗ locally
in Hausdorff distance, and we have vi∗ ∈ H1

DA(x∗),V (x∗)(Ω
i
∗)

Given the functions χin = χΛ(xin + εn·), we observe that for every i ∈ {1, . . . ,M}, the sequence
(χin)n∈N is bounded in L∞(RN ). Since L1(RN ) is separable, up to the extraction of a subsequence,
there exists thus χi∗ in L∞(RN ) such that χΛ(xin + εn·)→ χi∗ weakly-∗ in L∞(RN ).

In particular, for every ϕ ∈ C1
c (Ωi∗;C), for every n ∈ N large enough so that suppϕ ⊂ (Ω−xin)/R

we have, since un is a weak solution of the penalized problem (Qεn),∫
RN

(DAin
vin|DDAin

ϕ) + V in(vin|ϕ) =
∫
RN

(g(xin + εn·, vin)|ϕ).

As the sequence (DAin
ϕ)n∈N converges to DDA(xi∗)ϕ strongly in L2(Ωi∗), we have∫

RN
(DDA(xi∗)v

i
∗|DDA(xi∗)ϕ) + V (xi∗)(vi∗|ϕ) =

∫
RN

χi∗|vi∗|p−2(vi∗|ϕ).

Since by definition the set C1
c (Rn;C) is dense in H1

DA(xi∗),V (x∗
i
)(Ω

i
∗) and vi∗ ∈ H1

DA(xi∗),V (xi∗)
(RN ),

we have ∫
RN
|DA(xi∗)vi∗|2 + V |vi∗|2 =

∫
RN

χi∗|vi∗|p,

and thus for every t ≥ 0,
1
2

∫
RN
|DA(xi∗)vi∗|2 + V |vi∗|2 −

1
p

∫
RN

χi∗|vi∗|p ≥
1
2

∫
RN
|DA(xi∗)tvi∗|2 + V |tvi∗|2 −

1
p

∫
RN

χi∗|tvi∗|p

≥ 1
2

∫
RN
|DA(xi∗)tvi∗|2 + V |tvi∗|2 −

1
p

∫
RN
|tvi∗|p

= IDA(xi∗),V (xi∗)(tv
i
∗).

We have thus proved that
1
2

∫
RN
|DA(xi∗)vi∗|2 + V |vi∗|2 −

1
p

∫
RN

χi∗|v|p ≥ sup
t>0
IDA(xi∗),V (xi∗)(tv

i
∗) ≥ C(xi∗).

We observe that for every R > 0, by lower-semicontinuity

(8) lim inf
n→∞

1
2

∫
BεR(xin)

(
ε2
n|∇uεn |2 + V |uεn |2

)
−
∫
BεR(xin)

Gεn(uεn)

≥ 1
2

∫
BR

|DA(xi∗)vi∗|2 + V |vi∗|2 −
1
p

∫
BR

χi∗|vi∗|p

≥ C(xi∗)−
1
2

∫
RN\BR

|DA(xi∗)vi∗|2 + V |vi∗|2.
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Next we proceed as in [10, lemma 15] by testing the equation with ψn,R2u where the function
ψn,R : RN → R is defined by ψn,R(x) =

∏M
i=1 ψ

(
x−xn
εnR

)
with ψ ∈ C∞(RN ), ψ = 1 on RN \ B2

and ψ = 0 on B1. We compute for every n ∈ N and R > 0 that∫
Ω
ψn,R

2|DA/ε2
n
un|2 + V ψn,R

2|un|2 =
∫

Ω
ψn,R

2(gεn(·, un)|un)− 2
∫

Ω
ε2
n(unDψn,R|ψn,RDA/ε2

n
un)

Hence, by the properties (g4) and (g5), and then (g2), if for every i, j ∈ {1, . . . ,M} such that
i 6= j, |xin − xjn| ≥ 4εnR,

1
εNn

∫
Ω\
⋃M

i=1
BεnR(xin)

ε2
n|DA/ε2

n
un|2 + V |un|2 −Gεn(·, un)

≥ 1
2

∫
Ω\
⋃M

i=1
BεnR(xin)

