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Abstract

Cerebral palsy (CP) and stroke are major causes of permanent disabilities.
These disabilities justify intensive interdisciplinary rehabilitation and regular
assessments, which could be optimized using robotics. This PhD thesis
investigated the clinical interest in robotic devices to assess and rehabilitate
upper limb movements in CP children and stroke adults. This investigation
was performed with the REAplan robot, which is an end-effector robotic
device that moves the patient’s upper limb in a horizontal plane using various
assistance modes (i.e., active, active-passive, passive). The first part of this
thesis investigated how a robotic device could quantitatively assess upper limb
movements in both populations. A standardized protocol was developed to
assess upper limb kinematics using the REAplan robot in CP children and stroke
adults. The reproducibility, validity, responsiveness and reference standards of
this protocol were established, and a short version of this protocol wa...
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RESUME  

L’infirmité motrice d’origine cérébrale (IMoC) et les accidents vasculaires cérébraux (AVC) sont les 

principales causes d'invalidités permanentes. Ces pathologies justifient une rééducation 

interdisciplinaire intensive et des évaluations régulières, pouvant être optimisées par la robotique. 

Cette thèse de doctorat a étudié l'intérêt clinique de dispositifs robotiques afin d'évaluer et de 

rééduquer les mouvements du membre supérieur chez les enfants IMoC et les adultes AVC. Cette 

investigation a été réalisée à l’aide du robot REAplan. REAplan est un dispositif robotique à effecteur 

distal permettant la mobilisation du membre supérieur dans le plan horizontal grâce à différents 

modes d'assistance (i.e., actif, activo-passif, passif). La première partie de cette thèse a investigué 

comment un dispositif robotique pouvait évaluer quantitativement les mouvements du membre 

supérieur au sein des deux populations. Un protocole standardisé a été développé afin d’évaluer la 

cinématique du membre supérieur chez les enfants et adultes cérébro-lésés, en utilisant le dispositif 

robotique REAplan. La reproductibilité, la validité, la sensibilité au changement et les normes de 

référence de ce protocole ont été établies. Une version courte de ce protocole a été créée afin de 

faciliter l'évaluation de la cinématique du membre supérieur en routine clinique. La deuxième partie 

de cette thèse a étudié comment un dispositif robotique pouvait efficacement rééduquer le membre 

supérieur chez les enfants IMoC. Un protocole standardisé de thérapie assistée par la robotique (TAR) 

a été développé en tenant compte des recommandations connues en rééducation neuro-pédiatrique. Ce 

protocole a été utilisé dans une étude randomisée contrôlée en simple aveugle afin d'évaluer 

l'efficacité de la TAR chez les enfants IMoC. Cette étude a montré que la combinaison d'une thérapie 

conventionnelle (TC) et de la TAR améliorait significativement la cinématique du membre supérieur 

et la dextérité manuelle des enfants IMoC par rapport à la TC seul. Cette thèse de doctorat a montré 

que les dispositifs robotiques pouvaient quantitativement évaluer et efficacement rééduquer les 

mouvements du membre supérieur chez les enfants et adultes cérébro-lésés. Cette recherche n'aurait 

pas été possible sans l'étroite collaboration entre ingénieurs, techniciens, cliniciens et 

chercheurs. Nous encourageons la continuation de telles collaborations afin de favoriser l'intégration 

de la technologie en rééducation. 

 

Mots clés: accident vasculaire cérébrale - infirmité motrice d’origine cérébrale - robotique - 

biomécanique - rééducation  
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SUMMARY 

Cerebral palsy (CP) and stroke are major causes of permanent disabilities. These disabilities justify 

intensive interdisciplinary rehabilitation and regular assessments, which could be optimized using 

robotics. This PhD thesis investigated the clinical interest in robotic devices to assess and rehabilitate 

upper limb movements in CP children and stroke adults. This investigation was performed with the 

REAplan robot, which is an end-effector robotic device that moves the patient’s upper limb in a 

horizontal plane using various assistance modes (i.e., active, active-passive, passive). The first part of 

this thesis investigated how a robotic device could quantitatively assess upper limb movements in 

both populations. A standardized protocol was developed to assess upper limb kinematics using the 

REAplan robot in CP children and stroke adults. The reproducibility, validity, responsiveness and 

reference standards of this protocol were established, and a short version of this protocol was 

provided to facilitate the assessment of upper limb kinematics in routine clinical practice. The second 

part of this thesis investigated how a robotic device could efficiently rehabilitate upper limb 

movements in CP children. A standardized protocol for robot-assisted therapy (RAT) was first 

developed according to the current recommendations in CP neuro-rehabilitation. This protocol was 

used in a single-blind randomized controlled trial that assessed the efficacy of RAT in CP children. 

This trial showed that the combination of conventional therapy (CT) and RAT could significantly 

improve upper limb kinematics and manual dexterity in CP children compared with CT alone. Thus, 

robotic devices could quantitatively assess and efficiently rehabilitate upper limb movements in CP 

children and stroke adults. These findings would not have been possible without close collaboration 

between engineers, technicians, clinicians and researchers. Further similar collaborations should be 

encouraged to facilitate technological integration in rehabilitation. 

 

Key words: stroke – cerebral palsy – robotics – biomechanics – rehabilitation  
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General introduction 

1. Context 
 
Cerebral Palsy (CP) and stroke are major causes of long-term disabilities. CP, 

which affects two to four births per thousand worldwide3–7, corresponds to “a 

group of permanent disorders of the development of movement and posture, 

causing activity limitation, that are attributed to non-progressive disturbances that 

occurred in the developing fetal or infant brain. The motor disorders of cerebral 

palsy are often accompanied by disturbances of sensation, perception, cognition, 

communication, behaviour, by epilepsy and by secondary musculoskeletal 

problems”3–5
. Stroke, which affects one to four adults per thousand worldwide8, 

corresponds to “a disruption of the blood supply to the brain. This may result from 

either blockage (ischaemic stroke) or rupture of blood vessel (haemorrhagic 

stroke). The risk factors are high blood pressure, atrial fibrillation (a heart rhythm 

disorder), high blood cholesterol, tobacco use, unhealthy diet, physical inactivity, 

diabetes and advancing age”9
. One-third of stroke patients display permanent 

disabilities9. 

 

In both pathologies, the resulting brain damage can lead to abnormalities in motor 

control (e.g., hemi-/di-/quadriplegia), strength, tonus (e.g., spasticity, dystonia, 

hyperactivity of osteotendinous reflexes), and sensibility, which could be 

associated with ataxia, and to cognitive disorders (e.g., hemineglect, 

dyspraxia)6,7,10. These disabilities justify intensive interdisciplinary rehabilitation to 

(i) reduce patients’ neurological impairments, (ii) improve their abilities in 

activities of daily living (ADLs) and social integration, and (iii) ultimately 

optimize their quality of life4,10,11. This rehabilitation should be associated with 
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regular standardized assessments to monitor the patients’ progress over time and to 

define or adapt their treatment12,13. 

 

These patients’ rehabilitation and assessment could be optimized using robotics14. 

“Robotics is the science and technology of the design of mechatronic systems 

capable of generating and controlling motion and force”(Paolo Dario, cited by 

Pignolo
14

). This thesis focuses on the interests of upper limb robotics in CP 

children and stroke adults. Two families of robotic devices, end-effector and 

exoskeleton robots, are used in rehabilitation, both of which are illustrated in 

Figure 1 and described below. An end-effector robot generates and controls 

motions and forces of the upper limb via a unique interface linked to the subject 

(e.g., the hand)14–16. To the best of our knowledge, six upper limb end-effector 

robots have been involved in clinical studies: the MIT-Manus (USA, see Figure 

1)17, NeReBot (Italy)18, Arm Guide (USA)19,20, Gentle/S 21,22, ReoGo23 and Braccio 

Di Ferro (Italy)24. An exoskeleton robot generates and controls motions and forces 

of different joints of the mobilized limb from a structure that is parallel to the 

limb14–16. To the best of our knowledge, seven upper limb exoskeletons have been 

involved in clinical studies: the Armin (Switzerland, see Figure 1)15,25–27, Rupert 

(USA)28, Reharob (Hungary)29, L-Exos (Italy)30, Hward (USA)31, Hexorr32 and 

Hand Mentor33. End-effectors have already been studied in CP and stroke 

populations34,35, whereas exoskeletons have only been used in stroke patients. 
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Figure 1: Illustrations and examples of end-effector and exoskeleton robots [Pictures adapted 
from15,36,37]. 

 

The REAplan robot, illustrated in Figure 2, was the only robot used in this PhD 

thesis38. REAplan is an end-effector robotic device that can mobilize a patient’s 

upper limb by carrying the hand or the forearm along paths included in a horizontal 

plane. Like most rehabilitation robots, REAplan is fitted with force and position 

sensors. The force sensors measure the interaction force between the patient and 

the robot, which can determine a reference force using a force controller. The 

position sensors measure the kinematics of the patient’s hand or forearm to 

determine the reference force based on the position and/or velocity and on specific 

exercises performed with the robot. This reference force is adapted for assessment 

(see first part of the thesis) and rehabilitation (see second part of the thesis) 

purposes. A screen and a speaker are installed in the robot to provide audiovisual 

feedbacks for patient performance. 
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Figure 2: View of the REAplan. 1: Planar end-effector robot; 2: visual interface for the subject; 3: 

physiotherapist’s interface. 

 

Conception of the REAplan robot resulted from a close collaboration between 

research engineers (Centre of Mechatronics from Université catholique de 

Louvain, Louvain-la-Neuve), clinicians (Cliniques universitaires Saint-Luc, 

Brussels), research clinicians (Institute of Neuroscience and Louvain Bionics from 

Université catholique de Louvain, Brussels). This collaboration, which began in 

2006, enabled our team to develop three successive versions of REAplan, all of 

which were used in this thesis (Figure 3). Each version optimized REAplan to 

fulfill the needs of patients and clinicians in routine clinical practice. 
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Figure 3: Illustration of the three successive versions of REAplan. For each version, the year of its 

development and the patients’ number that were recruited in this PhD thesis are provided. The thesis 

part(s) and chapter(s) in which the corresponding version was used are listed. 

2. Upper limb assessment 
 
As described above, assessing patients’ disabilities is important to monitor their 

progress over time and to define or adapt their treatment4,10,12,13. These assessments 

should be performed with standardized, norm-referenced, reproducible, valid, 

responsive and concise tools12,13,39,40, which must consider the International 

Classification of Functioning, Disability, and Health (ICF) as recommended by the 

World Health Organization11,41. The ICF model, which is illustrated in Figure 4, 

considers the consequences of a disease (e.g., stroke) with three domains: (i) body 

functions (e.g., motor control of the hand) and structures (e.g., the muscle), (ii) 

activities (e.g., taking a cup of tea) and (iii) participation (e.g., having a drink with 

friends)41. These domains could be positively or negatively affected by 

environmental (e.g., family) and personal (e.g., motivation) factors41. For each 
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domain, disabilities are defined by (i) impairments, (ii) activity limitations and (iii) 

participation restrictions41.  

 

 
Figure 4: Illustration of the International Classification of Functioning, Disability and Health of the 

World Health Organization41. 

 

Recent systematic reviews have identified upper limb assessment tools for CP 

children13,42–45 and stroke adults12,46,47; these tools are reported in Tables 1 and 2. 

Most of these tools describe upper limb impairments and abilities through 

performance observations (e.g., the Quality of Upper Extremity Skills Test for CP 

children48 and the Fugl Meyer Assessment for stroke adults49) or questionnaires 

(e.g., the Pediatric Evaluation of Disability Inventory for CP children50 and the 

Stroke Impact Scale for stroke adults51), which could be subjective. Moreover, 

most of the tools provide ordinal measures (e.g., scoring of the Fugl Meyer 

Assessment: 0 = no movement; 1 = partial movements; 2 = correct movements), 

which prevent the performance of parametric analyses. 
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Table 1: For each ICF domain, the recommended assessment tools of the upper limb in CP children are listed. Each tool is classified in function of its ability of providing ordinal or linear measures.  

 
For the impairment domain, the movement characteristics assessed with the tool are provided between brackets.  
α corresponds to specific tools, whereas the others are generic tools.  
β corresponds to patient-reported questionnaires, whereas the others correspond to performance-based tool

 Cerebral palsy children13,42–45 

 Ordinal measures Linear measures  

 
Body functions and structures  

 
- House Scale (description of hand function)α 
- Quality of Upper Extremity Skills Test (quality of upper limb 

movements) 
- Bruininks-Oseretsky Test of Motor Proficiency (gross and fine motor 

abilities) 
- Peabody Developmental Motor Scales (gross and fine motor abilities) 

 

 
- Box and Block test (gross manual dexterity) 
- Kinematics 

 
Activities 

 

- Activities Scale for Kidsβ 

- Functional Independent Measure 
- Manual Ability Classification Systemα,β 
- Melbourne Assessment of Unilateral Upper Limb Functionα 
- Pediatric Evaluation of Disability Inventoryβ 
- Shriners Hospitals for Children Upper Extremity Evaluationα 
- Video Observations Aarts and Aartsα 
- Revised Pediatric Motor Activity Log 

 

 
- Abilhand-Kidsα,β  
- Assisting Hand Assessmentα 
- Jebsen-Taylor Hand Function Test 

 
Participation & quality of life 

 
- Children’s Assessment of Participation and Enjoymentβ 
- Child Health Questionnaireβ 
- Cerebral Palsy Quality of Life Questionnaire for Childrenα,β 
- Canadian Occupational Performance Measureβ 
- Assessment of Life Habitsβ 
- Pediatric Quality of Life Inventory-Cerebral Palsy Moduleα,β 
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Table 2: For each ICF domain, the recommended assessment tools of the upper limb in stroke adults are listed. Each tool is classified in function of its ability of providing ordinal or linear 

measures. 

For the impairment domain, the movement characteristics assessed with the tool are provided between brackets.  
α corresponds to specific tools, whereas the others are generic tools.  
β corresponds to patient-reported questionnaires, whereas the others correspond to performance-based tools. 

 Stroke adults12,46,47,51–53 
 Ordinal measures Linear measures  
 
Body functions and structures  

 
- Modified Ashworth scale (spasticity) 
- Motor Status Score (motor control) 
- Medical Research Council (muscle strength) 
- Action Research Arm Test (motor control)  

 

 
- Fugl Meyer Assessment (motor control)α 
- Kinematics 
- Box and Block test (gross manual dexterity) 
- Nine-Hole Peg test (fine manual dexterity)  
- Purdue Peg Board Test (fine manual dexterity) 

 
Activities 

 
- Arm Motor Ability Test  
- Barthel Index 
- Functional Independent Measure 
- Motor Activity Log 
- Rivermead Motor Assessment 
- Motor Assessment Scale 

 

 
- Abilhandα,β 
- Wolf Motor Function test 

 
Participation & quality of life 

 
- Stroke Impact Scaleα,β 
- EuroQoL Quality of Life Scaleβ 
- Short Form 36 Healthy Surveyα,β 

 

 
- Stroke Impact Scaleα,β 
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To avoid the disadvantages of subjective and ordinal scales, previous reviews have 

recommended using kinematics to objectively and quantitatively assess upper limb 

movements in CP children45 and stroke adults12,39. Upper limb kinematics, which 

assess the first domain of the ICF (body functions and structures), have primarily 

been assessed using optoelectric54–58 or electrogoniometer59 systems. Moreover, no 

consensus exists in the literature to determine the most relevant tasks and 

kinematic indices (for review, see tables 3 and 4). To the best of our knowledge, no 

study has provided a standardized, norm-referenced, reproducible, valid, 

responsive and concise protocol in CP children and stroke adults, by using a 

robotic device12,45. The development of such a protocol was recommended by 

Balasubramanian et al.39 and appears to be feasible using sensors integrated into a 

robot14,34,60,61.  
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Table 3: Listing of the main studies that assessed upper limb kinematics in CP children. All studies are classified 

in function of the material used for this assessment. For each study, the requested tasks and computed kinematic 

indices are provided. 

 Cerebral palsy children 
Authors Requested tasks Computed indices 

   
Robotic   
Krebs et al61 Multiple targets and drawing a 

circle 
Targets: straightness, velocity, peak 
velocity, duration and smoothness 
Circle: Axe ratio (i.e., ability to draw 
circle) 

   
Opto-electric    
Kreulen et al.62 Functional and simple tasks  Joint angles of trunk, shoulder and elbow 
Chang et al.56  Multiple targets Mean velocity, peak velocity, amplitude, 

smoothness, control strategy 
Butler & Rose63 Reaching, grasping, transporting 

and releasing a cup 
Paediatric upper limb motion index 
computed from eight joint angles of the 
trunk and arm 

Coluccini et al.57 Reaching, grasping, transporting 
and releasing a block into a box 

Joint angles of the head, trunk, shoulder, 
elbow and wrist 
Velocity/acceleration of the wrist 

Reid et al.64 Four functional tasks Joint angles of thorax, shoulder, elbow and 
wrist 

Rönnqvist & Rösblad65 Reaching & grasping an object Movement duration, straightness, peak 
velocity and smoothness 

Mackey et al.66 Two functional tasks Joint angles of trunk, shoulder and elbow 
Ricken et al.67 Reaching and grasping a ball Movement duration, peak velocity, joint 

angles of trunk, shoulder and elbow 
Van Thiel & Steenbergen68 Multiple targets Velocity, displacement, smoothness 
Jaspers et al. 201169 Three reaching tasks (forwards, 

upwards and sideways) 
Movement duration, joint angles, peak 
velocity and straightness 

Schneiberg et al.70 Reaching and grasping a wooden 
block 

Joint angles of elbow and shoulder, 
straightness and smoothness 

Butler et al.71 Reaching, grasping and  
Transporting a cup to the mouth 

Joint angles of trunk, shoulder, elbow and 
wrist 

Fitoussi et al.72 Two functional tasks Joint angles of trunk, shoulder, elbow and 
wrist 

Mackey et al.73 Two functional tasks Joint angles of trunk, shoulder and elbow 

   
Electro-goniometer   
Ramos et al.74 Multiple targets Joint angle of elbow, velocity and peak 

velocity 
Hurvitz et al.59 Reaching forward  Joint angle of elbow, velocity and peak 

velocity 
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Table 4: Listing of the main studies that assessed upper limb kinematics in stroke adults. All studies are classified 
in function of the material used for this assessment. For each study, the requested tasks and computed kinematic 
indices are provided. 

