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Abstract

In a context of markets globalization, early, reliable and timely estimations
of crop yields at regional to global scale are clearly needed for managing
large agricultural lands, determining food pricing and trading policies but also
for early warning of harvest shortfalls. Crop growth models are often used to
estimate yields within the growing season. The uncertainties associated with
these models contribute to the uncertainty of crop yield estimations and forecasts.
Satellite remote sensing, through its ability to provide synoptic information on
growth conditions over large geographic extents and in near real-time, is a
key data source used to reduce uncertainties in biophysical models through
data assimilation methods. This thesis aims at assessing possible improvements
for the assimilation of remotely-sensed biophysical variables in crop growth
models and to estimate their related errors reduction on modelled yield estimates.
Assimilated observations are winter wheat leaf area in...

Document type : Thèse (Dissertation)

Référence bibliographique

Curnel, Yannick. Satellite remote sensing priorities for better assimilation in crop growth models :
winter wheat LAI and grassland mowing dates case studies.   Prom. : Defourny, Pierre ; Oger,
Robert



 

 

 

 

 

 

 

 

SATELLITE REMOTE SENSING PRIORITIES FOR 

BETTER ASSIMILATION IN CROP GROWTH MODELS: 

WINTER WHEAT LAI AND GRASSLAND MOWING 

DATES CASE STUDIES 

 

 

 

Yannick Curnel 

Avril 2015 

Thèse présentée en vue de l’obtention  

du grade de  docteur en sciences agronomiques  

et ingénierie biologique 

 

Promoteurs : Pr. Pierre Defourny 

  Dr Robert Oger 

 

Université catholique de Louvain  

Faculty of Bioscience Engineering 

Earth and Life Institute – Environmental sciences  

 



- 2 - 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jury Composition: 

President:  

Pr. DELVAUX Bruno (UCL, Belgium) 

Promoters:  

Pr. DEFOURNY Pierre (UCL, Belgium) 

Dr Ir OGER Robert (CRA-W, Belgium) 

Readers:  

Dr DERAUW Dominique (CSL, Belgium) 

Dr De WIT Allard (WUR, Netherlands) 

Pr. DRAYE Xavier (UCL, Belgium) 

Pr. TYCHON Bernard (ULg, Belgium) 

 



- 3 - 

 

 

 

 

 

 

This research has been financed by the Walloon Agricultural Research 

Centre (CRA-W) in the framework of MIMOSA project and realised in close 

collaboration with the Earth and Life Institute (Environmental sciences, ELIE) 

of UCL (Université catholique de Louvain) 

 

 

WALLOON AGRICULTURAL RESEARCH CENTRE (CRA-W) 

Agriculture and natural environment Department (D3) 

Farming systems, territories and information technology Unit (U11) 

Gembloux – Belgium  

 

 

UNIVERSITE CATHOLIQUE DE LOUVAIN 

Earth and Life Institute  

Environmental sciences 

Louvain-la-Neuve - Belgium 

 

 

  



- 4 - 

 

 

  



- 5 - 

 

ACKNOWLEDGEMENTS 

To paraphrase a famous quote of the marathon runner Emil Zatopek “If you want to 
run, run a mile. If you want to experience a different life, runs a marathon”, I would be 
tempted to say “If you want to be a scientist, work in a research centre or in a 
university. If you want to experiment a different scientific life, make a PhD”. 

The analogies between a PhD and a marathon are numerous. Starting my scientific 
career, I was thinking that I was not yet able to take up the challenge. Progressively, 
the experience increasing, one day you decide that you are ready. 

You have then to choose your destination, to define your finish line. The choice of my 
thesis subject was the result of my personal interest (and experience) for 
mathematical models and remote sensing but also the encounter in 2008 in a taxi on 
the way to a meeting in Stresa with the person that will be one of my promoters, Mr 
Defourny. 

Many people think that a PhD, as a marathon, is a long and lonesome effort but it is 
not true. You have first to find your coaches. They will not give you a piggyback but 
they will provide you advices will share their experience and will help you to face the 
difficulties. In this context, I would like to thank first of all warmly my two promoters. 
First, I would like to thank Mr Oger Robert that has been my director for 10 years. He 
has been always available, notably for giving me good scientific advices (even if I 
have not realised it immediately or if I have given the impression not to hear them). I 
hope that he will enjoy his retirement. I would like also to thank my second promoter, 
Mr Defourny Pierre. Even If he is always very busy and that it is therefore not always 
easy to meet him, his global vision of the problem and his encouragements were for 
me very useful. I am really grateful to all members of my Jury, especially Mr De wit 
Allard who helped me a lot all along this PhD (especially on PyWofost) and 
welcomed me for a 10 days training in Wageningen UR premises.  

When you start a PhD, as when you start running after the departure signal, 
motivation and energy is at the maximum. Unfortunately, soon or later, you are likely 
to “hit the wall”. Fortunately, at this moment, you can find people that refuel your 
batteries and help you to face the difficulties. I would like to express my gratitude to 
all the “supporters” along the road. I think first to my family and more especially to my 
wife Cindy (who had to face sometimes my moody character) and my light in the 
dark, my sweet daughter Lucie born during my PhD experience. I would like to thank 
my colleagues at CRA-W. It would be too long to name all of them. I would just cite 
Quentin Leroy, with who have shared my office and my taste for rock and heavy 
metal music and Viviane Planchon for listening and supporting me in my numerous 
periods of doubts.  My gratitude goes also to the CRA-W as institution for the funding 
of this thesis through the Moerman projects.  

No real progression is really possible without sparing partners. In this context, I 
especially think to all the PhD students involved in the GLOBAM project (who have 
shown me the way by already crossing the finish line): Emilie Bériaux, Aline Léonard, 
Louis Kouadio and Grégory Duveiller with who have had and I still have long 



- 6 - 

 

scientific discussions on remote sensing and crop growth modelling. I won’t be fair 
not to cite the ENGE team. Thank you very much for welcoming me. 

During this PhD, I have also had the opportunity and the chance to share my 
experience with Thibault Delvaux and Christophe Bocquet in the frame of their 
master theses.  I really hope that I have been a good coach and that they have 
learned something during this period. From my side, I would like to thank them (as 
well as Aline Léonard) for the processing of SAR data and their collaboration to this 
thesis. A part of it belongs to them.  

To conclude, I would say that this PhD, even if long was the road and hard was the 
way, was a rewarding experience where you learn a lot about yourself, your flaws 
and your qualities. 

I have started with an Emil Zatopek quote, I will finally conclude by another one 
“What has passed is already finished with. What I find more interesting is what is still 
to come”. 

 

 

Gembloux, April 2015 

  



- 7 - 

 

CONTENTS 

ACKNOWLEDGEMENTS ........................................................................................ 5 

CONTENTS ........................................................................................................... 7 

LIST OF FIGURES ................................................................................................ 11 

LIST OF TABLES .................................................................................................. 15 

LIST OF ACRONYMS ........................................................................................... 17 

LIST OF SYMBOLS .............................................................................................. 21 

INTRODUCTION ................................................................................................. 23 

CONTEXT OF THE WORLD FOOD INSECURITY ..................................................................... 23 

AGRICULTURAL MONITORING AT GLOBAL AND LOCAL SCALE ............................................... 27 

SATELLITE EARTH OBSERVATION FOR AGRICULTURE MONITORING ........................................ 30 

REMOTELY-SENSED BIOPHYSICAL VARIABLES .................................................................... 36 

Statistical approaches ....................................................................................... 38 

Mechanistic approaches .................................................................................... 39 

Semi-empirical models ...................................................................................... 40 

Estimation of uncertainties on remotely-sensed biophysical variables ............. 40 

CROP GROWTH MODELS .............................................................................................. 42 

UNCERTAINTY IN CROP GROWTH MODELS ....................................................................... 43 

ASSIMILATION OF REMOTELY-SENSED BIOPHYSICAL VARIABLES ............................................ 46 

SCOPE AND OBJECTIVES ............................................................................................... 51 

OUTLINE OF THIS THESIS .............................................................................................. 54 

CHAPTER 1 : ASSESSMENT OF REMOTELY-SENSED LAI ASSIMILATION 

POTENTIALITIES BASED ON AN OSS EXPERIMENT ............................................... 55 

1. INTRODUCTION ............................................................................................... 55 

2. MATERIAL AND METHODS ................................................................................ 57 

2.1. Crop growth model ................................................................................. 57 

2.2. Area of Interest (AOI) .............................................................................. 57 

2.3. General description of the OSS Experiment ............................................ 58 

2.4. Practical implementation of the OSS Experiment ................................... 59 

2.4.1. Uncertain model parameters and initial states .......................................... 59 

2.4.2. Assimilated LAI ............................................................................................ 63 

2.4.3. Assimilation methods ................................................................................. 63 

2.4.4. Assessment of assimilation efficiency ......................................................... 64 

2.4.5. Assessment of the accuracy and temporal availability needed on remotely-

sensed LAI ................................................................................................................... 66 



- 8 - 

 

2.4.6. Definition of OSSE scenarios ....................................................................... 67 

3. RESULTS ........................................................................................................ 67 

3.1. Results for EnKF-based assimilation technique ....................................... 67 

3.2. Results for recalibration-based technique .............................................. 71 

4. DISCUSSIONS .................................................................................................. 76 

5. CONCLUSIONS ................................................................................................ 79 

CHAPTER 2 : INFLUENCE OF PIXELS’ PURITY ON ASSIMILATION PERFORMANCE .. 81 

1. INTRODUCTION .......................................................................................... 81 

2. MATERIAL AND METHODS .......................................................................... 83 

2.1. Area of Interest ....................................................................................... 83 

2.2. MODIS GAI time series ............................................................................ 86 

2.2.1. Terra/Aqua MODIS observations ................................................................ 86 

2.2.2. Selection of suitable MODIS grid cells ........................................................ 87 

2.2.3. Generation of crop specific GAI time series from MODIS ........................... 87 

2.3. Spatially distributed crop growth model ................................................ 88 

2.3.1. Crop growth model ..................................................................................... 88 

2.3.2. Spatial implementation of crop growth simulations .................................. 88 

2.4. Assimilation approach ............................................................................ 89 

3. METHODS ...................................................................................................... 92 

4. RESULTS ........................................................................................................ 94 

4.1. Spatial distribution of the recalibrated parameters ............................... 94 

4.2. MODIS grid cells contamination (model grids level) ............................... 95 

4.3. MODIS grid cells contamination (MODIS grid cells level) ....................... 98 

4.3.1. Summer crops ............................................................................................. 98 

4.3.2. Grasslands ................................................................................................. 100 

4.3.3. Forests ...................................................................................................... 101 

4.3.4. Conclusions ............................................................................................... 102 

4.4. Analysis of recalibrated parameters co-distribution ............................. 103 

5. DISCUSSIONS AND CONCLUSIONS ...................................................................... 108 

CHAPTER 3 : POTENTIAL PERFORMANCES OF SAR-ESTIMATED GRASSLAND 

MOWING CALENDAR ASSIMILATION IN LINGRA MODEL BASED ON AN OSS 

EXPERIMENT ................................................................................................... 111 

1. INTRODUCTION ............................................................................................. 111 

2. MATERIAL AND METHODS .............................................................................. 113 

2.1. Grassland growth model ....................................................................... 113 

2.2. Area of Interest ..................................................................................... 114 

2.3. Description of the OSS Experiment ....................................................... 114 

2.4. Definition of OSSE scenarios ................................................................. 119 



- 9 - 

 

2.5. Assessment of assimilation efficiency ....................................................... 119 

2.6. Assessment of the accuracy and temporal availability needed on SAR 

observations .................................................................................................... 120 

3. RESULTS ...................................................................................................... 120 

4. DISCUSSIONS AND CONCLUSIONS ...................................................................... 125 

CHAPTER 4 : ESTIMATION OF MOWING DATES ON THE BASIS OF SAR (ERS-2) 

OBSERVATIONS ............................................................................................... 127 

1. INTRODUCTION ............................................................................................. 127 

2. MATERIAL AND METHODS .............................................................................. 130 

2.1. Field campaigns .................................................................................... 130 

2.2. SAR data ............................................................................................... 131 

2.3. Meteorological conditions .................................................................... 132 

2.4. Methods ................................................................................................ 136 

2.4.1. SAR data preprocessing ............................................................................ 136 

2.4.2. Computation of backscattering coefficients and selection of management 

parcels……………. ........................................................................................................ 136 

2.4.3. Land use detection ................................................................................... 136 

2.4.4. Mowings detection (exploratory analysis) ................................................ 137 

3. RESULTS ...................................................................................................... 139 

3.1. Field data analysis (mowing dates) ...................................................... 139 

3.2. Parcels signature .................................................................................. 140 

3.3. Effect of water content on backscattering............................................ 142 

3.4. Management detection ........................................................................ 143 

3.5. Mowings detection ............................................................................... 147 

3.5.1. Approach based on the comparison with the median backscattering of G 

parcels…………………………………………………………………………………………………………………..147 

3.5.2. Approach based on the temporal difference of backscattering ............... 150 

4. CONCLUSIONS AND DISCUSSIONS ...................................................................... 154 

CONCLUSIONS AND PERSPECTIVES .................................................................. 157 

CONCLUSIONS AND DISCUSSIONS ................................................................................. 157 

PERSPECTIVES ......................................................................................................... 160 

LIST OF PUBLICATIONS .................................................................................... 167 

REFERENCES .................................................................................................... 171 

 

  



- 10 - 

 

 

  



- 11 - 

 

LIST OF FIGURES 

Figure 1.- FAO food price index evolution for 1961-2010 period (FAO, 2011a). ...... 23 

Figure 2.- FAO price indices evolution on 1990-2015 period (source: www.fao.org) 24 

Figure 3.- Human population growth in developed and emerging countries (source: 

Nellemann et al., 2009) ............................................................................................. 25 

Figure 4.- Maximum effective coverage time (number of days) for Sentinel-2 tandem 

of satellites (<15% cloud cover, 68% confidence) (Martimort, 2009) ........................ 32 

Figure 5.- Forward (solid lines) and inverse (dashed lines) problems in remote 

sensing (Baret and Buis, 2008) ................................................................................. 40 

Figure 6.-Schematic representation of different methods for the assimilation of 

remotely sensed variables in agroecosystem models (adapted from Delécolle et al., 
1992) ......................................................................................................................... 49 

Figure 1.1.- Overview of the Observing System Simulation Experiment (OSSE) ..... 58 

Figure 1.2.- Graphical representation of  the spread on modeled LAI resulting from 
an uncertainty (standard deviation) of 7 days on crop emergence date (a), 4 days on 
SPAN parameter (b) and 75°C on TSUM1 parameters (c) and on the 3 
aforementioned parameters considered all together (d) - (200 realizations). ............ 62 

Figure 1.3.- Schematic representation of « phenological shift » ............................... 69 

Figure 1.4.- Assimilation Efficiency (%) with EnKf assimilation technique for different 

levels of uncertainty on TSUM1 parameter (upper) and crop emergence date 
(bottom) – CV on RS-LAI=10%, observations every week, late period ..................... 71 

Figure 2.1.- Typology per municipality (only Walloon region is represented) – (source 

: based on  Fontaine et al., 2011) ............................................................................. 83 

Figure 2.2.- Proportion of the area covered by the most representative crops and by 

forests according to the sum of  area in Limoneuse (Walloon region part) and 
Condroz agricultural region (year 2002) – source : http://statbel.fgov.be/ ................. 84 

Figure 2.3.- Land use (main classes) of the Condroz agricultural region - source: 

COSW (version 2.07, 2011) – 1: western part of Condroz, 2: Eastern part of Condroz
 .................................................................................................................................. 85 

Figure 2.4.- Evolution of simulated GAI according to SPAN (above) and TDWI 

(above) values .......................................................................................................... 90 

Figure 2.5.- Evolution of simulated biomass in kg/ha (above) and grain (below) yields 

according to SPAN and TDWI (below) values ........................................................... 91 

Figure 2.6.-MODIS grid cells selection procedure (MODIS grid cells contamination 

study) ........................................................................................................................ 93 

Figure  2.7.- Average TDWI and SPAN values per 10 x 10 km model grids for year 

2002 (only model grids with at least 10 MODIS grid cells are considered) ............... 94 



- 12 - 

 

Figure 2.8.- Relationship between the average recalibrated SPAN and TDWI values 

and the average date of GAI peak with the proportion of forests and grasslands per 
model grid (year 2002) .............................................................................................. 96 

Figure 2.9.- Relationship between the average recalibrated SPAN and TDWI values 

and the average date of GAI peak with the proportion of summer crops per model 
grid (year 2002) ......................................................................................................... 98 

Figure 2.10.- Time series of average observed GAI values (and 95% confidence 

intervals of the mean) for pure winter wheat MODIS grid cells and for MODIS grid 
cells presenting the 10% highest proportion of summer crops (year 2002) ............... 99 

Figure 2.11.- Time series of average observed GAI values (and 95% confidence 

intervals of the mean) for pure winter wheat MODIS grid cells and for MODIS grid 
cells presenting the 10% highest proportion of grasslands (year 2002) .................. 101 

Figure 2.12.- Time series of average observed GAI values for pure winter wheat 

MODIS grid cells and for MODIS grid cells presenting the 10% highest proportion of 
forests (year 2002) .................................................................................................. 102 

Figure 2.13.- MODIS-estimated GAI observations and simulated GAI time series 

after SPAN/TDWI recalibration for a MODIS grid in 2002 ....................................... 105 

Figure 2.14.- Difference between (CSDM) estimated and simulated days of 

maximum GAI values for Limoneuse and Condroz agricultural regions in 2002 ..... 106 

Figure 2.15.- Relationship between the recalibrated SPAN parameter and the 

difference of observed and simulated GAI peak dates (observed –simulated) ....... 108 

Figure 3.1.- Overview of the OSS Experiment ....................................................... 115 

Figure 3.2.- Example of true (yellow dots) and synthetic (green squares) radar 

backscattering values (observations available every 6 days with an uncertainty of 1 
dB on backscattering values) .................................................................................. 116 

Figure 3.3.- Possible cases mowing dates detection procedure ............................ 118 

Figure 4.1.- Ecological territories including the monitored sites during the 2008 and 

2010 field campaigns (DFF: “depression fagne famenne” ; HPAC: “hauts plateaux de 
l’ardenne Centrale”) ................................................................................................ 130 

Figure 4.2.- Amount of rainfall (mm) and distribution of ERS-2 images and field 

observations (management) in HPAC ecological territory (year 2008).................... 133 

Figure 4.3.- Amount of rainfall (mm) and distribution ofERS-2 images and field 

observations (management) in HPAC ecological territory (year 2010).................... 134 

Figure 4.4.- Amount of rainfall (mm) and distribution ofERS-2 images and field 

observations (management) in DFF ecological territory (year 2010) ...................... 135 

Figure 4.5.- Schematic representation of SAR acquisitions and field observations 

temporal distributions .............................................................................................. 138 



- 13 - 

 

Figure 4.6.- Cumulated number of management parcels observed as mowed at the 

given day of observation for DFF ecological territory in 2010 and HPAC ecological 
territory in 2008 and 2010. ...................................................................................... 139 

Figure 4.7.- Distribution of backscattering coefficient per management mode (G: 

grazing; M: mowing) and adjustments (plain and dashed lines) under the normal 
distribution assumption ........................................................................................... 140 

Figure 4.8.- Relationship between the average backscattering coefficient per 

acquisition date for grazing parcels and the average backscattering coefficient for 
mowing parcels (diagonal line represents the 1:1 line) – the points size is proportional 
to the day of year (DoY) .......................................................................................... 141 

Figure 4.9.- Evolution of the average backscattering coefficient per acquisition and 

per ecological territory for grazing parcels  according to the cumulated rainfall 
recorded at meteorological stations level over 72 h before the ERS-2 acquisitions 142 

Figure 4.10.- Differences between average backscattering coefficients of NM and G 

parcels for each acquisition as a function of the cumulated rainfall over 3 days before 
the SAR acquisition (rain_3d) - the points size is proportional to the day of year (DoY)
 ................................................................................................................................ 143 

Figure 4.11.- Schematic representation of the procedure to classify grassland 

parcels according to management type (mowing or grazing) .................................. 144 

Figure 4.12.- Distribution of standard deviations of backscattering coefficients for 

grazing parcels per acquisition date ........................................................................ 145 

Figure 4.13.- Distribution of backscattering coefficients of JM parcels ................... 147 

Figure 4.14.- Difference (in dB) of backscattering coefficient of NM and JM parcels 

with the median backscattering coefficient of G parcels.......................................... 148 

Figure 4.15.- Difference of backscattering (in dB) with the median backscattering of 

G parcels for NM and JM parcels according to rain_3D (in mm) ............................. 149 

Figure 4.16.- Relationship between the backscattering difference (per parcel) 

between SAR acquisitions according to their corresponding difference of rain_3d for 
NM, G and JM parcels ............................................................................................ 151 

Figure 4.17.- Prediction intervals at 99% confidence level (dashed lines) for the 

regression lines (solid lines) between the difference of backscattering according to 
the difference of rain_3d for JM (in red) and NM (green) parcels ............................ 153 

 

  



- 14 - 

 

 

  



- 15 - 

 

LIST OF TABLES 

Table 1.- Main Sentinel missions /instruments characteristics (adapted from Berger 

et al., 2012) ............................................................................................................... 34 

Table 2.- Main operational and future SAR and optical Copernicus contributing 

missions .................................................................................................................... 35 

Table 3.- Estimation of canopy, leaf or soil biophysical variables as a function of the 

spectral domain used. The level of accuracy and robustness of the estimation is 
indicated by the “+” (“++++” accurate and robust; “-“ no estimates possible). 
Secondary biophysical variables are also indicated (Baret, 2000) ............................ 38 

Table 4.- Assimilation scenarios considered within the framework of the thesis ....... 52 

Table 1.1.- ‘Default’ value and defined uncertainty level for the model parameters 

and initial condition considered in the OSS Experiment ............................................ 60 

Table 1.2.- Descriptive statistics for final grain yields (in kg/ha) when considering 

individually and all together an uncertainty on emergence date, TSUM1 and SPAN 
parameters (200 realizations, year 2001). ................................................................. 61 

Table 1.3.- Assimilation Efficiency (AE), standard error of the Assimilation Efficiency 

and Minimal Assimilation Efficiency (MAE) for EnKF-based assimilation strategy .... 68 

Table 1.4.- Winsorized Assimilation efficiencies (AE), standard error of the 

Assimilation Efficiency and Minimal Assimilation Efficiency (MAE) for recalibration-
based assimilation strategy and an uncertainty level on assimilated remotely-sensed 
LAI set to 10% ........................................................................................................... 73 

Table 1.5.- Best recalibration type and corresponding Minimal Assimilation Efficiency 

per scenario (EM: emergence date) .......................................................................... 75 

Table 2.1.- Average cultivated area in winter wheat (period 2000-2009) .................. 85 

Table 2.2.- Average sum (standard deviation) of effective temperatures on 2000-09 

period by agricultural region (in °C d)for October to December, January to May , June 
to August  and from January to August periods ........................................................ 86 

Table 2.3.- Average and standard deviation of recalibrated TDWI and SPAN values 

per year and per agricultural region (L: Limoneuse agricultural region – C :Condroz 
agricultural region) .................................................................................................. 103 

Table 2.4.- Coefficients of correlation between TDWI and SPAN parameters per year

 ................................................................................................................................ 104 

Table 3.1.- Percentage of identified mowing dates, mean and standard deviation of 

the difference between the estimated and the true mowing dates per mowing period 
(with / without replacement by default value) .......................................................... 123 

Table 3.2.- RMAETA, RMAETO and AE values per mowing period considered 

separately and all together (sum of mowed biomass) ............................................. 124 



- 16 - 

 

Table 4-1.- Number of observed parcels per year, ecological territory and 

management mode ................................................................................................. 130 

Table 4-2.- General information on acquired ERS-2 PRI images ........................... 131 

Table 4.3.- Confusion matrix (calibration data set) ................................................. 145 

Table 4.4.- Confusion matrix per year (calibration data set) ................................... 146 

Table 4.5.- Confusion matrix (validation data set) .................................................. 146 

Table 4.6.- Number (%) of parcels where a mowing is detected and number of 

parcels with false mowings according to the threshold value fixed on the difference of 
backscattering with median backscattering of G parcels......................................... 149 

  



- 17 - 

 

LIST OF ACRONYMS 
AE Assimilation Efficiency 

AgRISTARS Agriculture and Resources Inventory Surveys 

Through Aerospace Remote Sensing 

AMIS Agricultural Market Information System 

APES Agricultural Production and Externalities Simulator 

AVHRR Advanced Very High Resolution Radiometer 

AWIFS Advanced WIde Field Sensor 

B-CGMS Belgian Crop Growth Monitoring System 

BRDF Bidirectional Reflectance Distribution Function 

CAP Common Agricultural Policy 

CCWS China CropWatch System 

CEOS Committee on Earth Observation Satellites 

CERES Crop Environment REsource Synthesis 

CGMS Crop Growth Monitoring System 

CLAIR Clevers Leaf Area Index by Reflectance 

COSW Carte d’occupation du sol de Wallonie 

CRA-W Walloon agricultural research Centre 

CSDM Canopy Structural Dynamic Model 

CV Coefficient of Variation 

DFF Dépression Fagne Famenne 

DN Digital Number 

DOY Day Of Year 

DSSAT Decision Support System for Agrotechnology Transfer 

EMS Electro-Magnetic Spectrum 

ENL Equivalent Number of Looks 

EO Earth Observation 

ESA European Space Agency 

EU European Union 

EVI  Enhanced Vegetation Index 

FAO Food and Agriculture Organization 

fAPAR fraction of Absorbed Photosynthetically Active 

Radiation 

FASAL Forecasting Agricultural output using Space, Agrometeorological 
and Land based observations 

G Grazing (parcels) 

GAI Green Area Index 



- 18 - 

 

GEO  Group on Earth Observation 

GEOGLAM Global Agricultural Monitoring initiative of GEO 

GIEWS Global Information and early Warning System 

GMFS Global Monitoring for Food Security 

GLOBAM GLOBal Agricultural Monitoring systems by integration of Earth 
observation and modeling techniques (STEREO II project) 

HPAC Haut Plateau de l’Ardenne Centrale 

IFOV Instantaneous Field Of View 

IR Infra Red 

JECAM Joint Experiment for Crop Assessment and Monitoring 

JM Just Mowed (parcels) 

LAI Leaf Area Index 

LACIE Large Area Crop Inventory Experiment 

LEAFMOD Leaf Experimental Absorptivity Feasibility MODdel 

LIBERTY Leaf Incorporating Biochemistry Exhibiting Reflectance and 
Transmittance Yields 

LINGRA LINTUL GRAssland 

LINTUL Light INTerception and UtiLization simulator 

LPIS Land Parcel Identification System 

M Mowing (parcels) 

MAE Minimal Assimilation Efficiency 

MARS Monitoring Agriculture by Remote Sensing 

MCYFS MARS Crop Yield Forecasting System 

MERIS MEdium Resolution Imaging Spectrometer instrument 

MIR Medium Infra Red 

MODIS MOderate Resolution Imaging Spectroradiometer 

NDVI Normalized Difference Vegetation Index 

NDWI Normalized Difference Water Index 

NIR Near-InfraRed 

NM Not mowed  (parcels) 

NNT Neural NeTworks 

NUTS Nomenclature des unités territoriales statistiques  

OECD Organisation for Economic Co-operation and Development 

OSSE Observing System Simulation Experiment 

PRI PRecision Image 

PROBA-V PRoject for On-Board Autonomy-Vegetation 

PROSAIL model coupling PROspect and SAIL 



- 19 - 

 

PROSPECT leaf optical PROperties SPECTral model 

PSF Point Spread Function 

RADAR RAdio Detection And Ranging 

RMAE Relative Mean Absolute Error 

RMSE Root Mean Square Error 

RRMSE Relative Root Mean Square Error 

RS Remote Sensing 

RTM Radiative Transfer Model 

RUE Radiation Use Efficiency 

SAIL Scattering by Arbitrarily Inclined Leaves(model) 

SAVI Soil Adjusted Vegetation Index 

SCEM-UA Shuffled Complex Evolution Metropolis parameter optimization 
algorithm 

SIGEC Système Intégré de Gestion et de Contrôle 

SLOP Stochastic model for Leaf Optical Properties 

SNR Signal-to-Noise Ratio 

SODA Simultaneous parameter Optimization and Data Assimilation 

SPAN Life span of leaves growing at 35°C 

SPOT Satellite Probatoire pour l’Observation de laTerre 

SRTM Shuttle Radar Topography Mission 

STEREO  Support to the Exploitation and Research in Earth Observation 
data 

STICS Simulateur mulTIdisciplinaire pour les Cultures Standard 

SUCROS Simple and Universal CROp growth Simulator 

SWAP Soil Water Plant Atmosphere 

SWIR Short-Wave InfraRed 

TDWI Initial total crop dry weight 

TM Thematic Mapper 

TOA Top Of Atmosphere 

TOC Top Of Canopy 

TRIM Three-dimensional Radiation Interaction Model 

TSUM1  Temperature sum from emergence to anthesis 

TUE Transpiration Use Efficiency 

TDWI Initial total crop dry weight 

USDA United State Department of Agriculture 

UV UltraViolet 

VI Vegetation Index 



- 20 - 

 

VZA View Zenith Angle 

WCM Water Cloud Model 

WMAE Weighted Mean Absolute Error 

WOFOST WOrld FOod Studies (crop growth model) 

  



- 21 - 

 

LIST OF SYMBOLS 

A Forecasted matrices of ensemble states (EnKf) 

AB Aboveground grassland Biomass [kg/ha] �� Forecasted LAI for ensemble member i [m²/m²] 

A
a Analysed matrices of ensemble states (EnKf) ��� Analysed LAI for ensemble member i [m²/m²] 

AE Assimilation efficiency [%] 

AE(j) Assimilation efficiency of iteration j [%] 

BSmod,i True backscatter value at time i [dB] 

BSRS,i Synthetic backscatter value at time i [dB] 

c Velocity of light (299,792 km/s) 

CV Coefficient of variation [%] 

Di Perturbed LAI value used to update ensemble members 

FGYAij Final grain yield after assimilation for truth i and iteration j [kg/ha] 

FGYO Final grain yield from the ”control” run [kg/ha] 

FGYTi Final grain yield of the truth i [kg/ha] 

GAIo MODIS-observed Green Area Index [m²/m²] 

GAIm Modeled Green Area Index [m²/m²] 

H Measurement operator (EnKf) 

m  Number of winsorized values [-] 

v Frequency [s-1] 

λ Wavelength [m] 

σ
0 Sigma nought or radar backscatterring coefficient [dB]  

LAImod,i True leaf area index at time i [m²/m²] 

LAIRS,i Synthetic leaf area index at time i [m²/m²] 

Pe Ensemble variance/covariance matrices (EnKf) 

Rain_3d Sum of rainfall over the 72h preceding SAR acquistions (mm)  

Re Observation variance/covariance matrices (EnKf) 

Tbase Base effective temperature [°c] 

TBAijk Total biomass yield after assimilation for truth i, iteration j and 
repetition k[kg/ha] 

TBO Total grassland biomass yield from the ”control” run [kg/ha] 

TBTi Total grassland biomass yield of truth i [kg/ha] 

Te Effective temperature [°c] 

Tmax,e Maximum effective temperature [°c] 
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Figure 2.- FAO price indices evolution on 1990-2015 period (source: www.fao.org) 

Concerning the evolution of the situation, many medium to long-term projection 
models seems to suggest that food commodity prices will remain relatively high over 
the next decade or so. The Organisation for Economic Co-operation and 
Development (OECD) and FAO (OECD/FAO, 2011) project that world prices for rice, 
wheat, maize and oilseeds in the five years from 2015/16 to 2019/2020 will be higher 
in real terms by 40, 27, 48 and 36 percent respectively than in the five years from 
1998/99 to 2002/2003 (FAO, 2011a). 

Although various observers attach different degrees of importance to assorted 
factors, there is a relatively strong consensus that multiple factors had a role in the 
price increases. 

First of these factors is the weather shocks, such as drought events observed in 
Australia in 2005-2007 or in Russia during summer 2010, inducing lower production 
and trade. For example, the droughts in Russia during the summer 2010 incited the 
Russian authorities to announce a ban on wheat exports due to the expected 
production shortfall. The result was a new spike of the global wheat price which 
prompted fears of a similar food crisis as in 2007-2008. Though it didn’t happened 
mainly due a relatively good replenishment of the grain global stocks by two previous 
years of good harvests, the FAO cereals price index rose above record of 2008 
(Figure 2). Main explanations lie in the floods observed in the important grain-
producing region of Queensland and the particularly dry summer in the American 
“corn belt” (Duveiller, 2011). If the frequency of extreme weather events increases as 
expected (IPCC, 2012 ; Olesen et al., 2011), such production shocks will be more 
frequent which will tend to increase also the prices volatility and may lead to 
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unpredictable changes in prices, especially if stocks are low to begin with (FAO, 
2011b). 

Biofuel policies have also created new linkages between the price of oil and the price 
of food commodities. When oil prices increase, demand for biofuels will increase and 
will therefore compete with food production. For example, the corn equivalent of the 
energy used for a few minutes’ drive could feed a person for a day while a full tank of 
ethanol in a large 4-wheel drive suburban utility vehicle could almost feed one person 
for a year. The current policies promoting Biofuel, such as the Renewable Energy 
Directive (RED) implemented by the European Union stating that the share of 
renewable energy sources (including non-liquids) should increase to 10% of total 
transport fuel use by 2020, increase the pressure on food markets (OECD/FAO, 
2011). Because world oil prices have historically been more volatile than food prices, 
world food markets may also be subject to increased volatility.  

The increase of food prices can be also explained by the growth in food demand and 
need resulting from the combined effects of world population growth to over 9 billion 
by 2050, rising incomes and dietary changes towards higher meat intake. Meat 
production is particularly demanding in terms of energy, cereal and water.  

The largest population increase is projected to occur in   emerging                                                                                                                     
countries (Figure 3), mainly in Asia and particularly in China, India and Southeast 
Asia. These emerging economies have long term economic growth putting upward 
pressure on prices for petroleum and fertilizer because of the resource-intensive 
nature of their economic growth and leading to increased demand for meat, and 
hence animal feed, as diets diversified. 

 

Figure 3.- Human population growth in developed and emerging countries (source: 

Nellemann et al., 2009) 

The higher prices for petroleum and fertilizer, besides the impact on biofuel demand, 
raise indirectly food production, transport and distribution costs and subsequently the 
food prices.   
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Dietary shifts towards more meat will induce a much larger share of cropland for 
grazing and feed production for the meat industry. As a part of cereal production is 
used for animal feeding, it hampers the cereal availability for human consumption 
which raises food prices. 