(
ε2
n|DA/ε2

n
un|2 + V |un|2 − (gεn(·, un)|un)

)
≥ − 1

εNn

M∑
i=1

∫
(B2εnR(xin)\BεnR(xin))∩Ω

|un|p + 2ε2
n(unDψn,R|ψn,RDA/ε2

n
un)

= −
M∑
i=1

∫
(B2R\BR)∩(Ω−xin)/ε

|vin|p + 2(vnDψR|ψn,RDAin
vin),

with ψR(y) = ψ(y/R). Since for every i, j ∈ {1, . . . ,M} such that i 6= j, limn→∞|xin−xjn|/(εnR) =
∞. By the weak convergence of the sequence (DAin

vin)n∈N in L2(BR) and the strong convergence
of the sequence (vin)n∈N in Lp(BR), we deduce that

lim inf
n→∞

1
εNn

∫
RN\
⋃M

i=1
BεnR(xin)

ε2
n|DA/ε2

n
un|2 + V |un|2 −Gεn(·, un)

≥ −
M∑
i=1

∫
B2R\BR

|vi∗|p + 2(vi∗DψR|ψRDDA(xi∗)v
i
∗).

In view of (8), we have thus proved for every R > 0 that

lim inf
n→∞

1
εNn
Gεn(un) ≥

M∑
i=1

(
C(xi∗)−

∫
RN\BR

1
2
(
|DDA(xi∗)v

i
∗|2 + V |vi∗|2

)
−
∫
B2R\BR

|vi∗|p + 2(vi∗DψR|ψRDDA(xi∗)v
i
∗)
)
.

The conclusion follows by takingR→∞, since for every i ∈ {1, . . . ,M}, vi∗ ∈ H1
DA(xi∗),V (xi∗)

(Ωi∗) ⊂
Lp(RN ;C). �

4.3. Asymptotics for a family of groundstates. In this section we transform the lower bound
on the action functional obtained above

Proposition 4.3 (Asymptotics for a family of groundstates). If (uε)ε>0 is a family of solutions
to (Qε) such that

lim sup
ε→0

ε−NGε(uε) ≤ inf
Λ
C,

then there exists a family of points (xε)ε>0 in Λ such that
lim inf
ε→0

C(xε) = lim
ε→0
Gε(uε) = inf

Λ
C

and
lim
ε→0
R→∞

‖uε‖L∞(Λ\B(xε,εR)) = 0.
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In order to deduce proposition 4.3 we need to translate Lp bounds into L∞ bounds by suitable
regularity estimates.

Lemma 4.4 (Vanishing in the mean implies uniform vanishing on balls). Let (un)n∈N be a
sequence of weak solutions of the problem (Qεn) in H1

A/ε2
n,V

(Ω), ρ > 0 and xn ∈ Ω. If

lim
n→∞

1
εNn

∫
Bεnρ(xn)∩Ω

|un|p = 0,

then
lim
n→∞

‖un‖L∞(Bεnρ/2(xn)∩Ω) = 0.

A fundamental tool to prove lemma 4.4 is Kato’s inequality. In order to state it we recall that
the sign of a complex number w ∈ C is defined by

signw 4=
{
w/|w| if w 6= 0,
0 if w = 0.

Proposition 4.5 (Kato’s inequality [28, lemma A]). Let u ∈ L1
loc(Ω). If ∆Au ∈ L1

loc(Ω), then
∆|u| ∈ L1

loc(Ω), and
−∆|u| ≤ −(sign(ū)|∆Au).

Proof of lemma 4.4. By Kato’s inequality (proposition 4.5),

−ε2
n∆|un| ≤ |u|p−1.

weakly in Ω. We define the function wn : RN → R to be the extension by 0 to RN of |un|. It is
clear that

(9) − ε2
n∆wn ≤ wp−1

n

weakly in Ω and that wn|Ω ∈ H1
0 (Ω). We claim that wn satisfies weakly (9) in the whole space

RN . Let ϕ ∈ C1
c (RN ). We define ψ ∈ H1

0 (Ω) to be the unique solution of the problem{−∆ψ = −∆ϕ in Ω,
ψ = 0 on ∂Ω.