 Stroke adults 
Authors Requested tasks Kinematic indices 

Robotics   
Rohrer et al.75 Multiple targets Five smoothness measures 
Daly et al.34 One target Accuracy and smoothness 
Finley et al.60 Multiple targets Straightness, mean velocity, peak 

velocity, smoothness and movement 
duration 

Kahn et al. 19 One target Peak velocity and amplitude  
Reinkensmeyer et al.20 One target Peak velocity and amplitude  
Ellis et al.76 Circular movements (clockwise and 

counter-clockwise) 
Work area 

Feng & Winters77 Drawing square and circle Accuracy, straightness, mean velocity, 
variation of velocity, reaction time, 
smoothness 

Bosecker et al.78 Multiple targets Straightness, accuracy, movement 
duration, peak velocity, smoothness 

   
Optoelectrics   
Wu et al.79 Reaching and pressing a desk bell Reaction time, movement duration, total 

displacement, peak velocity, smoothness 
Wagner et al.54 Reaching two targets at various 

velocity 
Movement duration, peak velocity, reach 
extent, inter-joint coordination, 
smoothness, accuracy 

Fridman et al.80 Reaching, grasping and transporting 
an object 

Peak velocity, displayed distance and 
movement duration 

Caimmi et al.55 Reaching and hand-to-mouth 
movements 

Movement duration, smoothness, mean 
velocity and joint angles of elbow and 
shoulder  

Bensmail et al.81  Multiple targets Peak velocity, straightness, movement 
duration, smoothness 

Murphy et al.82 Reaching, grasping, lifting a glass 
from the table and take a drink 

Peak velocity, movement duration, 
movement strategy, smoothness 

   
Electrogoniometers   
Kahn et al.19 Multiple targets Amplitude, straightness and smoothness, 

coordination, joint angles of trunk, 
shoulder and elbow 

Reinkensmeyer et al.20 Multiple targets Accuracy 
Rundquist et al.83 Elevation of upper extremity in 

frontal, sagittal and preferred planes 
of motion 

Angles of glenohumeral and 
scapulothoracic joints 

Combs et al.84 Multiple targets Joint angles of trunk and elbow, 
movement duration, mean velocity, peak 
velocity and smoothness 

Van Kordelaar et al.85 Reaching, Grasping and transporting a 
block 

Movement duration, joint angles of 
trunk, elbow and hand 

 



General introduction 

32 

3. Upper limb rehabilitation 
 
Upper limb disabilities have been rehabilitated in stroke adults and CP children 

using a large panel of interventions86,87 that were either efficient or not efficient88,89. 

Systematic reviews87,88 and meta-analyses89–92 have highlighted the recommended 

interventions in both populations. For each population, the evidence-based 

recommendations of upper limb interventions and robot-assisted therapy (RAT) are 

summarized below, according to the ICF. For stroke adults, a recent Cochrane 

meta-analysis showed with a moderate level of evidence that transcranial direct 

current stimulation, constraint-induced movement therapy (CIMT), mental 

practice, sensory interventions (e.g., proprioceptive stimulations) and virtual reality 

could improve upper limb impairments in stroke patients88. Additionally, mirror 

therapy improved upper limb impairments in stroke patients and their abilities to 

perform ADL88. Finally, additional studies evaluated the usefulness of 

neurodevelopmental exercises (e.g., Bobath), repetitive transcranial magnetic 

stimulation, strength training and electrical stimulations88. For the robotic 

approach, many high quality randomized controlled trials (RCTs) were performed 

in stroke patients17,18,25,34,93–98. Two recent meta-analyses91,92 and one systematic 

review88 showed that upper limb RAT improved upper limb impairments and ADL 

abilities 88,91,92 in stroke patients but did not improve upper limb strength92. For CP 

children, one systematic review87 and two meta-analyses89,90 provided evidence-

based upper limb intervention recommendations. These reviews provided strong 

evidence showing that (i) Botulinum toxin associated with conventional therapy 

(CT), (ii) intensive rehabilitation such as CIMT and (iii) goal-directed/functional 

exercises improved upper limb impairments and abilities to perform ADL in 

children87,89,90. Additionally, based on a moderate level of evidence, home 

programs (i.e., goal-oriented tasks performed in the home environment) and fitness 

training appear to improve activity and participation domains87. Finally, cranial 

osteopathy and neurodevelopmental exercises (e.g., Bobath concept) do not 
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appearto be efficient in CP children87. For the robotic approach, no RCT has been 

performed yet but such studies should be performed to investigate RAT interests in 

CP children4,87. However, several preliminary studies have described the feasibility 

of upper limb RAT in CP children22,35,61,99,100.  

 

Previous studies have shown that RAT protocols have the potential to follow 

current recommendations in neuro-rehabilitation in CP children22,35,61,99,100 and 

stroke adults17,18,25,34,93–98. These recommendations encourage the execution of 

repetitive and motivating movements4,10,101, which should be assisted as needed and 

associated with feedbacks16,102. The primary interest in using robots is to allow 

patients to perform many movements in a limited period of time17,96, which does 

not seem feasible with human therapists103. For example, previous studies have 

shown that CP children and stroke patients could perform 640 and 1060 

movements, respectively, during 60-minute RAT sessions17,35. Additionally, the 

human/machine interface of a robot enables the patient to perform attractive 

exercises. For example, RAT has already been used for simple target tasks17,34,61, 

video games27, competitive or cooperative activities104 and tasks that mimic ADL 

(e.g., reaching for a cup)22 (cf. examples in Figure 5). Moreover, patients receive 

visual, auditory and sensory feedbacks while using robots18,34,35,97,99, as 

recommended by Molier et al.102.  
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Figure 5: Illustrations of visual interfaces developed in (1a-e) Haptic Master®22, (2a-b) MIT-

Manus34,61 and (3) Armin27. The exercises correspond to (1a, c, d and 2a, b) reaching targets, (1b) 

performing ADL, (1e) playing a car racing game or (3) moving a virtual handle (red in the picture) to 

catch a ball (yellow and black in the picture) that rolls down. 

 

Finally, the robotic haptic interaction can provide objective assistance to the 

patients as needed16,38,105. This assistance is an advantage of robotics, in 

comparison to other treatment modalities14 such as CIMT79 or Hand-Arm Bimanual 

Intensive Therapy106. Indeed, the assistance of upper limb movements in patients 

with severe impairment is essential16, especially in the acute stage of stroke 

rehabilitation10. Moreover, the adaptation of assistance level in function of patients’ 

performances is relevant to progressively increase the difficulty of exercises in CP 

children and stroke adults4,105. Various methods have been developed to assist 

patients in function of their performances. Krebs et al.105 implemented 

performance-based adaptive algorithms on the MIT-Manus robot (see Figure 1). 

These algorithms adapt the assistance provided to patients in function of velocity, 

time and electromyography variables. These algorithms assess the patients’ ability 
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to initiate movements and move towards the target. Moreover, the upper limb 

kinematics (straightness and accuracy) is also assessed during the patients’ 

movements. All these measures enable the MIT-Manus robot to objectively 

increase or decrease the level of assistance in function of patients’ performances105. 

Later on, Ronsse et al.107 have developed an oscillator-based assistance. This 

approach is based on the synchronization between patients’ movements and an 

adaptive oscillator. This synchronization continuously adapts the assistance 

provided to patients in function of their movements’ characteristics (amplitude, 

frequency and offset). This approach has been initially developed for lower limb 

rehabilitation because it works only with rhythmic movements. However, the 

Ronsse’s team is currently adapting these algorithms for upper limb purposes108. 

Beside assistance methods, haptic interaction could also be used to constraint 

patients by involving disturbing forces during their movements. For instance, 

Abdollahi et al.109 asked patients to reach targets by using a robot, while the device 

applied an error augmenting force that pushed their upper limb away. We believe 

that this last assistance method should only be recommended in patients with mild 

to moderate impairments. 

 

In addition to the potential of robotic devices to follow current neuro-

recommendations, the technical properties of robotic devices could also complete 

the abilities of human therapists in neuro-rehabilitation. Pignolo14 supported this 

hypothesis by listing both advantages, which are summarized below. On one hand, 

the mechatronic components of a robot (e.g., sensors, actuators, controllers) 

provide better reliability, reactivity, quantifiable measures, objectivity, memory 

storage and endurance than a human therapist during patient rehabilitation14. On 

the other hand, human therapists are distinguished from robots by their cognition, 

insight, and communication, as well as their precision in complex tasks such as 

ADL14. The association of a robot, which involves substantial movements, with a 

human therapist could enable one to re-allocate his or her time and energy to 
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transferring the benefits of these repetitive movements (for example, improved 

motor control92) to ADL. Robotic devices should be used in complement and not in 

competition with human therapists14. Although this last suggestion seems obvious, 

most previous studies have investigated the interests of RAT at the only treatments, 

and not in combination with CT17,25,35,61,93,94,96,99,100. 

4. Purposes of the PhD thesis 
  

The general introduction of this PhD thesis provided the backgrounds of upper 

limb assessment and rehabilitation in CP children and stroke adults.  

 

Regarding the patients’ assessment, we highlighted a lack of consensus for 

assessing upper limb kinematics in these patients. Moreover, no study has provided 

a standardized, norm-referenced, reproducible, valid, responsive and concise 

protocol in CP children and stroke adults, by using a robotic device12,45. Such a 

standardization is essential to reliably assess upper limb kinematics in clinical 

routine12,39. The first part of the thesis, which comprises four chapters, investigates 

how the REAplan robot could optimize the assessment of upper limb kinematics in 

both populations. The two first chapters present the age effects and reference 

standards of upper limb kinematics in healthy young children (chapter 1) and in 

healthy subjects throughout life (chapter 2) using the REAplan robot. The two last 

chapters present the standardization of a protocol to assess upper limb kinematics 

in adult stroke patients using the REAplan robot. This standardization was 

performed through preliminary (chapter 3) and validation (chapter 4) studies. The 

details about patient installation, tasks instructions, interpretations of kinematic 

indices and analyses of these kinematic indices are provided in Annexes 1 and 2, 

respectively, to make the reading of this part easier.  
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Regarding the patients’ rehabilitation, we highlighted that no RCT has been 

performed yet to investigate RAT efficacy in CP children. Such investigation is 

essential to enhance evidences in rehabilitation110. The second part of the thesis 

investigates how the REAplan robot could efficiently rehabilitate the upper limb in 

CP children. This part presents a single-blind RCT that compares CT to a 

combination of RAT and CT. The assessment protocol of this trial included the 

kinematics protocol detailed in the first part of this thesis and considered the three 

ICF domains according to the current international recommendations12,41. In 

addition to this second part, a multi-center, single-blind RCT also began in May 

2014 to investigate the efficacy of RAT in acute stroke patients. However, 

recruiting these patients took longer than recruiting CP children. Thus, the results 

of this study are not presented in this PhD thesis (see Discussion and perspectives). 
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Chapter 1  

 
Age effects on upper limb kinematics assessed by the 

REAplan robot in healthy school-aged children 

 
Maxime Gilliaux, Floriane Dierckx, Lola Vanden Berghe, Thierry M. Lejeune, 

Julien Sapin, Bruno Dehez, Gaëtan Stoquart, Christine Detrembleur 

 
Annals of Biomedical Engineering 2014, [Epub Head]: 1-9 

  

1. Abstract  
 
The use of kinematics is recommended to quantitatively evaluate upper limb 

movements. The aims of this study were to determine the age effects on upper limb 

kinematics and establish norms in healthy children. Ninety-three healthy children, 

aged 3 to 12 years, participated in this study. Twenty-eight kinematic indices were 

computed from 4 tasks. Each task was performed with the REAplan, a distal 

effector robotic device that allows upper limb displacements in the horizontal 

plane. Twenty-four of the 28 indices showed an improvement during childhood. 

Indeed, older children showed better upper limb movements. This study was the 

first to use a robotic device to show the age effects on upper limb kinematics and 

establish norms in healthy children. 

 

Keywords: Robotics; Pediatrics; Kinematics; Outcome Assessment; Biomechanics; 

Reference Standards; Growth and Development 
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2. Introduction 
 
Psychomotor development in children evolves with progressive improvements. 

Children display uncontrolled upper limb movements in the first months after birth, 

after which they develop reaching and grasping movements during the first year of 

life. Then, these motor abilities are transferred to activities of daily living (such as 

eating and dressing) in subsequent years111. However, motor development may be 

altered in children with cerebral palsy (CP). In particular, children with CP present 

impairments such as spasticity and muscle weakness that affect their ability to 

develop normal motor functions for performing activities of daily living4. 

The upper limb motor ability in children is typically described through 

observations, interviews, and standardized and non-standardized assessments112,113. 

The majority of these measures are subjective and use ordinal scales13. Several 

authors have recommended the use of kinematics to objectively and quantitatively 

assess upper limb movements in CP children to avoid the drawbacks of ordinal 

scales45,56. In addition, few studies have compared upper limb kinematics between 

healthy and CP children57,63–65,74. However, their small healthy children’s sample 

(sample range: [5-11])57,64,65,74 and their age criterion (age range in years: [5-18])63 

were not appropriate to create age groups and then, assess age effects in healthy 

children. Previous authors have also assessed the age effect of upper limb 

kinematics in healthy children; however, these studies did not include children 

younger than five years of age114,115. Until the age of five, these children 

significantly develop motor skills by improving quality of movements (e.g., 

subjective improvement of smoothness in upper limb movements) and manual 

abilities (e.g. to improve the hand coordination by stacking cubes and, later, 

threading beads)111. The motor development of these younger children could be 

better objectified with kinematics. 
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Upper limb kinematics in healthy children is mainly computed using optoelectric 

systems57,63–65,114,115 or electrogoniometers45,74. However, no study performed to 

date has used a robotic device to quantitatively assess the age effect and establish 

norms of upper limb kinematics in healthy children. Robotic devices, such as the 

REAplan, have the advantage of quantitatively assessing upper limb movements 

and rehabilitating patients, which is not feasible with other assessment devices39. 

The REAplan is a planar end-effector robotic device that allows for mobilizations 

in a horizontal plane resulting from movements of the upper limbs38. We116,117 

provided a standardized protocol to compute several kinematic indices of 

movement from several tasks performed with this robot.  

Few studies have established the construct validity of a kinematic protocol in 

healthy children63,118. Construct validity corresponds to the correlations between 

different assessment tools12, and this measure can be used to assess relationships 

between kinematics and visual-motor control and dexterity in healthy children, 

which have not previously been studied.  

In accordance with the above considerations, the aims of this study were to (1) 

assess the age effects and establish reference standards of upper limb kinematics 

and (2) study the construct validity of this tool in healthy children. 

3. Materials and Methods 
 

Subjects  

Ninety-three healthy children recruited from a nursery and a primary school 

participated in this study (location: chapelle-aux-champs school, Brussels). The 

inclusion criteria consisted of an age between 3 and 12 years and adequate 

cognition skills for following instructions. These skills were verified by checking, 

during the training phase of each test, the correct application of instructions. The 
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exclusion criterion was the presence of any disorder that could alter the movements 

of the tested upper extremity. The children were recruited in order to have a 

homogeneous number of subjects in each age group. The characteristics of the 

included children and the sample size of each age group are reported in Table 1. 

All of the subjects and their parents received an informative letter explaining the 

nature, the aim and the duration of the experiment. All of the parents provided 

informed consent. The ethics board of our Faculty of Medicine approved this 

study.  

 
Table 1: Characteristics of the included children and 
sample size of each age group. 

 Healthy Children 
(n=93) 

Age (yrs), mean (SD) 7.8 (2.7) 
Gender (male/female), n 41/52 
Weight (kg), mean (SD) 28.6 (11.2) 
Height (m), mean (SD) 1.3 (0.2) 
BMI (kg/m²), mean (SD) 16.2 (2.7) 
Dominant arm (right/left), n 83/10 

Age (yrs) 3 4 5 6 7 8 9 10 11 12 
Sample (n) 9 9 9 10 12 7 13 9 9 6 

Abbreviations: BMI = Body Mass Index, SD = Standard Deviation 

 

Hand dominance 

The child was asked to pick up and throw a ball while the examiner observed 

which hand was used. This test was used to determine hand dominance.   

 

Kinematic assessment 
 

Apparatus 

The robot used in the present study was the research prototype REAplan (Figure 

1). This device is composed of a distal effector that is held in the subject’s hand, 

which allows displacements in the horizontal plane resulting from various 

movements of the shoulder and elbow.  
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The REAplan is fitted with force and position sensors. The force sensors are 

intended to measure the interaction force between the child and the robot, which 

allows the determination of a reference force using a force controller. The position 

sensors measure the kinematics of the child’s hand to determine the reference force 

on a positional basis and on the basis of the specific exercises performed with the 

robot. For this study, the only reference force used was a slightly viscous friction 

force to avoid the strange sensation of moving the hand on a frictionless surface. 

For the purposes of the study, the kinematic information provided by the position 

sensors was recorded during the exercise, which enabled us to analyze the data off-

line (acquisition frequency 125 Hz). The planar robot is also equipped with a 

screen positioned in front of the subject. This screen displayed the tasks (Figure 2) 

and provided to the children a real time feedback of their movements. 

 

 
 

Figure 1: View of the REAplan. 1: planar end-effector robot; 2: visual interface for the subject; 3: 

physiotherapist’s interface. 
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Figure 2: For each task (A, B, C, 

visual interface (first column

column), 8 years (third column

 
Placement of subjects 

All of the subjects were placed in an ergonomic and standar

(Figure 3). The start position of the end

: For each task (A, B, C, D), illustrations of the requested task presented on the 

first column) and the tasks performed by children aged 4 years (second 

third column) and 12 years (fourth column) are shown. 

ects were placed in an ergonomic and standardized sitting position 

). The start position of the end-effector was centered and placed 13 cm in 

 
illustrations of the requested task presented on the 

) and the tasks performed by children aged 4 years (second 

dized sitting position 

effector was centered and placed 13 cm in 
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front of the subject. The angle between each subject’s hip and trunk was 

maintained at 120° to limit lumbar constraints. The children’s feet were kept flat on 

a footrest for stability, and the trunk was secured with webbing to minimize 

movement compensations at this level.  

 

 
 

Figure 3: Illustration of the ergonomic and standardized  
sitting position of a child aged five years. 