Slower growth of cereal yields (and production), especially those of rice and wheat, 
during the past 20 years as a result of low investment over the previous three 
decades, the increased demand on commodity future markets as a result of both 
speculation and portfolio diversification and the low levels of stocks, are among the 
other factors explaining the increase of food prices. 

Consequences of higher food prices are different according to the type of population. 
Consequences are also different at short and long term. In the short term, the 
benefits of high prices go primarily to wealthy farmers with a large marketed surplus. 
As the poorest people usually buy more food than they sell, high food prices tend to 
worsen poverty, food insecurity and malnutrition. High food prices can have benefits 
however by representing an opportunity to spur long-term investment in agriculture 
which should contribute to sustainable food security in the longer run. 

In addition to the impact of high or low prices, the variability and the unpredictability 
in food prices can have also important effects and repercussions even if average 
food prices remain constant. When prices fluctuate substantially, even if they are 
tolerable on average, the short-term shocks make both smallholder farmers and poor 
consumers vulnerable to long-term poverty traps. Prices volatility tends to limit the 
private farm-level investments leading for example to a lower fertilizer use and 
subsequently to a lower productivity. On a macroeconomic scale, prices volatility 
reduces the ability to function as signals guiding the resource allocation. Investments 
are therefore not necessary directed to optimal sectors of the economy which 
reduces the economy growth. Moreover, the poverty and the famine possibly induced 
by the volatile food prices can induce food riots and social problems damaging the 
investment climate and the subsequent use of subsidies limiting investment in public 
goods such as agricultural research, education, health and roads for example (FAO, 
2011a).       

There are therefore clear needs for price stability and for systems and methods 
providing accurate, efficient and affordable information on crop yield outlook and 
estimated cultivated areas estimates in near-real time at the scale of provinces and 
countries as basis for regional crop production estimates. This information is of 
interest for public and private organizations working at international and national 
levels, especially if such information relates to the major centres of production, or to 
regions with food security problems or regions with high climatic risk of crop failures 
(de Wit et al., 2008).  Information on the current situation and outlook for global 
agriculture shapes expectations about future prices and allow markets to function 
more efficiently. Better information and analysis of global and local markets as well 
as an improved transparency could reduce the incidence and magnitude of panic-
driven price surges (FAO, 2011a). Timely information about potential and observed 
harvest shortfalls can also hasten early identification of problems areas and help to 
organise and optimise food supplies at a regional scale (Duveiller et al., 2011a).   
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A first major policy response to price volatility in food and agricultural markets has 
been recently given by the establishment, at the request of the G20 Agriculture 
Ministers in 2011, of the Agricultural Market Information System (AMIS) and the 
GEOGLAM initiative. AMIS is an inter-agency platform seeking to strengthen 
collaboration and dialogue among main producing, exporting and importing countries 
with a view to enhance food market transparency and to encourage policy action in 
response to market uncertainty (www.amis-outlook.org). GEOGLAM contributes to 
the AMIS bulletin through its crop monitoring platform sharing satellite-derived 
information to the different operational agricultural monitoring systems. 

Agricultural monitoring at global and local scale 

Accurate yield predictions are of great economic importance. To be of use, the crop 
production data has to be delivered to the authorities in a timely manner. 

Economic globalization as well as the increasing consideration of environmental 
concerns in national, European and even world policies has also gradually but firmly 
changed the farming world. Gradually the emphasis has been set on farm 
profitability, environmental-friendly production modes and food safety. On a more 
local level, this evolution has constrained farmers to be able to meet more and more 
precise technical and economical requirements. Needed information to support their 
decisions should be made available as quick as possible. The quantitative and 
qualitative monitoring of agricultural productions (arable crops and grasslands) 
throughout the growing season is a part of the necessary information to meet cross 
compliance at region, farm or parcel level.  

Assessment of crop production implies to distinguish, identify and measure the crops 
areas and to estimate their yields. The primary information is to determine before 
harvest time what a farmer is growing, in order to predict yields, anticipate the 
market, control possible expenditure (e.g. subsidies) and estimate the support 
needed. There is a major time constraint as the relevant information has to be 
gathered in the period between crop emergence and crop harvesting, which is just a 
few months (ESA, 2012). 

At large scales (regional, national, continental or global), the accurate determination 
of crop production using traditional ground sampling strategies is not possible. This is 
due to the large number of factors affecting crop growth and their high spatio-
temporal variability. For example, soil fertility and water availability, temperature and 
radiation regime, irrigation and fertilisation practices, pests and disease control, 
amongst others, affect crop growth to varying degrees. 

In the same way, for Defourny et al. (2007), historical time series of cultivated areas 
and yields can serve to predict areas and yields of subsequent years but these 
predictions can be rather inaccurate due to a year-to-year variability of both areas 
and yields as observed in Europe. Additional information about the current year is 
therefore commonly needed. Inter-annual variability of croplands is usually limited 
contrary to yields varying more largely from one year to another and widely from one 
field to another, or even within the same field (Justice and Becker-Reshef, 2007). 
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According to Ray et al. (2015), climate variation accounts roughly for a third of global 
crop yield variability. While some areas show no significant influence, in substantial 
areas of the global breadbaskets, more than 60% of the yield variability can be 
explained by climate variability. 

To face the aforementioned limitations of these methods, different strategies have 
been developed for monitoring crop growth and predicting crop yields and 
productions. First approach is based on regression models linking meteorological or 
vegetation indices to crop yields or productions (Tucker et al., 1985; Doraiswamy et 

al., 2003; Becker-Reshef et al., 2010; Lobell and Burke, 2010; Mkhabela et al., 
2011). Lobell and Field (2007) have for example shown that at global scale simple 
indicators of growing season temperatures and precipitation explained 30% or more 
of year-to-year variations in average yields for the 6 most grown crops. Changes in 
weather conditions do not, however, solely determine the extent of yield variability. 
Crops respond variously to the timing of weather events such as drought, heavy 
rains, low and high temperatures depending on crop and phenotypic stability of the 
cultivar grown and management practices (Peltonen-Sainio et al., 2010). Moreover, 
most of these statistical models are not global and one of their main drawbacks is 
that they are only applicable in the region and the range of conditions for which they 
are developed (Becker-Reshef et al., 2010). Statistical models have also other 
shortcomings as problems of co-linearity between predictor variables (e.g. 
temperatures and precipitation), assumptions of stationarity (e.g. that past 
relationships will hold in the future, even if management events evolve) and low 
signal-to-noise ratios in yields (Lobell and Burke, 2010).  

A second approach, getting round the limitations of the first approach based on 
statistical models, is based on simulation models. By the end of the 1960s, 
computational power was no longer a restriction (Passioura, 1996) allowing and 
stimulating the first attempts to synthesize detailed knowledge on plant physiological 
processes in order to explain the functioning of crops as a whole. Insights into 
various processes were expressed using mathematical equations and integrated in 
so-called simulation models. Though first objective of these models was to increase 
the understanding of crop behavior by explaining crop growth and development in 
terms of the underlying physiological mechanisms, their use has extended spurred by 
various research questions. In addition to their explanatory function, the applicability 
of well-tested models for extrapolation and prediction was quickly recognized and 
more application-oriented models were developed. For example, demands for 
advisory systems for farmers and scenario studies for policy makers resulted in the 
evolution of models geared respectively towards tactical and strategic decision 
support (Bouman et al., 1996a). 

These process-based models are typically developed and tested using experimental 
trials and thus offer the distinct advantage of leveraging decades of research on crop 
physiology and reproduction, agronomy and soil sciences among other disciplines. 
Yet these models also require extensive input data on cultivar, management and soil 
conditions that are unavailable in many parts of the world. More significantly, even in 
the presence of such data these models can be very difficult to calibrate because of 
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uncertain parameters (Lobell and Burke, 2010). A model is a simplified 
representation of a system, and a system is a limited part of reality that contains 
interrelated elements (de Wit, 1982). 

The parallel development of agroecosystem models and remote sensing techniques 
led to an early fusion of these fields and to the development of synergic applications 
(Dorigo et al., 2007). The combined use of remote sensing derived 
biophysical/biochemical state variables and agroecosystem models is expected to 
improve their predictive performance, especially at regional scale (Launay and 
Guérif, 2005). The two technologies present indeed obvious complementarities: for 
example, whereas the daily time step simulation capabilities of cropping systems 
models are excellent for crop growth analyses in the temporal domain, remote 
sensing images offer great opportunity to understand spatial crop growth patterns. 
Conversely, whereas model inputs requirements have limited the use of cropping 
systems models for spatial crop growth analyses, several practical problems, 
including cloud cover and satellite revisit time, have limited the reliability of remote 
sensing (especially in the optical domain) as temporal crop analysis tool. With the 
integration of these technologies, the problems associated with one can be offset by 
the benefits of the other (Thorp et al., 2010). 

Agriculture is a major user of satellite remote sensing data (Moulin et al., 1998). 
Preliminary research and development on satellite monitoring of agriculture started 
with the ETRS sensor (Landsat system) in the early 1970’s (Justice and Becker-
Reshef, 2007).  Few years after the launch of the first civilian satellite for Earth 
Observation in 1972 (Landsat-1), the North-American Large Area Crop Inventory 
Experiment (LACIE) has demonstrated that improved accuracy in USDA predictions 
of wheat production can be achieved by the use of satellite imagery. The basic 
approach used in LACIE was to combine estimates of the land area planted in wheat 
with estimates of yield per unit area (Erickson, 1984). One of the main successes of 
the LACIE experiment was to be able to predict with great accuracy the 30% shortfall 
in Soviet spring wheat six weeks before the harvest (Liang, 2004).  The Agriculture 
and resources Inventory Surveys Through Aerospace Remote Sensing 
(AgRISTARS) program extended the LACIE methodology to other crops and regions 
and also used remote sensing data to assess crop condition along the season and 
relating it to yield (Boatwright and Whitebread, 1986). For Europe, the council of 
Ministers of the European Union (EU) decided in 1988 to set up a project to improve 
the provision of agricultural statistics which are necessary to manage the large 
budgets involved in the European Common Agricultural Policy (CAP). This project, 
known as the MARS project (Monitoring Agriculture by Remote Sensing), comprised 
different activities such as regional crop inventories, satellite-based area estimates, 
assessment of foreign agricultural production and an agricultural information system 
(Council of the European Community, 1988). Several other global crop programs 
such as the USDA Foreign Agricultural service (FAS), the UN-FAO Food Security 
Global Information and Early Warning System (GIEWS), the USAID Famine Early 
Warning System (FEWS) and the EU Global Monitoring of Food Security (GMFS) 
make use of satellite observations for regional to global scale agricultural monitoring 
(Justice and Becker-Reshef, 2007).  
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Several countries have also established systems for monitoring national and foreign 
crop production as e.g. with the Chinese CropWatch system (Bingfang, 2006; Wu et 

al., 2014), the FASAL system in India or the B-CGMS system in Belgium (Tychon et 

al., 1999). Examples of the major regional to global agricultural monitoring systems 
are presented in Justice and Becker-Reshef (2007).  

Current trend, with the GEOGLAM initiative, is geared toward the enhancement and 
the strengthening of the different agricultural monitoring programs through 
international networking, operationally focused research as well as data / method 
sharing. The task of GEOGLAM, endorsed in the G20 Heads of states’ declaration 
(Cannes, November 2011), is to “coordinate satellite monitoring observation systems 
in different regions of the world in order to enhance crop production projections and 
weather forecasting data”. More specifically, GEOGLAM aims to provide AMIS with 
an international and transparent multi-source, consensus assessment of crop 
growing conditions, status, and agro-climatic conditions, likely to impact global 
production. Assessments are produced operationally since September 2013 and 
published in the AMIS Market Monitor Bulletin. 

Most of the current operational monitoring systems use however a very limited area 
of the potentialities of remote sensing. Remote sensing imagery is most of the time 
used for descriptive analyses, crop mapping or to derive growth indicators used as 
explanatory variables in statistical models sometimes in conjunction with other 
growth indicators derived from agroecosystem models. The several techniques for 
merging remote sensing data with model simulations developed in a next paragraph, 
known as “data assimilation” procedures and initially suggested by Wiegand et al. 
(1986) have been widely studied in the two last decades at parcel, local up to 
regional scale (De Wit and Van Diepen, 2007) but no operational use of these 
methods in monitoring systems is on the agenda.  

Satellite Earth observation for agriculture 

monitoring 

Nowadays, the number of instruments orbiting and observing the earth is large. 
These instruments can be divided in two broad categories: passive and active (A 
comprehensive review of remote sensing principles is available in Curnel, 2014) 

Whatever the category of sensors (passive or active), distinction can be also 
performed on spatial resolution and temporal resolution. 

The spatial resolution of a remote sensing system is the smallest possible feature 
that can be detected by this system. Spatial resolution notion should not be confused 
with the pixel size which is the smallest units of an image. Spatial resolution of 
current satellite sensors varies from tens of centimetre up to 1 km or more. 
Distinction is commonly made between (very) high (or fine), medium and low (or 
coarse) spatial resolutions. Limits for these categories are not really fixed as 
technological improvements constantly move these limits by providing new types of 
instrument. For example, MERIS (Medium Resolution Imaging Spectrometer) and 



- 31 - 

 

MODIS (MOderate Resolution Imaging Spectroradiometer) or more recently PROBA-
V (PRoject for On-Board Autonomy-Vegetation) instruments attempting to replace 
AVHRR and VEGETATION by providing information on pixel grids of 250-300m were 
first classified as medium resolution satellites but are now largely considered as 
having a coarse spatial resolution (Duveiller, 2011). Current trends are to set upper 
limit at 4 and 30 m respectively for high and medium resolution images.   

The absolute temporal resolution of a remote sensing system is equivalent to the 
revisit period which refers to the length of time it takes for a satellite to complete one 
entire cycle and therefore to image the same area at the same viewing angle a 
second time (http://www.nrcan.gc.ca/). Due to some degrees of overlap in the 
imaging swaths or adjacent orbits for most satellites and the increase in this overlap 
with increasing latitude, some areas of the earth tend however to be re-imaged more 
frequently. Also, some satellite systems are able to point their sensors to image the 
same area between different satellite passes. The actual temporal resolution of a 
sensor depends therefore on a variety of factors, including the satellite / sensor 
capabilities, the swath overlap and latitude. For example, SPOT sensors are 
configured to permit off-nadir viewing which can reduce revisit time from 26 days (i.e. 
the satellites’ orbit cycle) to 2-3 days for HRVIR (Visible and Infrared High-
Resolution) sensor and one day for the VEGETATION sensor (Khorram et al., 2012). 

Up to recently, temporal and spatial resolutions were inversely proportional. Most 
coarse spatial resolution sensors such as AVHRR, VEGETATION or MODIS are 
nearly available on a daily basis while a medium resolution sensor such as Landsat 8 
have a minimum revisit period of  16 days. High spatial resolutions instrument with 
daily revisit capabilities have recently appeared (e.g. the Canadian RapidEye and the 
Taiwanese FORMOSAT- 2 sensors) but they can only provide such observation 
frequency over a limited geographic extend. It can be noted that another recent 
acquisition strategy for high spatial resolution is to increase the geographic extent 
that can be covered at a given date instead of the revisit frequency. It is the option 
followed with the Indian AWIFS instrument and the Disaster Monitoring Constellation 
(DMC) with respective swaths of 740 and 660 km (Duveiller, 2011). 

An other step has been done by the ESA Earth observation program for 
COPERNICUS and the associated Sentinels missions. COPERNICUS aims at 
providing reliable and up-to-date environmental information that are crucial notably to 
understand how our planet and its climate are changing, the role played by human 
activities in these changes and how these will influence our daily lives in order to 
allow decision makers, businesses and citizens to take the right action. 

Each Sentinel mission (6 missions are scheduled) is based on a constellation of two 
satellites to fulfill revisit and coverage requirements, providing robust datasets for 
Copernicus Services (table 1). These EO data are complemented with in-situ sensors 
(ground-based stations, airborne and maritime sensors). ESA uses its multi-mission 
ground systems to acquire, process, archive and distribute data from other satellites - 
so called Third Party Missions. Data from these 3rd party missions are also included 
within the scope of COPERNICUS and are distributed under specific agreements 
with the owners or operators of those missions (table 2). 3rd party missions 
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In the frame of the assimilation of remotely-sensed information in crop growth models 
the required spatial and temporal resolution, independently from the accuracy of this 
information, will vary according to different parameters. 

Most of the models are crop specific and therefore, in order to retrieve crop specific 
information from the remotely-sensed information, high resolution images are 
required to avoid problems of mixed pixels. The maximum spatial resolution will 
depend of the structure of the agricultural landscape and the size of fields for the 
considered crop. In case of very fragmented landscape with small fields, the use of 
high/medium resolution images are compulsory.  

The requested temporal resolution will be different according to the selected 
assimilation strategy and according to the considered assimilated variable. The 
forcing assimilation strategy requires for example remote sensing information 
available at the same time step than the model or at least with a frequency allowing 
interpolation. Besides the frequency, the period of availability of remotely-sensed 
data has an influence on assimilation performances. Dente et al. (2008), assimilating 
LAI observations derived from MERIS in CERES-wheat model, have for example 
showed that the lack of one or two remotely-sensed LAI observations doesn’t affect 
significantly the assimilation process as far as the remaining observations cover well 
the most important wheat phenological period i.e. when LAI reaches the maximum 
value. In other words, the lack of information (LAI observations) at the moment of 
maximum development of the wheat crop (i.e. stem elongation and heading stage) 
significantly increases the errors on yields estimation.  
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Table 1.- Main Sentinel missions /instruments characteristics (adapted from Berger et al., 2012) 
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Table 2.- Main operational and future SAR and optical Copernicus contributing missions 

SAR platforms / sensors 

System Country Bands Incidence polarisation 
Spatial 

resolution (m) 
Swath width 

(km) 
Temporal 

resolution (d) 
Operationnality 

RADARSAT-2 Canada C 20-50° HH, VV, HV, VH 3-100 20-500 2-3 2007-now 

TerraSAR-X Germany X 20-60° HH, VV, HV, VH 1-16 5-150 2.5-11 2007-now 

COSMO-SKYMED Italy X 20-50° HH, VV, HV, VH 1-100 3040 1-16 2007-now 

PAZ Spain X 20-60° HH, VV, HV, VH 1-18 10-100 15+2/11 
Scheduled in 

2015 

Optical platforms / sensors 

System Country Bands 
Spatial 

resolution (m) 
Swath width 

(km) 
Temporal 

resolution (d) 
Operationnality 

PROBA-V Belgium VIS, NIR, SWIR  100-333 500 1 2013-now 

RapidEye Canada VIS, Red edge, NIR 6.5 77 1-5.5 2009-now 

Landsat 8  USA VIS, NIR, SWIR, (PAN) 15-100 185 16 2013-now 

DMC 
Internation. 
consortium 

VIS, NIR 30-40 600 14 2003-now 

MODIS USA VIS, NIR, MIR, TIR 250-1000 2330 1-2 1999-now 
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Remotely-sensed biophysical variables 

The signal that is recorded by remote sensing instruments is driven by physical 
processes governing the radiative transfer within the soil, canopy and the 
atmosphere. The interaction of radiation with canopies and soils depends on the 
optical, thermal or dielectric properties of the elements as well as on their number, 
area, orientation and position in space. Therefore remote sensing allows deriving 
directly only canopy or soil primary biophysical variables that can be merged with 
model simulations (Baret, 2000). 

With a variable degree of success and at different spatial and temporal resolutions, 
passive or active remote sensing has been indeed used to estimate soil and crop 
characteristics such as leaf area index (Myneni et al., 2002; Haboudane et al., 2004; 
Bacour et al., 2006 ; Baret et al., 2007 ; Wu et al., 2007, Verger et al., 2008; Nguy-
Robertson et al., 2014; Delegido et al., 2015), biomass (Di Bella et al., 2005 ; Beeri et 

al., 2007; Liu et al., 2010; Claverie et al., 2012) , chlorophyll contents (Haboudane et 

al., 2002 ; Tilling et al., 2007,  Zhang et al., 2008), evapotranspiration (Gómez et al., 
2005; Mutiga et al., 2010) or soil moisture (Ahmad et al., 2010, Gherboudj et al., 
2010; Fang and Lakshmi, 2014). 

Each spectral domain is sensitive to particular canopy or soil characteristics. The 
reflective optical domain (400-2500 nm) will provide estimates of canopy structural 
variables and biochemical composition (pigment, water...). Thermal infrared domain 
and passive µ-wave will depend on the surface temperature and canopy structural 
variables. The active microwave domain will provide information on soil roughness, 
moisture, as well as canopy structure and water content. Therefore, the combined 
use of several spectral domains is likely to be the only way to extract the maximum 
amount of information on canopy or soil biophysical characteristics (Jensen, 1983; 
Baret, 2000). The main primary and secondary variables (according to Baret, 2000) 
are listed in table 3. 

LAI is probably one the most commonly derived variable. The Leaf Area Index (LAI) 
of a plant canopy is a quantitative measure of the area of green leaf material present 
in the canopy per unit ground surface (Gobron and Verstraete, 2009). More 
specifically, it is defined as one-half of the total green leaf area per unit of horizontal 
ground surface area (Chen and Black, 1992). The LAI is an important vegetation 
biophysical variable widely used for crop growth monitoring and yields estimation or 
land surface process simulation (Clevers and van Leeuwen, 1996; Xiao et al., 2011) 
but also for parameterization of climate models (Buermann et al., 2001; Gobron, 
2008). LAI is a good indicator of crop status and is closely linked to several other 
crop and soil variables such as biomass, yield, crop nitrogen uptake, nutrition status 
and water stress occurrence (Casa et al., 2012). 

LAI is operationally estimated from remotely-sensed optical imagery at global scale 
for daily to monthly periods in the frame of several initiatives such as MODIS from 
NASA and in the framework of the global land component of the COPERNICUS 
Initial Operations (GIO) providing a series of bio-geophysical products on the status 
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and evolution of land surface at global scale. Currently operationally available on a 
daily basis from SPOT-VGT at 1 km resolution, a GIO LAI product (derived from 
PROBA-V) with a higher spatial resolution (1/3 km) is expected for the beginning of 
2015. Several global datasets of LAI and fAPAR were produced using NOAA/AVHRR 
(Sellers et al., 1994; Mynemi et al., 1997; Los et al., 2000, Masson et al., 2003), 
SPOT/VEGETATION (Deng et al., 2006; Baret et al., 2007), ENVISAT/MERIS 
(Bacour et al., 2006) or TERRA+AQUA/MODIS (Mynemi et al., 2002; Yang et al., 
2006). Validation and inter-comparison of such products reveals that they do not 
necessarily agree with respect to the spatial heterogeneity and inter-annual variability 
(Garrigues et al., 2008).  

These global scale LAI products are unfortunately not crop specific as their spatial 
resolution, selected to favour the observation frequency, is too coarse which limits 
their use for agricultural monitoring. In this context, a current trend aims at the 
establishment of frameworks to retrieve spatially and temporally consistent crop 
specific information from satellite imagery that can be coupled with crop specific 
growth models at regional scale (e.g. Duveiller, 2011; Bériaux, 2011). 

Remote sensing can be also used to retrieve phenological (Xin et al., 2002; Curnel 
and Oger, 2006b; Jin and Eklundh, 2014) and management information such as 
mowing dates (Herold et al., 2000;Couraultet al. 2010, Hadj Said et al., 2011; 
Voormansik et al., 2013; Dusseux et al., 2014). Knowledge of plant phenology is 
essential for most agroecosystem models since it governs partitioning of assimilates 
(Dorigo et al., 2007). Therefore a precise knowledge of the phenological status of the 
plants will greatly improve the results obtained by agroecosystem models (Delécolle 
et al., 1992, Jégo et al., 2012).  

Various algorithms have been developed to retrieve biophysical and biochemical 
variables from reflectance data or backscattering coefficient (see Dorigo et al. (2007) 
or Baret and Buis (2008) for a review).  

Roughly, these algorithms can be subdivided in two main categories: statistical and 
physical approaches. To face some limitations of both approaches, a kind of 
intermediate approach has also emerged with the development of semi-empirical 
models. 
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Table 3.- Estimation of canopy, leaf or soil biophysical variables as a function of the 

spectral domain used. The level of accuracy and robustness of the estimation is 
indicated by the “+” (“++++” accurate and robust; “-“ no estimates possible). 

Secondary biophysical variables are also indicated (Baret, 2000) 

 

Statistical approaches 

Statistical approaches search for a consistent relationship between the spectral 
signature of an object, in general the leaf or canopy reflectance, or its dielectric 
behaviour and the biophysical or biochemical variable of interest. To establish such 
relationships, spectral, radar, biophysical or biochemical measurements have to be 
taken under varying field or laboratory conditions and for different plant species or 
cultivars and phenological stages. The accuracy of the measurements and the range 
of conditions considered for the development of a relationship determine to a larger 
extent the validity and the portability of the relationships.  

The traditional way of linking remotely-sensed information is by simple (Clevers, 
1989; Svoray and Shoshany, 2002; Dente et al., 2008) or multiple regression 
(Bsaibes et al., 2009) techniques but recently more sophisticated statistical 
approaches such as partial least square (Hansen and Schjoerring, 2003; 
Darvishzadeh et al., 2008) and artificial neural networks (Verger et al., 2008; Bsaibes 
et al., 2009) have been introduced. 

The spectral information (reflectance, transmittance or absorptance) is rarely used 
directly to construct the response function to biophysical and biochemical variables. 
Manipulations are frequently used to enhance subtle spectral features and to reduce 
undesired effects caused by variations in soil reflectance, sun and view geometry, 
atmospheric composition, and other leaf or canopy properties. As specified by Dorigo 
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et al. (2007) standard manipulations includes normalization (Chappelle et al., 1992), 
logarithmic transformation (Jacquemoud et al., 1995 ; Yoder and Pettigrew-Crosby, 
1995), continuum removal (Kokaly and Clark, 1999; Mutanga et al., 2004) and the 
calculation of first or second derivatives (Huang et al., 2004). 

However, the most widespread method used to reduce background effects and 
enhance spectral features is to express spectral reflectance in a combination of a 
limited number of (transformed) spectral bands, to create what is known as a 
vegetation index (VI). Most VIs concentrate on the red-edge region, which is the 
region between 680 and 800 nm that is characterized by a sharp decrease of 
chlorophyll absorption from maximum absorption around 680 nm to almost zero 
absorption at 800 nm. This makes this wavelength range very well suited to study 
vegetation characteristics (Baret et al., 1992).  

In the agricultural monitoring context, VIs have been widely used as proxy 
characterizing the growing conditions and have been therefore linked to crop yield 
(Tucker et al., 1980; Wiegand et al., 1991; Ren et al., 2008; Vescovo and Gianelle, 
2008; schut et al., 2009; Becker-Reshef et al., 2010; Cicek et al., 2010). 

Though the statistical approaches are rather easy to implement, a good validated 
relationship between the VIs and the variables of interest is compulsory which implies 
expensive and time-consuming measurements if this relationship wants to be valid 
for a wide range of species, canopy conditions, and view constellations. These 
limitations have induced the development of physical / mechanistic  approaches.  

Mechanistic approaches 

Remote sensing data result from radiative transfer processes within canopies that 
depend on canopy variables, and observational configuration (wavelength, view and 
illumination conditions). Radiative transfer models summarize our knowledge on the 
physical processes involved in the photon transport within the vegetation canopy or 
atmosphere, and simulate the radiation field reflected or emitted by the surface for 
given observational configuration, once the vegetation and the background soil as 
well as possibly the atmosphere are specified. Retrieving canopy characteristics from 
the radiation field as sampled by the satellite sensor needs to “invert” the radiative 
transfer model (Baret and Buis, 2008). The mechanistic / physical approach consists 
therefore of inverting a radiative transfer model for the estimation of leaf and canopy 
properties. Canopy variables include the variables of interest for the agricultural 
monitoring such as LAI, and the other variables that are not of direct use for the 
agricultural monitoring but that influence the radiative transfer, such as soil 
background properties. The causal relationship between the variables of interest and 
remote sensing data corresponds to the forward (or direct) problem (figure 5). 
Conversely, retrieving the variables of interest from remote sensing measurements 
corresponds to the inverse problem, i.e., developing algorithms to estimate the 
variables of interest from remote sensing data as observed in a given configuration. 
Prior information on the type of surface and on the distribution of the variables of 
interest can also be included in the retrieval process to improve the performances 
(Baret and Buis, 2008).  
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Accounting for these different sources of uncertainties is rather complicated. For this 
reason, the uncertainty on remotely-sensed biophysical variables is most of time 
assessed through the comparison with measurements of these biophysical variables 
on field.  

This comparison with field measurement data is relatively straightforward when 
biophysical variables are derived from (very) high resolution data, i.e. when pixel size 
is lower than the size of the fields where the in situ measurements are realised. 
When biophysical variables are derived from medium resolution data (such as 
MODIS data), the comparison and subsequently the uncertainty assessment become 
more challenging. To face this problem Yao et al. (2008) suggest, with a view to 
validate LAI products derived from MODIS at 1 km resolution, to use high resolution 
imagery as scaling transfer bridge. They used a Landsat-TM imagery to retrieve 30 m 
resolution LAI maps that they have validated with field measurement data. The 1 km 
coarse resolution LAI maps were then generated by degrading the Landsat-TM LAI 
maps through the nearest neighbour re-sampling and finally compared with the LAI 
retrieved from MODIS data.   

When comparing remotely-sensed products with field measurements, it is important 
to be sure that the biophysical variables derived from remote sensing are strictly 
comparable with biophysical variables. Duveiller (2011), whose initial objectives were 
to retrieve a crop specific (winter wheat) LAI from 250m MODIS data on the basis of 
the inversion of a radiative transfer model, found that the biophysical variable 
retrieved was closer a green area index (GAI) than from a Leaf area index.   

The knowledge of the level of uncertainty on a remotely-sensed biophysical is very 
important as it provides the degree of confidence that we can have on these data. In 
the frame of assimilation, the level of uncertainty of assimilated observations is often 
used by different assimilation techniques (such as e.g. ensemble Kalman filter). 

To take the example of Leaf Area Index, one of the biophysical variables considered 
in this thesis, Yi et al. (2008) have for example retrieved wheat LAI from 500m 
reflectances MODIS products through the inversion of one-dimensional (1-D) 
radiative transfer model. A poor correlation was observed between modelled and 
measured LAI (varying between 1 and 6) when daily C4 MODIS data are used. The 
observed RMSE in this situation is equal to 1.1. The use of daily C5 MODIS data, 
presenting an improved atmospheric correction algorithm compared to the daily C4 
MODIS data, allows improving the estimation of LAI. The RMSE between the 
modelled and observed LAI data decreases up to 0.7. For both C4 and C5 
collections, the LAI tends to be overestimated when the sensor is operated with a 
large view zenith angle in the backscattering direction. In the same way, Duveiller 
(2011) has observed a RMSE of 0.58 and 0.63 between remotely-sensed (based on 
SPOT images) and observed GAI respectively when the remotely-sensed GAI is 
estimated on the basis of an empirical model or on the basis of a physical approach 
from a neural network inversion of PROSAIL radiative transfer model. He has also 
generated smoothed GAI estimations from 250m MODIS reflectance and has 
compared these estimations with upscaled punctual SPOT GAI estimations. This 
comparison showed the performance is related to the date of acquisition. According 
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to Duveiller (2011) the GAI is harder to estimate when it reaches its peak value 
(RMSE close to 1). However, the dispersion of the estimation (coefficient of variation) 
was observed as relatively stable all along the season suggesting that the overall 
performance of the MODIS GAI is stable. Purity of pixels has also an impact on the 
observed uncertainty: mixed pixels tend to present higher RMSE than pure pixels.   

Crop growth models 

By the end of the 1960s, computers had evolved sufficiently to support the first 
attempts to synthesize detailed knowledge on plant physiological processes, in order 
to explain the functioning of crops as a whole. These first (heuristic) models were 
meant to increase the understanding of crop behaviour by explaining crop growth 
and development. Simulation models are powerful tools for testing our understanding 
of crop performance by comparing simulation results and experimental observations, 
thus making explicit gaps in our knowledge. Experiments can then be designed to fill 
these gaps. Well-tested crop growth models can be used to explore, in a quantitative 
way, the relative importance of crop characteristics, such as physiological and 
morphological traits as well as environmental characteristics, in a manner that would 
not be possible in field experimentation. 

Over the years, new insights and different research questions motivated the further 
development of simulation models (Bouman et al., 1996a). Progressively, more 
application-oriented models were developed to meet various demands and objectives 
formulated by farmers, scientists and policy makers (Murthy, 2004).    

Crop growth models meet for example demands of farmers for advisory systems. 
Crop growth models have been indeed used in numerous studies to help farmers in 
day-to-day, i.e. tactical decision making. They have been used to investigate the 
effects of management options such as sowing time, plant population density, 
irrigation timing and frequency and fertilizer applications in different environmental 
conditions on long-term mean yield and yield probability (e.g. Aggarwal et al., 1994; 
Aggarwal and Kalra, 1994). More recently, results of crop growth models have been 
applied to tactical decision making using knowledge based such as expert systems 
and decision models. For example, the CERES models have been integrated in the 
Decision Support System for Agrotechnology Transfer (DSSAT) which allow users to 
combine the technical knowledge contained in the crop growth model with economic 
considerations and environmental impact evaluations with a view to facilitate 
economic analysis and risk assessment of farming enterprises (Jame and Cutforth, 
1996, Jones et al., 2003).  An other example is the GrazeGro herbage growth model 
included in the GrazeMore decision support system developed to provide to dairy 
farmers, consultants and advisors a tool for improving management and utilization of 
pasture in European dairy production systems (Barrett et al., 2005). 

Demands of policy makers for policy management tools have also geared the 
evolution of the models towards tactical and strategic support systems. The issues 
range from global (a recent concern is for example the study of the impact of climate 
changes on crops (Kang et al., 2009; Guo et al., 2010; Supit et al., 2010; White et al., 
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2011; Supit et al., 2012)) to  field level (effect of crop rotation on soil quality\) issues 
(Murthy, 2004). The main use of crop growth models as management tools concerns 
the yields predictions (see ‘agricultural Monitoring at global and local scale’ section).  

Most of the crop growth simulation models are mechanistic i.e. that they attempt to 
explain not only the relationship between parameters and simulated variables, but 
also the mechanism of the described processes. Most of the models have been 
initially developed and evaluated at field scale but it has become a common practice 
to apply them from the field to a (supra-) national scale (Palosuo et al., 2011). 