Equivalently, ψ is the unique minimizer of the functional

1
2

∫
Ω
|Dψ|2 −

∫
Ω

(Dϕ|Dψ);

that is, the function ψ is the projection of ϕ|Ω ∈ H1(Ω) on H1
0 (Ω). By the maximum principle,

ψ ≤ ϕ and thus ψ ∈ L∞(Ω).
Since wn|Ω ∈ H1

0 (Ω), we have∫
Ω

(Dwn|Dϕ) =
∫

Ω
(Dwn|Dψ) =

∫
Ω
wp−1
n ψ ≤

∫
Ω
wp−1
n ϕ,

and thus (9) is satisfied weakly in the whole space RN .
Since 1

p <
1
2 −

1
N we have p > p−2

2 N . By the next proposition 4.6 and by scaling, we conclude
that

lim
n→∞

sup
Bεnρ/2(xn)∩Ω

|un| = lim
n→∞

sup
Bεnρ/2(xn)

wn = 0. �



18 JONATHAN DI COSMO AND JEAN VAN SCHAFTINGEN

Proposition 4.6. Let p ∈ [2,∞) and q ≥ [1,∞). If q > p−2
2 N , then for every η > 0 and ρ < R,

there exists δ > 0 such that if w ∈ Lp−1(BR) and

w ≥ 0 almost everywhere in BR
−∆w ≤ wp−1 in the sense of distributions in BR,∫
BR

wq ≤ δ,

then
‖w‖L∞(Bρ) ≤ η.

The exponent q = p−2
2 N is critical in this statement. Indeed, if −∆w ≤ wp−1, w ∈ Lq and

w 6= 0, then the function wλ(x) = w(x/λ)/λ
2
p−1 satisfies also the equation, limλ→0

∫
BR

wq = 0
and limλ→0 ‖w‖L∞(Bρ) =∞.

Proposition 4.6 will follow from a linear regularity estimate.

Lemma 4.7 (Regularity of distributional subsolutions to linear problems). Let ρ < R, r ≥ 1
and q ∈ [1,∞]. Assume that either r > N

2 or q <∞ and
1
q
≥ 1
r
− 2
N
.

If f ∈ Lr(BR) and w ∈ L1(BR) is nonnegative and satisfies

−∆w ≤ f in BR,

in the sense of distributions, then w ∈ Lq(Bρ), and

‖w‖Lq(Bρ) ≤ C
(
‖f‖Lr(BR) + ‖w‖L1(BR)

)
.

Proof. When r > 2
N , this is a classical regularity result [27, theorem 8.16; 41]. Otherwise the

proof follows from the same iteration argument that we develop here for the sake of completeness.
We assume without loss of generality that q ≥ r. We choose a mollification kernel ρ ∈ C2

c (RN ),
such that supp ρ ⊂ B1 and define wλ by wλ = λ+ ρλ ∗ w ∈ C2(BR−λ) and fλ = ρλ ∗ f , where
ρλ(y) = ρ(y/λ)/λN . We observe that −∆wλ ≤ fλ. We choose η ∈ C1

c (BR) such that η = 1 on
Bρ. If suppη ⊂ BR−λ, we compute that

(θ − 1)
∫
BR

|D(ηw
θ
2
λ )|2

=
(
θ
2
)2 ∫

BR

(Dwλ|D(η2wθ−1
λ )) + (θ − 2)

∫
BR

(D(ηw
θ
2
λ )|w

θ
2
λDη) +

∫
BR

|Dη|2wθλ

≤
(
θ
2
)2 ∫

BR

(Dwλ|D(η2wθ−1
λ )) +

∣∣ θ
2 − 1

∣∣ ∫
BR

|D(ηw
θ
2
λ )|2 +

(
1 +

∣∣ θ
2 − 1

∣∣) ∫
BR

|Dη|2wθλ,

and therefore, by the inequation satisfied by wλ,∫
BR

|D(ηw
θ
2
λ )|2 ≤ C1

(∫
BR

(Dwλ|D(η2wθλ)) +
∫
BR

|Dη|2wθλ
)

≤ C1

(θ
2

∫
BR

fλη
2wθ−1

λ +
∫
BR

|Dη|2wθλ
)
.