 

Tasks 

We116 provided a standardized protocol to quantitatively assess active movements 

of the upper limb in stroke patients. This protocol consists of the performance of 4 

different tasks with the REAplan. These tasks, which are illustrated in Figure 2 and 

are described below, were performed with the dominant arm and at spontaneous 

velocities. 

For the Free Amplitude task, the subject had to reach straight out in front of them 

as far as possible and brought the arm back to the starting. For the Target task, the 

subject made movements in the most precise and direct manner toward a specific 

target placed a distance of 10 cm from the starting point in front of the subject. 

This target was placed closer than that in previous studies evaluating kinematics in 

adults to avoid amplitude limits in smaller children.75,116 After performing this task, 

the robot brought the subject’s arm back to the starting position. For the Square and 
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Circle tasks, the subject had to draw 2 geometrical shapes: a square with 6-cm 

sides and a circle with a 4-cm radius. Each shape was centered in front of the 

subject. These shapes were drawn clockwise with the right upper limb or counter-

clockwise with the left limb. This last instruction enabled children to perform 

inward movements whatever the upper limb used. To summarize this protocol, the 

subjects performed rhythmic (i.e., Free Amplitude and Circle tasks) and discrete 

(i.e., Target and Square tasks) movements. The experiment started with a ten-

minute training phase to limit learning bias. For the data-acquisition phase, the 

order of the tasks was randomly assigned. Each task was performed 10 consecutive 

times, and the rest period between each task was 1 minute.  

 

Kinematic analysis 

For each task, the elapsed time of the end-effector position was recorded by the 

robot. These variables were analyzed for each task using a specific customized 

program in a LabWindows/CVI (8.5) environment.  

For the Free Amplitude task, the computed indices included the amplitude, 

velocity, straightness (ratio between the amplitude and path length covered by the 

subject; ratios closer to 1 indicate more rectilinear paths) and smoothness (ratio 

between the mean and peak velocity; ratios closer to 0 indicate less smooth 

movements)75. For the Target task, the amplitude index was replaced by a target 

inaccuracy index (distance between the target position and the end position 

achieved by the child; higher scores indicate more inaccurate movements). For the 

Square and Circle tasks, we computed the shape inaccuracy (distances mean 

between reference shape and shape drawn by the child; higher scores indicate more 

inaccurate movements)116, velocity and smoothness indices. Each index in this 

protocol was computed from the 10 cycles of movement and was averaged. The 

coefficient of variation (CV), calculated from the subjects’ 10 cycles of movement, 

was computed for each index. 
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Bruininks-Oseretsky test of motor proficiency (BOTMP) 

Fine and gross motor skills were assessed with the Bruininks-Oseretsky test of 

motor proficiency (BOTMP), which is a standardized, validated, and reliable tool 

used in clinical and school practice settings for subjects between the ages of 4 and 

21 years113,119. For this study, because we focused on the upper limbs, only 2 of the 

8 subtests of the BOTMP were assessed: the Visual-Motor Control subtest and the 

Upper-Limb Velocity and Dexterity subtest. For the Visual-Motor Control subtest, 

a score ranging from 0 to 24 was obtained, with higher scores indicating better 

visual motor control. For the Upper-Limb Velocity and Dexterity subtest, a score 

ranging from 0 to 72 was obtained, with higher scores indicating better upper limb 

dexterity. 

 

Session organization 

For each investigation, two physiotherapists simultaneously assessed two children. 

The experiment started with the hand dominance test. After that, one child firstly 

performed the BOTMP and then, the kinematic assessment; the other child firstly 

performed the kinematic assessment and then, the BOTMP. For each pair of 

children, this order was randomized by lottery. 

 

Statistical analysis 

 

Age effect and reference standards for upper limb kinematics in children 

For each kinematic index, a dynamic exponential curve (2 parameters) was fitted 

with the results of the 93 children using SigmaPlot 11.0 software (WPCubed 

GmbH, Munich, Germany). The equation for this curve provided the corresponding 

kinematic results for a specific age.   

A correlation coefficient (r) related to each dynamic exponential curve was used to 

quantify the age effect. For each kinematic index, an age effect was considered if 

the │r│was > 0.30, corresponding to a moderate to excellent correlation12. 
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Construct validity 

Correlations between each kinematic index and the score of each BOTMP subtest 

were performed with a Spearman correlation test using SigmaStat 3.5 software 

(WPCubed GmbH, Munich, Germany). A correlation was considered excellent, 

moderate or poor if the │r│ was >0.60, 0.30-0.60 or <0.30, respectively12. 

4. Results 
 

All of the results are presented in Table 2 and illustrated in Figures 2, 4, 5 and 6.  

 

Age effect and reference standards for upper limb kinematics in children 

For each kinematic index, an equation corresponding to the reference standards of 

the upper limb kinematics in children is provided in Table 2. For each kinematic 

index, the age effect is illustrated in Figures 4 and 5 and is described below.  

For the Free Amplitude task, all of the indices showed an age effect (│r│range: 

[0.34; 0.85]). Indeed, the youngest children’s movements were not as large, 

rectilinear, smooth, or fast compared to those of the older children. The youngest 

children also presented greater variability in amplitude, linearity, smoothness and 

velocity for the 10 cycles of movement (Table 2) (Figure 4).  
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For the Target task, 6 of 8 indices showed an age effect (│r│range: [0.30; 0.56]). 

Indeed, the youngest children’s movements were less rectilinear and smooth than 

those of the older children. Moreover, the youngest children presented greater 

variability in inaccuracy, linearity, smoothness and velocity for the 10 cycles of 

movement. The target inaccuracy and velocity indices did not show any age effects 

(r = -0.23 and 0.05) (Table 2) (Figure 4).  

For the Circle and Square tasks, 5 of 6 indices showed an age effect (│r│range: 

[0.30; 0.68]). Indeed, the youngest children’s movements were less accurate and 

smooth than those of the older children. Moreover, the youngest children presented 

greater variability in inaccuracy, smoothness and velocity for the 10 cycles of 

movement. The velocity index (of both tasks) did not show any age effect (r = 0.05 

and 0.10) (Table 2) (Figure 5). 

 

Construct validity 

Construct validity was calculated to examine the correlations between each 

kinematic index and the Visual-Motor Control and Upper Limb Velocity and 

Dexterity subtests of the BOTMP. For both subtests, the results of the 93 children 

are illustrated in Figure 6.  

Sixteen of twenty-eight indices showed moderate to excellent correlations for both 

subtests (│r│ range: [0.41; 0.62]) (Table 2). The CVvelocity (Free Amplitude task) 

and shape inaccuracy (Square task) indices showed moderate correlations with the 

Visual-Motor Control subtest (r = -0.30 and -0.35, respectively); however, there 

were no correlations with the Velocity and Dexterity subtest (r = -0.28 and -0.25, 

respectively) (Table 2). The other indices showed insignificant correlations 

(p>0.05) or poor correlations (p<0.05; │r│<0.3) with both subtests (Table 2). 
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Table 2: The coefficients (a and b) and the standard deviation (SD) of the equation corresponding to 

the child’s kinematic result as a function of age for each kinematic index; the results of the age effect 

for each kinematic index; and the results of the Spearman’s correlation test for each kinematic index 

and each BOTMP subtest. 

The underlined indices are related to the equation: F=a.(1-e(-b.yrs)). For the other indices: F= a.e(-b.yrs).  

* correspond to indices with age effects (│r│ > 0.3) 

Indices with a significant correlation (p < 0.05) are shown in bold 

 

    Coefficient correlation (r) 
 a  b  SD Age Effect Visual-

Motor 

Control 

(/24) 

Velocity 

and 

Dexterity 

(/72) 

Free amplitude        

Amplitude (cm) 30.0 0.36 1.6 0.85* 0.50 0.58 
CVamplitude (%) 14.8 0.18 2.1 -0.65* -0.56 -0.55 
Straightness 1.0 1.18 0.01 0.57* 0.25 0.26 
CVstraightness (%) 6.5 0.25 1.1 -0.52* -0.26 -0.25 
Velocity (cm/s) 15.1 0.26 4.6 0.34* 0.29 0.27 
CVvelocity (%) 26.5 0.07 5.8 -0.42* -0.30 -0.28 
Smoothness 0.64 0.28 0.07 0.69* 0.56 0.60 
CVsmoothness (%) 25.6 0.09 4.5 -0.55* -0.48 -0.42 
Target       
Target inaccuracy (cm) 1.1 0.03 0.3 -0.23 -0.12 -0.08 
CVtarget inaccuracy (%) 79.0 0.09 16.3 -0.52* -0.49 -0.56 
Straightness 1.0 1.18 0.01 0.34* 0.24 0.26 
CVstraightness (%) 4.8 0.18 2.0 -0.30* -0.22 -0.19 
Velocity (cm/s) 5.6 0.77 1.7 0.05 0.00 0.01 
CVvelocity (%) 49.8 0.10 9.6 -0.56* -0.59 -0.62 
Smoothness 0.51 0.50 0.04 0.48* 0.53 0.49 
CVsmoothness (%) 38.3 0.15 8.7 -0.51* -0.52 -0.50 
Square       
Shape inaccuracy (cm) 1.4 0.01 0.13 -0.30* -0.35 -0.25 
CVshape inaccuracy (%) 27.0 0.01 4.9 -0.55* -0.53 -0.45 
Velocity (cm/s) 5.7 0.69 2.1 0.05 0.05 0.09 
CVvelocity (%) 37.1 0.12 5.0 -0.68* -0.57 -0.55 
Smoothness 0.56 0.31 0.07 0.58* 0.41 0.54 
CVsmoothness (%) 23.6 0.07 3.7 -0.56* -0.43 -0.44 
Circle       
Shape inaccuracy (cm) 2.7 0.16 0.53 -0.54* -0.56 -0.54 
CVshape inaccuracy (%) 51.5 0.07 9.1 -0.51* -0.42 -0.45 
Velocity (cm/s) 7.9 0.51  4.0 0.10 -0.05 -0.02 
CVvelocity (%) 29.2 0.07 5.4 -0.52* -0.46 -0.47 
Smoothness 0.65 0.39 0.11 0.40* 0.21 0.24 
CVsmoothness (%) 20.85 0.07 3.9 -0.49* -0.42 -0.45 
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Figure 4: For each index of the Free Amplitude and Target tasks, illustrations of the reference standards of 

healthy children (corresponding to the black line ± SD [Grey area]) are shown as a function of age. 
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Figure 5: For each index of the Circle and Square tasks, illustrations of the reference standards of healthy children (corresponding to 

the black line ± SD [Grey area]) are shown as a function of age. 
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Figure 6: For each subtest of the BOTMP and as a function of age, the results of the 93 healthy 

children are shown (1 dot corresponds to 1 child’s result). 

5. Discussion 
 
The aim of this study was to assess age effects and establish reference standards of 

upper limb kinematics in healthy children aged 3 to 12 years. These data enabled 

us to analyze the relationships between kinematics and visual-motor control and 
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upper limb velocity and dexterity, as assessed with the Bruininks-Oseretsky test of 

motor proficiency. 

 

Age effect and reference standards of kinematic indices obtained with a robot 

For all of the tasks of the kinematic protocol, nearly all of the indices demonstrated 

an age effect in healthy children. However, some indices (e.g., the amplitude, 

straightness, and smoothness indices for the Free Amplitude and Target tasks 

[Figure 4] and the smoothness index for the Circle and Square tasks [Figure 5]) 

appeared to show an improvement of upper limb kinematics until the age of 8 

years, after which time the indices showed a steady state. These results are in 

agreement with those of Olivier et al.114, who showed changes of the upper limb 

kinematics in children between 5 and 8 years of age and no change in children 

between 8 and 11 years of age. Other indices (e.g., CVvelocity and CVsmoothness for all 

tasks [Figure 4 and 5]) seemed to show an improvement until the age of 12 years 

but they did not demonstrate a steady state. These results are in agreement with 

those of Petuskey et al.115, who showed a significant improvement in upper limb 

displacement in subjects aged 5 to 18 years. Finally, for 3 of 4 tasks, the upper limb 

velocity of movement was identical for children aged 3 to 12 years. These results 

may be explained by one of our instructions, which instructed the children to 

perform movements at spontaneous velocities. 

One can argue that the greater variability observed in younger children could be 

related to a training effect. We believe that the ten minute-training were adequate 

for all participants, even the younger ones, for two reasons. Firstly, the training 

effect was assessed through ten consecutive cycles of movement in the nine 

children aged three years old. For each index, each cycle of movement was 

analyzed separately, and the data submitted to a one-way repeated measures 

analysis of variance. No training effect was found for the different tasks (p-value > 

0.05). Secondly, for the same tasks and ten minute-training, it was showed (i) no 
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training effect in adult stroke patients116 and (ii) reproducible results in children 

with cerebral palsy (age range, in years: [5-18])120 and adult stroke patients116. 

This study improves the current understanding of upper limb kinematics in children 

in 4 ways. First, development in children is often described through descriptive 

observations (e.g., older children show better movements)111. This study showed 

that descriptive observations could be quantified with kinematics. Second, this 

study followed the current recommendations by presenting, using a robot, 

reference standards of kinematic indices39. Third, previous studies assessed age 

effects and established reference standards by computing traditional kinematic 

indices, such as the range of motion and velocity114,115. In contrast, this study was 

the first to propose a protocol with detailed kinematic indices (i.e., inaccuracy, 

smoothness, straightness and reproducibility) to analyze the quality of children’s 

upper limb movements. Fourth, contrary to previous studies63,114,115, this study 

assessed upper limb kinematics in healthy children younger than 5 years of age, for 

whom motor skills are less developed than in older children111. 

 

Relationship between upper limb kinematics and upper limb visual-motor 

control, velocity and dexterity  

In addition to the kinematic analyses computed with the REAplan, the children also 

performed 2 parts of the BOTMP. This assessment allowed us to analyze the 

correlations between each subtest and each kinematic index. The results obtained 

led to the establishment of construct validity for a kinematic protocol in children, 

as recommended by Sivan et al.12. The kinematic analysis, assessed with the 

REAplan, was then used to measure the Visual-Motor Control and the Upper-Limb 

Velocity and Dexterity in children aged 3 to 12 years. However, most correlations 

were moderate (│r│<0.6) because our protocol also assessed other aspects of the 

movements, such as the submovements75, which could not be measured using 

classical psychomotor scales. These results are in accordance with those of 

Gilliaux et al.116, who showed correlations in stroke patients between kinematic 
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indices, assessed with the REAplan, and upper limb motor control and gross 

manual dexterity, assessed using the Upper Limb Sub-Score of the Fugl-Meyer 

Assessment49 and the Box and Block test121.  

Correlations between the kinematic and psychomotor tests could have implications 

for therapists. Thus, it is important to identify disorders of the upper limb visual-

motor and dexterity abilities to understand functional problems that children 

demonstrate at home, at school and during play. Between 5-6% of school-aged 

children show a developmental coordination disorder122, which is a neuro-

developmental condition that affects motor coordination and renders everyday 

tasks such as dressing, eating and playing more difficult123. Kinematics may 

represent a new objective, quantitative tool to detect and assess these conditions. 

Additionally, kinematics allows for the comparisons of supposed healthy children 

to clear standards, which could enable psychomotor therapists to detect delays in 

motor development and follow the evolution of development over time.  

 

Limitations and perspectives 

Our study sample was limited to children with a maximum age of 12 years, and 

upper-limb kinematics may continue to change after 12 years of age115. Thus, 

further studies are necessary to evaluate the evolution of kinematic indices beyond 

12 years of age and to define the age limit of maturity for those indices. It could 

also be interesting to examine whether there is an optimal age for kinematics and 

whether there is deterioration with age.  

Kinematic indices have been computed for patients in different studies12,56,116,117,120. 

Researchers or clinicians could use this norm-referenced protocol to (1) objectify 

impairments in CP children and (2) provide a sensitive way to assess changes in 

response to intervention, such as robotic-assisted therapy100,120, or following 

injections of upper limb botulinum toxin72,73. 

The REAplan conception allows end-effector movements in 2 spatial dimensions 

(2D). Despite these horizontal plane movements, the shoulder and elbow 
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movements involve displacements in 3D. Further studies could apply this protocol 

to an exoskeleton robotic device124 or an optical tracking system63, which assess 

upper limb movements in 3D. 

6. Conclusions  
 
This study was the first to use a robotic device to assess the effect of age and 

establish reference standards for upper limb kinematics in healthy children aged 3 

to 12 years old. This study also showed correlations between kinematics and visual 

motor control and upper-limb velocity and dexterity. This research has contributed 

to enhance the assessment of upper limb kinematics in children. These results 

could be used to routinely evaluate the performance of a child at a specific age and 

assess the child’s progress over time. Moreover, the use of a robotic device enables 

accurate, objective and sensitive assessments and is especially appropriate for body 

function measurements in children.  
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1. Abstract  
 
Kinematics is recommended for the quantitative assessment of upper limb movements. The 

aims of this study were to determine the age effects on upper limb kinematics and establish 

reference standards in healthy subjects. Three hundred and seventy healthy subjects, aged 3 

to 93 years, participated in the study. They performed two unidirectional and two 

geometrical tasks ten consecutive times with the REAplan, a distal effector robotic device 

that allows upper limb displacements in the horizontal plane. Twenty-eight kinematic 

indices were computed for the four tasks. For the four tasks, nineteen of the computed 

kinematic indices showed an age effect. Seventeen indices (the inaccuracy, velocity and 

smoothness indices and the reproducibility of the inaccuracy, velocity and smoothness) 

improved in young subjects aged 3 to 30 years, showed stabilization in adults aged 30 to 60 

years and declined in elderly subjects aged 60 to 93 years. Additionally, for both 

geometrical tasks, the velocity index exhibited a decrease throughout life. This study is the 

first to assess age effects on upper limb kinematics and establish reference standards in 

subjects aged 3 to 93 years. 

 

Keywords: Robotics; Pediatrics; Adult; Aged; Kinematics; Outcome Assessment; Healthy 

Volunteers; Biomechanics; Reference Standards; Growth and Development; Ageing 
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2. Introduction 
 

Motor abilities in healthy subjects evolve during their lives. Children display 

uncontrolled upper limb movements in the first months after birth, after which they 

develop reaching and grasping movements in the first year of life. These abilities 

are transferred to activities of daily living (ADLs) (such as eating and dressing) in 

subsequent years111. Subsequently, young adults maintain or improve these abilities 

by performing physical activities125. Finally, a decrease in physical performance 

and functional abilities is considered to appear progressively in the elderly126–128. 