Currently, four main process-oriented approaches are used to simulate crop growth: 
(1) Radiation use efficiency (RUE) with e.g. CERES family (Uehara and Tsuji, 1993) 
and STICS (Brisson et al., 2003), (2) Transpiration use efficiency (TUE) with e.g. 
GLAM (Challinor et al., 2004), (3) Combination of RUE and TUE with e.g. CropSyst 
(Stöckle et al., 2003) and (4) Photosynthesis e.g. CGMS/WOFOST and all the 
SUCROS family models (van Ittersum et al., 2003). 

Palosuo et al. (2011) grouped 8 widely used, easily accessible and well-documented 
crop growth simulation models according to 5 major crop growth processes namely 
leaf area development and light interception, light utilization, crop phenology, soil 
moisture dynamics and nitrogen balance. These 8 crop simulation models included in 
the comparison are APES (Donatelli et al., 2010), CROPSYST (Stöckle et al., 2003), 
DAISY (Abrahamsen and Hansen, 2000; Hansen et al., 1990; Hansen, 2000), 
DSSAT (Ritchie and Otter, 1985; Hoogenboom et al., 2003; Jones et al., 2003), 
FASSET (Olesen et al., 2002a,b; Berntsen et al., 2003), HERMES (Kersebaum,  
1995; Kersebaum and Beblik, 2001;  Kersebaum (2007), STICS (Brisson et al., 1998, 
Brisson et al., 2003) and WOFOST (van Diepen et al., 1989 ; Supit et al., 1994 ; 
Boogaard et al.,1998). 

Uncertainty in crop growth models 

Over the past decades, modelling biophysical processes in general has benefited 
from significant developments, including dramatic growths in computational power, 
ever increasing availability of distributed observations, and improved understanding 
of the physics and dynamics of the natural systems. This led to the building of higher 
levels of complexity into models, and an advance from lumped, conceptual models 
toward semi-distributed and distributed physics-based models. Paradoxically, while 
these advances reflect our growing understanding, they have also increased the 
need for concrete methods to deal with the increasing uncertainty associated with the 
models themselves, and with the observations required for driving and evaluating the 
models.  

It is now being broadly recognized that proper consideration of uncertainty in 
simulations and predictions is essential for both purposes of research and 
operational modelling. The value of a prediction to relevant decision making 
processes is limited if reasonable estimates of the corresponding simulation / 
prediction uncertainty are not provided (Liu and Gupta, 2007).  
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There are several alternative taxonomies of uncertainty sources in distributed models 
(van Oijen and Ewert, 1999; Katz, 2002; Walker et al., 2003; Rubarenzya et al., 

2007). According to Katz (2002), three major sources of uncertainty can be identified: 
(1) model structure, (2) measurement error and (3) natural variability.  

Model structure errors result from inaccurate treatment of modelled processes, 
inexact numerical schemes and inadequate resolutions (Bert et al., 2007). This 
source of uncertainty reflects the modeler’s limited understanding of the model. The 
uncertainty related to model structure is the most difficult source of uncertainty to 
quantify (Chatfield, 1995).  

Measurements errors arise when attempting to measure an unknown physical 
variable. These errors include both those of a random nature whose magnitude 
reflects the precision on which the measurements are based and those due to 
systematic error (Katz, 2002). 

Natural variability is a major source of uncertainty for most environmental variables 
(state variables / initial conditions) as they exhibit systematic differences over space 
and time, as well as inherent randomness. Most variables relevant to crop models 
(e.g. soil nitrogen or water content at sowing) have high spatial and temporal 
variability which makes the accurate estimation of these quantities difficult and costly.  
Values for a quantity of interest may be available only for a limited number of sites or 
conditions. Consequently, many inputs to crop models are often derived from indirect 
measurements, estimations from other variables (e.g. solar radiation) or 
measurements or estimations at sites other than the simulation site must be used to 
fill data gaps, or be considered as representative. The way in which these derived 
variables are computed may introduce substantial amounts of uncertainty. Both 
measurement uncertainty and natural variability uncertainty are associated with 
incomplete or imperfect knowledge of model inputs such as empirical quantities, 
initial conditions and boundary conditions (Bert et al., 2007).  According to Palosuo et 

al. (2011), a judicious use of crop models implies calibration for their most important 
parameters before being able to apply them with confidence and a minimal 
calibration for phenological dates is not sufficient to generate robust crop cultivar-
specific yield estimates for different environments.  

Assimilation of remotely-sensed variables, such as for example LAI, aims mainly at 
correcting consequence of natural variability on modelling. 

A good knowledge of the different uncertainty sources and of their respective 
importance turns out to be very important in order to be able to improve models 
capabilities. An accurate knowledge of the uncertainty level of the most sensitive 
model inputs or of the model state variables is for example a key information in 
probabilistic assimilation methods such as the Ensemble Kalman filter (EnKf). The 
information is also important in calibration strategy related method to identify 
parameters or initial conditions to calibrate/adjust and subsequently to identify their 
range of possible variation. 

Relative importance of the different sources of errors is also function of the model 
and of the model application level.  
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Paluoso et al. (2011) comparing performances of eight crop growth models 
(previously mentioned in ‘crop growth models’ paragraph) for winter wheat during 49 
growing seasons across Europe observed that some models performed better than 
others in estimating grain yield and other crop variables, but none could 
unequivocally be termed robust and accurate in terms of yield prediction across 
different environments and for different crop cultivars. Good prediction of crop yield 
for some models came at the cost of overestimating or underestimating harvest index 
or total biomass. Other models showed a distinct bias towards under- or 
overestimating yields. Paluoso et al. (2011) also observed that mean model 
predictions are in relatively good agreement with observed yields. This result was 
also observed for the kind of study applied on winter barley (Rötter et al., 2012). The 
authors of both studies support therefore both the use of multi-model ensembles 
rather than relying on single models. 

De Wit and van Diepen (2007) stated, on the basis of the results of Pellenq and 
Boulet (2004), that parameter uncertainty represents likely the largest source of 
uncertainty in crop modelling for point application where meteorological conditions 
are relatively well known. On the other hand, several studies (Easterling et al., 1998; 
Mearns et al., 2001) also demonstrated that when aggregating model output to 
(higher) regional scales, uncertainty in the input forcings become dominant over 
uncertainty in parameters (soil parameters in these studies). This was also confirmed 
by Lobell et al. (2007).  

Several studies analyzed the effects of using spatially aggregated climate data on 
simulated yields by crop models (van Bussel et al., 2011). It has been shown 
(Easterling et al., 1998) that agreement between simulated and observed yields for 
wheat and maize improves considerably when climate data were disaggregated from 
2.8° x 2.8° to approximately 1° x 1° resolution, with disaggregation below 0.5° 
showing no further improvement. Disaggregation of soil data showed little effect on 
model results (Easterling et al., 1998). Olesen et al. (2000) and De Wit et al. (2005) 
reported as well that a grid cell size of 0.5° x 0.5° is an appropriate size to simulate 
yields at regional scale. However, other studies showed (e.g. Baron et al., 2005; 
Wassenaar et al., 1999) that especially in regions where water-limitations play a role, 
model results for wheat and millet yields were sensitive to aggregation of 
precipitation and soil data. Van Bussel et al. (2011) have shown that the aggregation 
of available phenological information improves the spatial data coverage of a region, 
but reduces spatial heterogeneity. Importantly, the use of aggregated weather data 
and emergence dates for simulations of crop phenology has little effect on the 
aggregated predicted phenological events. Results of this study suggest that, for the 
model used (AFRCWHEAT2), spatially aggregated weather data and emergence 
dates to simulate the length of the growing season for winter wheat is justified for grid 
cells with a maximum area of 100 km. 

For Hansen and Jones (2000), the availability of input data of adequate quality and 
spatial coverage is perhaps the most serious practical constraints to application of 
crop models at regional or larger scale. 
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Assimilation of remotely-sensed biophysical 

variables 

Reducing uncertainty in biophysical models can be mainly reached either by the 
acquisition of more informative and higher quality data (e.g. through the development 
of improved measurements and observation networks), by the development of 
improved models through better representation of physical processes and/or the use 
of better mathematical techniques or by the development of efficient and effective 
techniques allowing a better extraction and assimilation of all the available data.  

The last approach presents obviously room for improvement. There is indeed clearly 
a need for robust techniques that effectively and efficiently use information from 
observation into models to produce improved estimations and predictions. Remote 
sensing, through its ability to provide synoptic information on growth conditions over 
large geographic extent and in near real-time, is one of the most frequent data 
source used for assimilation purposes. The union of remote sensing and cropping 
systems modelling has been investigated for a diverse set of agricultural applications 
including regional crop monitoring and yield prediction (Prévot et al., 2003; 
Doraiswamy et al., 2004; Launay and guérif, 2005; De Wit and van Diepen, 2008; 
Dente et al., 2008; Courault et al., 2010), precision crop management (Jones and 
Barnes, 2000; Seidl et al., 2004) and evapotranspiration mapping (Olioso et al., 
2005). 

Data assimilation can be defined as procedures aiming to produce physically 
consistent representations or estimates of the dynamical behaviour of a system by 
merging the information present in imperfect models and uncertain data in an optimal 
way to achieve uncertainty quantification and reduction (Liu and Gupta, 2007). 
Observation and model estimates provide different kinds of information and in 
different time and spatial scales; therefore, when used together, they can provide a 
level of accuracy that cannot be obtained when used individually (Alavi et al., 2009). 
It is supposed that a better estimation of model state or input variables can improve 
the estimations or predictions. Various assimilation strategies have been developed, 
with various levels of complexity within each strategy. The different ways to combine 
a crop model with radiometric observations (ground measurements or satellite data) 
were initially described by Maas (1988) and their classification was revisited by 
Delécolle et al. (1992).  

These different assimilation techniques have been recently summarized in Dorigo et 

al. (2007). Roughly, three main categories of data assimilation strategy can be 
identified namely the forcing strategy, the calibration strategy and the updating 

strategy. 

These three strategies are schematically summarized in figure 6.   

The forcing strategy aims at replacing a model state variable, initial condition or input 
variable with data derived from remote sensing. It notably supposes that the model is 
for example not able to simulate correctly the state variable and implies the 
assimilated remote sensing data to be available at the same time step than the 
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model one or at least with a frequency allowing interpolation (Thorp et al., 2010). 
Model initial conditions often used in forcing strategies are emergence (Casa et al., 
2012) or mowing (Courault et al., 2010) dates.  

With the calibration strategy, model parameters or initial conditions are adjusted to 
obtain an optimal agreement between the simulated and the observed state 
variables, which characterise the system behaviour. The sensitive and uncertain 
model parameters or initial conditions are calibrated either manually or automatically 
by running the model with various combinations of parameter values within realistic 
ranges (Dorigo et al., 2007). This strategy is certainly the most frequently used 
(Maas, 1988; Bouman, 1995; Doraiswamy et al., 2004; Dente et al., 2008; Jarlan et 

al., 2008; Duveiller et al., 2010). 

The updating strategy consists of the continuously updating of model state variables, 
whenever an observation is available. This method is based on the assumption that a 
better simulated state variable at day t will also improve the accuracy of the 
simulated state variable at succeeding days (Dorigo et al., 2007). Crop models are 
still generally deterministic in contrast to models within the fields of oceanography, 
meteorology and (more recently) land surface hydrology, where probabilistic 
approaches are generally accepted and advanced algorithms for sequential data 
assimilation such as nudging, variational methods and (Ensemble) Kalman filtering 
have been developed. As a result, crop models provide no information on 
uncertainties of the model states during simulation which is crucial for a successful 
application of most sequential data assimilation algorithms. In principle, probabilistic 
methods and data assimilation can be applied to crop growth models as well. 
Particularly the use of the Ensemble Kalman filter (Evensen, 2007) is interesting for 
crop models because it combines a probabilistic approach with sequential data 
assimilation (de Wit, 2007). Ensemble Kalman Filter (EnKF), allowing to account for 
errors in both simulated and observed state variables, has been used in several 
recent studies (Pellenq and Boulet, 2004; de Wit and van Diepen, 2007; Wu et al., 
2012). 

Each assimilation strategy has its strengths and its drawbacks. The propagation of 
errors can be problematic in forcing strategy where the model forgets its own 
information to follow the observed state variables or initial conditions, including the 
observations errors. The calibration and updating strategies have more flexibility in 
assimilating remotely-sensed state variables / initial conditions and their associated 
errors in the model. If the number of observations is sufficient and their errors 
relatively small and considering that the physical description of underlying process is 
an acceptable representation of the natural system, the calibration strategy is 
expected to give more representative input parameters and improve model’s 
predictions. Processing/computation time is however critical for calibration strategy 
due to the iterative optimization procedure. The number of recalibrated parameters 
has to be small compared to the available observations of the considered state 
variable and to the uncertainty on these observations in order to avoid overfitting 
problems (Dumont et al., 2012). The two other methods need only one run. However, 
for some updating methods (ensemble Kalman Filter), as some measure of 
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uncertainty in the model state variables must be propagated through the system, it 
could be also computationally expensive if the model is complex or the model spatial 
domain is large. The updating methods also imply most of the time more important 
modification of source codes as it is necessary to adjust state variables during model 
run (Dorigo et al., 2007).  

Whatever the considered assimilation strategy, improvement of simulation results 
due to data assimilation is notably influenced by (1) the uncertainties in the model 
and (2) the frequency and accuracy of the remote sensing observations and of the 
state variables/initial conditions derived from these remotely-sensed observations.  



 

 

 

 

 

 

 

Figure

 

 

 

 

Figure 6.-Schematic representation of different methods for the assimilation of remotely sensed variables in 

agroecosystem models (adapted from Delécolle 

 

Schematic representation of different methods for the assimilation of remotely sensed variables in 

agroecosystem models (adapted from Delécolle 

- 49 - 

Schematic representation of different methods for the assimilation of remotely sensed variables in 

agroecosystem models (adapted from Delécolle 

Schematic representation of different methods for the assimilation of remotely sensed variables in 

agroecosystem models (adapted from Delécolle et al., 1992)

Schematic representation of different methods for the assimilation of remotely sensed variables in 

, 1992) 

Schematic representation of different methods for the assimilation of remotely sensed variables in 

 



- 50 - 

 

 

  



- 51 - 

 

Scope and objectives 

Data assimilation techniques are frequently used to reduce uncertainty in biophysical 
models. The performance of data assimilation strongly depends on the assimilation 
protocol and the uncertainty specification (Pellenq and Boulet, 2004). The 
assimilation strategy, the level of uncertainty on both modelled and observed 
variables, the availability of the observations assimilated in the model or the 
objectives pursued are indeed some of the factors to consider.   

In this context, the main objective of this thesis is to assess possible improvements 
for the assimilation of remotely-sensed biophysical variables in crop growth models 
and to estimate their related errors reduction on modelled yield estimates. 

More specifically, the improvements of assimilation of biophysical variables derived 
from satellite data are studied from different points of view (corresponding to 3 thesis 
objectives): (1) the interplay between the accuracy and the frequency of remotely-
sensed data, (2) the assimilation strategies and their implementation, and (3) the 
different sources contributing to the uncertainty on remote sensing data and 
biophysical variables.  

(1) Interplay between the accuracy and the frequency of remotely-sensed 
data 

The first objective focuses on the requirements in terms of accuracy and frequency of 
remotely-sensed data in order to reach a given level of errors reduction on yields 
estimates thanks to data assimilation. 

The assessment of these requirements on observations would imply to have, over 
the same area of interest, time series of remote sensing images with different 
temporal resolution and different levels of accuracy. Such an idealistic situation is not 
realistic from a practical point of view. To cope with this limitation and to 
systematically investigate the assimilation performances, approaches based on 
synthetic data called “Observing System Simulation Experiment” (OSS Experiment) 
are selected. 

OSS Experiments consist of identical twin experiments, a widely used technique to 
assess the impact of data assimilation. This setup consists in considering data 
simulated with one model run as observations and assimilating them afterwards into 
another run of the same model with different initial conditions. The convergence of 
the second run towards the first, defined as the “truth”, can be measured to quantify 
the data assimilation effectiveness in driving the model with “wrong” initial conditions 
towards the truth (Raicich and Rampazzo, 2003).  

OSS Experiments have been initially developed (Arnold and Dey, 1986, Atlas, 1997) 
and mainly used (Raicich and Rampazzo, 2003; Reichle et al., 2008b; Wei and 
Malanotte-Rizzoli, 2010) in meteorology and oceanography. Applications of OSSE in 
agronomy are currently limited (Pellenq and Boulet, 2004, Pauwels et al., 2007).  

The proposed OSS Experiments aim at assessing, first of all, the improvements on 
modelled yields estimations that can currently be expected from assimilation with the 
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available and forthcoming (e.g. COPERNICUS) sensors but can also provide 
guidelines for future satellite missions.  

It is also important to note that OSS experiments, though designed for a specific 
objective, have also an exploratory finality and hence allow studying the limits of a 
system.  

(2) Assimilation strategies and their implementation 

In a second step, the thesis aims at investigating the role of assimilation strategy in 
the assimilation improvement. Many assimilation strategies have been developed 
historically for meteorology and later on for oceanography before being extended to 
other domains such as agronomy. The thesis studies therefore the potentialities and 
limitations of these assimilation strategies in the specific context of the assimilation in 
crop growth models. Conclusions of this study are drawn from the OSS Experiments 
but also more empirically on the basis of experiments based on field observations. 

(3) Main sources of uncertainty on remote sensing data and biophysical 
variables 

The third objective, based on field experiments, is to identify the main sources of 
uncertainties and to assess separately their impact on assimilation performances. 
Uncertainties on satellite remote sensing data and subsequently on biophysical 
variables derived from these data, considered as a whole in OSS Experiments, arise 
indeed from different sources related to sensors’ characteristics, atmospheric and 
meteorological conditions and characteristics of the monitored target.  

All the analyses contribute to assess the conditions of success of satellite remote 
sensing data assimilation in crop growth models. 

In order to broaden the scope of the study, both a state variable and an initial 
condition respectively derived from optical and SAR imagery, are assimilated using 
three main categories of data assimilation strategy (forcing, calibration, updating). 

Factors limiting the efficiency of the assimilation of satellite remote sensing are 
specific to type of the sensors (e.g. optical, SAR), the characteristics of the 
considered sensor and of the monitored crop, the assimilated variables but also the 
assimilation strategy.    

Considering all the combinations of these different factors is not conceivable within 
this PhD. For this reason, only some of them are studied. Two analysis scenarios 
have been considered (table 4). 

Table 4.- Assimilation scenarios considered within the framework of the thesis 

Assimilated 

observation 

Assimilation 

strategy 
Crop RS data 

State variable 
(LAI) 

Calibration 
Updating 

Winter wheat Optical 

Initial conditions 
(Mowing dates) 

Forcing Grassland SAR 
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As presented in table 4, the thesis is focused on winter wheat and grasslands as 
these 2 crops occupy a major place in European and world agriculture. 

Wheat is grown on more than 240 million ha, larger than for any other crop, and 
world trade is greater than for all other crops combined (Curtis, 2002). Winter wheat 
is the most represented crop In the EU-27 (EUROSTAT, 2010). 

Worldwide, grasslands represent indeed 3500 million ha i.e. roughly 26 percent of 
the world land area and 70 percent of the world agricultural area, and contain about 
20 percent of the world’s soil carbon stocks (Schlesinger, 1977; Ramankutty et al., 
2008; FAOSTAT, 2009).  

Assimilated observations are different according to the target crop: Leaf Area Index 
(derived from optical data) for winter wheat and the mowing calendar derived from 
SAR data for grassland.  

In the thesis, LAI is assimilated according to two assimilation strategies, namely the 
updating and calibration strategies. These two strategies, well-tailored and frequently 
used in the frame of LAI assimilation in crop growth models (e.g. Doraiswamy et al., 
2004; Dente et al., 2008; de Wit and van Diepen, 2007; Wu et al., 2012), use 
contrasting approaches. The updating strategy uses indeed a sequential assimilation 
scheme, correcting model state variables whenever an observation is available, while 
the calibration strategy uses a variational approach, adjusting model parameters or 
initial states with a view to obtain an optimal agreement (usually the minimization of a 
cost function) between the simulated and the observed state variables time series. 

Mowing calendar is an important component of grassland management. Mowing date 
as well as mowing frequency conditions the quantity as well as the quality of the 
harvested grass (Hermann et al., 2005). As stated by Dusseux et al. (2013), 
practices such as mowings (but also grazing) and their intensity of use have also 
different environmental impact concerning biodiversity, soil degradation and water 
pollution. In addition, grassland management practices are spread out within the 
growing season according to farmers’ needs but also climate which induces 
subsequently a huge uncertainty on the start of modelling. As several mowings can 
be observed for a same parcel during a growing season, it can induce a huge 
uncertainty on the total yield at the end of the season. Identification of grassland 
management is therefore of high importance, especially if we also consider the 
legislative framework. For example, according to the Decision n° 529/2013/EU of EU 
legislation (European Commission, 2013), a mandatory accounting on greenhouse 
gas emissions and removals resulting from activities related to grazing land 
management is to be phased in between 2013 and 2021. From 2016 to 2018, 
Member States will be required to report to the Commission on the inventory systems 
in place or being developed to estimate emissions and removals from grazing land 
management (Barrett et al., 2014).  

As mowings are punctual events characterized by temporal differences due to 
climate and farm management, the use of multi-temporal image series ideally with a 
high temporal frequency is therefore required. To face the limited use of optical 
images in Belgium arising from a frequent cloud cover, mowing calendar is estimated 
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in the thesis from SAR data which are almost independent of weather and 
illumination conditions and assimilated using the forcing assimilation strategy.  

Researches activities have been divided in 4 main analyses. As aforementioned, two 
of these analyses are based on synthetic data sets (OSS experiments), the two 
remaining analyses being based on field campaign measurements synchronously 
completed with satellite observations. 

Outline of this thesis 

The core of this thesis (chapters 1 to 4) is based on scientific papers which are at 
different levels of progress towards being published in peer-reviewed journals. Some 
have already been published or accepted for publication, while others still need to be 
submitted.  

Chapter 1 presents the results of an Observing System Simulation Experiment 

aiming to assess the efficiency of 2 assimilation techniques based on recalibration 
and on Ensemble Kalman filter (EnKf).Efficiency is assessed on the basis of the 
reduction of the errors on simulated yields by WOFOST model (winter wheat). The 
assimilated observation is the leaf area index (LAI). The study aims also to assess 
the uncertainty level and the temporal availability needed on remotely-sensed LAI to 
reach two given objectives (25 and 50%) in terms of errors on yields reduction. 

Chapter 2 presents the results of the assimilation of remotely-sensed LAI derived 

from MODIS sensor in WOFOST model. One of the objectives is to possibly validate 
some of the results acquired in chapter 1 but also to stress some of the uncertainty 
sources on remote sensing data. The study assesses notably the influence of the 
landscape neighbouring the assimilated pixels on LAI time series and subsequently 
on assimilation.  

Chapter 3 presents the results of the second OSS Experiment focused on grassland. 

Assimilated variable is the mowing calendar assessed on SAR time series. As in 
chapter 1, the main objective is to assess the efficiency of the considered 
assimilation procedure (forcing strategy) for different levels of accuracy and temporal 
availability on radar data.  

Chapter 4 assesses the detection of mowing in grassland on the basis of SAR 

backscattering coefficients time series including different factors driving the 
backscattering variability. The analysis also aims at assessing the impact of these 
sources on backscattering coefficients and de facto on assimilation performances. 

The main findings and future perspectives are summarized and discussed in the 
conclusion of this document.  
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CHAPTER 1 : Assessment of remotely-sensed 
LAI assimilation potentialities based on an OSS 
Experiment1 

1. Introduction 

Crop models simulating crop growth under different environmental and management 
conditions by taking various limiting factors (e.g. soil, weather, water, nitrogen) into 
account in a dynamic way are good tools for diagnosing crop growth conditions or for 
predicting yields over large areas (Launay and Guérif, 2005). The success of these 
crop growth monitoring systems strongly depends on the crop simulation model’s 
ability to quantify the influence of weather, soil and management conditions on crop 
yields and on the system’s ability to properly integrate model simulation results over 
a range of spatial scales (de Wit and van Diepen, 2008). 

Unfortunately, crop growth monitoring systems applied over large areas and relying 
on a spatially distributed crop growth model are typically confronted with large 
uncertainty in the spatial distribution of soil properties and initial soil conditions, crop 
parameters, meteorological forcings (Hansen and Jones, 2000) as well as 
management practices. Within the crop growth model, this uncertainty influences the 
simulation of two important physiological processes i.e. the simulation of crop canopy 
development which determines light interception and the potential of photosynthesis 
and the simulation of moisture content in the soil determining the actual 
evapotranspiration and reduction of photosynthesis as a result of drought stress (de 
Wit and van Diepen, 2007). 

Assimilation of remotely-sensed biophysical variables is one of the possible options 
to reduce this uncertainty in biophysical models (Prévot et al., 2003; Launay and 
Guérif, 2005, de Wit and van Diepen, 2008, Jarlan et al., 2008; Quaife et al., 2008). 

Retrieval of vegetation canopy biophysical properties or soil characteristics from 
remote sensing is gradually moving from research to operational contexts. The 
availability of remotely-sensed information at increasingly high spatial and temporal 
resolution opens up the possibility of developing several applications at a range of 
scales, from globe to field (Casa et al., 2012). 

The estimation of the soil and crop biophysical variables derived from satellite 
imagery is uncertain and this for several reasons. First of all, the measurement 
device is not perfect inducing small measurement errors to which is added a most 
significant noise due to atmospheric conditions. Secondly, the observations models 
relating satellite observations to the soil or crop biophysical variables (e.g. empirical 
or radiative transfer models) are not perfect. Third, the spatial and temporal scale on 

                                                           
1
Adapted from Curnel et al., 2011 
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which the measurement are made is rarely the one on which the observation is 
required. Observation models and interpolation of these observations implies 
hypotheses or requires ancillary information that induces new uncertainties (Pellenq 
and Boulet, 2004). 

Despite these uncertainties, crop variables derived from satellite imagery represents 
an additional source of information on crop growth that could be favourably 
incorporated in crop growth models. Indeed, if simulation or observation by itself is 
not able to provide an accurate description of the considered system, combining 
them should improve both predictive and retrospective models capabilities. Ground 
data can be also used in this context but it can hardly compete with the synoptic 
spatial and temporal coverage provided by remote sensing imagery.  Ground data 
are also tainted with considerable measurement errors and their collection is 
expensive as well as time consuming.    

Combining both model and observations is the task of data assimilation methods 
(Reichle, 2008; Lahoz et al., 2010). These methods aim at minimising uncertainties in 
the estimation of a given modeled state (as e.g. LAI) in an optimal way, i.e. based on 
statistical criteria. All of these methods aim at reducing the discrepancy between the 
measured and the simulated observations by adjusting either uncertain parameters 
and/or initial conditions (Prévot et al., 2003; Launay and Guérif, 2005; Dente et al., 
2008) or the model state variables (De Wit and van Diepen, 2007; Reichle et al., 
2008a). 

The performance of data assimilation strongly depends on the assimilation protocol 
and the uncertainty specification (Pellenq and Boulet, 2004).  A comprehensive 
assessment of the performance of an assimilation scheme based on real 
observations is unfortunately not conceivable as it requires too many observations. In 
order to systematically investigate the assimilation performance, an approach based 
on synthetic data called “Observing System Simulation Experiment” (OSSE) has 
been developed.  

This chapter presents the results of an OSS Experiment assessing the efficiency of 
the assimilation of leaf area index (LAI) derived from satellite in the World Food 
Studies (WOFOST) crop growth model.  

Two assimilation methods, based on model parameters recalibration and on 
Ensemble Kalman Filter (EnKF), are considered. It is expected that these 
assimilation methods improve the estimation of final grain yields.  The magnitude of 
the final grain yield estimation improvement is supposed to be, among other things, 
in connection with the uncertainty on the LAI derived from remote sensing in addition 
to the uncertainty of the model itself.  In this context, besides the comparison of both 
assimilation approaches, the OSS Experiment also assesses the accuracy and 
temporal availability required on the retrieved LAI to reach a given objective in terms 
of errors reduction on final grain yields estimation.  
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2. Material and Methods 

2.1. Crop growth model 

We used the WOFOST (WOrld FOod STudies) crop simulation model as a basis for 
our work (Diepen et al., 1989; van Ittersum, 2003). WOFOST is a mechanistic crop 
growth model that describes plant growth by using light interception and CO2 
assimilation as growth driving processes and by using crop phenological 
development as growth controlling process. The model can be applied in two 
different ways: (1) a potential mode, where crop growth is purely driven by 
temperature and solar radiation and no growth limiting factors are taken into account; 
(2) a water-limited mode, where crop growth is limited by the availability of water. The 
difference in yield between the potential and water-limited mode can be interpreted 
as the effect of drought. Currently, no other yield-limiting factors (nutrients, pests, 
weeds, farm management) are taken into account. 

Interpolated weather data (rain, temperature, global radiation or wind speed) are 
combined with crop (management) and soil (hydraulic properties) data to simulate on 
a daily time step the crop life cycle from sowing or emergence to maturity or harvest. 
The WOFOST model provides daily estimates of biomass, grain yields and different 
state variables, such as LAI and soil moisture, for different crop types over a range of 
agro-environmental conditions.   

The analysis described in this paper was carried with a particular implementation of 
WOFOST called PyWOFOST. In this implementation WOFOST compiled routines 
were linked with the Python interpreter which greatly increases the flexibility of the 
system allowing more sophisticated analyses such as probabilistic ensemble 
modelling and parameter optimization. The model implementation can be 
downloaded from http://www.wofost.wur.nl. 

2.2. Area of Interest (AOI) 

Although the OSS Experiment is mainly based on synthetic data and that 
subsequently no field data are needed, it is still worthwhile to have a first guess of the 
uncertainty on model parameters and initial states in order to avoid the use of “non-
realistic synthetic data” which could lead to erroneous conclusions. In our 
experiment, the ADAM data set (Baret et al., 2001) is used to ground the experiment 
to realistic conditions and later on to possibly validate some of the conclusions of the 
OSS Experiment. Indeed, recent studies (Duveiller et al., 2011a; Duveiller et al., 
2011b) provide a quantitative assessment of the retrieval performance of LAI from 
remote sensing imagery on the basis of the ADAM data set. 

The ADAM (Assimilation of spatial Data within Agronomic Models) experiment was a 
unique comprehensive experiment focusing on wheat crops and located in Funduléa 
(30 km East from Bucharest, Romania). The objective of this project was to develop 
and evaluate methods able to exploit high spatial resolution satellite observations to 
optimize cultural practices, estimate the production and evaluate environmental 
impacts. 
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The OSS Experiment is divided in 3 main steps. 

First step: “truths” generation run (1) 

In the truths generation run, a set of “synthetic observations” used afterwards in the 
assimilation step is computed. To reach this objective, a so-called “true” set of initial 
conditions and parameters is defined on the basis of the “by-default” set of initial 
conditions and parameters. “Default” values are the ones used operationally and can 
be considered as the best estimations of these initial conditions and parameters for a 
given area without any additional observations and therefore without assimilation.  
Due to errors on measurements devices, heterogeneity or lack of information, the 
true initial conditions or parameter values are not necessarily the same than the ones 
used “by-default” in the model. In our analysis, it is assumed that the “true” initial 
conditions or model parameters values are possible states of a normal distribution 
centred on the “default” values. “True” model initial conditions and parameters 
considered in the OSS Experiments are random elements picked up within this 
normal distribution. 

The generated set of “true” model initial conditions and parameters are then used to 
run the model in order to generate “true” state variable (LAI) and yields values. A 
stochastic noise term is added to the “true” LAI values in order to reflect observations 
errors as well as possible errors due to the (radiative transfer) model and inversion 
errors, thereby generating a “synthetic” remotely-sensed LAI. 

Second step: control run (2) 

The control run (often called “open loop” run) represents the best model estimate of 
the truth without the benefit of data assimilation. WOFOST model is run with its 
“default” initial conditions and parameters. The ‘control’ LAI and yield values 
generated during this run will be used to evaluate the improvement or alteration of 
the simulations due to the assimilation of the “synthetic” LAI values.  

Third step: assimilation run (3)  

In the last step of the OSS Experiment, the “synthetic” remotely-sensed LAI values 
defined in the first step are assimilated back in the WOFOST model. LAI and yield 
estimations generated after this assimilation phase will be compared with the values 
generated in the “truths” generation run which allow assessing the performance of 
the considered assimilation method. 

2.4. Practical implementation of the OSS Experiment 

2.4.1. Uncertain model parameters and initial states 

In WOFOST, the number of parameters and subsequently the number of 
“candidates” for defining the model error is relatively high. In the frame of the OSS 
Experiment, two model parameters (SPAN and TSUM1 parameters) and one initial 
state (crop emergence date), influencing directly the leaves growth and subsequently 
the estimation of yields, have been considered in the “truths generation” run.  
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The SPAN parameter represents the life span (in days) of leaves growing at 35°C. 
SPAN parameter determines the rate and point of senescence of LAI. This parameter 
is also influenced by nutrients (a lack of nitrogen leads to early leaves browning) as 
well as by pests and diseases which are aspects that are not modelled in WOFOST. 
Influence of SPAN on LAI and yields have already been stressed in previous studies 
(Curnel and Oger, 2006a; Martin et al., 2006).  

TSUM1 is a variety parameter defined as the sum of effective temperatures from 
emergence to anthesis (°C d). In their sensitivity analysis of the CGMS model, 
Ndacyayisenga and Terres (1998) have identified this parameter as one of the most 
important for grain and biomass yields estimation in WOFOST model. Their analysis 
highlights the importance of rigorously calibrating crop growth cycles and therefore 
refining the estimation of emergence, anthesis and maturity dates. We could assume 
that the values currently available in WOFOST database are correctly calibrated and 
that the uncertainty on these parameters is low. However, a study (Curnel and Oger, 
2004) in Belgium tends to contradict this assumption. In this study, TSUM1 have 
been estimated for 13 municipalities during the 1998-2003 period on the basis of 
phenological observations. On average, the observed TSUM1 was very close to the 
default calibrated value but the uncertainty around this mean was rather large (with a 
coefficient of variation equal to 7.5%) generating subsequently a significant 
uncertainty on final grain yield.  

Local management and climate also affect LAI. Sowing date and subsequently crop 
emergence date is mainly influenced by climatic conditions and therefore quite 
variable from year to year. Since crop emergence is the moment at which the 
simulation starts in WOFOST, this parameter has an influence on LAI development.  

Table 1.1 presents the ‘default’ values for these parameters and initial condition as 
well as the uncertainty level considered on them in the frame of the OSS Experiment. 

Table 1.1.- ‘Default’ value and defined uncertainty level for the model parameters 
and initial condition considered in the OSS Experiment 

 Units ‘Default’ value Uncertainty level (s.d.) 