If we assume now that 1
r = 1 − θ−1

q , if θ
q ≥ 1 − 2

N , we have by the Sobolev and the Hölder
inequalities,(∫

BR

(η 2
θwλ)q

) θ
q ≤ C2

((∫
BR

(η 2
θ fλ)r

) 1
r
(∫

BR

(η 2
θwλ)q

) θ−1
q +

∫
BR

|Dη|2wθλ
)
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From this we deduce that(∫
Bρ

wqλ

) 1
q ≤ C2

((∫
BR

frλ

) 1
r +

(∫
BR

wθλ

) 1
θ

)
.

If wλ ∈ Lθ(BR), we deduce by Fatou’s lemma that w ∈ Lq(Bρ), and(∫
Bρ

wq
) 1
q ≤ C2

((∫
BR

fr
) 1
r +

(∫
BR

|Dη|2wθ
) 1
θ

)
.

The exponent θ can be replaced by 1 by iterating the estimate a finite number of times and noting
that f ∈ Lθ(BR) by Hölder’s inequality. �

Proof of proposition 4.6. First, the proposition follows immediately from lemma 4.7 with f = up−1

when q > p−1
2 N . Assume now that the proposition is proved for q > q. We have just observed

that this is the case with q = p−1
2 N . Observe that for every q > q̄, by lemma 4.7,

‖u‖Lq ≤ C(‖u‖p−1
Lq̃ + ‖u‖L2),

where 1
q̃ = p−1

q −
2
N . Hence, we have proved the proposition for q ≥ 2 such that

1
q
>
p− 1
q
− 2
N
.

By iterating this procedure, the proposition is proved for q > p−2
2 N and q ≥ 2. �

Proof of proposition 4.3. First, we observe that, by lemma 2.4,∫
Ω
ε2|DA/ε2u|2 + V |uε|2 =

∫
Ω

(gε(uε)|uε)

≤
∥∥|uε|p−2/V

∥∥
L∞(Λ)

∫
Λ
V |uε|2 + µ

∫
Ω
ε2H|uε|2

≤
(∥∥|uε|p−2/V

∥∥
L∞(Λ) + µ

) ∫
Ω
ε2|DA/ε2uε|2 + V |uε|2.

Hence, (
1− µ−

∥∥|uε|p−2/V
∥∥
L∞(Λ)

)∫
RN
|DA/ε2u|2 + V |uε|2 ≤ 0.

Since infΛ V > 0, this implies that
lim inf
n→∞

‖uε‖Λ > 0.

Hence, there exists a family (xε)ε>0 such that for every ρ > 0,
lim inf
ε→0

‖u‖L∞(Bερ(xε)∩Ω) > 0.

By lemma 4.4, we have

lim inf
ε→0

ε−N
∫
Bερ(xε)∩Ω

|uε|p > 0.

By the asymptotics of proposition 4.2 and by the upper semicontinuity of action of the limiting
problem E (proposition 3.4)

lim inf
ε→0

(
ε−NGε(uε)− inf

Λ
C
)
≥ lim inf

ε→0

(
ε−NGε(uε)− C(xε)

)
≥ 0.

By our assumption, we have
lim sup
ε→0

(
ε−NGε(uε)− C(xε)

)
≤ lim sup

ε→0

(
ε−NGε(uε)− inf

Λ
C
)
≤ 0.

Therefore we conclude that
lim
ε→0

ε−NGε(uε) = lim
ε→0
C(xε) = inf

Λ
C.
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Assume now by contradiction that

lim sup
R→∞
ε→0

‖uε‖L∞(Λ\BεR) > 0.

In that case, there are sequences (εn)n∈N in R+ and (yn)n∈N in Λ such that

lim
n→∞

εn = 0 , lim inf
n→∞

‖uεn‖L∞(Bεnρ(yn)∩Ω) > 0 and lim
n→∞

|xεn − yn|
εn

= +∞ .