However, this evolution throughout life has not yet been proven based on objective 

and quantitative measures. 

 

Indeed, the upper limb motor ability of subjects, regardless of their age, is typically 

described through observations, interviews, and standardized and non-standardized 

assessments112,113,128. The majority of these measures are subjective and employ 

ordinal scales112,113,128. Several authors have recommended the use of kinematics to 

objectively and quantitatively assess upper limb movements in subjects to avoid 

the drawbacks of ordinal scales12,39,45,116,117,129.  

  

The evolution of subjects’ upper limb kinematics across various ages has been 

investigated in healthy subjects. Previous studies have demonstrated the effects of 

age on upper limb kinematics in children aged from 3 to 18 years115,129. Olivier et 

al.114 showed progress in upper limb kinematics over time by comparing children 

(age range in years: [6-11]) and young adults (mean age in years: 38). Finally, 

some studies have objectified the ageing of upper limb kinematics by comparing 

young adults (age range in years: [20-23]) and the elderly (age range in years: [70-

80])130,131. However, the sample sizes and age criteria employed in these studies 

were limited and did not allow the authors to (i) quantify the evolution of upper 

limb kinematics throughout life or (ii) determine an age limit of maturity for upper 
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limb kinematics. The development of children, the age limit for maturity among 

subjects and ageing might be objectified with upper limb kinematics, which has 

never been studied. 

 

The present study investigated the evolution of upper limb kinematics throughout 

life. Even though the motor development of subjects during their lives has been 

well described111,125–127, this study aimed to quantify this evolution and to establish 

reference standards for upper limb kinematics in healthy subjects aged 3 to 93 

years.  

 

The present study is linked with a previous study129 assessing the age effects on 

upper limb kinematics in ninety-three healthy children aged three to twelve years 

using the REAplan. The  REAplan is an end-effector robotic device that can 

mobilize a subject’s upper limb by carrying the hand or the forearm along paths 

included in a horizontal plane38. The results showed that twenty-four of the twenty-

eight computed kinematic indices improved during childhood (older children 

exhibited better upper limb movements). 

3. Materials and Methods 
 
Subjects  

Three hundred and seventy healthy subjects participated in this study. These 

subjects were recruited from a nursery, a primary school (chapelle-aux-champs 

school, Brussels), a high school (Lycée Martin V, Louvain-la-Neuve), a university 

(Université catholique de Louvain, Brussels and Louvain-la-Neuve) and a nursing 

home (Le Point du Jour, Bierges). The inclusion criteria consisted of an age greater 

than 3 years and adequate cognition skills for following instructions. These skills 

were verified by checking the correct application of instructions in all subjects and 

a score greater than 24/30 on the Mini Mental State Examination in elderly 
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individuals older than 75 years. The exclusion criterion was the presence of any 

disorder that could alter the movements of the tested upper limb. The participants 

were recruited to obtain a homogeneous sample in each age group. The 

characteristics of the included subjects and the sample size of each age group are 

reported in Table 1. All of the participants and the children’s parents received an 

informative letter explaining the nature, aim and duration of the experiment, and all 

of these individuals provided informed consent. The ethics board of our Faculty of 

Medicine approved this study.  

 

Hand dominance 

The following test was used to determine hand dominance in children less than 13 

years: each child was asked to pick up and throw a ball while the examiner 

observed which hand was used. For the older subjects, the dominant hand 

corresponded to the hand mainly used in ADL, such as writing 
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Table 1: Characteristics of the subjects and sample size of each age group. 

 Healthy subjects (n=370) 
Age range (yrs) 3-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-93 
Sample (n) 78 70 55 46 29 21 19 18 34 
Age (yrs), mean (SD) 7.0 (2.2) 14.5 (2.5) 25.0 (2.9) 35.8 (3.0) 45.1 (2.9) 55.5 (2.7) 65.2 (2.3) 75.3 (3.0) 86.9 (4.0) 
Gender (male/female), n 32/46 29/41 34/21 28/18 12/17 7/14 8/11 9/9 10/24 
Weight (kg), mean (SD) 25.3 (8.1) 54.0 (11.9) 68.6 (12.0) 71.8 (15.3) 71.3 (18.4) 68.5 (12.1) 68.3 (12.0) 61.9 (8.5) 60.6 (13.4) 
Height (m), mean (SD) 1.24 (0.2) 1.66 (0.11) 1.75 (0.09) 1.74 (0.10) 1.71 (0.11) 1.72 (0.07) 1.69 (0.09) 1.66 (0.07) 1.63 (0.11) 
BMI (kg/m²), mean (SD) 15.8 (2.3) 19.4 (2.5) 22.3 (2.9) 23.4 (3.8) 24.7 (6.3) 23.3 (3.0) 23.7 (2.3) 22.4 (2.5) 22.7 (2.3) 
Dominant arm (right/left),n 73/5 63/7 49/6 38/8 28/1 21/0 17/2 18/0 31/3 

Abbreviations: BMI = body mass index, SD = standard deviation 
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Kinematic assessment 
All participants were subjected to the protocol described in the previous chapter129. 

Twenty-eight kinematic indices were computed from two unidirectional tasks (i.e., 

reaching a target and performing a back-and-forth movement) and two geometrical 

tasks (i.e., drawing a circle and a square). These tasks, which are illustrated in 

Figure 1, were performed ten consecutive times with the dominant arm at 

spontaneous velocities using REAplan. The REAplan is a distal effector robotic 

device that allows for upper limb displacements in the horizontal plane (Figure 2). 

The upper limb movements were performed without assistance from the robot129. 

For each task, the elapsed time of the end-effector position was recorded by the 

robot (acquisition frequency 125 Hz). Each kinematic index (i.e., amplitude, 

inaccuracy, straightness, velocity and smoothness [assessed using the speed metric 

index75]) evaluated in this protocol was computed from these ten cycles of 

movement and was then averaged. A coefficient of variation (CV), calculated from 

the subjects’ ten cycles of movement, was computed for each index.  
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Figure 1: For each task (A, B, C, D), illustrations of the requested task presented on the visual 

interface (first column) and the ten cycles of movement performed by a subject aged 40 years 

(second column) are shown.
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Figure 1: For each task (A, B, C, D), illustrations of the requested task presented on the visual 

) and the ten cycles of movement performed by a subject aged 40 years 
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Figure 2: View of the REAplan. 1: planar end-effector robot; 2: visual interface for the subject; 3: 

physiotherapist’s interface. 

 

Statistical analysis 

 
Age effects for upper limb kinematics  

For each kinematic index, a polynomial quadratic curve was fitted based on the 

results for the three hundred and seventy subjects using SigmaPlot 11.0 software 

(WPCubed GmbH, Munich, Germany). A correlation coefficient (r) related to each 

polynomial quadratic curve was used to quantify the age effects. For each 

kinematic index, an age effect was considered to occur if the r coefficient was ≥ 

0.30, corresponding to a moderate (r range [0.30-0.60]) to excellent (r > 0.60) 

correlation12,129. 
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Reference standards for upper limb kinematics  

Reference standards were established as a function of the age effect results. For 

each index that was significantly influenced by age (r ≥ 0.30), the reference 

standard corresponded to the equation for the polynomial quadratic curve (i.e., F= 

a.yrs2 + b.yrs + c) providing the corresponding kinematic results for a specific age. 

In addition, a second equation of a polynomial quadratic curve (i.e., F= a.yrs2 + 

b.yrs + c) was computed to provide the variation of these kinematic results (i.e., 

standard deviation [SD]) for a specific age. For each index that was not influenced 

by age (r < 0.30), the reference standard corresponded to the average and SD of the 

results for the three hundred and seventy subjects. 

 

Principal component analysis 

The correlations between the kinematic indices, tasks and subjects’ age were 

investigated. A principal component analysis (PCA) was performed using StatView 

5.0 software (SAS Institute, Cary, NC, USA) with the following model: 

� = ��, 

where X is the original subjects’ kinematic results and age of subjects. X 

corresponds to the m x n matrix, where m = 29 (kinematic indices and age) and n = 

370 (subjects number). Y corresponds to the new results, resulting from of the 

orthogonal linear transformation P (using Varimax transformation). Thus, Y 

corresponds to a new m x n matrix, where m = 4 (principal components) and n = 29 

(kinematic indices and age). The eigenvalues magnitude and variance proportions 

of each principal component are computed. The Bartlett’s Chi Square of this PCA 

was also calculated. Finally, for each principal component, we highlighted the 

correlated variables with a factor loading ≥ 0.60, corresponding to an excellent 

correlation12.  
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4. Results 
 
All of the results are presented in Tables 2 and 3 and illustrated in Figures 3, 4 and 

5. For the Free Amplitude task, the greater subjects did not reach as far as they 

could because their movements were halted by the robot’s mechanical stop. Hence, 

the amplitude and CVamplitude indices were removed from the analyses. 

 

Age effects and reference standards for upper limb kinematics  

For each kinematic index, the age effects and reference standards are illustrated in 

Figures 4 and 5 and are described below.  

For the Free Amplitude task, four of the six indices showed an age effect (r range 

[0.40-0.54]). Indeed, the velocity and smoothness indices exhibited an increase 

from 3 to 30 years, a steady-state between 30 and 60 years and a decrease from 60 

to 93 years. Moreover, the velocity and smoothness results were more reproducible 

during the ten cycles of movements in young adults (age range in years = [30-60]) 

than in children (< 30 years) and older adults (> 60 years). The two other indices 

did not show any age effect (r = 0.25 and 0.28) (Table 2; Figure 4).  

For the Target task, three of the eight indices showed an age effect (r range: [0.30-

0.57]). Indeed, the target inaccuracy index exhibited a steady state from 3 to 40 

years and a decrease from 40 to 93 years. The velocity index showed an increase 

from 3 to 30 years, a steady-state between 30 and 60 years and a decrease from 60 

to 93 years. Moreover, the velocity results were more reproducible during the ten 

cycles of movements in older adults (> 60 years) than in younger subjects (< 60 

years). The five other indices did not exhibit any age effect (r range: [0.07-0.22]) 

(Table 2; Figure 4).  

For both geometrical tasks, all of the indices showed an age effect (r range: [0.30-

0.70]). Indeed, the shape inaccuracy index exhibited a decrease from 3 to 30 years, 

a steady-state between 30 and 60 years and a decrease from 60 to 93 years. 

Furthermore, the velocity index decreased throughout life, and the smoothness 
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index showed an increase from 3 to 30 years, a steady-state between 30 and 50 

years and a decrease from 50 to 93 years. Finally, the inaccuracy, velocity and 

smoothness results were more reproducible during the ten cycles of movements in 

adults (age range in years: [30-60]) than in young subjects (< 30 years) and older 

adults (> 60 years) (Table 2; Figure 5). 

The coefficients of the equations (F= a.yrs2 + b.yrs + c) are provided for each 

kinematic index that was influenced by age (Table 2). For each kinematic index 

that was not influenced by age, the reference standards corresponded to the mean 

of results and SD for the three hundred and seventy subjects (Table 2).  

 

 
Figure 3: Example of the evolution of upper limb kinematics throughout life. For the Circle task, an 

illustration of the requested Circle task (upper graph) presented on the visual interface and the Circle 

task performed (lower graphs) by a child (first column), an adult (second column) and an elderly 

subject (third column) are shown. 
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Table 2: Results regarding age effects for each kinematic index; for each kinematic index showing an age effect, the coefficients (a, b and c) of the equation corresponding 

to the subjects’ kinematic results (Mean) and the 2 standard deviation (2SD) as a function of age (F= a.yrs2 + b.yrs + c) are presented; for each kinematic index without an 

age effect, the mean and the 2SD corresponding to the subjects’ kinematic results are presented regardless of their age.  

  * indicates indices with age effects (p<0.001; r ≥ 0.3) 

 

 Age effect Mean Kinematic result in a function of age 2SD 2SD in a function of age 
   a b c  a b c 

Free Amplitude           
Straightness 0.25 1.00    0.02    
CVstraightness (%) 0.28 0.7    1.8    
Velocity (cm/s) 0.50*  -0.005 0.369 12.1  -0.004 0.300 8.1 
CVvelocity (%) 0.41*  0.004 -0.303 16.1  0.001 -0.026 9.6 
Smoothness 0.40*  -4.4 E-05 0.003 0.54  3.4 E-05 -0.002 0.13 
CVsmoothness (%) 0.54*  0.004 -0.387 14.9  0.001 -0.109 8.6 
Target          
Target inaccuracy (cm) 0.30*  -5.4 E-05 2.0 E-04 1.0  -2.7 E-05 0.001 0.7 
CVtarget inaccuracy (%) 0.07 46.6    42.6    
Straightness 0.11 0.98    0.1    
CVstraightness (%) 0.09 2.3    11.4    
Velocity (cm/s) 0.57*  -0.005 0.408 6.5  -0.003 0.180 5.4 
CVvelocity (%) 0.46*  0.002 -0.340 27.0  0.002 -0.278 19.5 
Smoothness 0.08 0.48    0.12    
CVsmoothness (%) 0.22 16.2    23.2    
Circle          
Shape inaccuracy (cm) 0.34*  1.0 E-04 -0.012 0.88  2.0 E-04 -0.022 0.7 
CVshape inaccuracy (%) 0.52*  0.005 -0.578 32.4  0.002 -0.224 18.4 
Velocity (cm/s) 0.50*  2.0 E-04 -0.078 8.3  0.001 -0.142 8.3 
CVvelocity (%) 0.49*  0.005 -0.416 17.8  0.003 -0.173 10.5 
Smoothness 0.62*  -8.4 E-05 0.005 0.59  1.1 E-05 -0.001 0.20 
CVsmoothness (%) 0.44*  0.003 -0.234 13.5  0.001 -0.097 7.9 
Square          
Shape inaccuracy (cm) 0.30*  8.3 E-05 -0.008 0.67  2.0 E-04 -0.018 0.5 
CVshape inaccuracy (%) 0.51*  0.004 -0.462 33.4  0.002 -0.239 18.6 
Velocity (cm/s) 0.58*  -3.0 E-04 -0.024 6.3  2.2 E-05 -0.038 4.5 
CVvelocity (%) 0.40*  0.003 -0.282 14.8  0.003 -0.205 10.1 
Smoothness 0.70*  -7.8 E-05 0.005 0.49  8.5 E-06 -2.0 E-04 0.11 
CVsmoothness (%) 0.44*  0.003 -0.212 13.7  9.0 E-04 -0.039 7.0 
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Figure 4: For each index assessed in the Free Amplitude and Target tasks, illustrations of the reference standards 

for healthy subjects (corresponding to the black line ± 2 SD [Grey area]; 1 point corresponds to 1 subject’s result) 

are shown as a function of age.  
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Figure 5: For each index assessed in the Circle and Square tasks, illustrations of the reference standards for healthy 

subjects (corresponding to the black line ± 2 SD [Grey area]; 1 point corresponds to 1 subject’s result) are shown as a 

function of age. 
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Principal component analysis 

As indicated above, the amplitude and CVamplitude data were removed from the 

analyzed matrix [X] of the PCA. The Bartlett’s Chi Square was equal to 4639.6 (p-

value < 0.001). The new matrix [Y] resulting from the PCA is presented in Table 3. 

The factor loading of each kinematic index, the variance proportions and the 

eigenvalues magnitude are provided for the four principal components (Table 3). 

The two first principal components showed that subjects’ age and kinematic 

indices computed from the Circle, Square and Target tasks were correlated as 

follows (Table 3): 

- The smoothness and CVsmoothness indices (both geometrical tasks), the 

velocity index (Target task) loaded on the first principal component (│r│ 

range: [0.65-0.80]).  

- The velocity index (both geometrical tasks), CVshape inaccuracy (Circle task), 

and age loaded on the second principal component (│r│ range: [0.66-

0.79]).  

The two last principal components showed that the kinematic indices computed 

from the Free Amplitude and Target tasks were correlated as followed (Table 3): 

- The straightness, CVstraightness, smoothness and CVsmoothness indices (Target 

task) loaded on the third principal component (│r│ range: [0.73-0.84]).  

- The straightness, CVstraightness and CVsmoothness indices (Free Amplitude task) 

loaded on the fourth principal component (│r│ range: [0.68-0.80]). 
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Table 3: Factor loadings of the principal component analysis for the three hundred and seventy 

subjects for age and twenty-six kinematic indices. 

 PC 1 
(factor loading) 

PC 2 
(factor loading) 

PC 3 
(factor loading) 

PC 4 
(factor loading) 

Age (yrs) -0.37 -0.66 0.04 -0.16 
Free Amplitude     
Straightness 0.11 -0.16 0.00 -0.80 
CVstraightness (%) -0.18 0.18 -0.04 0.78 
Velocity (cm/s) 0.47 0.33 0.22 -0.32 
CVvelocity (%) -0.52 -0.07 -0.03 0.41 
Smoothness 0.39 0.11 -0.12 -0.42 
CVsmoothness (%) -0.39 0.04 -0.01 0.68 
Target     
Target inaccuracy (cm) 0.53 0.02 0.09 0.32 
CVtarget inaccuracy (%) -0.13 0.12 0.35 -0.36 
Straightness -0.10 -0.03 -0.84 0.04 
CVstraightness (%) 0.07 0.05 0.83 -0.05 
Velocity (cm/s) 0.66 0.06 0.27 -0.14 
CVvelocity (%) 0.13 0.48 0.40 0.22 
Smoothness -0.01 -0.01 -0.73 0.01 
CVsmoothness (%) 0.09 0.03 0.83 0.06 
Circle     
Shape inaccuracy (cm) -0.19 0.58 0.10 -0.06 
CVshape inaccuracy (%) -0.16 0.75 0.03 0.10 
Velocity (cm/s) 0.35 0.79 -0.02 -0.09 
CVvelocity (%) -0.59 0.26 0.04 0.21 
Smoothness 0.69 0.55 0.00 -0.17 
CVsmoothness (%) -0.68 -0.08 0.09 0.15 
Square     
Shape inaccuracy (cm) -0.17 0.48 0.09 0.02 
CVshape inaccuracy (%) 0.07 0.58 -0.02 0.07 
Velocity (cm/s) 0.49 0.75 0.01 -0.03 
CVvelocity (%) -0.53 0.30 0.00 0.18 
Smoothness 0.80 0.31 0.05 -0.12 
CVsmoothness (%) -0.65 0.04 -0.11 0.06 
Variance proportions, % 23 14 11 6 
Eigenvalue magnitude  6.2 3.9 2.9 1.7 

Abbreviations: PC: principal component; CV: coefficient of variation. 