SPAN days 35 4 

TSUM1 °C d 1504 75 

Emergence date - 27/10 7 days 

As we considered only a random noise (no biais), a random perturbation was added 
to TSUM1, SPAN and crop emergence date follows a normal distribution centred on 
“default” values and that no correlation between parameters exists. The standard 
deviations for emergence date and TSUM1 considered here correspond to the 
standard deviations computed on the basis of the ADAM field data. As no information 
on SPAN parameter is available in the ADAM data set, the standard deviation has 
been arbitrarily fixed to 4 days such as the SPAN values randomly selected within 
the normal distribution centred on “default” value (35 days) are included within the 
lower (17 days) and upper (50 days) limits defined for this parameter in WOFOST.   
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The levels of uncertainty considered on SPAN, TSUM1 and crop emergence induce 
a significant spread on LAI (Figure 1.2) and subsequently on final grain yields 
estimation (table 1.2).  

According to the considered parameter or initial state, the evolution of the induced 
LAI spread is different. We can notice, for example, that the spread on LAI induced 
by the considered uncertainty on SPAN parameter is only expressed in the 
decreasing phase of LAI. 

The standard deviation observed subsequently on final grain yields estimation is 
close on 900 kg/ha, corresponding to a coefficient of variation around 9.4% (table 
1.2). Uncertainty on final grain yields is lower when the uncertainty on model 
parameters / initial condition is considered separately.      

Table 1.2.- Descriptive statistics for final grain yields (in kg/ha) when considering 
individually and all together an uncertainty on emergence date, TSUM1 and SPAN 

parameters (200 realizations, year 2001). 

 Mean s.d. min max 

TSUM1 8462 541 6660 9087 

SPAN 8599 645 5540 9631 

Emergence date 8520 366 7560 8945 

All together 8314 888 4717 9794 
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2.4.2. Assimilated LAI 

As previously mentioned (paragraph 2.3), synthetic LAI time series (considered to be 
comparable to those derived from remote sensing and which will be assimilated back 
in the model) are generated from the true LAI time series by adding a stochastic 
noise term to the “true” LAI values. For each truth:  

�����,� = ���
��,� +	��(��. 1)  

���ℎ�� 	~	�(0, ��) 
Where LAIRS,i is the synthetic leaf area index at time i, LAImod,i the true leaf area index 
at time i and εi the added stochastic noise at time i. 

The stochastic noise added to the true leaf area index value follows a normal 
distribution. The standard deviation σi associated to the distribution will be considered 
in our experiment as proportional to the true LAI values: 

�� = �� ∗ ���
��,� 										(��. 2)   

Where CV is the considered coefficient of variation. The coefficient of variation has 
been considered as constant whatever the time i.  Three different values (5, 10 and 
15%) will be considered (see paragraph 2.4.6. “Definition of OSSE scenarios”). 

2.4.3. Assimilation methods 

For both assimilation methods, considered uncertain model parameters and initial 
conditions are the same than the ones used in the truths generation run. 

Ensemble Kalman Filter (EnKF) 

The Ensemble Kalman Filter (EnKF) is a Monte Carlo variant of the Kalman filter 
(Evensen, 2003) able to incorporate available observations sequentially in time. The 
probability distribution of a model state (including both model parameters and model 
responses) is represented empirically by an ensemble of realizations. The EnKF 
performs in turn a model forecast where the model responses (state variables) are 
propagated forward in time based on the model dynamics and a filter update in which 
the ensemble of the model state is adjusted by incorporating available observations. 
EnKF addresses two important factors in traditional inverse problems: the uncertainty 
of the model state variable and the sensitivity of the model state variable to the model 
parameters (Chen et al., 2009). 

The basic filter update step in an EnKF for each ensemble member can be defined 
as 

�� = � + "# ∗ $%($"#$% + &#)'( ∗ () − $�)		(��. 3)   

where A and Aa are the forecasted and analysed matrices of ensemble states, Pe and 
Re are the ensemble and observation variance/covariance matrices, H is the 

measurement operator and (D-HA) are the innovation vectors. 

Considering that assimilation only concern one state variable (LAI) and that the 
“synthetic” LAI is directly assimilated in the model, Pe and Re are in this case 



- 64 - 

 

variances and the measurement operator is an identity matrix. Equation 3 can be 
reduced to: 

��� = �� + "# ("# + &#) ∗⁄ ()� − ��)	(��. 4)     

Where ��� and  �� are the analysed and forecasted LAI for ensemble member i, "# 

and &# are respectively the variances on the modeled LAI and the “synthetic” LAI and )� is the perturbed LAI value used to update ensemble members i (Burgers et al., 
1998). 

Like in the study of De Wit and Van Diepen (2007), an ensemble of 50 members was 
used since these authors found that this ensemble size was a reasonable trade-off 
between computation time and accuracy of ensemble mean and variance. 

Variances on modelled LAI (Pe) are derived from these 50 members. As 
aforementioned, the ensemble is generated by considering only an uncertainty on 3 
model parameters. No uncertainty has been considered on the model (considered as 
perfect, model errors Q = 0) and on meteorological forcings.   

Recalibration-based assimilation method 

The second assimilation method aims at recalibrating / reinitializing the WOFOST 
model. Sensitive and uncertain model parameters/initial values are tuned until the 
temporal behaviour of model LAI (LAImod) reaches the best agreement with the multi-
temporal remotely-sensed (“synthetic”) LAI (LAIRS).   

A variational assimilation algorithm is applied in order to seek the optimal input 
parameters minimizing the difference between LAImod and LAIRS. The maximum 
likelihood solution to the problem is obtained simply by minimizing the squared 
errors: 

.(/) = ∑ 1�����,� − ���
��,�234�5( 	(��. 5)   

Where N is the number of assimilated LAI observations, LAIRS,i and LAImod,i are 
respectively the (“synthetic”) observed and modelled LAI at acquisition day i and p is 
the set of model parameters/initial states considered. The number of model 
parameters and initial states considered in the method will be at the most equal to 2 
in order to avoid over-parameterization, especially when the number of observations 
is low.    

Optimization has been done using the unconstrained Levenberg-Marquardt algorithm 
(Levenberg, 1944; Marquardt, 1963).  

2.4.4. Assessment of assimilation efficiency 

The efficiency assessment for the two assimilation methods as well as the estimation 
of the accuracy and temporal availability needed on observed LAI will be mainly 
estimated on the basis of the assimilation efficiency (AE) indicator. This indicator is 
computed from Relative Mean Absolute Error (RMAE) values estimated for the 
situation with and without assimilation (respectively RMAETA(j) and RMAETO 

indicators). The number of truths considered (N) is equal to 20. In order to have more 
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stable and reliable results, random perturbation to generate the “synthetic” remotely-
sensed LAI values has been repeated several times (k iterations). For practical 
reasons (computation time), the number of considered iterations has been also fixed 
to 20.  

The Relative Mean Absolute Errors are computed for each iteration j (j=1,\, K)as 
follow: 

&7��%8 = (4∑ |:;<=� − :;<>| |:;<=�|⁄4�5( (��. 6@)  

&7��%A(B) = (4∑ C:;<=� − :;<��BC |:;<=�|⁄4�5( (��. 6D)   

Where FGYTi  is the final grain yield of the truth i, FGYO  the final grain yield from the 
”control” run i.e. the reference grain yield without assimilation and FGYAij the final 
grain yield after assimilation for truth i and iteration j. Differences and ratios of final 
grain yields have all been considered in absolute values. 

For EnKf-based assimilation technique, the final grain yields after assimilation 
(FGYAij) considered in eq.  6b is the mean of the ensemble final grain yields.  

The same 20 truths are considered for the 20 different iterations.  

The Assimilation efficiency AE indicator, derived from these Relative Mean Absolute 
errors, can be computed (for each iteration j) as follow: 

��(E) = 100 ∗ 11 − &7��%A(B) &7��%8⁄ 2		(��. 7)    

In the OSS Experiment the truths have been generated considering an uncertainty on 
3 elements (2 parameters and one initial state). Considering that, as aforementioned, 
the maximum number of recalibrated parameters and/or initial state has been set to 2 
in recalibration-based assimilation method, recalibrating on one or two 
parameters/initial state implies that the other selected parameters or initial state 
remains at their ‘default’ value in the recalibration phase. It therefore seems highly 
probable that the recalibrated values of the parameters and/or initial state on which 
the recalibration is performed have to be different from the true values since the 
recalibration tries to compensate artificially the deviation from the LAI time series 
obtained with the ‘default’ parameters values. This situation is met more often than 
not when the true values of the parameters or initial state not concerned by the 
recalibration are different from the ‘default’ parameters values. As the Levenberg-
Marquardt algorithm is unconstrained, recalibrated parameters and initial state values 
can possibly take extreme values that could be considered as unrealistic leading in 
some situations to unrealistic final grain yields estimations. The phenomenon can 
particularly be stressed when the true parameters and initial state values have been 
sampled at the edges of the distribution. 

Instead of discarding the unrealistic final grain yields estimation which could lead to 
an optimistic overestimation of the Assimilation Efficiency AE(j) value for some 
iterations but also with a view to have the same basis of comparison, a robust 
approach has been selected for the estimation of the mean Assimilation Efficiency 
value by considering the Winsorized mean instead of the simple arithmetic average.  
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The Winsorized mean is computed as the arithmetic mean after the replacement of 
the m smallest observations by the (m+1)st smallest observation and the 
replacement of the k largest observations by the (m+1)st largest observation. In other 
words, the observations are Winsorized at each end. The mean Assimilation 
Efficiency AE, used as reference to assess and compare the performances of the two 
assimilation methods, can be computed as follow: 

�� = 1G H(I + 1)1��(E)(
J() + ��(E)(K'
)2 + L ��(E)(M)K'
'(
M5
J3 N	(��. 8) 

With AE(j)(l) the ordered AE(j) values (l=1,\,k), m is the number of winsorized AE(j) 
values and has been fixed to 2 which represents 10% of the sample. k is the number 
of iterations.  

Winsorized means have been computed with SAS/STAT® 9.1.3 statistical software. 

Assimilation Efficiency AE indicator represents an estimation of the average 
reduction of errors on final grain yields estimation. A positive value for AE means 
therefore that the considered assimilation technique allows some improvement in 
final grain yields estimation. On the contrary, a negative value for AE means that the 
errors on final grain yields estimation are on average increased after assimilation and 
that in this situation, it is better to not assimilate and to use the model parameters 
and initial state ‘default’ values.  

2.4.5. Assessment of the accuracy and temporal availability 

needed on remotely-sensed LAI 

The second objective of the OSS Experiment aims at the assessment of the 
accuracy needed on remotely-sensed LAI in order to reach a given objective in terms 
of errors reduction on final grain yields estimation. In this frame, two objectives of 
25% and 50% of errors reduction have been defined. To provide an order of 
magnitude, these 2 objectives correspond respectively to an errors reduction on final 
grain yields estimation of around 2.3 and 4.6 Qt / ha respectively. 

Considering the probabilistic approaches used in the OSS Experiment, the 
assessment of the accuracy and of the temporal availability needed on remotely-
sensed LAI can’t be done considering exclusively the (Winsorized) Assimilation 
Efficiency value but has also to consider the variability observed between the 
different (k) iterations. 

We have therefore decided to consider in our analysis the lower confidence level 
(α=5%) of the Winsorized Assimilation Efficiency value provided by SAS/STAT® 
9.1.3 software (as far as this value is positive). The “new” indicator defined by this 
way has been called “Minimal Assimilation Efficiency” (MAE) and represent the 
lowest Assimilation Efficiency value that can be expected for the considered 
assimilation method. 

The minimum accuracy and temporal availability needed on remotely-sensed LAI to 
reach one of the two defined objectives in terms of errors reduction on final grain 
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yields estimation will be assessed on this Minimal Assimilation Efficiency (MAE) 
indicator: each scenario presenting a Minimal Assimilation Efficiency value higher 
than the defined objectives (25 or 50%) is considered as suitable.  

2.4.6. Definition of OSSE scenarios 

The OSS Experiment described above has been performed for different “scenarios” 
in order to estimate the accuracy needed on Leaf Area Index (LAI) derived from 
remote sensing to reach a given objective in terms of yields estimation accuracy. 

On the basis of a defined objective of Relative Mean Absolute Errors reduction, 
expressed by the (Minimal) Assimilation Efficiency indicator, it will be possible to 
identify the scenarios which allow this objective to be reached. Besides the 
uncertainty on LAI derived from remote sensing, the acquisition frequency and the 
moment when these observations are available have to be taken into account as 
well. The required level of precision on final grain yield could indeed be reached 
either with accurate remotely-sensed LAI observations with low revisit frequency or 
with less accurate but more frequent remotely-sensed observations. 

Three levels of uncertainty on remotely-sensed LAI observations (coefficient of 
variation of 5, 10 and 15%) and four acquisition frequencies (every 3 days, every 
week, every 2 weeks and every month) have been defined. Three ‘periods of 
assimilation’ have been also defined: an ‘early’ period between the onset of 
greenness and the maximum of LAI (1st of March until the 15th of April), a ‘late’ period 
including also some observations in the senescent phase from the 1st of March up to 
the 15th of June) and finally a ‘full’ period including all the growing season from the 1st 
of March until July (see Figure 1.2).  

Each combination of these 3 factors (the level of uncertainty on the remotely-sensed 
LAI observations, the acquisition frequency and the assimilation period) represents a 
given scenario. 36 scenarios can be therefore potentially defined. However, some of 
them can be seen as unrealistic and have been discarded. For example, it appears 
unrealistic to recalibrate the SPAN parameter in the early period as the uncertainty 
on SPAN parameter has no impact on modelled LAI during this period. For each of 
these considered scenarios, the indicators assessing the assimilation performance 
(RMAETO, RMAETA(j), AE, MAE) have been computed.   

3. Results 

3.1. Results for EnKF-based assimilation technique 

Assimilation Efficiency values for EnKF-based recalibration technique are presented 
in table 1.3.  
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Table 1.3.- Assimilation Efficiency (AE), standard error of the Assimilation Efficiency and Minimal Assimilation Efficiency (MAE) for EnKF-
based assimilation strategy 

 

  Observations availability 

(time step  in days) 
CV (%) 

 Early period Late period Full period 

 AE s.e. AE MAE AE s.e. AE MAE AE s.e. AE MAE 

3 

5  5.00 1.44 1.59 -47.94 2.12 -52.96 -57.80 2.54 -63.81 

10  6.21 1.08 3.66 -46.81 1.84 -51.16 -53.98 2.27 -59.36 

15  5.37 1.02 2.95 -42.38 1.84 -46.72 -48.64 0.94 -50.86 

7 

5  5.97 0.75 4.19 -38.42 2.05 -43.27 -50.49 1.97 -55.14 

10  5.00 1.11 2.39 -35.04 1.03 -37.48 -48.54 2.60 -54.68 

15  5.53 0.75 3.76 -34.35 0.94 -36.57 -48.77 1.85 -53.15 

14 

5  3.77 0.96 1.50 -36.44 1.33 -39.58 -39.27 1.12 -41.91 

10  3.95 1.34 0.79 -36.24 1.26 -39.22 -38.77 1.53 -42.38 

15  6.47 0.50 5.27 -32.64 0.74 -34.40 -36.19 1.53 -39.81 

30 

5  6.36 0.63 4.87 -33.20 0.30 -33.92 -33.35 0.62 -34.82 

10  7.65 0.74 5.89 -30.48 0.52 -31.71 -30.58 0.56 -31.90 

15  8.96 0.60 7.54 -27.85 0.46 -28.95 -26.25 0.50 -27.44 
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date (“Late ensemble member”). The red dotted line represents a remotely-sensed 
LAI time series. At the day of update (let’s suppose that no assimilation was done 
earlier), assimilated remotely-sensed LAI observations is in our example close to the 
peak of LAI while the model LAI values of the “Early” and “Late” ensemble members 
are at this moment respectively in the decreasing and increasing phase. The updated 
LAI values of two ensemble members could be (according to the uncertainty level on 
the assimilated remotely-sensed observation) updated towards higher values while, 
for example, the LAI values of the early ensemble member is in a decreasing phase. 
In the same way, LAI value for the late ensemble corresponding to a value at mid-
term of the increasing phase will suddenly raise up, possibly up to a value that could 
possibly correspond, if the uncertainty on observed assimilated LAI is very small for 
example, to a value close to LAI peak. 

Illustration in figure 1.3 overstates the “phenological shift” but illustrates clearly this 
concept and its possible consequences. 

The “phenological shift” hypothesis can explain why the AE values are higher when 
the uncertainty on assimilated remotely-sensed is higher. Indeed, when the 
uncertainty on assimilated observations is high, the contribution of these 

observations in the corresponding updated modelled LAI values (��� in equation 4) is 

reduced. In other words, the observations have less weight in the updated values 
computation which reduces the perturbation introduced by the phenological shift. It 
can also explain why the Assimilation Efficiency values are a bit higher, even slightly 
positive in the early period, when the number of assimilated observations is lower. 
Less observation mean less perturbation induced by the phenological bias.  

The existence of a phenological shift is not necessarily synonym of negative 
assimilation efficiency. Figure 1.4 presents the Assimilation Efficiency values 
computed for 50 truths and for different levels of uncertainty considered on TSUM1 
parameter and crop emergence (responsible for the phenological shift). In this 
example, the coefficient of variation (uncertainty) on remotely-sensed LAI, available 
every week, is equal to 10%. These levels of uncertainty have been chosen 
separately to avoid any possible compensation of the effects between the 2 factors, 
uncertainty on the SPAN parameter remaining at the level defined in the OSS 
Experiment. When an uncertainty is considered on TSUM1 parameter, uncertainty on 
crop emergence is set to zero and conversely.  

Assimilation Efficiency decreases with the increase of the considered level of 
uncertainty and therefore with the supposed increase of the impact of the 
“phenological shift” both for TSUM1 and crop emergence. Maximum AE value 
(equals to 34%) is indeed observed when no uncertainty is considered on TSUM1 
and on crop emergence i.e. in the absence of phenological shift.   

AE is only negative when the uncertainty level on crop emergence is equal to 6 days. 
These observations reinforce our hypothesis on the “phenological shift” and its 
effects. 
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Figure 1.4.- Assimilation Efficiency (%) with EnKf assimilation technique for different 

levels of uncertainty on TSUM1 parameter (upper) and crop emergence date 
(bottom) – CV on RS-LAI=10%, observations every week, late period 

We can therefore conclude that assimilating LAI with the EnKF-based assimilation 
method as implemented in our OSS Experiment is not the most suitable approach.  

Considering these very poor results, the study aiming to estimate the accuracy and 
the temporal availability needed on assimilated remotely-sensed LAI has not been 
performed for EnKF-based assimilation strategy. 

3.2. Results for recalibration-based technique 

Table 1.4 presents the results of the OSS Experiment for the intermediate uncertainty 
level considered on the assimilated remotely-sensed LAI (10%). Results follow 
globally the same pattern for the two other considered uncertainty levels on remotely-
sensed LAI.    

Unlike the results for the EnKF-based assimilation technique, AE values are 
generally positive which means that globally recalibrating uncertain parameters 
improves final grain yields estimation. While the improvement appears limited in 
some situations, it can sometimes reach very interesting values up to 50-60%. In a 
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crop yields forecasting perspective, it is particularly interesting to notice that 
significant improvements can be already reached early in the season. Improvements 
reach indeed already quite often 20% in the early period. Performing the recalibration 
later in the season allows reaching better results. In the late season, a reduction of 
errors on final grain yields estimation around 40% can be observed in many 
situations. At the end of the season (full period), therefore more in a yields estimation 
than prediction context, a recalibration on both TSUM1 and SPAN parameters allows 
to reach up to 60% of errors reduction. 

Increasing the number of assimilated data tends therefore to improve the AE values. 
The fact that the decrease of the AE values with the increase of the time step 
between assimilated remotely-sensed data is not systematically observed can 
certainly be imputed to the stochastic approach used in the OSS Experiment coupled 
with a possible insufficient number of iterations. 

When comparing single-parameter recalibrations with recalibrations based on a 
combination of two parameters for a given assimilation period, it is not so surprising 
to notice that the best AE values are often observed for a recalibration on two 
parameters. Some exceptions can be however found in the early period. While during 
this period, the best recalibration type tends to be a joint recalibration on both 
TSUM1 and emergence date when remotely-sensed LAI observations are available 
every 3 days -1  week, it is not the case anymore when remotely-sensed LAI 
observations are available only every 2 weeks or every month, especially if the 
comparison is made on the MAE Indicator. 

In a limited number of situations, negative AE values can be observed. They often 
involve the SPAN parameter, especially when this parameter is considered alone. In 
the late period, i.e. the period including normally all the increasing and a part of the 
decreasing phase of LAI, AE is at best equal to -80.75%. In other words, recalibrating 
SPAN alone during this period increases the average error on final grain yield 
estimation by at least 80% compared to the situation without assimilation. The origin 
of this extreme situation observed for SPAN parameter is multiple. 
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Table 1.4.- Winsorized Assimilation efficiencies (AE), standard error of the Assimilation Efficiency and Minimal Assimilation Efficiency (MAE) 

for recalibration-based assimilation strategy and an uncertainty level on assimilated remotely-sensed LAI set to 10% 

  AE s.e. AE MAE 

 
Observations availability 

(time step  in days) 
3 7 14 30 3 7 14 30 3 7 14 30 

Early 

period 

TSUM1 -5.55 -1.21 2.65 -5.23 0.95 1.35 2.21 1.78 -7.59 -4.08 -2.05 -9.02 

SPAN2 - - - - - - - - - - - - 

Emergence date 24.00 21.44 20.45 17.61 0.64 0.83 0.87 0.85 22.64 19.66 18.60 15.81 

TSUM1-SPAN -4.93 -1.10 -1.04 -1.34 1.12 1.22 1.79 2.11 -7.32 -3.70 -4.86 -5.84 

TSUM1-Emergence date 38.25 28.54 15.54 14.60 3.14 4.09 5.30 3.64 31.56 19.83 4.25 6.85 

SPAN-Emergence date 24.10 23.12 20.79 19.74 0.64 0.40 0.88 1.05 22.73 22.26 18.90 17.50 

Late 

period 

TSUM1 40.07 39.46 37.22 39.34 0.82 1.41 1.25 2.05 38.32 36.45 34.56 34.97 

SPAN -80.75 -89.77 -84.88 -88.09 0.82 1.10 1.92 1.87 -82.50 -92.11 -88.96 -92.07 

Emergence date 32.33 33.14 24.64 23.34 0.41 1.26 2.60 3.50 31.45 30.45 19.10 15.88 

TSUM1-SPAN 53.30 24.65 28.18 9.49 1.47 3.13 3.51 2.49 50.16 17.97 20.70 4.18 

TSUM1-Emergence date 46.35 46.88 45.45 41.58 0.77 1.07 1.55 2.38 44.70 44.61 42.16 36.50 

SPAN-Emergence date 6.05 -17.32 -19.80 -37.86 2.11 3.31 4.66 2.95 1.56 -24.38 -29.72 -44.15 

Full period 

TSUM1 25.60 27.44 25.38 22.18 0.64 0.61 1.44 1.48 24.24 26.14 22.32 19.02 

SPAN -42.15 -41.00 -41.19 -56.57 0.38 0.69 0.92 0.95 -42.96 -42.46 -43.14 -58.60 

Emergence date 20.69 22.16 21.58 20.52 0.60 0.73 0.83 1.35 19.41 20.61 19.81 17.64 

TSUM1-SPAN 65.24 64.15 55.24 34.63 1.08 1.78 2.43 4.26 62.93 60.36 50.06 25.55 

TSUM1-Emergence date 27.38 26.48 26.63 24.05 0.41 0.71 1.21 1.81 26.50 24.97 24.06 20.20 

SPAN-Emergence date 43.66 45.14 39.18 5.88 3.28 3.81 4.24 3.32 36.68 37.02 30.15 -1.19 

                                                           
2
No data are displayed as SPAN parameter as this parameter has no influence in the early period 
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First of all, as previously mentioned, SPAN parameter only influences the decreasing 
phase of LAI and its value is notably conditioned by the time when LAI peak occurs. 
In the model, the date of the LAI peak is mainly dependant on the start of the 
simulation (i.e. the crop emergence date) and on the time it takes from this point 
onwards to reach the LAI peak (represented by the TSUM1 parameter).  The date of 
the LAI peak is therefore mainly dependant on the two other factors considered as 
uncertain in our OSS Experiment. We can easily imagine that recalibrated SPAN 
values have to take values different from the true values and most probably 
unrealistic values as an uncertainty on the moment of LAI peak exists. On the other 
hand, an accurate estimation of SPAN implies having observations on the whole 
decreasing phase of LAI and not only a part of this phase as in the late period. This 
can explain why the AE values increase between the late and the full period including 
all or nearly all the decreasing phase of LAI.  

The same explanations apply for TSUM1 parameter in the early period for which 
negative or at best slightly positive Assimilation Efficiency values can be observed. 
Indeed, TSUM1 parameter has ideally to be computed from emergence to anthesis, 
which roughly represents all the increasing phase of LAI. This phase is not fully 
covered in the early period. Furthermore, the crop emergence is considered as fixed 
when recalibration is performed on TSUM1 only, even though this model initial state 
has been considered to be uncertain in the “truths” generation run in our OSS 
Experiment. With respect to this, we can observe that the joint recalibration of crop 
emergence and TSUM1 improves significantly the AE value during the early period.  
Let’s note that the very similar values observed between recalibrations on TSUM1 
and on TSUM1-SPAN on one hand, and between recalibrations on emergence date 
and on SPAN–Emergence date on the other, can be easily explained by the fact that 
SPAN parameter has no influence on the increasing phase of LAI.   

The best recalibration types per scenario, i.e. the recalibration type with the lowest 
MAE values, are presented in table 1.5.   

Clear patterns can be identified for each assimilation period.  

In the early period, except when the uncertainty on remotely-sensed LAI is equal to 
5%, best MAE values are observed when recalibrations are performed only on crop 
emergence date. Acquisition of very accurate observations (CV equals to 5%) 
provides significant improvement. From a minimum of 15-20%, reduction of errors on 
final grain yields estimations reaches in this situation up to 45-50%. It is furthermore 
nearly the only possibility to meet the lowest objective in terms of errors reduction 
(25%) in the early period.   
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Table 1.5.- Best recalibration type and corresponding Minimal Assimilation Efficiency per scenario (EM: emergence date) 

 

Observations availability (time 

step  in days) 
CV (%) 

Early period Late period Full period 

Best recal. type MAE Best recal. type MAE Best recal. type MAE 

3 

5 EM-TSUM1 47.58 TSUM1-SPAN 54.04 TSUM1-SPAN 64.02 

10 EM-TSUM1 31.56 TSUM1-SPAN 50.16 TSUM1-SPAN 62.93 

15 EM 21.31 EM-TSUM1 44.21 TSUM1-SPAN 63.25 

7 

5 EM-TSUM1 46.38 EM-TSUM1 46.27 TSUM1-SPAN 64.15 

10 EM 19.66 EM-TSUM1 44.61 TSUM1-SPAN 60.36 

15 EM 17.32 EM-TSUM1 39.26 TSUM1-SPAN 49.00 

14 

5 EM-TSUM1 44.21 EM-TSUM1 44.65 TSUM1-SPAN 64.60 

10 EM 18.60 EM-TSUM1 42.16 TSUM1-SPAN 50.06 

15 EM 18.80 TSUM1 33.41 TSUM1-SPAN 32.79 

30 

5 EM-TSUM1 30.61 EM-TSUM1 46.91 TSUM1-SPAN 51.31 

10 EM 15.81 EM-TSUM1 36.50 TSUM1-SPAN 25.55 

15 EM 15.95 EM-TSUM1 25.75 EM-TSUM1 26.46 
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On the contrary, this first objective is systematically reached in the late period. This is 
not the case for the second objective (50% of errors reduction), which is only reached 
when assimilated LAI observations are available every 3 days with an uncertainty 
lower than 15%. These results show despite everything that, considering the 
potentialities offered by the current available sensors and our working hypotheses, 
an improvement around 30-40% can be already expected in a crop yield forecasting 
approach. Best results are usually obtained by a joint recalibration on crop 
emergence and TSUM1 parameter.       

The full period presents the highest MAE values, usually obtained through a joint 
recalibration on TSUM1 and SPAN parameters. During this period, the second 
objective in terms of errors reduction (50%) is reached in a majority of situations.  

Let’s note that when the best recalibration type (e.g. a joint recalibration on crop 
emergence date and TSUM1 in the full period when observations are available every 
month and present an uncertainty level of 15%) is not the one predominantly 
observed in the corresponding assimilation period (a joint recalibration on TSUM1 
and SPAN parameters in our example), MAE values for these situations are 
generally very close to the MAE value of the predominantly observed recalibration 
type.  

From a general point of view, reducing the uncertainty on LAI observations for a 
given observation availability scheme allows better improvements of the MAE values 
than reducing  the time step between LAI observations for a given uncertainty on LAI 
observations.  

4. Discussions 

One of the major findings of the OSS Experiment is the poor efficiency observed for 
the EnKF-based assimilation technique. In our experiment, EnKF-based Assimilation 
of LAI into the WOFOST model produces generally results which are the opposite of 
those normally expected from an assimilation technique: in most cases the average 
error on final grain yields estimation is increased after assimilation. These 
unexpected results have been explained by the existence of a phenological shift 
induced by the uncertainty considered on TSUM1 and crop emergence.  

In real conditions, uncertainty on phenological stage (phenological shift) will 
systematically exist whatever the considered area of interest. It seems, for example, 
difficult to avoid uncertainty regarding crop variety or  sowing date and subsequently 
on emergence date as sowings never occur at the same time for all fields within a 
given region and vary at all events from year to year due to the variability of climatic 
conditions. 

These results don’t necessarily mean that the method can’t provide satisfying results: 
distinctly positive AE values have been observed in our experiment when lower 
uncertainty levels on TSUM1 and crop emergence are considered i.e. when the 
phenological shift is reduced. Positive Assimilation Efficiency values may also be 
observed when assimilation is based on variables that are less sensitive to such 
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phenological shift. For example, de Wit and van Diepen (2007) have observed that 
assimilating coarse resolution satellite soil moisture estimates derived from 
microwave sensor in order to correct errors in the WOFOST water balance with 
Ensemble Kalman Filter (EnKF) clearly improves the relationship between modelled 
yields and official yield statistics for winter wheat. Nevertheless, there is a risk that 
the phenological shift will systematically hamper the performance of this assimilation 
technique (at least as implemented in our experiment) compared to other assimilation 
techniques as the recalibration-based approach used in our analysis.  

Assimilation techniques based on the Ensemble Kalman Filter have been initially 
developed and successfully used in oceanography and meteorology i.e. in the frame 
of continuous processes for which there is no parallel controlling process like 
phenology. These EnKf-based assimilation techniques aim at correcting sequentially 
the uncertainty observed on the modelled variable without correcting the causes of 
this uncertainty. This is not the case for the second assimilation method considered 
in our experiment which attempts to “recalibrate” some of the uncertain model 
parameters and/or initial state. This explains why, in most situations, the estimation 
of final grain yields is improved in average, and sometimes in a significant way with a 
reduction of more than 50% of the average error on final grain yields estimation 
compared to the situation without assimilation.  

An objective of 25% errors reduction on final grain yields estimation can be reached 
in a quite high number of assimilated LAI observations availability schemes and 
uncertainty levels. However, when this objective is doubled, the possibilities are 
significantly restricted and generally imply having observations all along the growing 
season, frequent and accurate assimilated LAI observations with an uncertainty level 
(CV) equal to 10% (or ideally lower). From a global point of view, reducing the 
uncertainty level on the observations seems to be more efficient to reach this errors 
reduction objective. These results suggest that the remote sensing community should 
focus efforts on improving LAI retrieval algorithms rather than improving the temporal 
availability of the observations.  

It is important to note that the scenarios defined in our experiment are ideal 
situations. The regular time step considered for observation is unrealistic in practice 
with optical remote sensing instruments due to high variability in cloud cover and 
other atmospheric conditions. In order to attain valid observations every 3 or 7 days, 
either the revisit frequency or the field of view of the satellites needs to be increased 
substantially. Different sensors can already provide images almost on a daily basis 
but it comes often at the expense of smaller geographical coverage associated with 
consequent acquisition costs (e.g. SPOT, RapidEye, Venµs) limiting greatly the 
application or of a coarser spatial sampling i.e. coarser pixels (e.g. MODIS/MERIS 
providing daily reflectances at 250-300 m) resulting in LAI obtained from potentially 
more heterogeneous surfaces which induces scaling errors (Garrigues et al., 2006). 
Although alternative solutions exist, such as for example the Disaster Monitoring 
Constellation (DMC) which is able to provide up to daily HiRes images (32 m spatial 
resolution) with a relatively good spatial coverage (340 km swath), much is expected 
from the coming Sentinel-2 mission which will survey the world with 20m spatial 
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resolution every 5 days under cloud-free conditions (every 15-30 days considering 
the presence of clouds) and will be distributed at no cost.  

The representation of the accuracy of LAI retrieved from remote sensing using the 
CV is also idealized. We have indeed considered that the level of uncertainty on 
remotely-sensed LAI observations was constant all over the growing season and that 
this uncertainty follows a normal distribution. It is in reality harder to accurately 
retrieve reliable values when LAI is small because in such cases it can become hard 
to discriminate the green vegetation from the background. Similarly, when LAI is high 
the remote sensing signal can become saturated leading to an asymmetric 
distribution of errors. Further discrepancies can come from the fact that, when 
looking at canopies such as wheat, the variable retrieved from remote sensing is 
closer to Green Area Index (GAI) rather than LAI (Duveiller et al., 2011a). Finally, the 
actual retrieval performances are generally lower than those considered here. For 
instance, Duveiller et al. (2011a) have observed RRMSE values on Green Area 
Index (GAI) derived from a time series of SPOT/HRV and SPOT/HRVIR for winter 
wheat ranging between at best a little bit lower than 25 % in the green-up phase up 
to more than 100% in the late senescence phase.   

Many other hypotheses have been set in this experiment, notably normal 
distributions for the uncertain model parameters and initial state and the fact that 
their default values represent the most probable values (no bias), the perfection of 
the model or the fact that remotely-sensed LAI represents a non-biased vision of the 
reality. 

The obvious outperformance of recalibration-based technique has also to be 
relativized. The arbitrary decision to assume that all modelling errors are on model 
parameters tends to favour this technique which is able to tackle the problem directly 
(i.e. updating the parameters that are explicitly degraded in the synthetic experiment 
set-up), contrary to a state-based assimilation technique such as EnKf. Lower 
performances are probably to be expected by the introduction of an incorrect model 
structure or random errors on meteorological forcings for example.  