Up to a subsequence, since the set Λ is bounded we can assume that the sequences (xεn)n∈N and
(yn)n∈N converge in Λ̄. By lemma 4.4, we have

lim
n→∞

1
εNn

∫
Bεnρ(yn)∩Ω

|uεn |p > 0.

By the lower bound on the asymptotic action of solutions (proposition 4.2), we conclude that

lim inf
n→∞

ε−Nn Gεn(uεn) ≥ lim inf
n→∞

(
C(xεn) + C(yn)

)
≥ 2 inf

Λ
C ,

in contradiction with our assumption since infΛ C > 0. �

5. Proof of the global concentration theorem

We have now all the tools to prove theorem 1.

Proof of theorem 1. We take Λ 4= Ω so that the penalized and original problems coincide. Since
the set Ω is bounded, the existence of solutions to the problem follows from proposition 2.7. The
asymptotics follow from proposition 4.1 and proposition 4.3, since the penalized functional Gε
coincides with the original functional Fε. �

6. Proof of the local concentration theorem

The last tool that we need to prove theorem 2 is the following construction of barrier functions
[8, lemma 5.5 and §6] (see also [34, proposition 5.3 and §6]).

Lemma 6.1 (Construction of barrier functions). Let (xε)ε>0 be a family of points in Λ such
that lim infε→0 d(xε, ∂Λ) > 0, let µ ∈ (0, 1) and let R > 0. There exists ε0 > 0 and a family of
functions (Wε)0<ε<ε0 in C1,1(RN \B(xε, εR)) such that, for ε ∈ (0, ε0),
(i) Wε satisfies the inequation

−ε2(∆ + µH)Wε + (1− µ)VWε ≥ 0 in RN \B(xε, εR),

(ii) ∇Wε ∈ L2(RN \B(xε, εR)),
(iii) Wε = 1 on ∂B(xε, εR),
(iv) there exist C, λ, ν > 0 such that for every x ∈ RN \B(xε, εR),

Wε(x) ≤ C exp
(
−λ
ε

|x− xε|
1 + |x− xε|

)(
1 + |x|2

)−N−2
2 .

If moreover
lim inf
|x|→∞

V (x)|x|2 > 0,

then there exist C, λ, ν > 0 such that for every x ∈ RN \B(xε, εR),

Wε(x) ≤ C exp
(
−λ
ε

|x− xε|
1 + |x− xε|

)(
1 + |x|2

)− νε .
We complete now the proof of theorem 2.
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Proof of theorem 2. The proof follows the lines of [34, Proposition 5.4]. Let (uε)ε>0 be a family
of solutions to the penalized problem. By Kato’s inequality (proposition 4.5), we have

−ε2∆|uε|+ V |uε| ≤ (sign(uε)| − ε2∆Auε + V uε) = (sign(uε)|gε(uε)).
Hence, we deduce from (g2) and (g3) that

−ε2∆|uε|+ V |uε| ≤ χΛ|uε|p−1 + µε2Hε|uε|.
since p > 2 and V is positive on Λ, by proposition 4.3, for R > 0 sufficiently large and ε > 0
sufficiently small, we have{

−ε2∆|uε| − ε2µH|uε|+ (1− µ)V |uε| ≤ 0 in Ω \BεR(xε),
|uε| ≤ 1 on ∂BεR ∩ Ω.

In view of the construction of supersolutions of lemma 6.1 we deduce by the comparison
principle that for every x ∈ Ω \BεR(xε),

|uε(x)| ≤Wε(x) ≤ C exp
(
−λ
ε

|x− xε|
1 + |x− xε|

)(
1 + |x|2

)−N−2
2 .

If p > N
N−2 , then p− 1 > 2

N−2 and we have for ε > 0 sufficiently small

|uε(x)|p−1 ≤ µε2 (N − 2)2

4|x− x0|2
( log ρ

ρ0

log |x−x0|
ρ0

)1+β
.

By definition of the penalized nonlinearity gε, we have then
gε(uε) = |uε|p−2uε in RN \ Λ,

and therefore the function uε solves the original problem (Pε).
The proof in the case lim inf |x|→∞ V (x)|x|2 > 0 is similar. �
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