For each principal component, the correlated indices (factor loading ≥ 0.60) are shown in bold. 
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5. Discussion 

The aims of this study were to assess the age effects and establish reference 

standards for upper limb kinematics in three hundred and seventy healthy subjects 

aged between 3 and 93 years. The correlations between the subjects’ kinematic 

results and their age were also investigated based on PCA.  

Age effects and reference standards for upper limb kinematics  

For all of the tasks assessed in this study, two third of the computed kinematic 

indices showed an age effect. Upper limb kinematics improved in young subjects 

aged from 3 to 30 years, were stable in adults aged between 30 and 60 years and 

declined in elderly subjects aged from 60 to 93 years. These results were consistent 

with previous studies that have shown maturation of upper limb movements in 

children aged from 3 to 18 years115,129 and significant ageing in the elderly130,131. 

Indeed, older children’s movements (> 8 years) were larger115,129, smoother, and 

more linear, accurate and reproducible129 than younger children’s movements (< 8 

years). Moreover, the movements of elderly individuals (age mean ± SD in years: 

[75.3 ± 4.0]) were slower and less smooth than the movements of young adults 

(age mean ± SD in years: [22.1 ± 0.1])130. Surprisingly, the velocity index for both 

geometrical tasks decreased throughout life. The velocity of the upper limb 

movements may have been influenced by the “spontaneous velocities” instruction. 

This instruction was essential to allow the subjects to perform natural movements. 

However, the maximum velocity abilities of the upper limbs were not assessed20. 

Thus, further experiments could specifically assess the evolution of the maximum 

velocity abilities of the upper limb in healthy subjects throughout life.  

The current study completes our biomechanical understanding of upper limb ability 

throughout life. This study is in accordance with the findings of Mathiowetz et 

al.132,133, who quantified the evolution of manual dexterity in 1,099 healthy subjects 
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aged between 6 and 94 years using the box and block test. These authors showed 

that manual dexterity improved from 6 to 24 years of age and progressively 

declined from 25 to 94 years of age. However, although human development 

throughout life has been well characterized111,125–127, the current work and that of 

Mathiowetz et al.132,133 are the only studies to quantify this evolution using upper 

limb kinematics39 and manual dexterity132,133. 

 

Finally, researchers and clinicians could use this norm-referenced protocol to 

assess upper limb kinematics in patients. Previous studies have quantified the 

kinematic alterations of the upper limbs in children with cerebral palsy58,120, young 

adults with multiple sclerosis134,135 and older adults with stroke12,39,116 or Parkinson 

disorders136,137. Hence, this norm-referenced protocol could characterize various 

disorders regardless of the patient age. Then, our protocol could be computed to 

monitor the evolution of upper limb kinematics in patients during rehabilitation, for 

example, when employing robot-assisted therapy34,60,61,120, constraint-induced 

movement therapy79 and botulinum toxin72,73,80. Finally, a robot is an assessment 

tool but also a rehabilitation tool. Kinematic analyses computed during robot-

assisted therapy could enable the device to adapt the level of assistance provided to 

the patients in real time120.  

 

Principal component analysis  

The correlations between kinematic indices computed from four tasks and the 

subjects’ age were investigated through PCA to limit redundancy within this 

protocol. In this section, the tasks and indices that should be included in each 

assessment of upper limb kinematics performed in healthy subjects or patients are 

discussed.  

Both unidirectional tasks should be included in each kinematic assessment of the 

upper limbs, as recommended by Gilliaux et al.116. Indeed, both unidirectional tasks 
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assessed separate movement characteristics because these tasks were uncorrelated 

between them and with geometrical tasks (Table 3). Moreover, both tasks assess 

rhythmic (i.e., Free Amplitude) and discrete (i.e., Target) movements, which 

involve different neuronal mechanisms138. In addition to the two unidirectional 

tasks, one of the geometrical tasks should be included in each assessment for two 

reasons. First, the two geometrical tasks were correlated with each other but were 

not correlated with the two unidirectional tasks (Table 3). Second, assessing only 

one geometrical task could allow a less time-consuming assessment to be 

performed and limit the exhaustion of patients with severe impairments. Finally, 

some kinematic indices were correlated with each other (see Table 3) and should 

not be included in the same assessment. In summary, a comprehensive assessment 

of upper limb kinematics should include both unidirectional tasks and one 

geometrical task. For each task, only one index highlighted in Table 3 should be 

computed. These recommendations could enable clinicians and researchers to (i) 

avoid results redundancy and (ii) facilitate the monitoring of healthy subjects’ 

evolution over time and patients’ progress during therapy. 

6. Conclusions 

This study was the first to assess the effect of age and establish reference standards 

for upper limb kinematics in healthy subjects aged 3 to 93 years. Researchers and 

clinicians could use this norm-reference protocol to (i) quantitatively and 

objectively assess upper limb movements in subjects, regardless of their age and 

pathology, and (ii) monitor healthy subjects’ evolution over time and patients’ 

progress during therapy. A robotic device is a rehabilitation tool but also an 

assessment tool. Robotic assessment of upper limb kinematics could improve 

accuracy, objectivity and sensitivity in routine assessments performed in clinical 

and research settings. 
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A robotic device as a sensitive quantitative tool to assess 

upper limb impairments in stroke patients: a preliminary 

prospective cohort study. 
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Gaëtan Stoquart. 
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1. Abstract 
 
Objective: To compare kinematic indices in age-matched healthy subjects and stroke 

patients, by evaluating various tasks performed with a robotic device, and provide an 

objective and standardized protocol to assess upper limb impairments in stroke patients. 

Design: A prospective cohort study. Subjects: Age-matched healthy subjects (n=10) and 

stroke patients (n=10). Methods: Various kinematic indices were analyzed from three 

randomly assigned tasks performed by the affected arm in stroke patients and the dominant 

arm in healthy subjects. These tasks, composed of large amplitude, targeted and 

geometrical movements, were standardized and performed with the REAplan robotic 

device. Results: For large-amplitude movements, the stroke patients’ path lengths were less 

constant in amplitude, less rectilinear and less smooth than healthy subjects (p<0.001). For 

the targeted movements, the stroke patients’ path lengths were less rectilinear than the 

healthy subjects (p<0.001). For the geometrical movements, the stroke patients had greater 

difficulty drawing the requested shapes compared with the healthy subjects (p<0.01). 

Conclusion: Our study proposes an objective and standardized protocol to assess stroke 

patients’ upper limbs with any robotic device. We suggest that further randomized 

controlled trials could use this quantitative tool to assess the efficacy of treatments as robot-

assisted therapy. 

 

Keywords: robotics, outcome assessment, biomechanics, stroke, upper extremity.  
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2. Introduction 
 
Fifteen million people throughout the world suffer from cerebral vascular accidents 

each year9 and one third of these individuals display permanent neurological 

impairments9. An intensive and prolonged multidisciplinary rehabilitation has been 

shown to reduce the neurological impairments and improve patients’ activities and 

participation139,140.  

 

To evaluate the active movements of stroke patients’ upper limbs before and after 

rehabilitation as robotic-assisted therapy (RAT)14,92,141–143, some authors have 

recommended the use of kinematic measures to quantitatively and objectively 

assess upper limbs12,142 while avoiding the disadvantages of ordinal and qualitative 

scales12.  

 

Kinematic indices could be obtained with a distal effector robotic system used in 

RAT12,19,20,34,60,75,144. Some of these indices have been studied in stroke 

patients12,19,20,34,60,75,144, primarily in trials evaluating RAT efficacy12,19,20,34,60. 

Although various indices have been described, such as target inaccuracy34, 

amplitude of movement19,20, straightness19,60,144, velocity of movement19,20,60, peak 

velocity of movement60 and smoothness34,60,75,144, no consensus about the choice of 

these kinematic indices has been clearly described in the literature.  

 

Kinematic indices have been computed from various tasks, such as pointing at 

one34 or multiple targets60,75,144, moving as far as possible in various directions19,20, 

and carrying out geometrical movements144. Although several studies used the 

fastest velocity of displacement possible19,20, other studies did not take the velocity 

of displacement into account34,60,144. In addition, some tasks have been performed 

without any constraints, where as others have been performed by applying 

assistance or constraints to the subjects76,77. Furthermore, kinematic assessments 
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have been performed in two (2D34,60,75,76,144) or three spatial dimensions (3D19,20,77). 

No study has clearly demonstrated which movements or instructions are the most 

relevant. 

 

The sensitivity of kinematic indices and specific tasks to detect impairments has 

only been studied by comparing patients who received RAT with patients who did 

not receive RAT19,34 Interestingly, no study has compared kinematic indices 

between age-matched healthy subjects and stroke patients using a distal effector 

without any assistance or constraint. 

 

According to all the previous considerations, the present study aimed to use various 

tasks performed with REAplan to compare kinematic indices in age-matched 

healthy subjects and stroke patients. REAplan corresponds to a distal effector 

robotic device that allows displacements of the upper limb in the horizontal plane. 

This comparison could provide a synthetic, specific, objective and standardized 

protocol that includes the most relevant tasks and indices to assess upper limb 

impairment in stroke patients.  

3. Materials and Methods 
 
Subjects 

Twenty subjects participated in our study. Our cohort consisted of healthy subjects 

(control group; n=10) and stroke patients (stroke group; n=10), and the 

characteristics of patients and healthy subjects are described in Table 1. Patient 

inclusion criteria were an antecedent of ischemic and hemorrhagic stroke (no 

restriction of localization), a minimal strength of muscles with a Medical Research 

Council145 score above 2/5 in proximal muscles (shoulder abduction, elbow flexion 

and elbow extension) to ensure that they were able to move the robot’s distal 

effector and the comprehension of instructions. The exclusion criterion was the 
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presence of any other significant orthopedic or neurological antecedent that could 

alter active or passive movements of the upper limbs. In healthy subjects, the only 

exclusion criterion was the presence of a significant orthopedic or neurological 

antecedent that could alter active or passive movements of the upper limbs. Both 

groups were matched for age and body mass index. Descriptions of patients’ 

neurological impairments (Stroke Impairment Assessment Set146) and activity 

limitations (ABILHAND147) are also presented in Table 1. Every subject 

volunteered and freely participated in the study, which was approved by the local 

Ethics Board of the Faculty of Medicine. 

 

Table 1. Characteristics of control (healthy subjects) and stroke groups. 

Mean (SD); Median [Q1-Q3]. Abbreviations: BMI = Body Mass Index; SIAS = Stroke Impairment 

Assessment Set; N/A= Not Applicable. For the age and BMI, there is no significant difference 

between groups (p>0.05). 

 

Apparatus 

The robot used in the present study was the research prototype REAplan38, which is 

illustrated in Figure 1. The REAplan is composed of a distal effector that is held by 

the patient’s hand, which allows displacements in the horizontal plane resulting 

from various movements of the shoulder and elbow. If the patient had a hand 

weakness, the hand was attached from an orthosis to the distal effector. In the 

 Control (n=10) Stroke (n=10) 

Gender (male/female) 6/4 7/3 

Age (years) 68.6 (8.7) 71.6 (10.4) 

BMI (kg/m2) 26.8 (5.0) 24.2 (2.2) 

Dominant  arm (right/left) 9/1 10/0 

Affected arm (right/left) N/A 4/6 

Post-stroke time (months) N/A 2.7 (1.8) 

SIAS (…/76) N/A 63 [57-67] 

ABILHAND (logits) N/A 0.46 (1.58) 



A robotic device as a sensitive quantitative tool 

85 

present study, the subjects only performed movements with REAplan in the active 

mode. The active mode means that the subjects performed movements without any 

help from the robot. In addition, the mass and viscosity of the robotic device were 

at minimal levels to enable subjects to perform unconstrained movements. 

Moreover, the robot was provided with incremental position sensors (Maxon 

Motor®) to record distal effector trajectory in X and Y planes as a function of time 

(acquisition frequency: 40 Hz). Then, assessments were only made in 2D 

conditions because of the REAplan conception. 

 

 
 
Figure 1: View of the “REAplan” robot.1, 2 and 3 correspond to the distal effector, visual interface of 

the subject and the physiotherapist’s interface, respectively. 

 

Placement of subjects 

All the subjects were placed in an ergonomic and standardized sitting position. The 

angle between each subject’s hip and trunk was maintained at 120° to limit lumbar 

constraints. The subjects’ feet were on a footrest to stabilize them, and the trunk 

was secured to minimize movement compensations at this level. In addition the 

distal effector was strictly centred in front of the subject. 
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Tasks  

All 20 subjects performed three kinds of tasks with REAplan at spontaneous 

velocities. The tasks, which are illustrated in Figure 2, were presented to subjects 

via the subject’s visual interface (Figure 1). Movements were performed by the 

affected arm in stroke patients and the dominant arm in healthy subjects. 

 

For the first two tasks, the subjects had to perform large-amplitude movements and 

targeted movements. For the large-amplitude movements, the subjects went back 

and forth as far as they could in an indicated direction. For the targeted movements, 

the subjects made movements in the most precise and direct manner toward a 

specific target placed at a distance of 14 cm, similar to the method used by Daly et 

al.34. Both tasks were performed in three directions: homolateral (on the side of the 

moving arm), contralateral (on the opposite side) and straight (in front of the 

subject). These directions enabled us to evaluate different movements of the 

shoulder and elbow and determine whether a specific direction was more relevant 

than another.  

 

For the third task, the subjects had to draw two kinds of geometrical shapes: a 

square that was 25 cm long on each side, and a circle that had a 12.5-cm radius. 

 

The experiment started with a training phase, which took approximately 20 min. 

The training phase, which was not recorded, was used to limit learning bias. In the 

acquisition phase, the order of execution was randomly assigned, and each task was 

performed 5 consecutive times (corresponding to 5 consecutive cycles of 

movement). The rest between each task lasted 5 minutes. The subjects’ results were 

recorded in the acquisition phase.  
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Figure 2: Illustration of the instructions presented on the visual interface (upper graphs) and the tasks 

performed by a healthy subject (middle graphs) and a patient (lower graphs). For large amplitude and 

geometrical movements, 5 goings and comings are presented (middle and lower graphs) for each 

movement (i.e., direction or form). For targeted movements, 1 going is presented (middle and lower 

graph) for each direction. For large amplitude and targeted movements, solid and dashed black lines 

correspond to homolateral and contralateral directions of the moving arm. The grey line corresponds 

to the straight direction. For the geometrical movements, black and grey points were the start point of 

the square and the circle, respectively. The square was 25 cm long on each side and the circle had a 

radius of 12.5 cm.  
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Kinematic analyses 

For each task, the X and Y coordinates of the distal effector were acquired as a 

function of time. These variables were analyzed for each task by a specific 

customized program that was created in LabWindows/CVI (8.5) environment.  

 

For the large-amplitude movements, we analyzed the amplitude, the Standard 

Deviation (SD) of the mean amplitude (SDampl), straightness, velocity, the SD of 

the mean velocity (SDvelocity), peak velocity and smoothness indices. For the 

targeted movements, we analyzed the target inaccuracy and the straightness 

indices. Each of these indices was analyzed during 5 consecutive cycles and 

averaged. These indices are described below. 

 

The amplitude (in cm) corresponds to the shortest distance between the starting 

point and the farthest point reached (Figure 3).  The SDampl (in cm) was used as an 

index of the amplitude variation during the 5 cycles of movement (the lower the 

index, the more constant the amplitude). The straightness corresponds to the 

amplitude divided by the path length covered by the subject. Ratios closer to 1 

indicate more rectilinear paths, whereas ratios closer to 0 indicate longer paths to 

realize the movement (Figure 3). The velocity (in cm/s) corresponds to the ratio 

between the path length and the elapsed time. The SDvelocity (in cm/s) was used as 

an index of the velocity variation during the 5 cycles of movement (the lower the 

index, the more constant the velocity). The peak velocity (in cm/s) corresponds to 

the maximum velocity. The smoothness corresponds to the ratio between the 

velocity and the peak velocity (ratios closer to 0 indicate less smooth 

movements)75. The target inaccuracy (in cm) corresponds to the distance between 

the target position the subject had to reach and the end position achieved by the 

subject (Figure 3). For this measure, higher scores indicate more inaccurate 

movements. 

 



For the geometrical movements, the goal

to draw a square or a circle. The X and Y coordinates acquired during 5 

consecutive cycles were 

values were called Performances (

compared with X and Y reference shapes (called References) using a correlation 

test (Figure 4). These References correspond to the 

coordinates of a perfect square (25 cm long on each side) and a perfect circle (12.5

cm radius). Correlation coefficients closer to 1 indicate that the subject was capable 

of drawing the requested shape.

 

 
Figure 3: Illustration of the calculation of kinematic indices in large amplitude and targeted 

movements. The grey solid line corresponds to 

black solid line corresponds to the coming movement (left graph). For the two tasks, the amplitude 

corresponds to the distance between the start point and the 

amplitude, the straightness corresponds to the ratio between the double of the amplitude (because of 

the going and coming) and then, the path length covered by the subject (grey and black solid 

lines).For the targeted movement, the straightness corresponds to the 

the path length covered by the subject (grey solid line). The target 

distance between the end point and target point.
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For the geometrical movements, the goal was to quantify the ability of the subjects 

to draw a square or a circle. The X and Y coordinates acquired during 5 

consecutive cycles were normalized to 100% as a function of time, and these 

values were called Performances (Figure 4). These X and Y Performances were 

compared with X and Y reference shapes (called References) using a correlation 

4). These References correspond to the normalized 

coordinates of a perfect square (25 cm long on each side) and a perfect circle (12.5

s). Correlation coefficients closer to 1 indicate that the subject was capable 

of drawing the requested shape. 