All these results therefore need imperatively to be confirmed on a real case study. 
However,  our experiment has the merit to show that improvements are possible with 
a simple recalibration-based assimilation strategy. If we work on the assumption that 
LAI observations can be available every 2 weeks with an uncertainty level (CV) equal 
to 15%, a reduction of errors on final grain yield estimation of  30-35 %  can already 
be reached in a crop yields forecasting perspective (in the late period). Moreover, if 
the frequency and the quality of remote sensing data can be improved with a view to 
reach these objectives even early in the season, the algorithms used to derive 
biophysical variables from the remote sensing information or used in the assimilation 
phase can be in the same way improved. The recalibration-based assimilation 
algorithm used in our OSS Experiment could be improved by using a weighted 
approach when minimizing the errors between observed and modelled LAI values by 
providing less weight to LAI observations when the uncertainty on these estimations 
is considered as the strongest and/or when the number of available observations is 
low. We could also imagine performing a smoothing operation on the observed 
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remotely-sensed LAI observations in addition to the application of exclusion rules (for 
example defining that the LAI can’t exceed a given value at a given period) prior to 
assimilation or using hybrid approaches, combining the merits of the two assimilation 
strategies, by using a prior recalibration of emergence date followed by an 
assimilation based on EnKF strategy during the rest of the season.      

5. Conclusions 

From this Observing System Simulation Experiment, considering the selected 
uncertainty levels on the three considered parameters, we can first of all conclude 
that the EnKF-based assimilation technique is not suitable in the frame of the 
assimilation of LAI observations in the WOFOST model. In most situations, the 
average error on final grain yields estimation is indeed increased compared to the 
situation without assimilation which means that it is more accurate to use simply the 
default parameters values. The poor behaviour of this assimilation technique is 
mainly due to the existence of a phenological shift induced in the frame of our OSS 
Experiment by the joint uncertainties on TSUM1 and crop emergence date.   

Contrasting with the EnKF-based assimilation technique, the recalibration-based 
assimilation technique allows significant improvement in the final grain yields 
estimation. In the most ideal situations, i.e. when the uncertainty on remotely-sensed 
observations is very low (5% CV) and/or when these observations are available all 
along the growing season, our recalibration-based assimilation approach allows a 
reduction of the average error on final grain yields estimation of more than 45-50%. 
The moment of assimilation, the uncertainty level on remotely-sensed data and the 
time step between the assimilated LAI observations logically have an influence on 
assimilation performance. For each assimilation period, it is possible to identify the 
parameter or the combination of parameters providing the best results. Best 
recalibration type is globally a single recalibration on crop emergence date when the 
LAI observations are available before the peak of LAI (early period). When LAI 
observations are also available in the decreasing phase of LAI, best recalibration 
types are a joint recalibration on crop emergence date and TSUM1 and a joint 
recalibration on TSUM1 and SPAN parameters respectively when LAI observations 
are also available in a part (late period) or all along (full period) the decreasing phase 
of LAI. The identification of a particular and different recalibration type per 
assimilation period can be explained by the existing interdependence between the 
considered uncertain parameters and initial state and the necessity to have a good 
correspondence between the period on which the parameters have to be computed 
and the period on which the LAI observations are available. A good recalibration of 
TSUM1 implies a good recalibration of crop emergence date and a good recalibration 
of SPAN parameter implies a good recalibration of crop emergence and TSUM1 
parameter.  

Our experiment has identified, considering our initial hypotheses, how frequently and 
how accurately LAI has to be retrieved from remote sensing data to reach either 25 
or 50% of error reduction on final grain yields estimation. Remotely-sensed LAI 
observations have to be available at least on a period including the maximum of LAI 
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(late period) to reach the most realizable objective. Although the objective of 25% 
error reduction on final grain yields estimation can be reached in a relatively high 
number of assimilated LAI observations availability and uncertainty levels, the 
possibility to reach the second objective of reducing the error by 50 % is much more 
restricted as it requires frequent and accurate assimilated LAI observations all along 
the growing season, most of time with an uncertainty level (CV) of 10% or lower.   

None of the present-day sensors can really pretend meeting operationally the 
identified accuracies and availabilities on remotely-sensed LAI observations. 
However, forthcoming missions such as Sentinel-2, coupled with improved 
assimilation techniques, could make a significant step towards the fulfilment of these 
requirements in terms of accuracy and availability. 
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CHAPTER 2 : Influence of pixels’ purity on 

assimilation performance 

1. INTRODUCTION 

Uncertainty on remote sensing variables is an important factor to take into account in 
the specific context of data assimilation. Chapter 1 has stressed that a reduction of 
the errors on yields estimation is preferably reached by a reduction of the 
uncertainties on the assimilated remotely-sensed observation.  

The level of uncertainty on remotely sensed observation is notably function of the 
sensors characteristics, of the corrections applied on raw remotely-sensed data and 
of the methods (statistical relationships, inversion of radiative transfer models\) 
used to transform the satellite signal in the target biophysical variable. 

Multitemporal data assimilation applications are for example dependent on the 
accurate registration of the data into a common spatial framework (Roy, 2000). All 
the images composing the time series need to be perfectly coregistered so that 
image pixels are different (temporal) views of the same object or multitemporal pixel 
entity. Such a coregistration is achieved by mapping to a common system of grid 
cells, all the geolocated observations of each acquisition being allocated into a 
predefined output grid cell (Gómez-Chova et al., 2011). The preprocessing step 
aiming at allocating geolocated observations of each acquisition into a predefined 
output grid cell is known as gridding and is an important phase as it could introduce 
gridding artifacts, undesirable effects induced by differences in dimensions and 
orientation between observations and grid cells (Thorp et al., 2010). The gridding 
artifacts come from two effects, the “pixel shift” corresponding to the mismatch 
between location on the ground of observations and the predefined grid cells for 
storing the observations and the “geolocation error”, considered as modest by Wolfe 
et al. (2002), corresponding to errors in assigning geolocation coordinates to 
observations. 

According to Tan et al. (2006), these gridding artifacts strongly influence the local 
spatial properties of MODIS images. The sensor observation in any grid cell is only 
partially derived from the location of the cell, with the average overlap between 
observations and their grid cells being less than 30%. The observation cover 
(obscov) included in the MODIS data reports for each cell the actual overlap with the 
current observation. 

Typically, the grid cell dimensions are set equal to the nadir observation dimensions 
(Wolfe et al., 1998; Tan et al., 2006). A common misconception is indeed to believe 
that the observational footprint is the geometric projection of a rectangular pixel onto 
the Earth’s surface (Cracknell, 1998). In practice, observations have elliptical shapes 
as the surface area convolved with the system point spread function (PSF) defines 
the area that is physically sensed (Schowengerdt, 2007). Gridding effects are mainly 
observed for whiskbroom sensors designed for providing a high revisit time (usually 
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one to three days) while conserving a medium spatial resolution (around 250-300 m).  
Wide field-of-view whiskbroom sensors, such as MODIS, present progressively 
overlapping observations further from the nadir, producing different pixel overlaps 
depending on the view zenith angle and inducing therefore a mismatch between 
observations and grid cells for any acquisition date. The large swath of these sensors 
ensuring the up to daily revisit time induces also a mismatch between observations of 
different dates as revisit time doesn’t match with the repeat cycle. For example, 
MODIS sensor with its 2330 km swath width allowing achieving a near-daily global 
coverage has only a repeat cycle of 16 days. The daily acquisitions within this time 
window are therefore acquired from a different orbit and subsequently from different 
observation geometry. Differences in the footprint of each pixel among the different 
acquisitions are therefore expected. These differences are also present between 
images acquired from the same orbit but at different dates due to the unavoidable 
small shifts in satellite position and in the acquisition time (Thorp et al., 2010).  

The variability of footprint within an image and between the different acquisitions of a 
satellite time series represents a limited problem in case of homogeneous areas but 
is much more problematic in case of heterogeneous areas combining different land 
covers. This problem of mixed pixels is logically frequently met with medium 
resolution images. Even for pushbroom sensors like SPOT-Vegetation (1 km) and 
ENVISAT-MERIS (300 m) allowing a most content footprint across track, fragmented 
landscapes remain a challenge. 

As crop growth models provide crop specific information, assimilated observations in 
these models have to be crop specific as well. In order to make use medium 
resolution data for crop growth monitoring, it is required to select pixels whose 
observational footprints fall (at least to a certain extent) within the target crop specific 
fields. To face gridding effects and complex acquisition geometry problems, Duveiller 
and Defourny (2010) have developed a method for the MODIS sensor whose result 
is a pixel purity map providing for a given landscape an estimate of the percentage of 
the information obtained from surfaces that are covered with the target crop (winter 
wheat)  for every cell in the MODIS grid. The approach consisted in convolving a 
kernel modelling the MODIS spatial response over detailed winter wheat masks 
constructed from detailed crop acreage maps. This methodology was used by De Wit 
et al. (2012) to generate winter wheat GAI time series with a view to assimilate them 
in WOFOST growth model (Diepen et al., 1989; Van Ittersum et al., 2003). 
Assimilation was done, for MODIS grid cells presenting at least a pixel purity of 75%, 
by optimizing two important model parameters (TDWI and SPAN parameters) in 
order to minimize the difference between the simulated and observed GAI time series 
for each individual pixel and year.   

Building on these experiences, the main objective of this study is to assess the 
impact of pixels purity (and gridding effects) on assimilation. This impact has been 
more specifically assessed on the MODIS data set and the recalibrated parameters 
(TDWI and SPAN) considered in De Wit et al. (2012) for winter wheat. Although the 
assimilation approach considered in De Wit et al. (2012) allow improving significantly 
the relationship between simulation results and reported yields at regional level, 
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relatively low assimilation efficiencies are sometimes observed. This study aims at 
assessing if and how the incomplete pixel purity influences the results of the 
assimilation and subsequently at understanding and identifying some of the elements 
that could improve the assimilation approach developed by De Wit et al. (2012). Our 
study extends therefore this analysis by investigating the spatial (and temporal) 
distribution of recalibrated optimized model parameters and subsequently of GAI time 
series taking into consideration the influence of an incomplete pixel purity but also in 
a lower extent gridding effects. The analysis has been performed at model and 
MODIS grid cells level by considering the proportion of the main land use classes 
within respectively these grids. 

2. MATERIAL AND METHODS 

2.1. Area of Interest 

Considering the availability of ancillary data such as detailed yearly crop maps at 
field level, this work focuses primarily on the Walloon territory in Belgium and more 
precisely on two agricultural regions, the ‘Limoneuse’ (loamy) and ‘Condroz’ 
agricultural regions (Fig 2.1). Agricultural regions are defined on the basis on soil and 
climate criteria.  

a. Agronomical characterization of the 2 agricultural regions 

Figure 2.1 presents the main land use per municipality in Walloon region (year 2009). 
Obvious differences between the two agricultural regions can be noticed.     

 

Figure 2.1.- Typology per municipality (only Walloon region is represented) – (source 

: based on  Fontaine et al., 2011) 
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The ‘Limoneuse’ (Loamy) agricultural region is the largest and the most fertile 
agricultural region in Walloon region due notably to sometimes relatively important 
proportion of loess soils. “Crops” is the main land use and represents most of time 
more than 70% of the surface. Winter wheat is the dominant crop (Figure 2.2). Nearly 
50% of the national cultivated area in winter wheat can be found in this region. At 
Walloon region level, this proportion reaches 72.5% (table 2.1). The 3 other main 
crops in terms of importance are sugar beet, fodder maize and potatoes (all summer 
crops). Compared to Condroz agricultural region, the proportion of forests and 
grasslands is relatively low (Figure 2.2). 

 

Figure 2.2.- Proportion of the area covered by the most representative crops and by 
forests according to the sum of  area in Limoneuse (Walloon region part) and 

Condroz agricultural region (year 2002) – source : http://statbel.fgov.be/ 

The Condroz is characterized by a hilly landscape with clay outcrops on limestone in 
the valleys favourable to grasslands (representing more or less 40% of the Condroz 
cultivated area) and loamy beds on sandstone allowing the cultivation of cereals, 
sugar beet and oilseed. Condroz agricultural region is mainly covered by “crops” 
(roughly 60%) but also by a significant proportion of forests (25%). As far as “crops” 
are concerned, a distinction has to be made between arable crops and grasslands. 
Grasslands and arable crops share this territory. Grasslands area is roughly the half 
of the winter wheat area. Condroz is the second agricultural region for winter wheat 
production in Walloon region as it represents 23.0% of its cultivated area. In Walloon 
region, Limoneuse and Condroz agricultural regions represent therefore both 95.5 % 
of cultivated area in winter wheat.    
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test is that the (nearly) “crop specific” GAI time series are also influenced by the 
signal not coming from the target crop (winter wheat) and that this influence depends 
on the land use type. 

a. Climatic conditions 

From a meteorological point of view, slight differences exist between the two 
agricultural regions. Table 2.2 presents the sum of effective temperatures from the 1st 
January to the 30th of May and from the 1st of June to the 30th of August on the 
MODIS acquisition period (2000-09). Effective temperatures (Te) are computed 
considering a base temperature (Tbase) below which no development occurs. Above 
a certain maximum effective temperature (Tmax,e), Te remains constant. 

P=# = 0																																											= ≤ =R�S#=# = = − =R�S#											=R�S# < = < =
�U,#=# = =
�U,# − =R�S#																								= ≥ =
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Base and maximum effective temperatures for winter wheat have been fixed to 0° 
and 30°C respectively. End of May/beginning of June is the period when heading of 
winter wheat occurs in Belgium and August is usually the harvest month.  

Temperature is a primary factor affecting crop development. The total effective 
temperature (also called accumulated thermal time) to which a plant has been 
exposed is commonly used by modelers to quantitatively assess the crop 
phonological development (Hodges, 1990). 

Whatever the year, the sums of effective temperatures are higher for the Loamy 
region, the average daily difference of effective temperature between the two regions 
being equal roughly to 0.5°C d. October to December period covers the sowing and 
part of the season which is not modelled (simulations in WOFOST start for winter 
crops the 1st of January). 

Table 2.2.- Average sum (standard deviation) of effective temperatures on 2000-09 
period by agricultural region (in °C d)for October to December, January to May , June 

to August  and from January to August periods 

Agric. region Jan.-May June-Aug. Jan.-Aug. Oct.-Dec. 

Condroz 1130 (134) 1045 (72) 2175 (131) 670 (85) 

Loamy 1212 (131) 1068 (76) 2280 (125) 717 (80) 

2.2. MODIS GAI time series 

2.2.1. Terra/Aqua MODIS observations 

Launched in 2000, the MODIS instrument that is aboard the Terra platform began a 
new era in remote sensing by providing an interesting balance of spatial, temporal 
and spectral resolutions. MODIS provides observational information in the following 
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36 spectral bands: 29 bands at 1-km spatial resolution at nadir, 5 bands at a 
resolution of 500 m and 2 bands at a resolution of 250 m. The MODIS swath enables 
the instrument to scan the Earth over a range of 2340 km, thereby providing global 
coverage every 1–2 days. In 2002, a second MODIS instrument was launched on the 
Aqua platform. The advantages of the MODIS data are that they are pre-processed, 
free of charge and readily available to the scientific community. As the agricultural 
landscape in Belgium is heavily fragmented, only the 2 bands at 250-m resolution, 
corresponding to reflectance in the red and near infrared spectral bands, are used in 
this paper. These data are part of the MOD09 collection 5 products and are 
distributed using the L2G grid, which has squared pixels in a sinusoidal projection. 

2.2.2. Selection of suitable MODIS grid cells 

Given the complex acquisition geometry of the MODIS observations (Tan et al., 
2006; Wolfe et al., 1998) and given that the spatial sampling requirements to monitor 
the Belgian landscape are similar to the nominal MODIS spatial resolution, extra care 
needs to be applied when relating SIGEC (IACS) database with the MODIS L2G grid. 
SIGEC database was created by the government of the Walloon region and indicates 
what crop has been sown in every field in a given year In order to ensure grid-target 
adequacy, the method proposed by Duveiller and Defourny (2010) was used. This 
approach consists in convolving a kernel modelling the MODIS spatial response over 
the detailed wheat masks constructed from the SIGEC database. The result is a pixel 
purity map that provides an estimate of the percentage of the information obtained 
from surfaces that are covered with the target crop winter wheat for every cell in the 
MODIS grid. The cells in the grid with a purity of at least 75% are retained; for each 
of these valid locations, a time series is constructed by gathering the pixels in all of 
the available daily MODIS images. These time series are further filtered by screening 
out any pixels that do not correspond to the highest quality standards based on the 
MODIS flags and to some thresholds in the view zenith angle (VZA) and the 
Observation coverage (Obscov). 

2.2.3. Generation of crop specific GAI time series from MODIS 

GAI values have been retrieved over Walloon region from the multispectral 
reflectance using an algorithm developed for CYCLOPES (Carbon cYcle and Change 
in Land Observational Products from an Ensemble of Satellites) products (Baret et 

al., 2007) for the years 2000 through 2009. This approach was successfully used by 
Duveiller et al. (2011b) to retrieve crop specific GAI at high spatial resolution along 
the entire growing season and scaled up to MODIS data by Duveiller et al. (2011a). 

With a view to discard MODIS GAI estimated time series deemed as unsuitable for 
assimilation in WOFOST model, De Wit et al. (2012) have applied a filtering 
procedure based on the Canopy Structural Development Model (CSDM) (Koetz et 

al., 2005). The filtering procedure assesses the GAI time series using six criteria 
designed on the basis on the a priori knowledge of the agricultural characteristics of 
winter wheat cultivation in the area and on an exploratory analysis of satellite GAI 
estimates. 
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The selection procedure has severely restricted the initial dataset. The percentage of 
remaining GAI observed time series ranged from 11.4% (in 2000) and 56.7% (in 
2002), the average being equals to 22.8%.  

2.3. Spatially distributed crop growth model 

2.3.1. Crop growth model 

We used the WOFOST (WOrld FOod STudies) crop simulation model (Diepen et al., 
1989; van Ittersum et al., 2003). WOFOST is a mechanistic crop growth model that 
describes plant growth using light interception and CO2 assimilation as growth 
driving processes and crop phenological development as a growth controlling 
process.  

The leaf photosynthetic active area in WOFOST is calculated by multiplying the 
Specific Leaf Area (SLA, in ha kg−1) by the living leaf biomass (in kg/ha) for each 
leaf age class. Together with leaf biomass, the living stem and pod biomass can 
contribute to the photosynthetic active area and is calculated by multiplying stem and 
pod biomass by the Specific Stem Area (SSA) and Specific Pod Area (SPA). The 
sum of the leaf area, pod area and stem area is stored in WOFOST as the variable 
‘Leaf Area Index’. With respect to photosynthesis, stem area and pod area are 
treated similarly to leaf area. In practice, however, the contribution of stem and pod 
biomass to the leaf area index is zero, as the values of the SPA and SSA parameters 
are zero in the European model setup. Therefore, a possible inconsistency exists 
between the WOFOST modelled Leaf Area Index and the satellite estimated green 
area index (GAI) (De wit et al., 2012).  

However, the contribution of living stem and pod is probably negligible and 
considering moreover that the yellowing of pods is not calculated in WOFOST, it 
could induce inconsistencies at the end of the growing season. In this study we have 
subsequently chosen to match the WOFOST modelled LAI directly with the satellite 
GAI and therefore not to adjust the SPA and SSA parameters in the WOFOST model 
as the values of SSA and SPA are not well known. In the remainder of this paper, the 
term ‘GAI’ will be used. 

2.3.2. Spatial implementation of crop growth simulations 

The crop simulation model was implemented spatially by building upon the 
framework provided by the Crop Growth Monitoring System (CGMS). CGMS allows 
the regional application of WOFOST by providing a database framework that handles 
model input (e.g. weather, soil and crop parameters), model output (crop indicators 
such as total biomass and leaf area index), aggregation to statistical regions and 
yield forecasting (Vossen and Rijks, 1995; Genovese, 1998; Boogaard et al., 2002; 
de Wit et al., 2009). CGMS is part of the MARS (Monitoring Agricultural Resources) 
crop yield forecasting system that was developed by the Agri4Cast Action of the Joint 
Research Centre in Ispra, Italy. Since 1994, CGMS has monitored crop growth in 
Europe, Anatolia and the Maghreb with a spatial resolution of 25 km × 25 km and a 
temporal resolution of one day. The primary purposes of the CGMS are to provide 
information regarding weather indicators and crop status during the growing season 
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and crop yield forecasts at the level of EU member states early in the crop growth 
season. The principal user of the CGMS is the European Commission’s Directorate 
General for Agriculture (De Wit et al., 2012). 

2.4. Assimilation approach 

Assimilation approach is based on an optimization method aiming to minimize a 
given objective function expressing the deviation between simulated and remotely-
sensed estimation of GAI through the adjustment of selected model parameters. The 
two selected parameters are the TDWI and SPAN parameters.  

The TDWI parameter strongly influences the initial growth rate and has a high degree 
of uncertainty due to two reasons. First, because the WOFOST model begins on 
January 1st, the growth of wheat in autumn is not taken into consideration (contrary to 
PyWOFOST used in chapter 1 (which explains why this parameter is used instead of 
crop emergence). Second, the effects of winter conditions on standing crop biomass 
are not taken into consideration. Variability of the TDWI parameters strongly 
influences the rate of increase of the crop GAI and also affects the maximum GAI 
that can be reached during the growing season. The importance of calibrating this 
parameter in the WOFOST model was demonstrated for winter wheat by Yuping et 

al. (2008) for the North China Plain.  

The SPAN parameter determines the rate at which green leaves will turn brown and 
therefore determined the rate of crop senescence. Although this parameter is a 
characteristic of the variety of wheat, the senescence rate is also influenced by 
drought, fertilisation (nitrogen shortage decreases SPAN) and pest/disease 
infestation. Therefore, variability in crop management influences the SPAN 
parameter.  

Together, the TDWI and SPAN parameters make it possible to model the increasing 
and decreasing branches of the GAI trajectory and the GAI maximum. Because 
these parameters operate separately on the increasing and decreasing branches, 
little correlation between the two parameters can be expected while still providing 
large flexibility in adapting the shape of the GAI trajectory. These two parameters are 
however not able to correct the phenology and notably the moment of the GAI peak. 
Figure 2.4 presents the evolution of simulated GAI for 5 different values regularly 
distributed within the respective valid ranges of the parameters (considered 
separately, the non-considered parameter remaining at its default value). 

The optimization in De Wit et al. (2012) was implemented by minimizing the 
Weighted Mean Absolute Error (WMAE) between the modeled GAI (GAIm) and the 
MODIS-observed GAI (GAIo): 

W7�� = ∑ �. |;��� − ;��
|X( ∑ �X(  

n is the number of observations within the considered MODIS-observed GAI time 
series and w is a weighting factor used with a view to face the unevenly distribution 
of GAI MODIS observations that can be occasionally observed. Indeed, if the 
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Simulations presented in Figure 2.4 have been generated for a grid located in the 
Loamy region in 2002. Variations of recalibrated parameters values induced 
variations in simulated yields (Figure 2.5).  The contour plot has been generated by 
considering a step of 2 days for SPAN parameter within the 20-50 days range and a 
step of 25 kg/ha for TDWI parameter within the 50-500 kg/ha range. 
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Figure 2.5.- Evolution of simulated biomass in kg/ha (above) and grain (below) yields 

according to SPAN and TDWI (below) values 

Simulated grain yields are more sensitive to SPAN parameter compared to TDWI 
which influences mainly simulated biomass yield. For grain yield, we can observe 
that for a given SPAN value TDWI has nearly no influence on simulated yields and 
that for a given TDWI value the effect of a variation of SPAN value on grain yield 
tends to be less important for higher SPAN values.   
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3. Methods 

The assimilation procedure has been applied to all of the MODIS grid cells with 
suitable GAI time series over all of the available years. For each MODIS grid cell and 
each year, the WOFOST model has been executed using the soil, weather and crop 
information corresponding to the 10 x 10 km model grid at which the observations 
were obtained. The GAI observations for each of these MODIS Grid cells have been 
also retrieved, and the optimisation algorithm executed to obtain the minimum value 
of the objective function. The approach yielded a combination of SPAN and TDWI as 
well as the WOFOST-simulated GAI and biomass values for the years 2000 to 2009. 

Considering the difference of land use between the 2 considered agricultural regions, 
a first exploratory analysis has been conducted to assess if the spatial variability of 
the recalibrated parameter values can be associated to this difference of land use. In 
order to reach this objective, SPAN and TDWI recalibrated values have been 
averaged at the 10 x 10 km model grid and mapped. Only model grids holding at 
least 10 MODIS grid cells have been considered. The spatial patterns were 
afterwards visually explored to assess if a difference in recalibrated parameter values 
can ne also observed between the two agricultural regions.  

A more detailed study has been afterwards performed to assess the effects of the 
incomplete purity (up to 25% of the information for a MODIS grid is not specific to 
winter wheat) and of the possible remaining gridding effects on assimilation results. 
The contribution of the two effects can’t unfortunately be dissociated. By sake of 
simplicity, we will use the term of “contamination of the MODIS grid cells” for these 
two effects considered as a whole. Analyses have been performed at two different 
scales. Analyses were first performed at model grids level and afterwards at a more 
detailed scale i.e. at MODIS grid cells. The analyses have been performed for year 
2002 as this year presents the highest number of suitable MODIS grid cells for both 
agricultural regions. 

In the frame of the analyses at model grids level, the proportion of the different land 
cover within each 10 x 10 km model grid has been computed on the basis of the land 
use map of Wallonia (COSW version 2.07, 2011) for forests and the yearly Belgian 
LPIS (Land Parcels Identification System) maps for crops and grasslands.  

MODIS grid cells contamination has been assessed through the relationships 
between the recalibrated parameters values and the corresponding proportion of land 
cover at simulation grid level. Only land cover expected to have an important 
contribution on MODIS grid cells contamination were considered. These considered 
land covers are summer crops, grasslands and forests. For summer crops, only the 3 
main crops of this category have been considered namely maize, potatoes and sugar 
beet.  

A proportion of the different land covers has been also computed for the analysis at 
MODIS grid cells level. Contrary to the previous analysis, this proportion has been 
computed within buffers circumscribing the MODIS pixels (at nadir) considered as 
proxies for the PSF.  
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In order to separate at best the effect of the contamination of a MODIS grid cell by a 
given land cover (e.g. summer crops) from the effect coming from another land cover 
(e.g. grasslands), a selection (Figure 2.6) of 100 MODIS grid cells has been 
performed for each of the consider land cover. The selection has been done on the 
maximization of the sum of the percentages of the considered land cover and of 
winter wheat as well as the percentage of the considered land cover (within the 
buffer). 

For each day of observation, the average GAI values by category of land covers 
were then computed. The resulting GAI time series for winter wheat was visually 
compared to the resulting GAI time series for the 3 other land covers. Only day of 
observations presenting at least 40% (40 observations) in the two compared 
categories of land covers have been displayed.   

 

 

Figure 2.6.-MODIS grid cells selection procedure (MODIS grid cells contamination 

study) 

An analysis of the codistribution of parameters values has been finally performed. 
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4.2. MODIS grid cells contamination (model grids level) 

Observed spatial patterns of recalibrated parameters in figure 2.7 seem to match, at 
least visually, with spatial patterns observed in the land use maps presented in 
figures 2.1 and 2.3. In order to test the possible influence of landscape, supposed to 
be linked to the incomplete purity and to a remaining gridding effect, on the MODIS 
observations and subsequently on recalibrated parameters the relationships between 
the average recalibrated parameters values and the percentage of forests and 
grasslands per model grid have been assessed (figure 2.8). Proportion of forests and 
grasslands has been considered as these 2 classes represent the two main classes 
besides the arable crops class. It also represents evergreen elements that could 
“influence” the crop specific signal all along the growing season. 

The relationship between the average date of MODIS GAI peak and the percentage 
of forests and grasslands was also assessed. Date of maximum GAI values for the 
different MODIS GAI time series were estimated on the basis of the CSDM model 
used in the filtering procedure. 

Figure 2.8 shows (for year 2002) the influence of landscape on recalibrated 
parameters and also on the moment of GAI peak. Lower SPAN values (higher TDWI 
values) are observed when the proportion of grasslands and forests is high.  
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Figure 2.8.- Relationship between the average recalibrated SPAN and TDWI values 

and the average date of GAI peak with the proportion of forests and grasslands per 
model grid (year 2002) 

Let’s note that the maximum GAI value is, whatever the year, reached significantly 
earlier in Condroz agricultural region compared to Limoneuse agricultural region 
which is contradictory according to reality. Indeed, phenological data collected in 
variety trials of the Walloon agricultural research centre (CRA-W) in Gembloux 
(Limoneuse agricultural region) and Ciney (Condroz Agricultural region) for 15 years 
between 1987 and 2004 show no differences of heading date (phenological moment 
closes to the moment of maximum LAI). The same varieties have been used in both 
sites for the same year.  The average heading date for Ciney and Gembloux is 
respectively equals to DOY 152 and 153. The average and the standard deviation of 
the difference of average heading date per year (Ciney minus Gembloux) is 
respectively equal to -0.5 and 3 days.  

No agronomic (sowing dates\) or meteorological information (tables 2.2 and 2.3) 
can explain this contradictory observation. The WOFOST model runs on 2000-09 
period with the default parameters provides an average difference of 4 days between 
the peaks of GAI of Limoneuse and Condroz agricultural regions, the peak of GAI in 
Limoneuse agricultural region occurring earlier. The fact that up to 25% of the 
information does not come from winter wheat crop is a hypothesis for explaining this 
situation. 

The range of dates of GAI peak observed in figure 2.8 is also too wide to be 
associated to the natural variability of this phenological parameter all the more since 
it is average values (per model grid) that are displayed and is aforementioned in 
contradiction with field observation. The hypothesis of a “contamination” of MODIS 
GAI time series by land use other than winter wheat, in this case grasslands and 
forests, could be therefore a plausible explanation for these relationships. We can 
however also observe that the average date of GAI peak provided by WOFOST 
without assimilation is equal to 140 and 146 respectively for Limoneuse and Condroz 
agricultural regions in 2002. The corresponding dates estimated on the basis of the 
MODIS GAI time series are in average equal to 161 and 154, the gap is particularly 
important especially for Limoneuse region (140 vs. 161). Other factors have therefore 
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to play a part. Considering the importance of summer crops in Loamy region (Figure 
2.3), a possible ‘contamination’ of this category of crops is also to consider. 

If we plot the average per model grid of the recalibrated SPAN and TDWI values and 
of the dates of GAI peak (estimated by CSDM) against the proportion of summer 
crops, inverse relationships than the ones obtained with grasslands and forests can 
be observed (Figure 2.9). 
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Figure 2.9.- Relationship between the average recalibrated SPAN and TDWI values 

and the average date of GAI peak with the proportion of summer crops per model 
grid (year 2002) 

From these different relationships, we can obviously conclude that, despite the pre-
selection of MODIS grid cells notably according to the purity in terms of winter wheat 
occupation, the surrounding landscape seems to have an influence on observed GAI 
values and subsequently on recalibrated parameters. It is however not possible at 
this level to know exactly which is exactly the (most) influencing landscapes but also 
how the different landscapes / land uses influence the observed GAI time series. 

4.3. MODIS grid cells contamination (MODIS grid cells 

level) 

The selection procedure of MODIS grid cells for winter wheat (figure 2.6) led to a final 
set of 100 pure grid cells: 99.9% of the buffers area is covered by the crop (standard 
deviation of 0.4%).  

These MODIS grid cells were compared to selections of 100 MODIS grid cells 
presenting respectively a high proportion of summer crops, grasslands and forests. 
The comparison is concerned with the time series of the average GAI values. 

4.3.1. Summer crops 

The average proportion of summer crops in the selected 100 MODIS grid cells is 
equal to 18.1% (standard deviation of 5.8%), the average proportion of winter wheat 
being equal to 77.3% (standard deviation of 7.1%).  

Figure 2.10 presents the time series of the average GAI values for pure and summer 
crops “contaminated“ MODIS grid cells. 
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The time shift of the GAI peak occurring in case of MODIS grid cells contamination 
by summer crops could also explain why the average GAI peak is observed later in 
Limoneuse agricultural region compared to the Condroz agricultural region while it is 
the contrary which is expected. If we look at the proportion of MODIS grid cells 
including at least 5% of summer crops in the 2 agricultural regions, we can observe 
that these MODIS grid cells represent roughly 26% of the total number of considered 
MODIS grid cells in Loamy agricultural region and only 12% in Condroz agricultural 
region. As the other sources of MODIS grid cells contamination do not particularly 
tend to change the moment of the observed GAI peak, it is not too surprising in these 
conditions to observe a later date of GAI peak for Limoneuse agricultural regions. 

4.3.2. Grasslands 

The MODIS grid cells presenting a higher proportion of grasslands (average 
proportion of grasslands: 13.4% - standard deviation : 4.9%)  tend to present a very 
similar pattern (Figure 2.11) to the one observed for pure winter wheat MODIS grid 
cells which is not too surprising as the 2 land cover tends to present rather similar 
signature for most of the season. 

Looking more into details, small shifts can be observed. The MODIS grid cells 
presenting a higher proportion of grasslands tends to exhibit higher average GAI 
values at the beginning and the end of the growing season and lower average GAI 
values in-between. This behaviour seems to be coherent with what could be 
expected. Grasslands represent indeed evergreen elements. At the beginning of the 
growing season most of the grasslands, whatever their type of management (mowing 
or grazing), looks like winter wheat except that the soil can be considered as fully 
covered by this type of vegetation. It is therefore not too surprising to observe at this 
moment slightly higher values for MODIS grid cells presenting an higher proportion of 
grasslands. As the winter wheat starts growing, its GAI increases as well and 
become probably higher in average than those observed in grassland notably due to 
the grazing and mowing operations which tends to decrease GAI value. At a certain 
moment in the decreasing phase of winter wheat GAI, the GAI for MODIS grid cells 
presenting an higher proportion of grasslands tends to become higher than the GAI 
for “pure” winter wheat MODIS grid cells probably due to the fact that grasslands are 
still growing at this period.  Considering the lack of precise information on grasslands 
management, it is unfortunately not possible to validate this hypothesis.  
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4.4. Analysis of recalibrated parameters co-distribution 

Recalibrated parameters values per agricultural region and per year are presented in 
table 2.3. Both recalibrated TDWI and SPAN values present a spatial and temporal 
variability.  

Table 2.3.- Average and standard deviation of recalibrated TDWI and SPAN values 

per year and per agricultural region (L: Limoneuse agricultural region – C :Condroz 
agricultural region) 

  TDWI SPAN 

Year Nb obs Average St. dev. Average St. dev. 