Illustration of the calculation of kinematic indices in large amplitude and targeted 

movements. The grey solid line corresponds to the going movement (left and right graphs), and the 

black solid line corresponds to the coming movement (left graph). For the two tasks, the amplitude 

corresponds to the distance between the start point and the end point. For the movement of large 

e, the straightness corresponds to the ratio between the double of the amplitude (because of 

the going and coming) and then, the path length covered by the subject (grey and black solid 

lines).For the targeted movement, the straightness corresponds to the ratio between the amplitude and 

the path length covered by the subject (grey solid line). The target inaccuracy corresponds to the 

distance between the end point and target point. 
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was to quantify the ability of the subjects 

to draw a square or a circle. The X and Y coordinates acquired during 5 

to 100% as a function of time, and these 

rmances were 

compared with X and Y reference shapes (called References) using a correlation 

 X and Y 

coordinates of a perfect square (25 cm long on each side) and a perfect circle (12.5-

s). Correlation coefficients closer to 1 indicate that the subject was capable 

 

Illustration of the calculation of kinematic indices in large amplitude and targeted 

the going movement (left and right graphs), and the 

black solid line corresponds to the coming movement (left graph). For the two tasks, the amplitude 

For the movement of large 

e, the straightness corresponds to the ratio between the double of the amplitude (because of 

the going and coming) and then, the path length covered by the subject (grey and black solid 

ratio between the amplitude and 

corresponds to the 
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Statistical analyses  

For the first two tasks (i.e., large amplitude and targeted movements), a two-way 

analysis of variance (ANOVA) [groups (healthy vs. stroke) and directions 

(homolateral, contralateral and straight)] was performed for each kinematic index 

using SigmaStat 3.5 software (WPCubed GmbH, Germany). A Bonferroni adjusted 

post hoc (Holm Sidak) test was used to analyze differences between groups. 

 

For the third task (i.e., geometrical movements), we performed a Pearson 

correlation test between Performances and References for each shape (square and 

circle) and coordinate (X and Y). We also performed a two-way ANOVA [groups 

(healthy vs. stroke) and shapes (square and circle)] for each coordinate (X and Y) 

using SigmaStat 3.5 software (WPCubed GmbH, Germany). A Bonferroni adjusted 

post hoc (Holm Sidak) test was used to analyze differences between groups. 

Homoscedasticity (normal distribution and equality of variance) was verified for all 

comparisons, and the accepted significance level was 0.05. 
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Figure 4: Illustration of the kinematic analysis of geometrical movements. The upper graphs illustrate 

the normalized square performed by one subject (black line) and the square of the reference (grey 

line). The left-upper graph illustrates the presentation of these squares on the visual interface. The 

right-upper graph illustrates evolutions of X (continuous line) and Y (discontinuous line) coordinates 

as a function of time (%). The lower graphs illustrate the Pearson correlation test between 

Performances (i.e., subject’s square) and References (i.e., square of reference) for X (left-lower 

graph) and Y (right-lower graph) coordinates. R corresponds to the coefficient correlation, and p 

illustrates the significant relationship between Performance and Reference 
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4. Results 
 

One patient, who had the lowest Stroke Impairment Assessment Set (SIAS) score 

(i.e., 49/76), was excluded from the analysis because he was unable to perform all 

of the tasks. Typical traces of the three tasks performed by one healthy subject and 

one patient are illustrated in Figure 2. The mean (SD) values for each group 

(control vs. stroke) and for each separate movement (i.e., directions or shapes) are 

presented in Table 2. Figure 5 shows the results for each group for all merged 

movements.  

Interaction between groups and movements 

For each kinematic index in the three tasks, the two-way ANOVA did not reveal 

any interaction (p>0.05) between the groups and the movements (i.e., directions or 

shapes). 

 

Comparison between groups 

For the large-amplitude movements, the amplitude was not significantly different 

between groups (p>0.05); however, stroke patients had more difficulty reaching 

constant amplitude at each cycle of movement (p<0.001). Indeed, the SDampl value 

was approximately 2 times greater in the stroke group. Furthermore, the path length 

was less rectilinear in the stroke group (p<0.001) (i.e., the straightness ratio was 

13% lower in the stroke group). The velocity was not significantly different 

between groups (p>0.05), and the SDvelocity showed that the stroke patients were 

able to maintain a constant velocity similar to the healthy subjects (p>0.05). 

Interestingly, movements of stroke patients were less smooth than those of healthy 

subjects (p<0.001). Indeed, the smoothness ratio was 12% lower in the stroke 

group.  

 

For the targeted movements, the target inaccuracy was not significantly different 

between groups (p>0.05). The path length, however, was less rectilinear in the 



A robotic device as a sensitive quantitative tool 

93 

stroke group (p<0.001). Indeed, the straightness ratio was 27% lower in the stroke 

group.  

 

For the geometrical movements, stroke patients had significantly more trouble 

drawing the requested shape than the healthy subjects (p<0.01). Indeed, the X and 

Y correlation indices were 24% and 19% lower, respectively, in the stroke group. 
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Table 2. For the three tasks, results of the kinematic indices in control and stroke groups. 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Large amplitude Homolateral Contralateral Straight  

Control (n=10) Stroke 
(n=9) 

Control (n=10) Stroke  
(n=9) 

Control (n=10) Stroke  
(n=9) 

       
Amplitude (cm) 35.6 (6.2) 35.1 (6.2) 32.6 (4.9) 34.0 (8.3) 33.0 (6.8) 30.8 (8.9) 
SDampl (cm) 2.6 (1.4) 4.0 (2.1) 2.5 (0.84) 3.9 (1.03) 1.7 (0.8) 3.6 (2.1) 
Straightness 0.97 (0.02) 0.86 (0.09) 0.97 (0.02) 0.84 (0.13) 0.98 (0.02) 0.89 (0.12) 
       
Velocity (cm/s) 26.4 (14.1) 22.3 (12.3) 22.6 (10.6) 20.0 (11.5) 20.0 (8.8) 16.4 (6.6) 
SDvelocity (cm/s) 14.6 (9.6) 16.0 (7.3) 12.6 (6.3) 14.9 (7.6) 14.6 (6.8) 14.5 (4.9) 
Peak velocity (cm/s) 49.2 (25.8) 56.4 (18.5) 42.6 (19.2) 51.5 (19.6) 42.6 (17.6) 45.0 (13.2) 
Smoothness 0.53 (0.06) 0.39 (0.13) 0.53 (0.04) 0.38 (0.11) 0.47 (0.04) 0.36 (0.08) 
Target 

 

Homolateral Contralateral Straight  

Control (n=10) Stroke  
(n=9) 

Control (n=10) Stroke  
(n=9) 

Control (n=10) Stroke  
(n=9) 

       
Target inaccuracy (cm) 1.4 (1.1) 2.4 (1.5) 2.7 (0.8) 2.4 (1.4) 0.6 (0.3) 1.4 (1.9) 
Straightness  0.92 (0.12) 0.61 (0.11) 0.92 (0.07) 0.57 (0.14) 0.95 (0.07) 0.77 (0.20) 
Geometrical forms Square Circle 

Control (n=10) Stroke  
(n=9) 

Control (n=10) Stroke  
(n=9) 

 
X correlation  

 
0.94 (0.05) 

 
0.72 (0.39) 

 
0.95 (0.07) 

 
0.69 (0.31) 

Y correlation  0.95 (0.05) 0.77 (0.31) 0.96 (0.03) 0.75 (0.18) 
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Figure 5: The results of the Bonferroni adjusted post hoc (Holm Sidak) tests comparing control and 

stroke groups in studied indices. * indicates that there was a significant difference (p < 0.01) between 

the two groups.  
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5. Discussion 
 

This study presented a lot of kinematic indices, which were obtained with a distal 

effector robotic device in stroke patients and healthy matched subjects. By 

choosing the most relevant indices, we attempted to establish an objective, 

standardized protocol to assess upper limb impairments in stroke patients.  

 

Elaboration of the standardized protocol 

For the large-amplitude movements, our results showed that the amplitude, 

velocity, SDvelocity and peak velocity could be rejected because they were similar in 

patients and healthy subjects. The amplitude rejection was surprising because Khan 

et al.19 and Reikensmeyer et al.20 observed that this index was improved after 

rehabilitation. Thus, we hypothesized that this index was altered before treatment. 

The rejection could have two explanations. First, the stroke patients in the present 

study had moderate to minor impairments, which is shown by high SIAS values in 

Table 1 (this was not the case in the previous studies). Secondly, movements were 

carried out at spontaneous velocities in the present study and at maximum velocity 

in the Khan et al.19 and Reikensmeyer et al.20 studies. This last protocol (i.e., 

maximum velocity) could limit the reaching amplitude by increasing spasticity148. 

 

For the large-amplitude movements, our results showed that SDampl, straightness 

and smoothness should be retained because they were different in patients and 

healthy subjects. Interestingly, SDampl is an original index that has never been used 

before, whereas the straightness index was calculated with the same method as 

Khan et al.19, but has never been used with a distal effector robotic system. 

Although the smoothness can be calculated in various manners34,60,75,144, our 

method was in agreement with Finley et al.60 and Rohrer et al.75 who described 

smoothness as a relevant index in assessing stroke patients.  
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For the targeted movements, our results showed that the index of target inaccuracy 

could be rejected and that the straightness should be retained (for the reasons 

detailed above). This result was not in agreement with Daly et al.34, who used 

target inaccuracy in patient assessments. The difference could be due to the fact 

that the stroke patients in the Daly et al. study had severe impairments34. The 

present results suggested that stroke patients with moderate to minor impairments 

could reach targets similarly to healthy subjects, but they took longer to point out 

the target.   

 

For these two first tasks, contrary to Finley et al.60, but similar to Daly et al.34, only 

one direction (i.e., homolateral) of movement was retained. This choice could be 

for three reasons. First, the present results did not reveal any interaction between 

groups and directions, which means that all directions have the same relevance. 

Secondly, preserving only one direction could limit the exhaustion bias and 

assessment time. Lastly, we suggest retaining the homolateral rather than the 

contralateral direction because the homolateral direction combines flexion and 

abduction of the shoulder and extension of the elbow, which allows movements 

away from primitive motor synergies149. 

 

For the geometrical movements, our results showed that the X and Y correlation 

indices should be retained. Although geometrical movements have been analyzed 

in various manners76,77,144,150, the present study was the first study to use a simple 

index to evaluate the capacity to draw a perfect circle or a perfect square in a free, 

unconstrained mode. 

We propose that the two geometrical shapes should be retained. Although the two-

way ANOVA did not reveal any interaction between groups and shapes, we 

hypothesized that both shapes could assess various aspects of coordination. The 

square involves sharp changes in direction, which require quick changes in the 

control of agonist and antagonist muscles, whereas the circle involves high 
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regularity in movements, which requires a continued adaptation in the control of 

agonist and antagonist muscles. Further studies must be carried out to determine if 

treatments could improve these specific movements.  

 

The standardized protocol should include specific indices (SDampl, straightness, 

smoothness, X and Y correlations) obtained from four movements (i.e., 

homolateral large amplitude and targeted movements and square and circle 

movements). 

 

A correlation study between our kinematic and clinical scores did not reveal any 

significant relationship (p>0.05). However, the sample of patients is small and the 

“Stroke Impairment Assessment Set“ scale is not a specific motor impairment scale 

that could enable us to perform these correlation studies. Then, as already 

performed by Bosecker et al.78 with MIT-Manus, further correlation studies 

between our protocol and other clinical scales (e.g. Fugl-Meyer) should be carried 

out in larger samples of patients, to determine if the protocol reflects the amount of 

upper arm motor impairment. Moreover, further studies will assess the complete 

validity of this protocol, and the variability of results in dominant and non-

dominant hand. Finally, the effect of specific treatments will be assessed with this 

protocol. 

  

Advantages of this study 

The REAplan robotic device could easily be used for all stroke patients in routine 

assessments. Indeed, patients could easily be placed in an ergonomic and 

standardized sitting position, and the protocol appears to be able to detect 

abnormalities in stroke patients compared with age-matched healthy subjects. In 

addition, therapists and researchers could easily and quickly use the specific 

customized program. 
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Although the REAplan is more limited in degrees of freedom than other 

systems15,27,29,151–153, it permits a quantitative assessment of stroke patients that 

could easily be used in further randomized controlled trials (RCTs) or in daily 

clinical assessments.  

  

The present study was the first study to compare kinematic indices (in a free, 

unconstrained mode) of tasks performed with an effector distal robot by stroke 

patients and age-matched healthy subjects.  

 

Limitations 

There were several limitations in the present study. First, our results have to be 

interpreted carefully since they could be affected by the small sample and the 

moderate to light impairments of patients. Then, future studies are necessary to 

confirm our results. However, most differences shown by our indices were highly 

significant (p<0.001; statistical power = 1). Secondly, kinematic indices could have 

a floor effect. Indeed, one patient was excluded from the study analysis because he 

was too weak to perform all of the tasks. In agreement with Sivan et al.12, we 

believe that kinematic indices could be a complement to the Fugl-Meyer test, 

which has a ceiling effect154. However, further studies are necessary to adapt this 

protocol with an assistance model in order to apply kinematics to more severely 

impaired patients. Lastly, further studies are necessary to evaluate the reliability 

and responsiveness of our protocol. Indeed, Wagner et al.54 have proved the intra-

examiner reliability and the responsiveness of some kinematic indices that have 

been evaluated in simple forward reaching tasks with an optical tracking system. 

No study, however, has examined the reliability and responsiveness of the 

kinematic indices for the measurement of upper limb functions with robotic 

device12. 
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6. Conclusions 
 
This preliminary study proposes a new standardized, objective and protocol to 

assess upper limb impairments in stroke patients, which will enable us to realize a 

larger study that will analyze intra- and inter examiner reliability and 

responsiveness of this protocol. In future RCTs, researchers will be able to use our 

tool to objectify upper limb impairments before and after stroke patients’ 

treatments as RAT. 
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Chapter 4 

Using the robotic device REAplan as a valid, reliable, and sensitive tool 

to quantify upper limb impairments in stroke patients 

 

Maxime Gilliaux, Thierry M. Lejeune, Christine Detrembleur, Julien Sapin, Bruno 

Dehez, Clara Selves and Gaëtan Stoquart. 

Journal of Rehabilitation Medicine 2014, 46: 117-125 

1. Abstract 
Objective –To validate a protocol assessing upper limb kinematics with a planar robot 

among stroke patients. Design – Prospective cohort study. Subjects – Age-matched healthy 

subjects (n=25) and stroke patients (n=25). Methods – Various kinematic indices (n=44) 

were obtained from four tasks performed by subjects with REAplan, a planar end-effector 

robotic device. The metrological properties of this protocol were studied. Results – In 

stroke patients, 43 kinematic indices showed moderate to excellent reliability (Intraclass 

Correlation Coefficients [ICC] range [0.40-0.95]; and Minimal Detectable Changes range 

[9.9%-131%]). In healthy subjects, 25 kinematic indices showed moderate to excellent 

reliability (ICC range [0.40-0.91]) and 3 indices showed a laterality effect (p<0.05). Many 

of these indices (27 of 44) were altered in stroke patients in comparison to healthy subjects 

(p<0.05). The Box & Block test (manual dexterity) and Upper Limb Sub-score of Fugl-

Meyer Assessment (motor control) showed moderate to good correlations with, 

respectively, 13 and 4 indices (r>0.40). Finally, a Principal Component Analysis allowed 

the elaboration of a short version of the protocol, reducing the number of indices to five 

(i.e., Amplitude, CVstraightness, Speed Metric, CVjerk metric and CVspeed metric). Conclusion – This 

study provides a standardized, valid, reliable and sensitive protocol to quantify upper limb 

impairments in stroke patients by using a planar robot.  

Keywords: Robotics, outcome assessment, biomechanics, stroke, upper extremity, 

Reproducibility of Results, Reference Standards. 
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2. Introduction 

 

Fifteen million people worldwide experience cerebral vascular accidents each year 

and one-third of them display permanent neurological impairments9. Recent 

recommendations have described the necessity of intensive and prolonged 

rehabilitation139 and regular assessments39 in stroke patients. Robotic devices have 

the potential to achieve these recommendations because they are able to both 

intensively rehabilitate92 and assess12,39 the damaged upper or lower limb.  

 

Several systematic reviews12,39 have recommended the use of kinematic measures 

to assess active movements of the upper limb in stroke patients. These measures 

can be computed by robotic devices while stroke patients carry out standardized 

movements with their affected upper limb. Following various treatments, some 

clinical trials have shown kinematic improvements, using tasks such as reaching to 

one target34,55, multiple targets60,81, moving as far as possible toward specific 

directions19,20 or performing hand to mouth movements55. Among all the kinematic 

indices computed by these authors, the amplitude19,20, velocity19,20,55,60,81, 

smoothness34,55,60,81, straightness19,60 and inaccuracy34 of movements showed 

improvements after treatment in stroke patients.  

 

The metrological properties of kinematic indices can be analyzed by several 

methods, such as construct validity, minimal detectable change (MDC) and 

reliability. Construct validity examines correlations between different assessment 

tools12. Indeed, several kinematic indices seem to be correlated with upper limb 

motor control (for review39). However, previous studies have not established any 

correlation between kinematic indices and gross manual dexterity. This 

relationship could be suggested because the motor control of the proximal upper 

limb, as assessed with kinematics, is important to initiate and control the 
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movement to reach the object, when exercising manual dexterity. For example, in 

the Box and Block test (BB), the subject has to reach the cube before grasping it121. 

The MDC determines if a variable modification corresponds to a true functional 

change or to a measurement error155, while reliability assesses the ability of a tool 

to provide the same results on repeated measures40. Finley et al.156 have 

demonstrated excellent reliability for repeated kinematic assessments with a planar 

robotic device (MIT-Manus) in healthy adults. Wagner et al.54 have shown 

moderate to excellent reliability of various kinematic indices in stroke patients and 

have computed their MDCs. These indices were obtained from simple forward-

reaching tasks using an optical tracking system. No study has examined the 

reliability and MDC of a protocol assessing kinematics in stroke patients with a 

robotic device.  

 

Previously, we117 proposed a preliminary protocol including kinematic indices 

obtained in various tasks, underlining the lack of a gold standard to quantify upper 

limb movements in stroke patients. REAplan, a planar end-effector robotic device 

allowing the mobilization of the upper limb in a horizontal plane38, was used to 

compute these indices. Objectives of the study are as follow: verifying the intra-

rater reliability of kinematic indices in stroke patients and healthy subjects; 

calculating the MDC in stroke patients; assessing the laterality effect in healthy 

subjects; identifying which kinematic indices are altered in stroke patients; and 

studying the construct validity of the protocol.  

 

The secondary objective of this study was to provide a short version of this 

protocol, allowing researchers and clinicians to easily assess stroke patients’ upper 

limb kinematics in clinical and research settings, as recommended by 

Balasubramanian et al.39.  
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3. Materials and Methods 
 
Subjects 

Fifty subjects participated in our study: 25 healthy subjects (the control group) and 

25 stroke patients (the stroke group). These patient’s characteristics are described 

in Table 1. Patient’s inclusion criteria were a history of ischemic or hemorrhagic 

stroke (with no restriction of localization), the ability to understand verbal 

instructions and the capacity to actively move the planar end-effector robot without 

assistance; beyond this capacity, sensitive deficits, muscle strength and spasticity 

of the affected upper limb were not considered. Patient’s exclusion criterion was 

the presence of secondary cognitive disorders (i.e., hemineglect, apraxia or 

comprehension aphasia) that could alter the task comprehension. In both groups, 

the exclusion criteria were any other significant orthopedic (e.g. upper limb 

fracture, muscle tears, or shoulder and elbow pain) or neurological disease that 

could alter active mobility of the upper limbs. For the control group, the subjects 

were selected in function of the included patients to match both groups for age and 

Body Mass Index (Table 1). Stroke patients were recruited in the rehabilitation 

department of our Faculty hospital. The study was approved by Ethics Board of our 

Faculty of Medicine. Each subject freely participated in the study and signed an 

informed consent. 

 

Clinical assessments 

In stroke patients, neurological impairments of the affected upper limb were 

assessed by the Upper Limb Sub-score of the Fugl-Meyer Assessment 

(USFMA)49,157 and the BB121. The first scale assesses motor control and muscle 

tone, and the second test assesses the gross manual dexterity of the patient’s upper 

limb. The results of these assessments are presented in Table 1. 
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Table 1: Characteristics of healthy subjects and stroke patients 

Characteristics  Stroke (n=25) Healthy (n=25) 

Gender, male/female, n 18/7 15/10 
Age, years, mean (SD) 64.8 (15.9) 63.1 (16.0) 
BMI, kg/m2, mean (SD) 25.6 (2.8) 23.7 (4.3) 
Dominant arm, right/left, n 24/1 23/2 
Affected arm, right/left, n 5/20 N/A 
Post-stroke time, months, mean (SD) 31.5 (55.0) N/A 
USFMA (0-66), median [IQR] 51 [37-62] N/A 
BB, mean (SD) 19.7 (14.6) N/A 

BMI: body mass index; USFMA: Upper Limb Sub-score of the Fugl-

Meyer Assessment; BB: Box and Block test; N/A: not applicable; IQR: 

interquartile range. 

For the age and BMI, there is no significant difference between groups  

(p-value=0.70 and 0.07, respectively). 

 

Kinematic assessments  

 

Apparatus 

The robot used in the present study was the research prototype of a 

rehabilitation robot named REAplan, which is illustrated in Figure 138. 

REAplan is a planar end-effector robot capable of mobilizing the patient's 

upper limb in a horizontal plane via a handle that the patient can grasp or to 

which it may be attached via a brace or an orthosis if the hand is too weak. 

Like most rehabilitation robots, REAplan is equipped with force and 

position sensors. The former are intended to measure the interaction force 

between the patient and the robot to determine a reference force through a 

force controller. The position sensors measure the kinematics of the 

patient’s hand to determine the reference force on positional basis and on 

the basis of the specific exercise to be performed with the robot. For this 

study, the only reference force used was a slightly viscous friction force to 

avoid the strange sensation of moving the hand on a frictionless surface. For 
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the purposes of the study, the kinematic information provided by the 

position sensors was recorded during the exercise, allowing us to produce 

our analyses off-line (acquisition frequency: 100 Hz). This planar robot is 

also equipped with a screen positioned in front of the patient that was 

intended to give him or her visual feedback on the exercise. 

 

 
 
Figure 1: View of REAplan. 1: planar end-effector robot; 2: visual interface for the subject; 3: 

physiotherapist’s interface 

 

Position of subjects 

All subjects were installed in an ergonomic and standardized sitting position. The 

start position was placed at 13 cm in front of the subject. The angle between each 

subject’s hip and trunk was maintained at 120° to limit lumbar constraints. The 

subjects’ feet were on a footrest to stabilize them, and their trunk was secured to 

minimize compensatory movements. 
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Tasks     

All subjects were requested to perform four different tasks with REAplan at 

spontaneous velocities. The tasks, illustrated in Figure 2, were presented to 

subjects via the visual interface (Figure 1). Movements were performed by the 

affected arm in stroke patients (n=25) and the dominant arm in healthy subjects 

(n=25). A subgroup of these healthy subjects (n=15) performed also the tasks with 

the non-dominant arm to study the effect of laterality on the protocol. 

 

For the Free Amplitude task, the subject had to reach straight out in front of them 

as far as they could and brought the arm back to the starting position. For the 

Target task, the subject made movements in the most precise and direct manner 

toward a specific target placed at a distance of 14 cm in front of the subject34. After 

performing this task, the planar robot brought the subject’s arm back to the starting 

position. For the Square and Circle tasks, the subject had to draw two geometrical 

shapes: a square of 6 cm side and a circle of 4 cm radius. These shapes were 

performed clockwise with the right upper limb, and counter-clockwise with the left 

one. To summarize this protocol, the subjects performed rhythmic (i.e. Free 

Amplitude and Circle tasks) and discrete (i.e., Target and Square tasks) 

movements. 

 

The experiment started with a ten-minute training phase to limit learning bias. For 

the data-acquisition phase, the order of tasks was randomly assigned. Each task 

was performed ten consecutive times. The rest period between each task was one 

minute.   
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Figure 2: Illustration of the requested tasks presented on the visual interface (left graphs), the tasks 

performed by a healthy subject (middle graphs) and a stroke patient (right graphs). 
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Kinematic analyses 

For each task, the elapsed time of the end-effector position was recorded by the 

planar robot. These variables were analyzed for each task by a specific customized 

program in a LabWindows/CVI (8.5) environment. Each index mentioned below 

was computed for each of the ten cycles of movement and then averaged. 

 

For the Free Amplitude task, we computed the amplitude, velocity, straightness, 

peak velocity and two smoothness indices (the speed and jerk metrics75). For the 

Target task, the amplitude index was replaced by the target inaccuracy index. For 

the Square and Circle tasks, we computed the velocity, peak velocity, speed metric, 

jerk metric and shape inaccuracy indices. The Coefficient of Variation (CV), 

calculated from the subjects’ ten cycles of movement, was computed for each 

index. Some of these indices are described below. 

 

Straightness corresponds to the amplitude divided by the path length covered by 

the subject19 (ratios closer to 1 indicate more rectilinear paths, whereas ratios closer 

to 0 indicate longer paths to realize the movement). The speed metric75 corresponds 

to the ratio of the mean velocity and the peak velocity (ratios closer to 0 indicate 

less smooth movements). The jerk metric75 corresponds to the ratio of the absolute 

mean jerk (corresponding to the variations of acceleration) and the peak velocity 

(ratios closer to 0 indicate smoother movements). Target inaccuracy34 corresponds 

to the distance between the target position that the subject had to reach and the end 

position achieved by the subject (higher scores indicate more inaccurate 

movements). Shape inaccuracy quantifies the subject’s ability to draw a square or a 

circle posted on the visual interface. This index corresponds to: 

 

∑ �(Rxi − 	Pxi)� + (Ryi− 	Pyi)��
���

n
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where n corresponds to the number of positions acquired during the exercise and 

related to the analyzed shape, Pxi and Pyi correspond to the X and Y coordinates of 

its positional data point and Rxi and Ryi correspond to the X and Y coordinates of 

the orthogonal projection of its point on the reference shape (cf. illustration in the 

Figure 3). Thus, the shape inaccuracy index corresponds to the average of the 

distances between the measured performance points and their corresponding 

reference points (higher scores indicate more inaccurate movements). 

 

 
 
Figure 3. Illustrations of (A) the circle of reference (black circle) and a circle performed by a stroke 

patient (black triangle symbols) and of (B) the calculation of the shape inaccuracy index. Each 

reference point (grey circle symbol, [Rxi, Ryi]) corresponds to the minimal orthogonal projection of 

the performance point (Pxi, Pyi) on the shape of reference. The distances between all the related 

reference and performance points were measured and averaged to obtain the shape inaccuracy result. 

 

Statistical analysis  

For each section, the normal distribution and equality of variance were verified for 

all comparisons, and the significance level was 0.05. Statistical tests were 

performed using SigmaStat 3.5 software (WPCubed GmbH, Munich, Germany), 
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except for reliability (SPSS 16.0 software [SPSS Inc., Chicago, USA]) and 

Principal Component Analysis (PCA) (StatView 5.0 software [Sas institute, North 

Carolina, USA]). 

Learning effects 

The learning effect was assessed through ten consecutive cycles of movement in 15 

stroke patients. Each cycle of movement was analyzed separately, and the data 

were then submitted to a one-way repeated measures analysis of variance 

(ANOVA). 

 

Intra-rater reliability in stroke patients and healthy subjects 

Intra-rater reliability represents the ability to provide the same results on repeated 

measures in the same subjects using the planar robotic device40. Some stroke 

patients (n=15) and healthy subjects (n=15) performed all tasks twice, one to seven 

days apart. 

 

For each group, we assessed intra-rater reliability with the Intraclass Correlation 

Coefficient (ICC).  The ICC is related to the variability of results across repeated 

measures within the subjects (i.e. between-subjects variability) and to the 

measurement error (i.e., within-subject variability)158. ICC consistency parameters 

were calculated in a two-way mixed model. Reliability was rated as excellent, 

moderate and poor with ICC scores >0.75, 0.40-0.75 and <0.40, respectively40.  

 

Minimal Detectable Change in stroke patients 

The MDC corresponds to the minimal change that exceeds the measurement error 

in the score. A small MDC corresponds to a better ability to detect a real change in 

patients155. The MDC parameter (MDC95) was calculated from the data obtained 

during the intra-rater reliability section for stroke patients and at a 95% confidence 

interval, as follows54: 
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MDC�� = SEM	x	1.96	x	√2, 

 

where 1.96 is the 2-sided z table value for the 95% confidence interval and is used 

to account for the variance between 2 measurements. The lower the MDC95, the 

lower the probability of observing a change related to a measurement error. The 

Standard Error of Measurement (SEM) is related to the measurement error across 

repeated measures and was calculated as54:  

 

SEM = SD%	x	�(1 − R%), 

 

where SDx is the standard deviation for all observations from test sessions 1 and 2, 

and Rx corresponds to the calculated ICC.  

 

The MDC95 unit is the same as that of the original measurement. To facilitate 

comparisons between kinematic indices, the MDC% was calculated as54:  

 

MDC% =
MDC
mean

	x	100, 

 

where the mean is the average of all the observations in stroke patients between the 

two sessions. The lower the MDC%, the lower the probability will be of observing 

a change related to a measurement error. 

 

Laterality effect in healthy subjects 

Fifteen healthy subjects performed the tasks described above with the dominant 

and non-dominant hands. The dominant one corresponded to the main hand used in 

activity of daily living such as writing. For each kinematic index, a paired t-test 

was performed to assess which kinematic indices were influenced by laterality.  
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Comparisons between stroke and healthy subjects 

Age-matched stroke patients (n=25) and healthy subjects (n=25) performed the 

tasks described above with their impaired and dominant upper limb, respectively. 

For each kinematic index, a one-way ANOVA was performed to determine the 

kinematic indices that were altered in stroke patients.  

 

Construct validity 

Correlations between each kinematic index and clinical assessments were analyzed 

by (i) a Pearson correlation test for the BB and (ii) a Spearman correlation test for 

the USFMA in 25 patients. A correlation was good, moderate or poor if the 

correlation coefficient (r) was >0.60, 0.30-0.60 and <0.30, respectively40.  

 

Principal Component Analysis  

PCA determines several orthogonal axes (Varimax), called principal components, 

composed of a set of correlated kinematic indices. The number of principal 

components was the smallest one representing at least 75% of the variance. 

Correlations between the 44 indices assessed in 25 stroke patients were established 

in two steps. 

   

First, for each individual task, the kinematic indices were included in a PCA to 

provide the index most correlated to each principal component. Second, from all 

the indices selected in the first step, a PCA was performed to provide, for all 

merged tasks, those that were the most correlated to each principal component. 

These last selected indices were put together to provide a short version of the 

protocol.  
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4. Results 
 
Among the 25 patients, two patients cannot perform the geometrical tasks because 

of limited motor control (i.e., USFMA = 7 and 8/66). All results are presented in 

Tables 2, 3 and 4 and are illustrated in Figure 2. 

 

No learning effect was found for the different tasks (data not shown). Indeed, for 

each index, the results of the ten consecutive cycles of movement were similar (p-

value>0.05). A laterality effect was shown in only three indices of the Free 

Amplitude task. Indeed, the amplitude and the straightness indices were 

respectively 1.6 cm and 0.02 lower for the non-dominant upper limb in healthy 

subjects, and that the jerk metric index was 4.8/s2 higher for this limb (p-

value<0.04). 

 

In stroke patients, all indices of the Free Amplitude and Target tasks had a 

moderate to excellent reliability (ICC range [0.50 - 0.95], Table 2), except the 

CVpeak velocity index of the Target task, which presented poor reliability (ICC=0.04). 

All indices of the two geometrical shapes had a moderate to excellent reliability 

(ICC range [0.40 - 0.93]). In healthy subjects and for all merged tasks, 25/44 

kinematic indices had moderate to excellent reliability (ICC range [0.40 - 0.91]).  

 

The MDC% was calculated for each index (Table 2). The indices the most likely to 

detect a change in patients were: 

- the amplitude, velocity, straightness, peak velocity, jerk metric and speed 

metric indices of the Free Amplitude task (MDC% range [9.9% - 33.7%]);  

- the straightness and speed metric indices of the Target task (MDC% were  

14.6% and 22.4%, respectively);  

- the velocity, peak velocity, jerk metric and speed metric indices of the 

Square task (MDC% range [20.4% - 32.8%]);  



A robotic device as a valid, reliable, and sensitive assessment tool 

115 

- the peak velocity and speed metric indices of the Circle task (MDC% were 

37.7% and 29.5%, respectively). 

 

For the four merged tasks, 27 of 44 indices were significantly altered in stroke 

patients (p-value<0.05) (Table 3). This result was partly related to the fact that the 

ten cycles of movements were less identical in stroke patients than in healthy 

subjects. Indeed, the significantly altered CV indices were higher (difference range 

[2.4% - 12.8%]) in the stroke group. Second, the stroke patients’ movements were 

less smooth for all tasks. Indeed, the jerk metric (excepting for the Square task) 

was higher (difference range [5.7/s2 – 14.5/s2]) and the speed metric was lower 

(difference range [0.06 - 0.10]) in the stroke group. Third, movements of 

unidirectional tasks were less rectilinear in patients: ratios were 0.09 (Target task) 

and 0.10 (Free Amplitude task) lower in the stroke group. Finally, movements were 

less accurate by 1.6 cm for the Target task and by 0.4 (Circle task) and 0.6 (Square 

task) cm for the geometrical tasks in the stroke group. The movements of the 

Target and Square tasks had a higher peak velocity of 5.5 cm/s and 5.9 cm/s in the 

stroke group, respectively.  

 

The construct validity studied the correlation between each kinematic index and 

clinical scales. The indices that showed moderate to good correlations with the 

manual dexterity assessed with BB were (Table 3): 

- CVvelocity and straightness indices of the Free Amplitude task (r = -0.41 and 

0.42, respectively); 

- the velocity, CVvelocity, straightness, target inaccuracy, peak velocity, CVpeak 

velocity and CVspeed metric indices of the Target task (r range [-0.60 - 0.41;]);  

- the shape inaccuracy index of the Square task (r = -0.41); 

- the CVvelocity, CVpeak velocity and the CVjerk metric indices of the Circle task (r 

range [-0.46 to -0.61]).  
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The indices that showed moderate to good correlation with motor control assessed 

with the USFMA were (Table 3) the CVvelocity and peak velocity indices of the 

Target task (r = -0.51 and -0.47, respectively); the CVvelocity and the CVjerk metric 

indices of the Circle task (r = -0.49 and -0.61, respectively). 

 

A PCA was carried out to determine a short version of the protocol (Table 4). The 

first step of the PCA enabled us to select four representative kinematic indices of 

the Free Amplitude task and three indices for each of the other tasks. It enabled us 

to determine the five most representative indices, obtained from all tasks, allowing 

79% of the variance. There were the amplitude and the CVstraightness of the Free 

Amplitude task, the peak velocity of the Target task, the CVjerk metric of the Square 

task and the CVspeed metric of the Circle task. 
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Table 2: Results of intra-rater reliability and MDC in 15 stroke patients for each task and index. 