 L C L C L C L C L C 

2000 429 25 135 199 70 66 32.5 31.8 5.0 4.9 

2001 384 168 107 105 55 48 30.7 28.1 3.6 4.3 

2002 1647 607 107 192 52 94 36.7 33.4 2.8 3.3 

2003 1054 282 125 159 48 65 32.3 31.2 2.8 2.4 

2004 942 308 213 271 118 125 31.9 30.3 3.1 3.5 

2005 420 282 108 136 64 93 26.1 24.2 3.3 4.0 

2006 258 139 165 242 103 134 25.1 24.7 3.3 3.2 

2007 416 105 141 195 62 98 34.8 33.2 3.3 4.1 

2008 855 466 116 214 45 97 35.3 32.3 2.5 2.7 

2009 402 149 61 64 33 40 25.3 27.0 2.4 5.0 

Recalibrated TDWI values, and therefore the initial amount of biomass at simulation 
start (the 1st January) are systematically lower for loamy agricultural region. TDWI is 
a parameter summarizing, at least partly, the crop growth in autumn and effects of 
winter conditions on crop biomass. Higher TDWI values for Condroz region seem 
therefore to show that this region is earlier concerning winter wheat growth 
development than loamy agricultural region. This observation is in contradiction with 
the field reality, notably with the observations available in table 2.2. 

As far as SPAN parameter is concerned, contrary to the TDWI parameter, SPAN 
values are roughly systematically higher for loamy region than for Condroz. No field 
data are unfortunately available to confirm or contradict this observation. 

Standard deviations tend to be more important, whatever the recalibrated parameter, 
in Condroz compared to the loamy region. 

It is also important to mention that in average the recalibrated parameters values are 
most of time lower than the default parameters values (equals to 35 days and 210 
kg/ha respectively for SPAN and TDWI parameters).  

Despite the initial hypothesis of a relative independence between the two recalibrated 
parameters, the computation of correlation coefficients shows that very highly 
significant and negative relationships exist between the TDWI and SPAN parameters 
(table 2.4). The coefficients of correlation are most of time higher than 0.5 (in 
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absolute value). Let’s note however that the coefficients of correlation are slightly 
biased by the constraints put on parameters recalibrated values (ranges of possible 
values defined for both parameters). 

Table 2.4.- Coefficients of correlation between TDWI and SPAN parameters per year 

Year Loamy Reg. Condroz Reg. 

2000 -0.73*** -0.62*** 

2001 -0.45*** -0.65*** 

2002 -0.56*** -0.52*** 

2003 -0.62*** -0.33*** 

2004 -0.32*** -0.14* 

2005 -0.49*** -0.64*** 

2006 -0.52*** -0.52*** 

2007 -0.35*** -0.39*** 

2008 -0.58*** -0.45*** 

2009 -0.09ns -0.17* 

As the theoretical relative independence between the two parameters can‘t be really 
questioned, explanations for such systematic relationships can be probably found in 
the recalibration procedure. One of the main consequences is therefore that both 
parameters loss their original meaning.  In other words, it means that the recalibrated 
values for the two parameters can’t be interpreted which could explain at least partly 
the contradictory results observed above. 

In WOFOST model, maximum of GAI value is reached at simulated heading. 
Simulated GAI remains at its peak value for some days, usually for less than one 
week. An exploratory analysis of simulated GAI time series shows sometimes the 
existence of a particularly long plateau of simulated maximum GAI value, especially 
for years presenting higher SPAN values (lower TDWI values) as for example year 
2002 and within a year for Loamy agricultural region. 

Figure 2.13 illustrates this plateau for a selected MODIS grid cell in 2002 a simulated 
GAI time series resulting from SPAN/TDWI recalibration and the corresponding GAI 
observations used for this calibration. The existence of a plateau at maximum 
simulated GAI value is clearly noticeable.  

Figure 2.13 seems also to show a temporal discrepancy between observed and 
simulated GAI values, especially in the increasing phase of GAI. The maximum 
simulated GAI value is also lower than the maximum MODIS-estimated GAI values. 
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Figure 2.14.- Difference between (CSDM) estimated and simulated days of 

maximum GAI values for Limoneuse and Condroz agricultural regions in 2002 

Let’s note also that even if only pure winter wheat MODIS grid cells are selected, a 
phenological discrepancy between remotely-sensed and simulated GAI time series 
remains. In our study, maximum GAI value for the purest winter wheat MODIS grid 
cells in 2002 is observed at DoY 167. Considering that remotely-sensed observations 
are not available on a daily time step, no certitude exists on the fact that this date 
corresponds to the day of the GAI peak but it seems that this moment can be 
estimated (on average) between DoY 153  and 167. The average date of maximum 
GAI value estimated with the CSDM is equal to DoY 157 (values for the 1st and 3rd 
quartiles are respectively equal to 152 and 166) for these purest winter wheat MODIS 
grid cells. As far as WOFOST model is concerned, the peak of GAI is observed at 
last at DoY 146 (for Condroz agricultural region). The interquartile range (equal to 14 
days) can be also considered as relatively wide. Possible explanations for such a 
range are first of all the variability in the sowing dates and the existence of different 
varieties (genotypes) but also the uncertainty existing on the estimation of the date of 
GAI peak by the CSDM fit which is dependent on the temporal availability and on the 
uncertainty of the GAI observations. Considering the medium resolution of MODIS 
sensor, information recorded for a given MODIS grid cells is likely to come from 
different parcels at different phenological stages. This probably influences GAI 
values, with a variable intensity according to the day of observation due to the 
existence of the gridding effects, and subsequently the global shape of the observed 
GAI time series (and therefore the estimation of the date of the GAI peak by the 
CSDM fit).  

Phenological observations collected in 2002 by the Walloon Agricultural Research 
Centre in two varieties trials both located in Limoneuse agricultural region identify in 
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average the moment of the GAI peak (heading phenological stage) at DoY 151 
(earlier observation: DoY 147, later observation: DoY 155) and DoY 154 (earlier 
observation: DoY 149, later observation: DoY 158) which is quite close to the CSDM 
estimation of GAI peak moment. Though it has to be validated on a larger data set, 
this could mean that phenology derived from remote sensing match with field reality. 
This assumption is strengthened by the results of Sakamoto et al., 2010 who have 
observed, comparing the date of 4 key phenological stages derived from MODIS data 
time series with ground-based observations, a RMSE ranging between 3 and 7 days 
for maize and soybean. 

The joint recalibration on SPAN and TDWI is unfortunately not able to correct 
phenology. It means that for a given simulation grid and a given year, the simulated 
day of maximum GAI value is not affected by the SPAN/TDWI recalibration. SPAN 
parameter influences mainly the decreasing phase of GAI. As this decreasing phase 
starts just after the maximum GAI value, the existence of a significant shift between 
simulated and observed GAI peaks (that we will call “phenological discrepancy” in the 
rest of the study), has therefore logically an influence on SPAN parameter 
recalibration. Indeed, an observed situation with a quick leaves fading after the peak 
could be seen as a favourable situation (high SPAN value meaning that the leaves 
stay green for a long time) if the modeled peak of GAI is significantly earlier than the 
observed one. In this situation, the simulated yield will be consequently 
overestimated (considering that the TDWI is unchanged). 

Recalibrated TDWI value is logically also influenced by the phenological discrepancy. 
When the phenological discrepancy is important, recalibration of the model is 
therefore constrained to increase artificially the SPAN parameter value which 
constraints subsequently the recalibrated TDWI parameter value. This can probably 
explain why the maximum GAI value observed in figure 2.13 is low compared to 
observations and why the phenological discrepancy is essentially observed in the 
increasing phase of GAI.  

The relationship between the difference of observed and simulated date of GAI peak 
and recalibrated SPAN parameter at agricultural region level on 2000-09 period is 
globally positive (figure 2.15). Higher SPAN values are observed for years where 
observed dates of GAI peak occur later than the simulated ones (and conversely). As 
the speed of leaves fading (characterized by the SPAN parameter) is supposed to be 
independent of the GAI peak date, this obvious relationship has low probability to be 
a matter of chance and illustrates once again the impact of phenological discrepancy. 
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The assimilation procedure based on SPAN and TDWI parameters used in the 
analysis is not able to correct this phenological shift. The consequences of this 
phenological discrepancy uncorrected by the SPAN/TDWI recalibration are first of all 
that recalibrated parameters do not reflect the observed situations. For example, a 
situation of quick leaves fading could be seen as a normal or even an ideal situation 
(high SPAN value) if the phenological shift between the observed and simulated GAI 
time series is important. The phenological shift tends to provide higher SPAN (lower 
TDWI) values when the observed GAI peak occurs after the simulated GAI peak 
(situation of year 2002 for example) and tends to provide lower SPAN (higher TDWI) 
values when the observed GAI peak occurs before the simulated GAI peak. The 
importance of correctly simulating the moment of the GAI peak (and also its values) 
with a view to obtain a correct estimation of the SPAN parameter was already 
highlighted in Curnel et al. (2011) and in Kouadio (2012).  It also raises the issue of 
equifinality of data assimilation and the related risk to misinterpretation of the 
recalibrated parameter values.  

From a practical point of view, the direct repercussion on the assimilation procedure 
is that the rules used in the filtering procedure of GAI time series has to be 
strengthened. One step in this direction could be to select only MODIS grid cells 
selected within a pure or nearly pure winter wheat environment, i.e. increasing the 
purity level threshold currently fixed to 75% up to 90-95% for example. A compromise 
has however to be find so as not to lose the natural variability (due to differences of 
cultivars, of fertilization scheme\) that can be observed for a given year in a defined 
region. Being very strict on purity level will drastically decrease the number of 
selected MODIS grid cells especially if the landscape is highly fragmented. For 
example in 2002, selecting MODIS grid cells with a purity higher than 90% reduce 
the number of observations from 1647 in Limoneuse agricultural region to 572 
(reduction of 67%) and from 607 in Condroz agricultural region to 194 (reduction of 
68%). The number decreases to 289 and 105 respectively for Limoneuse and 
Condroz agricultural regions if the purity threshold level is set to 95%. A question is 
to know if to possibly losing some of the natural variability by a more severe selection 
on purity level is more interesting in terms of assimilation efficiency than possibly 
having a better representation of growing conditions but introducing some noise in 
the time series. As we work in this study on regions that are defined on the basis of 
growing conditions criteria such as meteorological and soil conditions (in other words, 
growing conditions are relatively similar within a given agricultural region), it is not 
unrealistic to believe that the natural variability within a given agricultural region is 
relatively low and therefore that selecting the purest winter wheat MODIS grid cells 
could improve assimilation efficiency.  

The temporal shift between the simulated and remotely-sensed GAI peaks, even 
when pure pixels are considered, is questioning. It can arise from a wrong estimation 
of model parameter(s) influencing the simulated date of maximum GAI value. In 
WOFOST, for winter crops, this date is mainly driven by TSUM1 parameter, i.e. the 
sum of effective temperatures from the 1st January up to heading. TSUM1 is normally 
a variety (genotype) parameter. In the version of WOFOST used in this study, 
TSUM1 has been recently recalibrated after a spatial clustering in two zones of equal 
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“variety” (Djaby et al, 2009). Each variety is defined by a single set of crop 
parameters which are kept constant within a zone. Concept of variety as considered 
in Djaby et al, 2009 is purely a model concept completely different from varieties 
(genotypes) in plant breeding.  The zones were defined according climatic gradients 
as well as topographic features. Despite this recalibration, an average RMSE of 7.6 
days was observed between simulated and observed day of anthesis. This remaining 
error is mainly due to the non-consideration of genotypes in simulation. Considering 
TSUM1 parameter instead of TDWI could be an alternative to allow a phenological 
adjustment but unfortunately it couldn’t probably be able to adjust correctly the GAI 
values (as TDWI can do). TSUM1 and possibly TSUM2 could be computed for each 
MODIS grid based on GAI observations or more exactly on CSDM smoothed time 
series. These TSUM1/TSUM2 values could be then simply forced in the model prior 
to a recalibration on TDWI and SPAN. Let’s note that considering the dependency 
observed between the recalibrated parameters, an other possibility could be to adjust 
first TDWI on the increasing phase of GAI (still considering a prior forcing with 
TSUM1) before any recalibration of SPAN parameter. Whatever the proposed 
method, it implies however to have full confidence in the GAI observations as 
representation of the field (at least on the phenological point of view) and in the ability 
of the CSDM to smooth observed GAI time series. Although some crop growth stage 
observations collected in field trials tend to support the hypothesis that phenology 
derived from remote sensing match with field reality it has to be validated on a larger 
data set. Differences in sowing dates can also explain partly the differences between 
simulations and observations. In WOFOST for winter crops, simulation starts at 
pseudo emergence date fixed at the 1st January and it is therefore unfortunately not 
possible to directly recalibrate the sowing (or emergence) date to match the 
observations.  

More generally, the differences between the simulated and remotely-sensed dates of 
maximum GAI stresses once again the recurrent problem of the usually low size of 
observations data sets used to calibrate models.  

Despite that and the fact that the results of this analysis has to be confirmed for other 
years and regions, this study has however the merit to lay the foundations for further 
improvements of assimilation techniques of remote sensing data in crop growth 
models. 

 

  



- 111 - 

 

CHAPTER 3 : Potential performances of 

SAR-Estimated grassland mowing calendar 

assimilation in LINGRA model based on an 

OSS Experiment 

1. Introduction 
 

Monitoring grassland resources at regional level is an integral part of a forage 
production system. Grassland resources should ideally be analyzed concomitantly 
with other aspects such as land or livestock resources. The monitoring is usually 
done to quantify available resources, understand the interrelationships between the 
different components and appraise development options or estimate livestock 
support capacity (Harris, 2000). 

Monitoring grassland resources through field observations is difficult, expensive and 
time consuming. The modeling approach can be in this context a solution to face 
these difficulties.   

Various models have been developed to simulate grass growth at regional and local 
level (Sheehy and Johnson, 1988; Thornley, 1991; Schapendonk et al., 1998; 
Stilmant et al., 2001; Woodward, 2001; Barret et al., 2005; Ruget et al., 2006). These 
models generally use meteorological inputs considering that the prevailing climatic 
conditions, notably air temperature, light and rainfall are the main determining factors 
for grass growth (Barret et al., 2005) in addition to soil water supply. Besides the 
climatic conditions, the level of N fertilizer applied is also important and, given that 
other factors being equal, is often the main limiting factor for herbage production 
(Whitehead, 1995). In the grassland models, nitrogen fertilization can be either 
specified (Stilmant et al., 2001; Ruget et al., 2006) or considered as optimal (Bouman 
et al., 1996a). 

As observed in chapters 1 and 2, synchronizing modeled phenology is an important 
factor to consider with a view to reach a good accuracy in yields estimation and a 

fortiori in yields predictions. In grasslands, phenology is partly driven by farmers’ 
management, mainly mowings. In Belgium up to 3 (and sometimes 4) mowings can 
be observed within a growing season. These mowings are spread out all along the 
growing season according climatic conditions, farmers’ needs and objectives 
(Dusseux et al., 2013). A huge uncertainty on mowing dates used in grassland 
growth models is therefore observed. 

As aforementioned, uncertainty in biophysical models can be reduced by assimilation 
of remotely-sensed data. Mowings are punctual events. In order to monitor these 
events, multi-temporal image series with a high temporal frequency are required. 
This requirement can be hardly met in Belgium with optical sensors considering the 
frequent cloud cover. On the contrary, SAR systems, due to their ability to penetrate 



- 112 - 

 

cloud and haze layers (Attema et al., 1998) and their independence to sun 
illumination, offer a high data acquisition frequency even in bad weather conditions 
which represent a serious asset.  

With a variable degree of success and at different spatial resolutions, SAR data were 
used to monitor and estimate grassland characteristics such as grass height (Hill et 

al., 1999), biomass (Svoray and Shoshany, 2002; Moreau and Le Toan, 2003, Wang 
et al., 2013), leaf area index (Dente et al., 2008).The methodologies used to link 
these biophysical variables with SAR data include “traditional” approaches such as 
those based on statistical relationships, e.g. simple (Stolz and Mauser, 1997; Svoray 
and Shoshany, 2002; Moreau and Le Toan, 2003) or multiple regressions (Hill et al., 
1999), or based on the inversion of a semi-empirical model such as the water cloud 
model (Svoray and Shoshany, 2002 ; Graham and Harris, 2003; Dabrowska-
Zielinska et al., 2007) or the Oh model (Oh et al., 1992). More complicated models 
have been also developed. An extensive review of these models can be found in the 
Kornelsen and Coulibaly (2013). 

Grassland management can also be followed through SAR data. Herold et al. (2000) 
have for example shown that a discrimination of the management mode (mowing or 
grazing) with SAR images and mainly with the L band (the other bands tested were 
the C and X bands) was possible. Dusseux et al. (2014) have showed that SAR-
derived (RADARSAT-2) variables (polarization ratio and polarimetric decomposition) 
allow a very good discrimination of grasslands from crops in Central-north Brittany 
(classification accuracy of 0.98) but unfortunately that the HH/VV ratio, commonly 
used for land monitoring in agricultural areas, was characterized by high variance for 
each date which do not allow to discriminate grassland management practices. 
These findings are in accordance with those from Voormansik et al. (2013) who have 
also noted with TERRASAR-X that it was not possible to distinguish tall grass from 
short grass on the basis of HH/VV ratio. The same authors have however assessed 
that it was however easy to detect areas with freshly cut grass lying horizontally on 
ground on the basis of dual polarimetric dominant scattering alpha angle. Let’s note 
that a current trend, exacerbated by the forthcoming sentinel missions, relies in the 
combination of SAR with optical data for grassland management (Finnigan, 2013; 
Wang et al., 2013; Dusseux et al., 2014; Hong et al., 2014). 

Backscattering measurement is also tainted by errors. Errors arise notably as a result 
of instrument noise, calibration errors, aliasing or statistical uncertainties due to 
speckle. Even accurately measured and stable in time SAR data display significant 
speckle (Bally and Fellah, 1995). Each SAR image pixel includes a high number of 
individual scatterers. When a coherent electromagnetic radiation interacts with a 
rough surface, the scatters generate return signals with random phases, which 
interact with each other. Because of constructive and destructive interferences in the 
radar returns from independent point scatterers within a resolution cell, the intensity 
in the radar image of homogeneous target is not constant. The interferences are the 
cause of the grainy appearance of the generated image and lead to random changes 
in the pixel’s brightness (Tupin et al., 2014). As a consequence, the image of a 
homogeneous surface shows pixels values with a high dispersion (González 
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Sanpedro, 2008; Giustarini et al., 2015). Speckle limits the ability to correctly interpret 
SAR images, restricts image classification and introduces uncertainty in ground 
surface parametric inversion (Huang and Liu, 2007). 

Though several techniques (mainly filters) were developed to reduce speckle noise in 
SAR imagery (Durand et al., 1987; Huang and van Genderen, 1996; Qiu et al., 2004; 
Huang and Liu, 2007; de Leeuw and Tavares de Carvalho, 2009; De Keyser et al., 
2012; Buemi et al., 2014; Torres et al., 2014), the speckle noise cannot be fully 
eliminated. The efficiency of these filtering techniques is limited by the difficulty of 
modeling SAR speckle as several field and sensors characteristics (e.g. field size 
and geometry, moisture, dielectric constant, wavelength, polarization or view angle) 
can generate different speckle noises.  

The impact of the SAR backscattering uncertainty on assimilation should be therefore 
assessed. In order to reach this objective a synthetic analysis, similar to the one used 
in chapter one, has been performed. More specifically, this chapter presents the 
results of an OSS Experiment assessing the efficiency of the assimilation of mowing 
dates derived from SAR data in the LINGRA grass growth model (Bouman et al., 
1996b; Schapendonk et al., 1998) and aiming to identify the accuracy and the 
temporal availability required on SAR observations to reach a given objective in 
terms of errors reduction on final total biomass estimation.  

2. Material and Methods 

2.1. Grassland growth model 

We used the LINGRA (LINtul GRAss) grassland growth model as a basis for our 
work (Bouman et al., 1996b Schapendonk et al., 1998).  

LINGRA, derived from the LINTUL (Light INTerception and UtiLisation simulator) 
concepts as proposed by Spitters (In Bouman et al., 1996b), is a sink/source growth 
model initially developed to predict the productivity of Lolium perenne grasslands 
across the member states of the EU at the level of potential and water-limited 
productions. The model has been also used to quantify land-use evaluation and 
study the effects of climate change on grass growth (Rodriguez et al., 1999), used as 
basis for the development of new models (Barrett et al., 2005) and adapted for 
Timothy (Phleum pratense) swards (Höglind et al., 2001). 

Simulated key processes are light utilization, leaf formation, leaf elongation, tillering, 
and carbon partitioning to storage, shoots and roots. The sward is assumed to 
remain in a vegetative stage. The integration level is kept high and the number of 
processes has been restricted to key parameters, and only a small number of 
processes involving these parameters are dynamically simulated. On the other hand, 
parameters that have relatively little impact on crop growth, or which knowledge is 
scarce, have been treated using a static approach.  

Two levels of production, potential (depending only on intercepted solar radiation and 
temperature) and water-limited, are simulated. Soil nutrients are considered as at an 
optimal level and there is no simulation of mineral and manure nutrition. In contrast to 
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arable crops, the grassland plants are frequently defoliated due to grazing or 
mowing. LINGRA is mainly suitable for simulating mowings. In the model, the 
mowing dates are optional, either read from an external file or when the grass 
reaches a certain amount of biomass, fixed by the user (Schapendonk et al., 1998). 

2.2. Area of Interest 

Although the OSS Experiment is mainly based on synthetic data and that 
subsequently no field data are really compulsory, it is still useful to have a first guess 
of the uncertainty on model parameters and/or initial states in order to avoid the use 
of “non-realistic synthetic data” which could lead to erroneous conclusions. 

Simulations were performed for year 2008 and for a 50 x 50 km grid located in 
Wallonia where the proportion of grasslands area is important (>25 % of the total 
area).   

In our experiment, data collected in the vicinity of Libramont municipality (49° 55′  N,  
5° 22′ E) within the frame of the on-going MIMOSA project (Buffet et al., 2010) was 
used to ground the experiment to realistic conditions and later on to possibly validate 
some of the conclusions of the OSS Experiment. 

Data, collected during the first mowing period in 2008 and during the first and second 
mowing period in 2010, includes grass height and biomass as well as management 
surveys (mowing and grazing dates).  

The 2-year survey has notably allowed stressing that even in a limited area grassland 
management practices are spread out during all the vegetation period. As an 
example in 2008 for the first mowing period, roughly 6 weeks separate the first (last 
dekad of May) and last (first dekad of July) mowings. This large range of mowing 
dates can be explained by weather conditions (temporal distribution of rainfall 
events), farmers objectives in terms of grassland quantity and quality but also by 
some regulations (as e.g. agri-environmental measures) granting subsidies for late 
mowed parcels. 

2.3. Description of the OSS Experiment 

As previously explained in chapter 1, OSS Experiments consist of identical twin 
experiments, a widely used technique to assess the impact of data assimilation, in 
which data selected from one model run is assimilated into another run of the same 
model with different initial conditions. The convergence of the second run towards the 
first, defined as the “truth”, can be measured to quantify the data assimilation 
effectiveness in driving the model with “wrong” initial conditions towards the truth 
(Raicich and Rampazzo, 2003).  

Figure 3.1.presents an overview of the OSS Experiment. 
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Figure 3.1.- Overview of the OSS Experiment 

The OSS Experiment is divided in 3 main steps. 

First step: “truths” generation run (1) 

In the truths generation run, a set of “synthetic observations” used afterwards in the 
assimilation step is computed. To reach this objective, a so-called “true” set of 
mowing calendars is defined on the basis of the default mowing calendar considered 
in the LINGRA model.  

“Default” mowing calendar is the one used operationally and can be considered as 
the best estimation of this calendar for a given area without any additional 
observations and therefore without assimilation. In our study, a 3 mowing per year 
scheme has been considered. Default mowing dates have been set to DOY 166 (15th 
of June), 215 (3th of August) and 264 (21th of September). The default mowing 
calendar is in accordance with observations made in the area of interest. 

Considering that mowing operations are mainly dependent on meteorological 
conditions and farmers management (dairy farmers tend for example to mow earlier 
to favour grass quality), the true mowing calendars are not necessarily the same as 
the ones used “by-default” in the model.  

True mowing calendars have been defined by considering 10 days before and after 
the default mowing dates in addition to the default mowing dates themselves. 3 
mowing dates per mowing period (e.g. DOY 156, 166 and 176 for the first mowing 
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Second step: control run (2) 

The control run (often called “open loop” run) represents the best model estimate of 
the truth without the benefit of data assimilation. LINGRA model is run with its 
aforementioned “default” mowing calendar.  The ‘control’ yield values generated 
during this run are used to evaluate the improvement or alteration of the simulations 
due to the assimilation of the “synthetic” mowing calendars.  

Third step: assimilation run (3)  

In the last step of the OSS Experiment, a procedure is used to estimate “synthetic” 
mowing calendars on the basis of the “synthetic” backscattering time series defined 
in the first step. 

Mowing dates will be estimated for each synthetic backscattering time series based 
on the following procedure (also explained in figure 3.3): 

1. For each mowing period, a time frame within which we search for the 
mowing date is defined. The time frame goes from 20 days before the 
default mowing date for the considered mowing period up to 20 days after 
this default mowing date. 

2. Within the defined time frame, the mowing window (time interval between 
two observations where the mowing is supposed to occur) corresponds to 
the interval with the biggest difference between two successive 
observations as far as this difference is positive (considering that 
backscattering value when the biomass is high, i.e. before the mowing, is 
lower than after the mowing). 

3. To be considered as valid mowing window, the two backscattering values 
of the interval should be on either side of a threshold value arbitrarily set in 
our study to 0.2 kg/m² converted in backscattering value with equation 1. 

4. Considered mowing dates are the average of the two dates at both ends of 
the mowing windows. 

If no mowing date is identified for a given mowing period, the mowing date used to 
run LINGRA is the default mowing for the considered mowing period.  

Figure 3.3 illustrates the mowing date detection procedure (for one mowing period).  
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LINGRA is run considering these synthetic mowing calendars and the resulting yields 
values are compared with the yields generated in the “truths” generation run which 
allow assessing the performance of the considered assimilation method. 

2.4. Definition of OSSE scenarios 

As the study aims at identifying the accuracy and the temporal availability needed on 
SAR observations to reach a given objective in terms of errors reduction on final 
grain yields estimation, different scenarios of uncertainty on SAR observations and 
time step between SAR observations have been defined.  

As mentioned in paragraph 2.4.2., three different standard deviations σ associated to 
the stochastic noise added to the true backscattering values have been considered: 
0.5, 1 and 1.5 db. To provide an order of magnitude, an uncertainty of 1.5 dB is 
roughly what can be expected with ERS SAR .PRI and .GEC products. Let’s note 
that the lower uncertainty levels considered in this analysis can for example be 
reached with these products by pixel averaging. Magnitude of the accuracy 
improvement in this case is function of the parcel size concerned by the averaging 
technique (Bally and Fellah, 1995).    

Two regular time steps between observations were considered: 6 and 12 days. 
These time steps correspond to the expected time steps with the forthcoming ESA 
Sentinel-1 SAR mission, 6 days being for the two-satellite constellation (Snoeij et al., 
2008).  

2.5. Assessment of assimilation efficiency 

As for the winter wheat OSS Experiment (chapter 1), the estimation of the accuracy 
and temporal availability needed on SAR observations is mainly estimated on the 
basis of an indicator computed from Relative Mean Absolute Error (RMAE) values 
estimated for the situation with and without assimilation, namely the assimilation 
efficiency (AE) indicator.  

As aforementioned, the number of truths considered is equal to 27.  In order to have 
more stable and reliable results, random perturbations to generate the “synthetic” 
backscattering values have been repeated several times. For the sake of 
computation time, the number of iterations considered was fixed to 40.  

As the day at which we start to consider the regular time step between observations 
can influence the results of the mowing date estimation, six different start dates 
(repetitions) was considered. When the regular time step is equal to 6, start has been 
set from DOY 1 to 6. When the regular time step is equal to 12, starts have been 
randomly selected within 2-days successive interval between DOY 1 and 12 (one 
start randomly selected between DOY 1 and 2, one start between DOY 3 and 
4...etc.).  

The Relative Mean Absolute Errors are computed as follows: 
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Where TBTi  is the total biomass yield of truth i, TBO  the total biomass yield from the 
”control” run, i.e. the reference total biomass without assimilation and TBAijk the total 
biomass yield after assimilation for truth i (i=1,...,27),  iteration j (j=1,..., 40) and 
repetition k (k=1,..., 6). Differences and ratios have all been considered in absolute 
values. N1 and N2 represents the total number of observations. 

RMAETO and RMAETA have been computed for each mowing period but also for the 
whole mowing season (i.e. considering the 3 mowing periods as a whole). Total 
biomasses considered in equations 2 and 3 are therefore either the biomass mowed 
at the considered mowing period or the sum of the biomass for the 3 considered 
mowings.  

The Assimilation efficiency AE indicator, derived from these Relative Mean Absolute 
errors, can be computed as follows: 

�� = 100 ∗ a1 − &7��%A&7��%8b																(��. 4) 
Assimilation Efficiency (AE) indicator represents an estimation of the average 
reduction of errors on total biomass yields estimation. A positive value for AE means 
therefore that the assimilation of the estimated mowing dates globally improves the 
total biomass yields estimation. At the opposite, a negative value for AE means that 
the errors on total biomass yields estimation are on average increased after 
assimilation and that in this situation, it is better to not assimilate and to use the 
model parameters and initial states ‘default’ values.  

2.6. Assessment of the accuracy and temporal availability 

needed on SAR observations 

The main objective of the OSS Experiment aims at the assessment of the accuracy 
needed on remotely-sensed SAR observations in order to reach a given objective in 
terms of errors reduction on final grass yields estimation. In this frame, two objectives 
of 25% and 50% of errors reduction have been defined.  

Each scenario presenting an Assimilation Efficiency value higher than the defined 
objectives (25 or 50%) is deemed as suitable.  

3. Results 

Table 3.1 presents the results for the mowing dates estimation. Globally, the 
estimation procedure allows the identification of a mowing date in more than three-
quarter of the situations. The percentage of identification is logically higher when the 
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uncertainty level on backscattering values is low and/or the time step between 
satellite observations is short.  

The average differences between the estimated and the true mowing dates are 
systematically negative. This bias increases with the level of uncertainty on 
backscattering and/or the time step between observations.  

The standard deviation follows logically the same trend towards an improvement 
according to the level of uncertainty on backscattering values and the time step 
between observations.  The estimation of mowing date based on SAR data allows to 
divide the standard deviation up to more than by 4 compared to the situation without 
assimilation i.e. when simply using the default values: from 8.2 days when the default 
mowing dates are used, the standard deviation falls up to 1.7-1.8 days when 
observations are available every 6 days and uncertainty level on backscattering 
values is equal to 0.5 db. It seems also more interesting to improve accuracy on 
observations than the time step between these observations.   

Computation of AE confirms the significant potential offered by the detection of 
mowing dates (table 3. 2).  

Positive Assimilation Efficiency values are observed nearly for all our considered 
scenarios meaning that the detection of mowing dates based on SAR data and the 
use of the information in LINGRA growth model always improve the estimation of 
total biomass produced over the 3 mowing periods. Assimilation efficiency values are 
slightly higher when the mowing periods are considered separately. Though the 
improvements are sometimes rather limited, especially when a time step of 12 days 
is observed between SAR observations, a reduction around 75 % of the errors on 
total biomass can be overall expected when SAR observations are available every 6 
days with an uncertainty of 0.5 db. 

Relative Mean absolute Error without assimilation (RMAETO) is low (3.4%) when the 
sum of mowed biomass is considered. This low value is linked to the specification 
(value, distribution) of the uncertainty applied on mowing dates but also is due to the 
fact that our experiment has been performed only for one year; consequently the 
inter-annual variability is not taken into consideration. RMAETO is higher when the 
mowing periods are analysed separately and increases logically from the 1st to the 3rd 
mowing period. From 6.0% for the first mowing period, it reaches 15.6% at the 3rd 
mowing period.  

Roughly, the first objective aiming to an errors reduction on total biomass of 50% can 
be only reached when time step between SAR observations is equal to 6 days and 
the level of uncertainty is equal or lower than 1 db.  

The second and less demanding objective aiming to an errors reduction on total 
biomass of 25% can be logically reached in more situations. This objective is 
obtained when the time step between observations is equal to 6, whatever the level 
of uncertainty. When the time step is doubled, the objective is reached when level of 
uncertainty is equal to 0.5 dB and hardly reached when the level of uncertainty is 
equal to 1db. 
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Reduction of the assimilation efficiency is relatively limited, for a given time step, 
when the uncertainty level rises from 0.5 to 1 dB but seems to be more important 
when the uncertainty level reaches 1.5 db. Reduction of the assimilation efficiency on 
the other hand tends to be more important when, for a given uncertainty level, the 
time step goes from 6 to 12 days. These results tend to show that for improving yield 
estimations reducing the time between two observations is comparatively more 
efficient than reducing the uncertainty level on these observations.  
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Table 3.1.- Percentage of identified mowing dates, mean and standard deviation of the difference between the estimated and the true mowing 

dates per mowing period (with / without replacement by default value) 

  % of identified mowing dates 
Mean difference between estimated 

and true mowing dates 
Std. of the  difference between 

estimated and true mowing dates 

Timestep σ 
1

st
 mowing 
period 

2
nd

 mowing 
period 

3
rd

 mowing 
period 

1
st

mowing 
period 

2
nd

 mowing 
period 

3
rd

 mowing 
period 

1
st

 mowing 
period 

2
nd

 mowing 
period 

3
rd

 mowing 
period 

6 0.5 99.9 99.7 100.0 -0.5 / -0.5 -0.5 / -0.5 -0.5 / -0.5 1.7 / 1.7 1.8 /1.7 1.7 / 1.7 

6 1 95.1 93.4 98.5 -1.0 / -0.9  -0.6 / -0.6 -0.6 / -0.6 4.0 / 3.7 3.7 / 3.2  3.4 / 3.3 

6 1.5 90.0 88.0 95.6 -1.9 / -1.8 -1.0 / -1.0 -0.7 / -0.7 6.7 / 6.7 6.4 / 6.1 6.3 / 6.3 

12 0.5 88.9 86.3 98.0 -1.4 / -0.9  -0.9 / -1.1 -0.9 / -0.8 4.0 / 3.3 4.3 / 3.2  3.6 / 3.4 

12 1 83.6 79.8 95.1 -2.6 / -2.4 -1.2 / -1.4 -1.1 / -1.0 5.7 / 5.5 5.3 / 4.2 4.8 / 4.5 

12 1.5 79.3 76.0 93.0 -3.5 / -3.7 -1.8  / -2.4 -1.8 / -1.9 8.1 / 8.2 7.1 / 6.6 6.8 / 6.7 

 With default 
values 

- - - 0.0 0.0 0.0 8.2 8.2 8.2 
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Table 3.2.- RMAETA, RMAETO and AE values per mowing period considered separately and all together (sum of mowed biomass) 

Time step σ 

1
st

 mowing period 2
nd

 mowing period 3
rd

 mowing period All mowing periods 

RMAETA RMAETo AE(%) RMAETA RMAETo AE(%) RMAETA RMAETo AE(%) RMAETA RMAETo AE(%) 

6 0.5 1.5 6.0 75 2.7 10.8 75 3.7 15.6 76 1.2 3.4 67 

6 1 2.4 6.0 60 4.4 10.8 60 5.4 15.6 66 1.6 3.4 54 

6 1.5 4.4 6.0 31 7.5 10.8 31 9.4 15.6 40 2.6 3.4 25 

12 0.5 3.4 6.0 48 5.6 10.8 48 7.2 15.6 54 2.2 3.4 36 

12 1 4.9 6.0 18 6.6 10.8 39 8.3 15.6 47 2.6 3.4 24 

12 1.5 7.1 6.0 -18 8.9 10.8 18 10.7 15.6 31 3.3 3.4 4 
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4. Discussions and conclusions 

Our Observing System Simulation Experiment (OSSE) has allowed highlighting and 
quantifying the errors reduction to be expected on total biomass by the detection of 
the mowing dates based on SAR observations and the assimilation of these mowing 
dates in LINGRA model.  

Reduction of errors in estimating total biomass can reach up to 67% in optimal 
conditions i.e. when SAR observations are available every 6 days with an uncertainty 
level equal to 0.5 dB which is roughly what can be expected from the forthcoming 
Sentinel-1 mission with its two satellites. 

It is important to note that the scenarios defined in our experiment are ideal 
situations.  The regular time step between SAR observations is probably an optimist 
vision of the reality as well as the constant level of uncertainty all along the growing 
season.  Many other hypotheses have been set in this experiment as the normal 
distribution considered for the errors on SAR observations and the constant 
uncertainty over the growing season, the perfection of the LINGRA model, an optimal 
fertilization or the fact that the remotely-sensed observations represent a non-biased 
measurement of field biomass. The simulated improvements are probably the best to 
be expected but even divided by two the improvements remain significant. 

Results are also function of the methodology used to detect the mowing dates. Our 
results tend to demonstrate that our detection procedure provides satisfactory results 
despite a systematic negative bias. The reason explaining that the average 
differences between the estimated and the true mowing dates are systematically 
negative has probably different origins. In case of mowing period incorrectly 
identified, the probability to identify a mowing period earlier to the right mowing 
period seems to be higher.  

For the first mowing period, where the biases are the most important, a part of the 
explanation lies also in a higher proportion of non-identification for true mowing dates 
occurring 10 days after the default mowing dates (i.e. mowing dates occurring at 
DOY 176). A later mowing at this period means slightly higher daily temperatures and 
subsequently a faster re-growth. The probability to have the two observations 
defining identified mowing window on the same side of our defined threshold is 
higher (and the subsequently the probability to use the default value is higher).This 
procedure is probably only suitable for mowed parcels. Biomass variations along the 
growing season in grazed parcels are indeed certainly too small to be detected but 
the procedure could be possibly used for land use mapping.   

The methodology also starts from the assumption that mowing corresponds to an 
increase of backscattering. This assumption is probably only valid for a specific range 
of conditions. Besides the vegetation biomass, the backscattering is indeed 
influenced by several factors such as, among others, soil moisture content and 
roughness, incidence angle, wavelength or canopy structure. The impact of these 
different factors will be studied more closely in chapter 4.   
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All these results need of course to be confirmed by empirical study but our 
experiment tend however to show that, despite the aforementioned hypotheses and 
approximations, the detection of cutting dates on the basis of SAR observations and 
the subsequent use of this information in LINGRA model allows improvements of 
total biomass estimation.  Our results can also provide objectives for future missions 
dedicated to crop growth monitoring. 

Whatever the scenario of temporal availability and of accuracy on SAR observations, 
an improvement is observed. If an objective of 25% errors reduction on total biomass 
can be reached in nearly all situations (the only situation where this 25% objective is 
not reached is when SAR observations present an uncertainty of 1.5 dB and are 
available every 12 days), the second objective aiming at an errors reduction of 50% 
is only observed when SAR observations are available on a 6 days basis and with an 
uncertainty lower or equal to 1 db.   

A better estimation of grassland production, through a better estimation of the 
mowing calendar, is important for grassland management both at farm and regional 
level but also in the frame of the use of this information in decision support systems. 
A better estimation of biomass means also a better estimation of the grass quality as 
an inverse relationship links grassland productivity and grassland energetic value.  

An accurate estimation of mowing dates could also be used for regional monitoring 
and control purposes. For example in Wallonia in the frame of agri-environmental 
measures, subsidies are granted to farmers accepting to delay their mowing 
operations (a late mowing favouring the fauna and flora biodiversity). Grassland 
parcels concerned by the agri-environmental measure can’t be mowed before a 
certain date (the 20th of June or the 1st of July according to the region).This study 
shows also that SAR observations, as far as the temporal resolution is good enough, 
could be therefore used to check if the conditions for granting the subsidies are met 
or at least to orientate the controls of subsidised grassland parcels. Assessing 
mowings calendar is also an opportunity to assess land-use intensity in grasslands 
which has a significant impact on biodiversity and on landscape habitat. Intensive 
mowings, involving frequent destruction of above-ground plant organs or a generally 
low ability to resprout, result in a rapid decline of sensitive species and enrichment of 
more disturbance-tolerant ruderal taxa. 
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CHAPTER 4 : Estimation of mowing dates 

on the basis of SAR (ERS-2) observations 

1. Introduction 

The Observing System Simulation Experiment implemented in chapter 3 has 
stressed the importance of correctly estimating the mowing dates for accurate yields 
estimation.  The method used in chapter 3, most probably only valid for a specific 
range of conditions, starts from the assumption that mowing corresponds to an 
increase of backscattering. Other factors can in addition influence the backscattering 
and subsequently the mowing detection. Therefore, before considering the 
assimilation in model like Lingra, the priority is to assess whether a mowing date can 
actually be detected using SAR time series. 

The total backscattering is a complex sum of the backscattering from vegetation and 
soil. As the microwave frequency can penetrate both canopy and soil up to a difficult-
to-determine depth, assessing if the signal is dominated by the soils or crop 
conditions is difficult (Moran et al., 2012). Penetration capabilities of a SAR signal 
within a canopy is function of the sensor configuration including frequency, incidence 
angle and polarization but is also dependent on water content, vegetation and soil 
characteristics (Gherboudj et al., 2011). 

Shorter wavelength such as X-band and C-band interacts mainly with the top canopy 
layers while longer wavelength such as L-band penetrates deeper within the canopy 
leading to higher scattering contribution from the soil (Ulaby et al., 1984 In Jiao et al., 
2010; Henderson and Lewis, 1998). C-band is usually considered as rather suitable 
frequency for agricultural purposes as it has a wavelength of about 5 cm which is 
comparable to the size of the leaves and the stems of cereal crops (Wooding et al., 
1995; Skriver et al., 1999).The sensitivity of C-band SAR to crop conditions is 
however dependent upon the crop type. Ferrazzoli et al. (1997), correlating crop 
biomass with backscattering at C-HV at an incidence angle of 35° for various crops, 
have observed a strong relationship (r²=0.75) for crops such as wheat, colza and 
alfalfa. A lower relationship (r²=0.31) was unfortunately observed for crops such as 
corn, sunflower and sorghum due to a signal saturation. For Ferrazolli et al. (1992) 
this saturation is observed at a LAI of 2-3 m²/m² for C-VV and C-HH backscattering. 
The same saturation value is reported for VV/VH ratio by Blaes et al. (2006). 
According to McNairn and Brisco (2004), this saturation is reached in corn when the 
plants reach approximately 1 m height.  

The vegetation contribution to total backscattering is comparatively more important 
when the incidence angle increases. Indeed, the pathlength within the vegetation 
increases and therefore enhances the response to crop conditions. Steep incident 
angles (<30°) are more interesting in a context of soil moisture estimation due to the 
decreased effects of soil roughness and vegetation attenuation (Dabrowska-Zielinska 
et al., 2007 ; Balenzano et al., 2011; Moran et al., 2012; Gherboudj et al., 2011). 
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The penetration of SAR signal may be finally also dependent on polarization if the 
orientation of crops coincides with the orientation of polarization. A stronger 
backscattering from vertically orientated crops (such as wheat, rice or grass) is for 
example usually observed with VV polarization. 
 
In the same way, directions of planting row can have an impact on total SAR 
backscattering. Picoli et al. (2013) have for example observed in Sugarcane that 
backscattering values from fields with rows perpendicular to the range direction of 
satellite were higher (~ 1.2 dB) than those from fields with rows horizontal to this 
direction. According to Moran et al., 2012, this impact can induced differences of 5-
10 dB up to 20 dB in extremes situation. Wind can change the orientation of the crop 
and increase or decrease by this way significantly the backscattering. A variation 
between 2.5 and 7dB has been reported (Voormansik et al., 2013). 
 
Many studies are currently exploiting the potentialities offered by fully polarimetric 
sensor (McNairn and Brisco, 2004). Good relationships can be observed for 
agricultural crops between biomass or LAI and polarizations differences (Brown et 

al., 2003) or ratio (De Roo et al., 2001; Mattia et al., 2003, Della Vecchia et al., 
2008). 

The vegetation canopy typically results in volume scattering and the attenuation of 
radar signal due to vegetation varies according to its dielectric properties (i.e. its 
water content) and its physical structure. When biomass increases, the 
backscattering becomes decreasingly sensitive to soil properties (Dabrowska-
Zielinska et al., 2007). Skriver at al. (1999) have observed that at the end of the 
growing season the C-band backscattering from crop vegetation was dominated by 
volume scattering. Luckman (1998) and Hill et al. (2005) have also shown, based on 
a polarimetric model-based decomposition (Freeman and Durden, 1998), that volume 
scattering was dominant in grassland at C-band (the secondary scattering being the 
surface scattering). For Dabrowska-Zielinska et al. (2007), the volume scattering of 
vegetation becomes the dominant scattering type when the LAI is higher than 3 for L-
band. Joseph et al. (2010) have however assessed for corn that even at peak of 
biomass and large incidence angles the backscattering remains sensitive to soil 
moisture.  

Many studies (Allen and Ulaby, 1984; Sofko et al., 1989; wood et al., 2002; Riedel et 

al., 2002; Riedel and Schmullius, 2003; Saich and Borgeaud, 2000) have stressed 
the increase of the backscattering coefficient due to the presence of water on crops 
(after a rainfall or dew formation).  This increase is significant: Sofko et al. (1989) 
have for example observed a 2-4 dB increase of backscattered signal of canopy just 
after a rainfall and Wood et al. (2002) an increase of 1.7-2.5 dB for crops on which 
dew was formed. Concerning grasslands, Stolz and Mauser (1997) show that for a 
same grass height, backscattering coefficients corresponding to data acquired in dry 
conditions tend to be lower than the ones acquired in rainy conditions but also that 
the higher dielectric constant due to the droplets on the plants increases the signal 
significantly only for higher canopy. According to Riedel et al. (2002), intercepted 
rainfall and dew influence on backscattering is different especially at C-band. For 
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these authors, the backscattering variations at C-band after a rain event strongly 
depend on the vegetation structure and the growth stage while the impact due to dew 
is independent from vegetation type. 

As far as the contribution of the soil in the total backscattering is concerned, it is 
mainly influenced by soil moisture content and surface roughness (Benallegue et al., 
1995; Zribi and Dechambre, 2002; Löw et al., 2005). The dielectric constant (water 
content) of the soil is the main factor influencing the intensity of the backscattering 
(Álvarez-Mozos et al., 2005). If other factors are ignored, the backscattering 
coefficient increases with an increase of soil moisture until the moisture content 
reaches roughly 35% in volume. At this moment, the radar signal becomes 
insensitive to soil moisture (Bériaux et al., 2011; Kornelsen & Coulibaly, 2013).The 
granulometry and the texture have also an influence but this influence is much lower 
(Fellah, 1997).  

The main objective of this study is to assess conditions for success of grassland 
mowings detection based on SAR data considering the numerous factors influencing 
the backscattering. 

Two preliminary investigations support this assessment. The first one aims at 
assessing the backscattering coefficient sensibility to the main sources of variability 
such as water content and biomass. As grasslands can be either managed by 
mowing or grazing, a second preliminary study assesses the potentialities of SAR 
data to classify the grassland parcels according their land use or management mode. 

Results of this chapter have been initiated on the basis of master theses of Thibault 
Delvaux and Christophe Bocquet. 
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2. Material and Methods 

2.1. Field campaigns 

Two field campaigns were completed in 2008 and 2010 in two ecological territories 
(Figure 4.1) located in Wallonia (Belgium), namely the ‘Dépression Fagne-Famenne’ 
(DFF) and the “haut plateau de l’Ardenne centrale” (HPAC) ecological territories. 

For both years, a set of grassland parcels has been monitored. In 2008, the 
monitoring has been only done in HPAC ecological territory. For each of these 
parcels, the type of grassland management (mowing or grazing) and the current 
status of the parcels (i.e. for example if cows are currently grazing or if the mowing 
parcel has been cut or not) have been recorded. The GPS coordinates have been 
also collected at the borders of the parcels along roads 

For practical reasons, these parcels were selected in a limited area within the 
ecological territories: in the vicinity of Libramont-Chevigny and Beauraing towns 
(represented by red triangles in figure 4.1) respectively for HPAC and DFF ecological 
territories. 

 

Figure 4.1.- Ecological territories including the monitored sites during the 2008 and 

2010 field campaigns (DFF: “depression fagne famenne” ; HPAC: “hauts plateaux de 
l’ardenne Centrale”) 

61 grasslands parcels were monitored in 2008, 108 in 2010. Their distribution per 
management type and ecological territory is reported in table 4.1.  

Table 4-1.- Number of observed parcels per year, ecological territory and 
management mode 

Year Ecological 

territory  
Mowing Grazing 

2008 HPAC 28 33 

2010 
HPAC 14 33 

DFF 34 27 
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In 2008, 6 surveys were realized more or less on a weekly basis from the 28th of May 
up to the 7th of July. In 2010, management of grassland parcels was recorded for 
both ecological territories from the 25th of May up to the 28th of June 2010 at the 
same visit frequency than in 2008. Timing of field data collection is available in 
figures 4.2 to 4.4. 

2.2. SAR data 

A set of 15 ERS-2 images (Precision image (PRI) products) have been acquired for 
both field campaigns. ERS-2 sensor operates in C-band (5.3 GHz) and presents an 
incidence angle of 23° in VV polarization (table 4.2).  

ERS-2 acquisitions (n=5) for 2008 are limited to HPAC ecological territory while 
acquisitions for 2010 (n=10) covered both territories. For both years of field 
campaign, taking into the cost of field campaigns, only the first mowing period was 
studied. 

Table 4-2.- General information on acquired ERS-2 PRI images 

Field 

Campaign 

Date of 

acquisition 
Orbit Track Pass  

Spatial 
coverage

1
 

HPAC DFF 

2008 

18/05 68370 380 Descending  x  

03/06 68599 108 Descending x   

16/06 68792 381 Ascending  x   

22/06 68871 380 Descending  x   

05/07 69064 72 Ascending x   

2010 

04/05 78619 108 Descending x  

17/05 78812 301 Ascending x x 

23/05 78891 380 Descending x x 

05/06 79084 72 Ascending x x 

08/06 79120 108 Descending x  

11/06 79163 151 Descending  x 

21/06 79313 301 Ascending x x 

27/06 79392 380 Descending  x 

10/07 79585 72 Ascending x  

 16/07 79664 151 Descending  x 

1 ‘x’ in the HPAC or DFF columns means that the ERS-2 images covered the 

monitored area within respectively the HPAC and DFF ecological territories.  

Due to programming constraints and the necessity to have frequent images for 
monitoring the grasslands management, it was not always possible to acquire 
images at the same mode (ascending or descending). Moreover, it was not always 
possible to cover the 2 ecological territories with a single image. 



- 132 - 

 

Ascending and descending images of ERS-2 are acquired respectively around 21:45 
and 10:30. The risk of dew, and subsequently to observe increase of backscattering 
coefficient values, at both acquisition time is therefore plausible. 

2.3. Meteorological conditions 

The 2 selected ecological territories present slightly different growing conditions. If 
higher temperatures are recorded in the DFF ecological territory (synonymous with a 
faster grasslands growth and probably earlier mowings), rainfall is slightly higher in 
HPAC ecological territory.  

In 2008, between April and July (4 months), 270 mm and 327 mm of rainfall were 
observed in 70 days (more than 1 day over 2) respectively for DFF and HPAC 
ecological territories. In 2010, on the same period, the number of rain days as the 
amount of rainfall was lower: rain occurred only 52 days and generated 186 and 201 
mm respectively for DFF and HPAC. 

Figures 4.2 to 4.4 present for both ecological territories the daily rainfall on the 
periods of grassland parcels monitoring. These figures show clearly that the number 
of rain days, and subsequently the potential number of days where backscattering 
can be affected, is relatively important whatever the considered ecological territory 
and the considered year. 

Considering the highest frequency of rainfall events in 2008, it is not too surprising to 
see that proportionally more ERS-2 SAR images were acquired during a rain day and 
within or close to a rain period. The probability to record more noise in the 
backscattering in 2008 is therefore more important. 

Meteorological data used in the frame of this study are hourly rainfall for two 
meteorological stations belonging to the PAMESEB network (www.pameseb.be) 
close (< 20 km as the crow flies) to the monitored parcels. 

 

  



 

Figure Figure 4.2.- Amount of rainfallAmount of rainfall (mm) and distribution(mm) and distribution of ERS
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Figure Figure 4.3.- Amount of rainfall (mm) and Amount of rainfall (mm) and Amount of rainfall (mm) and distribution ofERS
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(year 2010) 

2 images and field observations (management) in HPAC ecological territory 2 images and field observations (management) in HPAC ecological territory 

 

2 images and field observations (management) in HPAC ecological territory 2 images and field observations (management) in HPAC ecological territory     



 

Figure 4.4.- Amount of rainfall (mm) Amount of rainfall (mm) and and distribution ofERS
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2.4. Methods 

2.4.1. SAR data preprocessing 

All the ERS-2 images have been preprocessed with SARscape module of ENVI 
software (Exelis Visual Information Solutions, Boulder, Colorado). The preprocessing 
includes the images coregistration as well as geometric and radiometric corrections 
taking into account the local incidence angle of the SAR beam. A digital elevation 
model sampled at 90m (SRTM 3 sec) was used as ancillary data. 

Images in ascending and descending modes have been preprocessed separately. 

2.4.2. Computation of backscattering coefficients and selection of 

management parcels 

The GPS coordinates of each parcel were identified on the basis of the annual Land 
Parcel Identification System (LPIS) maps. 

For each parcel, a 30m perimeter buffer was delineated. Pixels in this buffer have 
been discarded to limit border effects and the backscattering coefficients were 
averaged. 

In order to reduce speckle noise, only parcels including a certain number of pixels 
was considered. A threshold level of 100 pixels is recommended by Bally and Fellah 
(1995), roughly 75% and 97% of confidence level respectively for radiometric 
resolution bounds of +/- 0.5 and 1.0 dB. However, as the number of remaining 
parcels was too low (especially in HPAC ecological territory), the threshold was 
consequently reduced to 50 pixels. With this number of pixels, the confidence drops 
to 59% and 89% respectively for radiometric resolution bounds of +/- 0.5 and 1.0 dB. 

Moreover, only parcels presenting at least 3 dates of observation have been 
considered. 

The number of mowing parcels after this selection is equal to 10 and 24 respectively 
for HPAC and DFF ecological territories. As far as the grazing parcels are concerned, 
the number is equal to 29 and 23 respectively for HAPC and DFF ecological 
territories. 

2.4.3. Land use detection 

First, the parcel signatures per management mode were studied and the impact of 
biomass and water content on backscattering assessed through empirical 
relationships. 

Water content is probably one of the most important sources of uncertainty on 
backscattering coefficients but no synchronous field measurement is available for 
these grassland parcels. To take this factor into account, the cumulated rainfall over 
the 72h preceding the SAR acquisitions (rain_3d) were computed as a proxy thanks 
to a very dense station network. 
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Based on the results of this exploratory analysis, a discrimination rule identifying the 
land use, i.e. the management type, was defined while the land cover is already 
known. 

The data set has been split in a calibration data set composed of data for HPAC 
ecological territory (including therefore the 2 years, 2008 and 2010) and a validation 
data set composed of data for DFF ecological territory (year 2010) to assess the 
robustness of the proposed criterion. 

2.4.4. Mowings detection (exploratory analysis) 

This study aims mainly at studying the effect of mowings on backscattering and at 
assessing if the mowings or more exactly the mowing windows (time interval 
between two SAR images where the mowing has occurred) can be unambiguously 
identified. 

Building on the land use correctly identified for all the parcels, two different 
approaches were defined, the first one dealing with the spatial variability while the 
second focuses on the temporal variability. 

The first approach works in relative terms by comparing per acquisition date the 
backscattering coefficients of mowing parcels with the median backscattering 
coefficient of grazing parcels (G parcels). For mowing parcels, a distinction is made 
between parcels that are not yet mowed (NM parcels) and parcels that have just 
been mowed (JM parcels). This approach relies on the assumption that the 
fluctuation of biomass in grazing parcels is quite limited all along the growing season, 
at the contrary of mowing parcels with biomass in NM and JM parcels respectively 
higher and lower compared to the G parcels. 

The second approach works also in relative terms but the comparison is made from 
an acquisition date to another. The approach aims at comparing the differences of 
backscattering between consecutive SAR acquisitions for NM and JM parcels. 

For both approaches, decision rules to detect mowings were defined. 

The dates of field campaign survey do not match necessarily with the SAR 

acquisition dates (figure 4.5). The time interval (∆�3) between the moment the parcel 
is observed as mowed (tf2) and the next SAR acquisition (ts2) can be sometimes 
important.  It varies between 3 and 18 days (7 days in average).  The  time interval 

(∆�() between the moment the parcels are observed for the last time as not mowed 
(tf1) and the next SAR acquisition (ts2), varies between 6 and 24 days (12 days in 
average). Mowing dates are therefore uncertain and included between tf1 and tf2. 
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3. Results 

3.1. Field data analysis (mowing dates) 

In 2008, most of the parcels have been observed as mowed (Figure 4.6) after day of 
year (DoY) 170 (18th of June). Some drier periods can be indeed observed in figure 
4.2 in this period (after DoY 168 and 180). 

 

Figure 4.6.- Cumulated number of management parcels observed as mowed at the 
given day of observation for DFF ecological territory in 2010 and HPAC ecological 

territory in 2008 and 2010. 

In 2010, as far as the HPAC ecological territory is concerned, first mowing operations 
in management parcels were observed the 15th of June (DoY 166) and the last ones 
the 28th of June (DoY 179). No parcels were observed as mowed during the survey 
at DoY 169 which is not too surprising considering the meteorological conditions at 
that moment. In the DFF ecological, roughly 50% of the monitored management 
parcels (16 over 31) have been mowed before the 7th of June (DoY 158), mainly after 
the 2nd of June (DoY 153) when a window of 4-5 dry days can be observed (Figure 
4.4). The following mowings are more distributed in time.   

In grassland growth models, only one mowing date is indeed usually used for a given 
region and a given mowing period. For a given ecological territory and a given year, 
we can observed that the range of mowing dates (for the 1st mowing period) is large 
(sometimes more than 50 days between the first and the last observed dates of 
mowing) which justifies furthermore our attempt to estimate these mowing dates by 
remote sensing.  
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3.2. Parcels signature 

The distribution of backscattering coefficients for grasslands in C-VV ranges from -
6.5 to -15 dB (Figure 4.7). These values are coherent with values provided for 
grassland with VV polarization in C-band (Stolz and Mauser, 1997; Hill et al., 1999; 
Saich and Borgeaud, 2000,) but also in X-band (Bargiel et al., 2010). 

 

Figure 4.7.- Distribution of backscattering coefficient per management mode (G: 
grazing; M: mowing) and adjustments (plain and dashed lines) under the normal 

distribution assumption  

Obvious differences can be noticed between grazing (G) and mowing (M) parcels: 
grazing parcels tend to present higher backscattering coefficients and a lower 
dispersion around the mean (lower standard deviation). 

These differences are observed whatever the year and/or the ecological territory 
(results not shown). 

These contrasted distributions can be explained by a difference of biomass. In 
grazing parcels, grass is periodically ingested by herds. We can therefore consider 
that the fluctuation of biomass in grazing parcels is quite limited all along the growing 
season, at the contrary of mowing parcels. The comparison of backscattering 
coefficients of mowing parcels before and just after a mowing reinforce this 
assumption: the average backscattering coefficient for mowing parcels before the 
mowing (NM parcels) is equal to -11.69 dB (σ=1.33 dB, n=151) while mowing parcels 
just after the mowing (JM parcels) present a backscattering coefficient average of -
9.50 dB (σ=1.75dB, n=44). When biomass increases, the contribution of volume 
scattering to (total) backscattering increases as well which tends to attenuate the 
signal and to reduce the backscattering coefficient values. 
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acquisition date and per ecological territory of G and NM parcels and rain_3d has 
been reported (figure 4.10).  

The differences of backscattering are higher in dry condition. When the soil is dry, the 
contribution of biomass water content on backscattering is predominant. When the 
soil moisture increases, its contribution on backscattering increases and then 
reaches a level where contributions of both soil and plants to the SAR response tend 
to be similar and thus confused. This behavior was also observed by Auquière 
(2001), Dabrowska-Zielinska et al. (2007) and Beriaux (2011). Therefore, G and NM 
parcels can’t be distinguished and hamper the detection of land use. When the soil 
moisture further increases, the backscattering from the soil masks the contribution 
from the biomass water content. 

 
Figure 4.10.- Differences between average backscattering coefficients of NM and G 
parcels for each acquisition as a function of the cumulated rainfall over 3 days before 
the SAR acquisition (rain_3d) - the points size is proportional to the day of year (DoY) 

3.4. Management detection 

Based on these results, a procedure building on the difference in backscattering 
coefficients distributions (figure 4.7) and the effect of water content on backscattering 
coefficient (figure 4.9) is proposed to classify the land use. 

More specifically, the procedure is based on the distribution of backscattering 
coefficients of grazing parcels. If an observation for a given parcel steps outside this 
distribution, this parcel is not considered as a grazing parcel and is subsequently 
labelled as a mowing parcel. As shown in figure 4.9, water content has to be taken 
into account to define the distribution of grazing parcels for a given situation (a given 
year and/or a given area for example). 

The procedure is schematically presented in figure 4.11. 

1

5,3-

0,3-

5,2-

0,2-

5,1-

0,1-

5,0-

0,0

5,0

0 2 4 6 8 01 21 41 61 8

C

B
d 

ni )
G-

M
N( 

ec
n

er
effi

d st
n

eiciff
e

oc 
g

nirr
ett

acs
kc

a
B

)mm ,d3_niar( h27 revo llafniar detalumu



 

Figure

The limits of the di
rain_3D)
grazing parcel 
of Gaussian distribution
acquisition date. 
given mowing period) are 
interval of this distribution 

The standard deviation values for the d
grazing parcels per acquisition 
based on HPAC data set.

µG1 and µ

and wettest (r

Figure 4.1
acquisition dates.

Figure 4.11.- Schematic representation of the procedure to classify grassland 
parcels according to 

limits of the distribution
rain_3D) are set both on
grazing parcel and the cumulated rainfall over 72h (rain_3d)
of Gaussian distribution
acquisition date. If all the backscatte
given mowing period) are 
interval of this distribution 

The standard deviation values for the d
grazing parcels per acquisition 
based on HPAC data set.

µGn are the av

and wettest (rw) dates of observations.

Figure 4.12 presents the distribution of these standard deviations for all the 
acquisition dates. 

Schematic representation of the procedure to classify grassland 
parcels according to management type (mowing or grazing)

stribution for grazing parcels
are set both on the relationship

and the cumulated rainfall over 72h (rain_3d)
of Gaussian distribution of backscatte

If all the backscatte
given mowing period) are included 
interval of this distribution then this parcel is 

The standard deviation values for the d
grazing parcels per acquisition date
based on HPAC data set. 

are the average backscatter

dates of observations.

presents the distribution of these standard deviations for all the 

- 144 - 

Schematic representation of the procedure to classify grassland 
management type (mowing or grazing)

for grazing parcels
the relationship between the average backscatte

and the cumulated rainfall over 72h (rain_3d)
of backscattering coefficient

If all the backscattering values av
d within the limit
parcel is labelled as

The standard deviation values for the distribution
date (σg1,\,σGn 

erage backscattering coefficients respectively for the 

dates of observations. 

presents the distribution of these standard deviations for all the 

Schematic representation of the procedure to classify grassland 
management type (mowing or grazing)

for grazing parcels for a given day (a given value of 
between the average backscatte

and the cumulated rainfall over 72h (rain_3d) and on 
ring coefficients for grazing parcels 
ring values available for a given parcel (and a 

limits of the probability (fixed at 9
labelled as grazing.

istributions of backscatte
in figure 4.11) have been calibrated 

ing coefficients respectively for the 

presents the distribution of these standard deviations for all the 

Schematic representation of the procedure to classify grassland 
management type (mowing or grazing) 

for a given day (a given value of 
between the average backscatte

and on the assumption 
for grazing parcels for a given

ailable for a given parcel (and a 
of the probability (fixed at 9

grazing. 

of backscattering coefficients 
) have been calibrated 

ing coefficients respectively for the 

presents the distribution of these standard deviations for all the 

 

Schematic representation of the procedure to classify grassland 

for a given day (a given value of 
between the average backscattering of 

the assumption 
for a given 

ailable for a given parcel (and a 
of the probability (fixed at 99%) 

ring coefficients for 
) have been calibrated 

ing coefficients respectively for the driest (rd) 

presents the distribution of these standard deviations for all the 



- 145 - 

 

 

Figure 4.12.- Distribution of standard deviations of backscattering coefficients for 
grazing parcels per acquisition date 

For the sake of simplicity and considering that no significant relationship has been 
found between these standard deviations and the rain_3d (results not shown), the 
median value (0.66 dB) of the standard deviations has been selected to set the 
distribution interval allowing to make the distinction between the grazing and the 
mowing parcels. 

Application of the procedure on the calibration data set provides as expected very 
promising classification results (table 4.3). Producer’s accuracy for grazing and 
mowing parcels are respectively equal to 79.3% and 90.0%. The overall classification 
accuracy is equal to 82.1%.  

Table 4.3.- Confusion matrix (calibration data set) 

Reference � Grazing Mowing total 
User’s 

accuracy 

classification 
Grazing 23 1 24 95.8% 

Mowing  6 9 15 60.0% 

total 29 10 39  

Producer’s accuracy 79.3% 90.0%   

The classification results according to the years tends to present a lower 
classification results for mowing parcels in 2008 (table 4.4). 

Most of the SAR data in 2008 were acquired in wet conditions (high rain_3d values). 
In these conditions, as observed in figure 4.9, backscattering coefficients of mowing 
parcels tend to be similar to those observed for grazing parcels which can explain the 
confusion between the 2 land uses. 
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Table 4.4.- Confusion matrix per year (calibration data set) 

2008 

Reference � Grazing Mowing total 
User’s 

accuracy 

classification 
Grazing 5 1 6 83.3% 

Mowing  1 2 3 66.7% 

total 6 3   

Producer’s accuracy 83.3% 66.7%   

2010 

Reference � Grazing Mowing total 
User’s 

accuracy 

classification 
Grazing 18  18 100.0% 

Mowing  5 7 12 58.3% 

total 23 7   

Producer’s accuracy 78.2% 100.0%   

Applied on validation data set, the procedure provides as well quite good 
classification results (table 4.5). The overall classification accuracy is equal to 78.7%. 
The producer’s accuracy is also good and reaches 82.6% and 75.0% for respectively 
grazing and mowing parcels. 

Table 4.5.- Confusion matrix (validation data set) 

Reference � Grazing Mowing total 
User’s 

accuracy 

classification 
Grazing 19 6 25 76.0% 

Mowing  4 18 22 81.8% 

total 23 24 47  

Producer’s accuracy 82.6% 75.0%   
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3.5. Mowings detection 

As mentioned in paragraph 3.2, the backscattering ofgrassland parcels just after 
mowing (JM parcels) tends to be lower than before the mowing but also lower than 
backscattering of grazing parcels. The distribution of backscattering coefficient (figure 
4.13) is also wider (σ=1.75 dB). 

 

Figure 4.13.- Distribution of backscattering coefficients of JM parcels 

As for grazing parcels, the backscattering increases with the sum of rainfall over the 
72h preceding SAR acquisitions (results not shown). 

3.5.1. Approach based on the comparison with the median 

backscattering of G parcels 

The differences for each acquisition date between the backscattering coefficient of 
JM parcels and the median of backscattering coefficient of G parcels is most of the 
time positive (figure 4.14). The difference average equals 0.52 dB (median = 0.82 
dB). These results were expected as biomass per hectare remaining after mowing 
tends to be lower than the one observed in grazing parcels. 

Negative values, sometimes lower than -1dB, can be however observed that would 
mean that biomass per hectare is higher in these parcels. Let’s note that grassland 
swaths have been observed in 4 of the 5 parcels with a difference of backscattering 
lower than -1 dB. These observations have been made 5-6 days before the SAR 
acquisition. A possible explanation for these lower differences of backscattering 
coefficient values could be the presence of these grass swaths at the day of ERS-2 
acquisition. Let’s also note that 6 over the 8 parcels for which swaths have been 
observed a couple of days before the next SAR acquisition present a lower difference 
of backscattering compared to median backscattering coefficient of G parcels. No 
evidence of the influence of grassland swath on backscattering coefficient has been 
found in literature. We can however notice that McNairn et al. (1997) have shown 
that, using C-VV SAR band, the backscattering coefficient values of winter barley 
residue plots were significantly lower from those of bare soils / no residue plots. The 

-6,4-8,0-9,6-11,2-12,8

9

8

7

6

5

4

3

2

1

0

Backscaterring coefficient (dB)

N
b

 o
f 

o
b

se
rv

a
ti

o
n

s



- 148 - 

 

plausibility of the hypothesis of an effect of remaining swath on the field on 
backscattering is a bit reinforced by the fact that at the next acquisition, the 
backscattering coefficient values for these parcels are a bit higher or similar than 
median backscattering of grazing parcels. 

 

Figure 4.14.- Difference (in dB) of backscattering coefficient of NM and JM parcels 
with the median backscattering coefficient of G parcels 

Unlike for the JM parcelsthe differences between the backscattering coefficient 
values of NM parcels with the median of backscattering coefficient values of G 
parcels are most of time negative. In average, this difference is equal to -1.34 dB 
(median of -1.54 dB). 

The range is however quite wide for both categories: the standard deviation for NM 
and JM parcels (compared to the median backscattering of G parcels) is respectively 
equal to 1.17 dB and 1.35 dB. This dispersion is observed for each acquisition date. 
No pattern can be associated to the rainfall distribution (figure 4.15). This situation 
can hamper the detection of mowings (by inducing the probability of false detection of 
mowings). 
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Figure 4.15.- Difference of backscattering (in dB) with the median backscattering of 
G parcels for NM and JM parcels according to rain_3D (in mm) 

A threshold value for the difference with median backscattering of G parcels could be 
to set to detect mowings, all the values above this threshold being labeled as a 
mowing.  

When the threshold is low (-0.5 dB), mowings are identified in 21 parcels over 29 but 
for 13 of these parcels are false detection of mowings are observed i.e. values above 
the threshold are observed for these parcels when they are not yet mowed. It means 
that mowings are unambiguously identified in 8 parcels (no false detection of 
mowings). 

Increasing the threshold decreases the number of parcels where mowings are 
identified. The number of parcels with no false detection (equal to 8) remains 
however constant up to a threshold of 0.5 dB. 

Table 4.6.- Number (%) of parcels where a mowing is detected and number of 
parcels with false mowings according to the threshold value fixed on the difference of 

backscattering with median backscattering of G parcels. 

Threshold (dB) 
Nb of parcels 

(mowings) 
Nb of parcels with false 

mowings detection 

-0.5 21 (72%) 13 

0 18 (62%) 10 

0.5 15 (52%) 7 

1 9 (31%) 6 
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This relatively low efficiency of the mowings detection procedure based on relative 
difference in space is probably due to some variability / uncertainty factors not 
considered in the analysis.  

The second approach could possibly better take into account these factors as far as 
they remain constant from an acquisition date to another.  

3.5.2. Approach based on the temporal difference of 

backscattering 

Figure 4.16 presents the backscattering difference (per parcel) between SAR 
acquisitions according to their corresponding difference of rain_3d for NM, G and JM 
parcels. The SAR acquisitions used to compute this difference are different according 
to the parcels category. For G parcels category, considering that the biomass 
variation in these parcels from an acquisition to another is supposed as marginal, the 
all the possible combination of backscattering differences have been computed.   For 
NM parcels category, only the difference between two successive SAR acquisition 
dates is considered. 

For JM parcels category, as unfortunately the field campaign dates do not match 
necessarily with the SAR acquisition dates, the considered SAR acquisitions are the 
SAR acquisition following the mowing and the SAR acquisition preceding the last 
field observation of the parcel as not mowed.  

Whatever the parcels category, the differences are computed by subtracting the 
value for the earlier acquisition from the later. Positive values for the rain_3d and 
backscattering differences mean therefore respectively that the later SAR image has 
been acquired in wetter conditions and present a higher backscattering compared to 
the previous considered one.  

Figure 4.16 allows stressing different aspects. The first one is that mowing induces 
most of time an increase of backscattering. A decrease is only observed when the 
presence of grassland swaths is suspected.   

The variation of the difference of backscattering for G parcels is lower compared to 
the situation observed for JM. This variation is essentially due to the variation of 
water content as the G parcels biomass is considered as stable from an acquisition 
date to another. This assumption of biomass stability is reinforced in figure 4.16: 
when conditions are similar for both SAR images (difference of rain_3D=0), no 
difference of backscattering is observed. 

As for JM and G parcels, a global trend towards an increase of the backscattering 
difference with the increase of the difference of rain_3D can be observed for NM 
parcels. The difference of backscattering is positive when the difference of rain_3D is 
positive meaning that the increase of water content has a stronger effect (increase) 
on backscattering than the increase of biomass.  
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We can also notice that regression line for NM crosses the regression line for G 
parcels when the difference of rain_3D is close to zero, the difference of 
backscattering being higher for NM parcels when the difference of rain_3D is 
positive. This behavior is probably due to the fact that the contribution of biomass on 
backscattering tends to be masked at higher water content (figure 4.10).  

The difference between the regression lines for NM and JM parcels for a given 
difference of rain_3d varies in our conditions roughly between 2 and 3 dB. The 
standard errors of regression are quite high, equal to 1.23 and 1.20 dB respectively 
for NM and JM parcels. Figure 4.16 allows a much better understanding of the 
respective influence of biomass accumulation, mowing and moisture on the 
backscattering.  

A decision rule can be defined to detect mowings based on a similar approach than 
the one used to detect land use (chapter 3.4), i.e. based on the prediction intervals of 
regressions for NM and JM parcels. These prediction intervals (at 99%) overlap 
(figure 4.17). There are therefore situations where a difference of backscattering 
can’t be attributed to a mowing (area in blue in figure 4.15) without confusion with the 
increase of backscattering for NM parcels.  

Mowing can be identified without ambiguity only when the difference of 
backscattering is higher than the higher limit of the confidence interval for NM parcels 
(area in yellow in figure 4.17). At 99% of confidence level, only 4 mowings can be 
detected (no false detection of mowings is observed) in these conditions. If the 
confidence interval is reduced to 95%, the number of identified mowings increases 
up to 14 (48% of mowings detected) but a false detection of mowings is observed for 
2 parcels. These 2 parcels are different from the 14 where a mowing has been 
detected which means that the mowing interval is not correctly estimated for these 2 
parcels.  In a context of no optimal data set, these results show that this temporal 
approach is quite promising and relies on a relevant rationale. 

Let’s note also that the effect of water content on contribution of volume scattering on 
total backscattering (observed in figure 4.10) has not been considered yet and that 
the relationships for JM and NM parcels are specific to the (average) time step 
between successive SAR acquisitions considered to compute the differences. In our 
study, this time step for NM parcels varies between 6 and 13 days (average of 8 
days). If this time step is smaller, the difference of backscattering will be smaller as 
well (and conversely).  For JM parcels, the average is equal to 17 days. The 
relationship for JM parcels is also specific to the time step between the moment the 
parcels are observed as mowed and the next SAR acquisitions. Minimizing these 2 
time steps should increase the difference of backscattering and ease the detection of 
mowings. 
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4. Conclusions and discussions 

As expected, the conditions of acquisition have an impact of backscattering 
coefficient values.  

An increase of backscattering has been observed with the increase of the proxy 
(rain_3d, cumulated sum of rainfall over 72 hours before the SAR images) used to 
represent the water content.  

At the contrary, a decrease of backscattering with the increase of biomass tends to 
be observed at least in dry conditions (low values for rain_3d).  The decrease of 
backscattering with the increase of biomass is attenuated in higher water content 
conditions considering that in these conditions the contributions of both soil and 
plants to the SAR response are tangled. 

This confusion of contributions of both soil and plants to the SAR response could 
hamper the classification of grassland parcels according to their land use / 
management type (mowing vs grazing). Our study has however shown that good 
overall classification accuracy (around 80%) can be reached in validation thanks to 
the backscattering distribution of grazing parcels as far as some SAR images are 
acquired in dry conditions.   

The significant effect of water content on backscattering implies to consider it with a 
view to detect mowings. In this context, two approaches have been considered. The 
first one works per acquisition date (spatial approach) and is based on the 
differences of backscattering with the median of grazing parcels. The second one 
uses a temporal approach and is based on the relationship between the differences 
of backscattering between 2 successive SAR images against the differences of the 
corresponding rainfall history (rain_3d). 

Though both approaches allows identifying mowings, the second approach provides 
better results with roughly half of the mowings detected (against roughly on quarter 
with the first approach) with a limited number of false detections. These better results 
observed for the second approach are probably due to the fact that some factors of 
variability that were not considered in our analysis (such as maybe the local incident 
angle) are masked in the temporal approach.  

The 2 methodologies could be certainly refined and possibly improved by considering 
a better proxy for water content. The current proxy does not take for the moment into 
account the distribution and the intensity of rainfall during the considered period of 
72h. A possible solution could be therefore the use of a hydrological model such as 
for example the SWAP (‘Soil Water Atmosphere Plant’) model (Kroes et al., 2008; 
Van Dam et al., 2008) as shown by Bériaux (2011) for maize. 

In the same way, additional analyses are needed to assess the impact of the errors 
made on land use classification on mowings detection. 

The efficiency of the mowings detection can be however considered as satisfying 
considering the relatively low temporal availability of ERS-2 acquisitions and the 
reduction of the number of usable observations due to non-optimal organizations of 
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field campaigns (non-coincidence between the days of acquisition and the days of 
field campaigns). 

This study has also showed that the field observations protocol has to be modified. 
Field observations should be done as much as possible on the same day/ same hour 
than SAR acquisitions but also in-between these SAR acquisitions (especially if the 
time step between SAR acquisitions is important). The frequency and the moment of 
field observations between 2 SAR images should be adapted according to a priori 
information on the probability of mowings. Mowings occurred mainly in dry 
conditions, field surveys could be organised in priority when these conditions are 
forecasted. 

The study has also raised a possible effect on swaths at the moment of SAR 
acquisitions on backscattering. This effect is currently hypothetic and has to be 
assessed in the frame of new field campaigns but if this effect is validated, 
accounting it could also improve the efficiency of mowings detection. Such a revisit 
capability is very recently achieved by the recently achieved Sentinel-1 SAR sensor. 

The efficiency of mowings detection with the second approach could be certainly 
improved if the time step between SAR acquisitions gets smaller: the differences of 
backscattering for NM parcels would remain limited (as the increase of biomass 
between the 2 acquisitions would be small) and the difference of backscattering for 
JM parcels at or close to its maximum.  
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CONCLUSIONS AND PERSPECTIVES 

Conclusions and discussions 

The main objective of this thesis was to assess possible improvements for the 
assimilation of remotely-sensed biophysical variables in growth models and to 
estimate their related errors reduction on modelled yield estimation. 

The assimilation improvement of biophysical variables derived from satellite data has 
been studied from different points of view which will structure this synthesis. 

(1) Interplay between the accuracy and the temporal resolution of 

remotely-sensed data 

Two Observing System Simulation Experiments (OSSE) have been used to assess 
the requirements in terms of accuracy and temporal resolution of remotely-sensed 
data in order to reach a recommended level of error reduction on yield estimation 
after data assimilation (chapters 1 & 3). Different observations to assimilate (covering 
optical and microwave spectral domains) and crop growth models have been 
considered in these experiments.   

Both experiments confirm that assimilation of remotely-sensed data derived from the 
currently available sensors in growth models represents already a significant 
potential to improve yields estimation but also show that these improvements are not 
the optimum and that the errors on yields estimations can still be reduced. 

Improving both the accuracy and temporal resolution of remotely-sensed data 
provides logically the best reductions of errors on yields estimations.  However, 
according to the assimilated observation, the component (accuracy or temporal 
resolution) to target in priority can be different.  

In the first OSS experiment (chapter 1), focusing on the assimilation of LAI time 
series in WOFOST model, reduction of the errors on final grain yields estimation can 
reach up to 65% but require having frequent and accurate (with an uncertainty level 
(CV) equal to 10% or ideally lower) LAI observations all along the growing season.  

Substantial improvements can be fortunately reached earlier in the season (ideally at 
least when the peak of LAI is reached) which is a prerequisite to set up a system able 
to provide accurate and timely information about potential and observed harvest 
shortfalls and able to tackle the food security challenge. Reduction of errors on final 
grain yields estimation of 30-35 % have been observed with LAI observations 
presenting an uncertainty level of 15% and available every 2 weeks from the onset of 
greenness up to the beginning of the LAI decreasing phase. 

From a global point of view, the OSS experiment has also stressed that reducing the 
uncertainty level on the LAI estimate seems to be more efficient to reach high errors 
reduction (> 50%) suggesting that the remote sensing community should rather focus 
efforts on improving LAI retrieval algorithms rather than improving the temporal 
availability of the observations. 
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Currently, the uncertainty level on remotely-sensed LAI reached with the new 
generation of high-resolution optical sensors such as LANDSAT-8 or RapidEye is 
around 15-20% (Shang et al., 2014; Kross et al., 2015). The uncertainty level is 
function of the sensor characteristics but also of the retrieval algorithm (Rivera 
Caceido, 2014).In these conditions, the expected errors reduction on yields 
estimations varies, according to the temporal availability, between 15 and 65 % but is 
usually lower than 50%.Errors reduction should be more important with the 
forthcoming Sentinel-2 mission as the uncertainty level on LAI is expected at 10% 
(Drusch et al., 2012). 

The temporal resolution is more critical for punctual events such as mowing dates. 
The second OSS experiment (chapter 3) has allowed to highlight that mowing period 
(period between two SAR observations during which the mowing occurs) could be 
identified on the basis of ERS-2 synthetic data at worst with an accuracy of 76% as 
far as the uncertainty level on backscattering coefficient is lower or equal than 1.5 dB 
and the timestep between two synthetic ERS-2 images is equal or lower than 12 
days. Forcing LINGRA grassland growth model with the estimated mowing dates 
allows once again, as expected, to reduce the errors on simulated total grassland 
biomass compared to the situation without assimilation by at least 25% (up to 65-
75%) when SAR observations are available every 6 days.  

(2) The assimilation strategies and their implementation 

A ‘sequential’ (based on Ensemble Kalman Filter) and a ‘calibration’ assimilation 
strategy have been used and compared in chapter 1.   

The substantial improvements on yields estimations were reached only with the 
second approach. The existence of a significant phenological (temporal) shift 
between simulated and observed LAI time series can indeed limit the efficiency of 
assimilation methods as far as these methods are not able to correct this 
phenological shift. An increase of the errors on final grain yields estimation (of at 
least 27-28%) has been indeed observed with Ensemble Kalman Filter (EnKf) 
assimilation method. The EnKf (sequential) assimilation method is not able to correct 
the phenology contrary to the recalibration based assimilation method as far as this 
method consider parameters (such as TSUM1 or crop emergence) allowing this 
correction. The poor performance observed of the EnKf cannot be however imputed 
to the method in itself but only on the existence of this phenological shift: In the 
situations where the phenological shift between simulated and observed was small, 
EnKf assimilation method was also able to reduce the errors on final yields 
estimation. 

A phenological shift/discrepancy arises mainly from uncertainties on the parameters 
and initial states (e.g. dates of sowing or emergence) driving the phenological stages 
in the models but can also arise, in some situations, from a lack of pixel purity and 
possible gridding effects resulting from the use of medium resolution sensors 
(Chapter 2). The use, in this thesis, of a sensor such as MODIS has the advantage to 
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provide quantitative remote sensing information with a time step more compatible 
with an operational use for assimilation in crop growth models but its medium 
resolution and its associated gridding effects induced by this whiskbroom imply that 
the observational footprint is not fully covered by the targeted crop. Chapter 2 has 
shown that the part of the information of these mixed pixels that doesn’t come from 
the target crop influences the global GAI time series. This influence is different 
according the contributing crop(s) that are not the target crop. A significant proportion 
of summer crops within selected MODIS grid cells tends for example to 
(phenologically) shift the observed GAI time series, to decrease observed GAI values 
in the increasing phase of GAI and to decrease these values in the decreasing phase 
of GAI. 

Prior efforts to correct any possible phenological shift / synchronise in time 
simulations and observations have therefore to be undertaken before any other 
efforts of improvement. The utility of adjusting the decreasing phase of LAI, already 
highlighted in previous studies (Curnel and Oger, 2006a ; Martin et al., 2006), has 
been for example confirmed in chapter 1 but only if a readjustment of the increasing 
phase (through crop parameters such as TSUM1 or crop emergence) is achieved. In 
other words, it means that without adjustment of the moment of the peak of LAI 
reduction of errors on final grain yields estimation by recalibration of the SPAN 
parameter is at best limited or inexistent (with in this case an increase of the errors). 
The necessity of correctly adjusting the moment (and the value) of peak of LAI has 
been also observed by Kouadio (2012). 

Recalibrating parameters that are not able to adjust remotely-sensed and simulated 
phenology (e.g. joint recalibration on SPAN and TDWI parameters in chapter 2) can 
partly falsifies the interpretation of recalibrated parameters. Selection of the 
parameters for the recalibration must therefore pay attention to the equifinality issue 
which may lead to the loss of their biophysical meaning. 

(3) Sources contributing to the uncertainty on remote sensing data and 

biophysical variables.  

In addition to the effect of pixels’ purity inducing an uncertainty on LAI and 
subsequently reducing the assimilation performances, this thesis has also assessed 
the influence of different factors (water content, biomass) on backscattering whose 
the uncertainty can limit the mowings detection based on backscatterring. 

Similarly to crop sowing or crop emergence, mowing dates are management events 
to consider in grassland growth models notably with a view to adjust observed and 
simulated phenology (chapter 3). These mowing dates can be estimated by remote 
sensing either with optical data (e.g. Courault et al., 2010; Hadj Said et al.; 2011, Lips 
(2011) or from SAR data as shown in this thesis (Chapters 3 and 4).  

Different factors (e.g. incidence angle, surface roughness and biomass) influence 
SAR backscattering similarly for grazing and mowing parcels. The impact of water 
content on backscattering has been more specifically assessed (chapter 4) based on 
a proxy (cumulated rainfall over the 72h preceding the SAR acquisitions). 
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Chapter 4 has allowed to confirm, as expected in regards to literature review, that 
grassland backscattering increases with the increase of water content and to assess 
that it decreases with the biomass at least in dry conditions. 

The comparison of backscatterings of mowing parcels with the median 
backscattering of grazing parcels (whose fluctuations of biomass are supposed 
constant all along the growing season) has allowed stressing that soil backscattering 
becomes predominant in the total SAR backscattering when water content increases 
masking progressively the contribution of biomass. 

This confusion of contributions of both soil and plants to the SAR response could 
hamper the classification of grassland parcels according to their land use / 
management type (mowing vs grazing) and subsequently detection of mowings if 
SAR acquisitions are acquired exclusively in high water content conditions. 

A good overall classification accuracy (around 80%) was however obtained for the 
validation data set using a methodology based on the backscattering distribution of 
grazing parcels and so, despite a sub-optimal organization of field campaigns (non-
coincidence between the days of acquisition and the days of field campaigns) and a 
relatively low revisit of ERS-2 (C-band  sensor) images. 

Two approaches have been defined in Chapter 4 to detect mowings respectively 
looking at relative difference either in space or in time. These 2 approaches have 
been designed considering the effect of water content on backscattering. At best, 
only half of these mowings have been correctly identified. Among the two 
approaches, the one using a temporal approach provides the best results as it 
probably allows masking some of these factors. These non-optimal results are mainly 
induced by the sub-optimal organization of field campaigns but also due to some 
factors of uncertainty that have not been accounted in the study. The considered 
approach can be therefore considered as promising as rooms for improvement exist. 

Perspectives 

In order to further improve the current achievements, several ways of investigation 
can be identified.  

Data assimilation can be seen as the crossroads of two worlds, the world of crop 
modelling and the world of remote sensing. Data assimilation techniques bind these 
2 worlds, the objectives being most of time to improve outputs of the models. Neither 
(noisy) data nor (inaccurate) models can give a complete description of a system, but 
their optimal combination through data assimilation technique can indeed provide a 
more complete and coherent picture of the state of it, which is essential to 
understand, monitor and more importantly predict its evolution. 

Improvements can therefore concern the different parts of the systems, i.e. either the 
model or the assimilated observation but also the assimilation techniques. 
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Improvements based on assimilated observations (LAI) 

Improvement of assimilated observations can be reached by different ways. These 
ways of improvement vary according to the observations.  

For a state variable such as the LAI considered in this PhD (Chapters 1 and 2), it is 
important to be sure that the remotely-sensed and simulated state variable strictly 
represent the same biophysical variable. The biophysical variable retrieved from 
satellite imagery usually referred as LAI is more close to a plant area index (PAI) 
(Duveiller, 2011) and subsequently more related to photosynthetically active 
elements of the canopy. Commonly used crop growth models ordinarily supposed to 
simulate the LAI of the crops (in its whole, not only of its canopy). A perspective of 
improvement could be to ensure a perfect concordance between assimilated 
observations and simulations either by adapting the radiative transfer models or any 
techniques used to retrieve the biophysical variables from remote sensing or by 
modifying the models. 

In the hypothesis where assimilated observations and simulated state variables are 
strictly identical, as far as the objective is to retrieve crop specific information (yields) 
at a regional level, the notion pixel purity (as illustrated in this thesis) is very 
important. The challenge of discriminating pixels that correspond to a particular crop 
type, a prerequisite for crop specific agricultural monitoring, remains daunting when 
the signal encoded in pixels stems from several land uses (mixed pixels), e.g., over 
heterogeneous landscapes where individual fields are often smaller than individual 
pixels (Löw and Duveiller, 2014). As things are now, the acquisition of images 
presenting a temporal availability compatible with agriculture monitoring comes 
unfortunately with a coarser spatial resolution and its inherent problems of pixels 
purity in fragmented agricultural regions. Before the announced advent of sensors 
such as Sentinel missions, combining theoretically high spatial resolution and high 
temporal resolution, a selection of pixels according to their purity in regards to the 
target crop has to be performed. Selecting pixels reduces the number of available 
information within the considered region at which the crop specific yields have to be 
estimated. A very strict selection on purity could lead to loose a part the regional / 
spatial variability which could influence the accuracy of yields estimations at regional 
level. A balance has therefore to be found between the pixels’ purity and spatial 
variability. In this context, a study could done to assess the best compromise 
between these two aspects allowing to reach a given level of accuracy on yields 
estimations at regional level. Results of this study could also have an indirect 
implication on the use of cloudy optical images. If to characterise a (homogeneous) 
region, only a few observations rigorously selected are needed to ensure 
improvement of simulations, the probability to exploit cloudy optical images is 
increased as usually the cloud cover do not concern all the target region. It stressed 
however that the crop yield estimations at a regional level should be done for 
homogeneous region in terms of growing conditions and agricultural practices, such 
as agricultural regions and therefore not for administrative divisions such as NUTS.   
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The tricky compromise between spatial and temporal resolutions as well as spatial 
coverage, partly already solved with sensors as AWiFS is close to being solved with 
the forthcoming missions and more specifically with the current trend towards the 
definition of virtual satellite constellation. A virtual satellite constellation is defined the 
Committee on Earth Observation Satellites (CEOS) as a “set of space and ground 
segment capabilities that operate in a coordinated manner to meet a combined and 
common set of Earth Observation requirements”. Existing satellite data products 
could be significantly improved if these were not limited to individual sensors but 
would combine complementary platforms across space agencies and sensor types 
(Wulder et al., 2014). NASA and USGS are currently collaborating with ESA to 
pursue cross-calibration of Landsat-8 and Sentinel-2 sensors, and to investigate 
approaches for normalizing differences between the respective data products 
(including view & solar angle BRDF, and spectral band passes). The wider swath of 
Sentinel-2 will provide increased temporal coverage (Drusch et al. 2012), with a 
single Sentinel-2 reducing revisit times to 8-days from the current 16-day revisit cycle 
of Landsat-8 (Roy et al. 2014). With both Sentinel-2a and b in orbit the expected 5 
day revisit in combination with Landsat-8 will provide for an observation 
approximately every 3 days. Reducing revisit time is crucial in some regions of the 
world where the cloud cover is important.  

Independently from the effect linked to the use of higher spatial resolution images, 
uncertainty on remotely-sensed biophysical parameters such as LAI can be reduced 
through the improvement of retrieval algorithms. Algorithms based on neural 
networks (e.g. CYCLOPES algorithm) were commonly used to retrieve biophysical 
parameters. Though the robustness of these algorithms has been proved in various 
operational processing chains, they present some limitations (Rivera Caicedo, 2014). 
LAI derived from CYCLOPES is for example less accurate at higher values due to 
saturation effect in the radiative transfer simulation and the neural network inversion 
algorithm (Bacour et al., 2006; Weiss et al., 2007). They also tend to underperform 
for situations not considered in their training phase. Besides, training neural networks 
involve tuning several parameters that may greatly impact the robustness of the 
model. These algorithms are currently being replaced by more advanced, simpler to 
train algorithms such as machine learning regression algorithms (Camps-valls and 
Bruzonne, 2009). These algorithms are able to cope with the saturation effect and, 
using a Bayesian approaches, are able to provide in addition to high accuracies 
uncertainty intervals for the predictions which make them more suitable for 
operational applications (Rivera Caicedo, 2014). 

Improvements based on assimilated observations (mowing dates) 

In the frame of the estimation of model initial conditions such as mowing dates or in a 
lower extend as crop emergence or sowing date (more difficult to estimate with 
precision), the use of SAR images represent probably an advantage over optical 
images. SAR is indeed an attractive source of data as these sensors can acquire 
imagery regardless of the presence of clouds or the lack of sunlight.  If the revisit 
time is very small (every 1-3 days for examples), as mowing occurs during dry 
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periods where the probability to have usable optical images is higher, this 
advantages is probably slightly reduced. However, even in dry conditions, the 
probability to have a cloud-free image over all the area of interest is very low. A 
recent publication (Whitcraft et al., 2014) has showed that the early and mid-
agricultural growing season, which are important periods for crop type area 
identification and crop yield forecasting, are characterized by both frequent and 
pervasive cloud extent in many parts of the world and that during these periods but 
also during other portions of the agricultural growing season less than half of 8 day 
composites would be 70% clear. The authors suggest that in these areas/ time 
periods, optical, polar-orbiting imaging is not likely to be viable option for operational 
monitoring and that alternatives such as SAR ought to be considered. When the 
objective is to assess yields at a regional level with a grasslands growth model, it is 
also important to know the distribution of the mowing dates within the considered 
region. SAR allow to a complete picture of this regions which is not necessarily the 
case with optical systems.    

The use of SAR data to estimate mowing dates could be also improved by 
dissociating the backscattering in its different components. It could be indeed useful 
to dissociate the backscattering from the soil and the backscattering coming from the 
vegetation. The semi-empirical water-cloud model(Attema and Ulaby, 1978), defining 
the radar radiation backscattered from the vegetation canopy as the incoherent sum 
of reflected radiation from vegetation and the underlying soil following its attenuation 
by the vegetation layer, could be used in this context (after calibration) to estimate 
grass biomass.  

As mowing operations occurs during relatively dry periods, meteorological 
information could be used to refine the estimation if the temporal availability of the 
remote sensing is not short enough.  With the approach considered in this thesis, we 
can only define the period where the mowing operation occurs and each date within 
this time interval has the same probability to be the mowing date. By using 
meteorological data (rainfall data), the objective is to provide a probability density 
function of mowing occurrence for all the days included within the time interval and 
possibly reduce the uncertainty on mowing dates. This approach could be also used 
to limit false detection of mowings.   

The current trend towards an improvement of temporal resolution for SAR sensors 
can also open the door to other techniques allowing monitoring the grassland 
biomass and subsequently of mowing dates as for example the interferometry. Radar 
interferometry is a technique that extracts three-dimensional information of the 
observed surface by using the phase content derived from a couple of images. The 
interferometric phase measures the path length difference between the target and 
the two sensor sensors locations from which a three-dimensional position of the 
images resolution elements (i.e. height maps is derived). The interferometric 
correlation, or coherence, measures the variance of the interferometric phase 
estimate. It decreases with increasing system noise, volume scattering and temporal 
changes and therefore contains thematic information (Blaes and Defourny, 
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2003).Different studies have already demonstrated the increased information added 
by SAR coherence to SAR monitoring over agricultural areas. Blaes and Defourny 
(2003) have for example shown by using the 1-day interval SAR acquisition 
capabilities from 2 identical C-band instruments (ERS1/2) that a high sensitivity of the 
coherence to the plant height and the canopy cover exists. Strong relationships 
between the plan height and the coherence for the 4 monitored crops (winter wheat, 
sugar beet, potato and maize): Coefficient of determination ranged between 0.64 for 
maize to 0.92 for winter wheat. The more the height of the crops was high, the lower 
the coherence. These results are confirmed by Barrett et al. (2012) who have 
observed that for the majority of cases, especially in C-band, the change in 
vegetation tended to be the predominant source of decorrelation (and therefore to the 
loss of coherence). A mowing event, modifying the height of the crops, would 
significantly change (increase) the coherence and would therefore allow to detect 
mowing operations. Coherence images with one-day interval are also expected to 
contribute significantly to crop discrimination (Bériaux, 2011). COSMO SkyMED and 
Tandem-X sensors could be used for this purpose. 

For McNairn and Brisco (2004), an ideal SAR system for any agricultural application 
would have in general multi-frequency, multi-temporal, and multi-polarization 
capabilities, and, in addition, very high spatial resolution compared to the parcel size. 
ERS-2 sensor used in the thesis is a single frequency (C-band) and single 
polarization (VV) sensor with an average incident angle of 23° and a repeat cycle of 
35 days. The best conditions to monitor grassland with SAR data were therefore not 
really met. The use of a dual (e.g. TerraSAR-X, Sentinel-1) or quad (e.g. 
RADARSAT-2) polarization sensors would provide more discrimination of biomass 
through a separation of the different scattering mechanisms. Polarimetric SAR is 
indeed sensitive to the structural properties of a sensed object. The well-known 
decomposition theorem (entropy/anisotropy/alpha method) developed by Cloude and 
Pottier (1997) initially developed for fully polarimetric data but later on extended to 
encompass dual polarimetric SAR measurements (Cloude, 2007) could be used for 
this purpose. Voormansik et al. (2013) have tested different parameters derived from 
TerraSAR-X to detect grassland cutting practices. Though none of these parameters 
were found to be sensitive to grass height, the authors have however found that it 
was possible to detect areas with freshly cut grass lying horizontally on ground on the 
basis of dual polarimetric dominant scattering alpha angle. The use of shallower 
incident angles (>40°) is also expected to enhance interaction with vegetation. 
Sentinel-1 characteristics meet most of the requirements for a better monitoring of 
grasslands.  

Improvements based on assimilation techniques  

Concerning assimilation techniques, this thesis have shown that assimilation 
techniques that don’t allow synchronizing in time simulated and observed LAI time 
series limit or hamper the efficiency of these techniques. Further investigations 
should be focused on the development of assimilation techniques allowing this 
synchronization in addition / prior to any possible update of the state variable(s) 
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and/or the recalibration of model parameters.  According to the confidence that we 
have on models and/or on assimilated observations, uncertainties on models and/or 
on assimilated observations should be considered in these assimilation techniques. 
For example, calibration-based assimilation techniques only apply if, in addition to a 
sufficient number of observations, the observation error is small (Dorigo et al., 2007). 
Moreover, one of the main weaknesses of these techniques is that all errors from 
input, output and model structures are attributed exclusively to model parameters 
(Chen et al., 2008).  As sources of uncertainties probably exist both in models and 
observations, developed assimilation techniques should consider these uncertainties. 
Bayesian approaches such as those developed by Moradkhani et al. (2005), Chen et 

al. (2008) or Evensen (2009) aiming at a dual state-parameter estimation using EnKf 
or the Simultaneous parameter Optimization and Data Assimilation (SODA) method 
combining the strengths of the parameter search efficiency and explorative 
capabilities of the Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm 
(Vrugt et al., 2003) with the power and computational efficiency of EnKf (Vrugt et al., 
2005) seem to be, in this context, an interesting way to investigate. 

Other considerations  

This thesis also allows wondering on the relevance to assimilate observations in crop 
growth models in regions, such as Belgium, where the variability of observed yields 
at regional level is limited. The question is particularly relevant for arable crops such 
as e.g. winter wheat. Assimilating a remotely-sensed variable such as LAI only in 
case of ‘extreme’ weather conditions for which the models tends to be less efficient 
could be the only situation for which assimilation could significantly improve the 
quality of yields estimations in regions where the variability of the observed yields is 
low. This assumption needs however to be further investigated. For grasslands, 
assimilation of mowings calendar has certainly more sense considering the high 
variability of the different mowing dates (linked to meteorological conditions but also 
to some management factors) and the subsequent highest variability of the annual 
yields, sum of yields for the different mowings which are all uncertain. 

This thesis has furthermore stressed the added value that would represent the 
redaction of standardized protocols describing when data collections should be 
organized as well as the observation to record during these data collections would 
greatly improve the quality of further data collection and analyses based on these 
collected data. The redaction of a best practices protocol for further field campaigns 
in grasslands to support researches with SAR, based on the experience learned from 
this thesis is currently in preparation. This protocol is intended to support the JECAM 
(Joint Experiment for Crop Assessment and Monitoring) initiative whose the 
overarching goal is to reach a convergence of approaches, develop monitoring and 
reporting protocols and best practices for a variety of global agricultural systems 
(www.jecam.org). 

Sentinels missions and more globally the ESA Earth observation program for 
COPERNICUS represent assuredly a new era for earth observation but is also a link 
in the hyper connectivity of our world. This increasing digital interconnection of 
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people and things, anytime and anywhere, will have profound social, political and 
economic consequences, and increasingly form part of our everyday lives, from the 
cars we drive and medicines we take, to the jobs we do and the governance systems 
we live in. According to the World Economic Forum, there will be 50 billion networked 
devices by 2020. The accuracy of the Copernicus products and their free and open 
access will enhance the development of applications and services, notably in 
agriculture. Development of communication and information technology and its 
democratization has induced higher expectations from farmers (and industries) for 
products and services able to help them in the daily and at short-term management 
of their farms. They have now access to data that were previously most of time only 
available to governments. As users, they expect this information to be rapidly, easily 
available and understandable but has also reliable. Crop yields estimations and 
predictions (at regional but also field level) are one of the products usually expected 
by farmers and industry. This thesis contributes to this current development of our 
society by its objective to improve the reliability of yield estimations and predictions 
and is part of the main context of resources (fertilizers, manure, etc.) optimisation, 
ecologically intensive agriculture and feed autonomy. 

Development of the information and communication technology will also completely 
change the interactions between information users and producers. Exchanges of 
information are made more and more easy, through the development of 
crowdsourcing for example. It will markedly speed up the critical learning process for 
the remote sensing providers thanks to input and near real time feedbacks from the 
users. It will also reduce the costs related to field data collection. Increasing the 
reliability of EO products and services will probably induce a snowball effect 
enhancing the interaction between information users and producers. 

Earth Observation is therefore moving more and more to an operational mode. 
Governments should take part to this evolution in order to fulfil its public service tasks 
by providing objective and devoid of commercial purpose information to farmers and 
more generally to the agricultural sector. 
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