 Stroke patients (n=15) 
Mean (SD) 

 
ICC 

 
MDC95 

 
MDC% 

 Session 1 Session 2    

Free amplitude       
Amplitude (cm) 29.8 (2.9) 29.5 (3.4) 0.84 3.4 11.6 
CVamplitude (%) 3.6 (2.5) 3.6 (2.3) 0.82 2.8 77.4 
Velocity (cm/s) 10.9 (5.5) 9.7 (5.7) 0.95 3.4 33.2 
CVvelocity (%) 17.4 (6.0) 16.2 (7.1) 0.80 8.0 47.8 
Straightness 0.90 (0.11) 0.88 (0.09) 0.90 0.09 9.9 
CVstraightness (%) 5.7 (6.2) 6.5 (5.3) 0.78 7.4 121.6 
Peak velocity (cm/s) 30.8 (11.3) 28.7 (11.3) 0.95 6.8 22.7 
CVpeak velocity (%) 22.0 (16.0) 25.5 (25.0) 0.88 19.8 83.5 
Jerk metric (1/s²) 30.3 (7.0) 32.4 (10.7) 0.88 8.6 27.4 
CVjerk metric (%) 20.5 (7.7) 19.2 (5.8) 0.57 12.2 61.7 
Speed metric 0.35 (0.09) 0.33 (0.09) 0.77 0.12 33.7 
CVspeed metric (%) 18.2 (6.3) 19.0 (8.6) 0.72 10.9 58.3 
Target      
Target inaccuracy (cm) 1.7 (0.8) 1.5 (0.9) 0.80 1.0 63.0 
CVtarget inaccuracy (%) 37.6 (12.8) 37.3 (12.2) 0.50 24.0 64.2 
Velocity (cm/s) 6.9 (4.0) 6.5 (4.2) 0.88 3.8 57.6 
CVvelocity (%) 25.2 (11.8) 23.2 (8.4) 0.53 19.3 79.5 
Straightness 0.89 (0.09) 0.91 (0.08) 0.69 0.13 14.6 
CVstraightness (%) 7.9 (6.3) 7.1 (5.8) 0.82 7.0 93.5 
Peak velocity (cm/s) 16.9 (8.0) 15.4 (8.4) 0.87 8.1 50.3 
CVpeak velocity (%) 26.0 (8.1) 26.6 (9.9) 0.04 24.2 91.9 
Jerk metric (1/s²) 55.9 (17.3) 59.2 (30.0) 0.85 25.9 44.9 
CVjerk metric (%) 22.0 (6.9) 24.2 (12.2) 0.73 14.1 60.9 
Speed metric 0.41 (0.08) 0.42 (0.06) 0.77 0.09 22.4 
CVspeed metric (%) 19.8 (5.8) 15.1 (4.3) 0.61 9.6 54.7 
Square      
Velocity (cm/s) 9.5 (3.7) 8.7 (4.5) 0.93 3.0 32.8 
CVvelocity (%) 21.3 (9.7) 17.7 (7.5) 0.59 15.5 79.4 
Peak velocity (cm/s) 30.7 (7.3) 29.5 (9.5) 0.93 6.1 20.4 
CVpeak velocity (%) 19.5 (5.4) 19.5 (6.8) 0.44 12.6 64.6 
Jerk metric (1/s²) 33.2 (6.4) 32.5 (8.8) 0.74 10.7 32.5 
CVjerk metric (%) 20.1 (7.0) 21.6 (4.7) 0.60 10.3 49.6 
Speed metric 0.31 (0.08) 0.30 (0.06) 0.80 0.09 29.0 
CVspeed metric (%) 18.6 (7.5) 20.2 (7.4) 0.51 14.2 73.2 
Shape inaccuracy (cm) 1.7 (0.5) 1.5 (0.3) 0.45 0.8 52.0 
CVshape inaccuracy (%) 17.8 (9.5) 15.6 (6.9) 0.46 16.5 99.2 
Circle      
Velocity (cm/s) 14.8 (7.6) 14.2 (8.3) 0.89 7.2 49.6 
CVvelocity (%) 19.5 (10.4) 16.3 (8.2) 0.87 9.4 52.3 
Peak velocity (cm/s) 35.4 (13.6) 33.7 (12.9) 0.87 13.0 37.7 
CVpeak velocity (%) 17.4 (8.4) 17.3 (7.4) 0.81 9.4 54.0 
Jerk metric (1/s²) 35.2 (10.0) 34.1 (13.4) 0.80 14.4 41.7 
CVjerk metric (%) 19.9 (7.7) 21.4 (8.0) 0.49 15.4 74.6 
Speed metric 0.41 (0.08) 0.41 (0.10) 0.76 0.12 29.5 
CVspeed metric (%) 15.2 (5.2) 15.7 (9.8) 0.57 13.9 90.0 
Shape inaccuracy (cm) 1.0 (0.3) 0.9 (0.5) 0.77 0.5 57.8 
CVshape inaccuracy (%) 29.1 (8.8) 27.7 (12.9) 0.40 23.4 82.4 

The indices that showed a moderate to excellent reliability are in bold (ICC≥0.4).  
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Table 3: Results of the one-way ANOVA test comparing 25 stroke patients and 25 healthy subjects, the Pearson 

correlation test (BB) and the Spearman correlation test (USFMA) in 25 stroke patients for each task and index. 

* correspond to the indices significantly altered in stroke patients (*p<0.05; **p<0.01; ***p<0.001).  

The indices with a significant correlation (p<0.05) are in bold. 

  

 Stroke  
(n=25) 

Mean (SD) 

Healthy  
(n=25) 

Mean (SD) 

Correlation coefficient (r) 

BB  USFMA 

Free amplitude      
Amplitude (cm) 26.2 (7.3) 29.2 (3.0) 0.30 0.22 
CVamplitude (%) 4.5 (3.1)*** 2.1 (1.6) -0.35 -0.34 
Velocity (cm/s) 10.2 (6.4) 10.5 (3.9) -0.30 -0.16 
CVvelocity (%) 18.3 (8.2)** 12.1 (5.7) -0.41 -0.32 
Straightness 0.89 (0.1)*** 0.98 (0.02) 0.42 0.28 
CVstraightness (%) 5.5 (5.3)*** 1.6 (1.4) -0.27 -0.31 
Peak velocity (cm/s) 27.6 (12.7) 23.6 (6.8) -0.34 -0.20 
CVpeak velocity (%) 22.9 (17.7) 15.7 (10.3) 0.06 0.08 
Jerk metric (1/s²) 33.0 (9.0)*** 26.0 (3.9) -0.38 -0.31 
CVjerk metric (%) 21.1 (6.9) 17.5 (6.9) -0.24 -0.21 
Speed metric 0.36 (0.09)*** 0.44 (0.06) 0.04 0.02 
CVspeed metric (%) 18.2 (6.1)*** 11.4 (5.2) -0.27 -0.23 
Target     
Target inaccuracy (cm) 2.6 (2.8)** 1.0 (0.4) -0.51 -0.20 
CVtarget inaccuracy (%) 39.4 (16.5)  47.3 (15.6) -0.07 0.06 
Velocity (cm/s) 6.5 (3.8) 5.1 (1.7) -0.44 -0.38 
CVvelocity (%) 30.2 (15.3) 27.0 (18.4) -0.57 -0.51 

Straightness 0.88 (0.11)** 0.98 (0.3) 0.41 0.33 
CVstraightness (%) 9.8 (12.2)** 1.7 (1.4) -0.37 -0.32 
Peak velocity (cm/s) 15.9 (7.7)** 10.4 (2.5) -0.52 -0.47 
CVpeak velocity (%) 29.8 (10.3) 30.0 (16.5) -0.60 -0.37 
Jerk metric (1/s²) 52.9 (17.3)** 38.4 (12.8) -0.24 -0.30 
CVjerk metric (%) 26.8 (12.5) 35.5 (16.3) -0.03 -0.06 
Speed metric 0.41 (0.07)*** 0.49 (0.07) 0.13 0.21 
CVspeed metric (%) 22.7 (10.0)** 15.5 (5.6) -0.53 -0.31 
Square     
Velocity (cm/s) 8.7 (3.9) 8.5 (2.6) -0.06 -0.01 
CVvelocity (%) 21.1 (9.1)*** 8.3 (2.3) -0.36 -0.13 
Peak velocity (cm/s) 29.2 (8.1)** 23.3 (5.3) -0.31 -0.14 
CVpeak velocity (%) 19.6 (6.2) 14.1 (14.0) -0.11 -0.01 
Jerk metric (1/s²) 31.4 (7.0) 31.9 (7.5) 0.03 -0.13 
CVjerk metric (%) 20.5 (7.9) 17.4 (5.3) 0.23 0.12 
Speed metric 0.30 (0.08)*** 0.36 (0.05) 0.25 0.12 
CVspeed metric (%) 18.6 (6.7)*** 12.3 (4.8) -0.28 -0.12 
Shape inaccuracy (cm) 1.8 (1.0)** 1.2 (0.1) -0.41 -0.14 
CVshape inaccuracy (%) 18.5 (10.3)** 11.7 (5.9) -0.30 -0.13 
Circle     
Velocity (cm/s) 13.7 (7.5) 13.8 (5.4) 0.05 -0.28 
CVvelocity (%) 19.7 (9.7)*** 9.9 (4.4) -0.61 -0.49 

Peak velocity (cm/s) 34.1 (13.8) 27.6 (8.3) -0.04 -0.31 
CVpeak velocity (%) 16.5 (7.3)*** 10.0 (3.5) -0.46 -0.31 
Jerk metric (1/s²) 34.3 (10.4)* 28.6 (7.9) -0.23 -0.41 
CVjerk metric (%) 19.1 (7.6 16.7 (5.6) -0.60 -0.61 

Speed metric 0.39 (0.10)*** 0.49 (0.06) 0.32 -0.11 
CVspeed metric (%) 14.8 (5.5)*** 9.3 (3.7) -0.32 -0.32 
Shape inaccuracy (cm) 1.0 (0.6)** 0.6 (0.3) -0.13 -0.15 
CVshape inaccuracy (%) 29.1 (13.8)** 19.7 (6.7) -0.19 -0.06 
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Table 4: Results of the second step of the PCA in 25 stroke patients for the 13 kinematic indices 

selected in the first step of the PCA. 

 

PC= Principal Component 

For each principal component, the correlated indices are in bold and the selected, and the most 

correlated index is underlined.  

5. Discussion 
 

Main objective: metrological properties of a standardized protocol 

To pursue the development of a preliminary protocol117, designed to quantitatively 

assess the upper limb kinematics in stroke patients by using the REAplan robotic 

device. This objective was reached by analyzing a number of metrological 

properties for the protocol.  

 

Our results showed that some indices seem particularly useful in discriminating 

between patients and healthy subjects. The straightness (unidirectional tasks) and 

the smoothness (all tasks) of movements were altered in patients, confirming 

 PC 1 
(r) 

PC 2 
(r) 

PC 3 
(r) 

PC 4 
(r) 

PC 5 
(r) 

Free amplitude       
Amplitude (cm) 0.06 0.18 0.34 0.79 0.07 
CVstraightness (%) 0.00 -0.86 0.01 -0.23 0.05 
Peak velocity (cm/s) 0.81 0.33 0.02 0.32 -0.11 
CVspeed metric (%) -0.20 -0.56 0.46 -0.14 -0.08 
Target      
Peak velocity (cm/s) 0.93 0.07 0.13 0.06 -0.18 
CVjerk metric (%) -0.60 -0.09 -0.15 0.38 0.21 
Speed metric 0.83 -0.15 -0.17 -0.05 0.17 
Square      
Velocity (cm/s) 0.36 0.61 -0.08 0.44 -0.36 
CVjerk metric (%) -0.08 0.00 0.09 0.14 0.92 
CVshape inaccuracy (%) 0.24 0.64 0.36 -0.36 0.36 
Circle      
CVvelocity (%) -0.06 -0.21 0.37 -0.71 -0.13 
Jerk metric (1/s²) 0.86 0.28 -0.04 0.08 0.05 
CVspeed metric (%) 0.06 -0.02 0.86 0.04 0.12 
Variance proportions (%) 33 17 12 9 8 
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results of several authors19,60,75,117,144. The Coefficient of Variation was also 

abnormal in patients, and seems useful in assessing the ability to maintain a similar 

pattern of movement in repetitive tasks. Even if some patients (n=19) performed 

movements with their affected but non-dominant upper limb, it did not influence 

the comparison between groups. Indeed, our results showed that almost all the 

kinematic indices (41/44) were not influenced by laterality. 

 

In stroke patients, the demonstration of a high reliability of kinematic indices 

obtained from various tasks is in agreement with Wagner et al.54. Indeed, these 

authors have also shown moderate to excellent reliability of kinematic indices 

obtained from a simple forward-reaching task measured with an optical tracking 

system. Only one index, the Coefficient of Variation of peak velocity index (Free 

Amplitude task), should be excluded from the present protocol because of its poor 

reliability. However, many indices (19/44) showed poor reliability in healthy 

subjects. De Vet et al.158 thought that ICC analyses in healthy subjects could be 

negatively influenced by the small variability between healthy subjects. A paired t-

test was carried out and revealed no significant difference between the two sessions 

for each kinematic index (p-value>0.05). This analysis suggests that all the indices 

may be reliable in healthy subjects.  

The MDC was used to determine the minimal change that exceeds the 

measurement error in each index score54,155. A real improvement of upper limb 

kinematic indices in stroke patients could only be suggested when this 

improvement exceeds the MDC values given in our results (Table 2).  

 

The construct validity of our protocol was determined by showing some 

correlations between kinematic indices and clinical scales. A recent review has 

reported correlations with the Upper Limb Sub-score of the Fugl-Meyer 

Assessment but has not reported any correlation with the Box and Block test39. The 

present study confirms that some kinematic indices could have correlations with 
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the motor control of the upper limb, as assessed by the Upper Limb Sub-score of 

the Fugl-Meyer Assessment39. However, our study demonstrates that an even larger 

number of kinematic indices have correlations with gross manual dexterity 

assessed by the Box and Block test. The proximal motor control of the upper limb, 

involved in USFMA and BB, could explain these correlations. However, the better 

correlation observed with the BB test could be related to the parametric statistics 

used, which was not the case for the USFMA. Correlations could have been better 

if the proximal and distal items of the USFMA had been split up. However, the 

whole score of USFMA was chosen because no study has validated a subscale of 

the Fugl-Meyer scale for the proximal upper limb only12.   

The poor correlation of some indices (e.g., smoothness in all tasks) could be 

because our protocol is able to reflect some specific movement characteristics that 

are otherwise difficult to quantify and that are not traditionally assessed by clinical 

scales. The kinematics, Box and Block test and Upper Limb Sub-score of the Fugl-

Meyer Assessment assess the body functions and structures domain of the 

International Classification of Functioning Disability and Health (ICF)12.  Further 

studies should determine the correlations between kinematics and the other ICF 

domains such as activity (e.g., Abilhand147) and social participation (e.g. SATIS-

Stroke159).  

  

The kinematic results were compared between the dominant and non-dominant 

hand in healthy subjects. Surprisingly, the majority of the variables were not 

affected by hand dominance. A difference between the dominant and non-dominant 

sides was found in only 3 of 44 indices. This difference was slight and lower than 

the MDC assessed in stroke patients (see Table 2). This symmetry could be related 

to the major contribution of the shoulder and elbow when using REAplan. Greater 

involvement of the wrist and the hand could lead to a larger laterality effect. 

Indeed, Ozcan et al.160 suggested that the digital dexterity (as assessed by the 
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VALPAR Component Work Sample-4) was better for the dominant hand than for 

the non-dominant one.  

 

Second objective: a standardized short protocol 

The second objective of this study was to provide a short version of this protocol. 

Our study investigated a large variety of tasks and indices that involved elements 

of unidirectional (i.e. Free Amplitude and Target tasks) or 

multidirectional/graphical (i.e. Circle and Square tasks) movements. Moreover, 

these tasks could be rhythmic (i.e. Free Amplitude and Circle tasks) or discrete 

(i.e., Target and Square tasks), which involves different neuronal 

mechanisms138,161,162.  

 

The short version of the protocol requires all tasks and five indices. However, for 

the Target task, the peak velocity index should be replaced by the speed metric one 

for the two following reasons. First, these two indices are highly correlated to the 

first principal component (Table 4). Second, the speed metric index shows higher 

alteration in stroke patients and higher change after a treatment than the peak 

velocity one60,75,117. The final short protocol and its metrological properties are 

presented in the Table 5. This short version could facilitate the use and acceptance 

of robotic assessment in routine clinical practice, as recommended by 

Balasubramanian et al.39. Indeed, clinicians could use this short protocol to easily 

monitor the patients’ improvements during their rehabilitation. This protocol could 

also help the clinicians to define and adapt the patients’ rehabilitation program. 

Further studies should be conducted to determine the sensitivity to change of this 

short version by assessing upper limb improvements in stroke patients during 

recovery.   
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Table 5:  metrological properties of the short kinematic protocol 
 

 
 
 
 
 
 
 
 
 
 
 

The indices that showed a moderate to excellent reliability are in 

bold (ICC>0.4). * correspond to the indices significantly altered in 

stroke patients (p<0.001). 

No index is significantly altered in the non-dominant upper limb 

(p>0.05). No index is correlated with BB and USFMA. 

 

Limitations and Perspectives 

There were several limitations to the present study.  

First, the REAplan conception allows end-effector movements in 2 spatial 

dimensions only (2D), what could limit its benefits in kinematic assessment and in 

rehabilitation. Although these planar distal movements, the shoulder and elbow 

movements involve 3D displacements. Further studies could apply this protocol to 

an exoskeleton robotic device38,124 or an optical tracking system58, which assess 

upper limb movements in 3D.  

Second, three tasks (i.e., circle, square and target tasks) were made in a short 

workspace, so that it could limit their relevance. This choice is justified by the 

following reasons. Previous studies showed that reaching targets placed at a 

distance of 14 cm in front of the subject are enough to objectify altered movements 

in stroke patients75. The shapes were smaller than in a previous study117 where the 

most severely affected patients have had difficulties to draw the shapes because of 

their large size.  

 ICC MDC% 

Free amplitude    
Amplitude (cm) 0.84 11.6 
CVstraightness (% )* 0.78 121.6 
Target   
Speed metric* 0.77 22.4 
Square   
CVjerk metric (%) 0.60 49.6 
Circle   
CVspeed metric (%)* 0.57 90.0 
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6. Conclusions  
 
This study provides a standardized, valid, reliable, sensitive and concise kinematic 

protocol to objectively and quantitatively assess upper limb impairments in stroke 

patients by using a planar robotic device such as REAplan. A short protocol was 

provided reducing the number of indices to five (i.e., Amplitude, CVstraightness, speed 

metric, CVjerk metric and CVspeed metric). Future studies should extend the use of this 

assessment tool to other populations of patients, such as those with cerebral palsy, 

orthopedic trauma, Parkinson’s disease, and others. This protocol is independent to 

the REAplan and could be implemented to other devices. A robot is not only a 

rehabilitation tool but also an assessment tool. It offers more specific and accurate 

kinematic indices than we could obtain with pencil movements performed on a 

sheet of paper. This device allows easy and quick evaluation of upper limb 

kinematics that could be useful in daily clinical practice and in clinical research.  
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Upper limb robot-assisted therapy in cerebral palsy: A single-blind 

randomized controlled trial 
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Dehez, Christine Detrembleur, Thierry M. Lejeune and Gaëtan Stoquart. 

Neurorehabilitation and Neural Repair 2015, 29(2):183-192 

1. Abstract 
 

Background – Several pilot studies have evoked the interest of Robot-Assisted Therapy 

(RAT) in children with Cerebral Palsy. Objective – To assess the effectiveness of RAT in 

children with cerebral palsy (CP) through a single-blind randomized controlled trial. 

Patients and Methods – Sixteen children with CP were randomized into 2 groups. Eight 

children performed 5 conventional therapy sessions per week over 8 weeks (Control 

group). Eight children completed 3 conventional therapy sessions and 2 robot-assisted 

sessions per week over 8 weeks (Robotic group). For both groups, each therapy session 

lasted 45 minutes. Throughout each RAT session, the patient attempted to reach several 

targets consecutively with the REAplan. The REAplan is a distal effector robot that allows 

for displacements of the upper limb in the horizontal plane. A blinded assessment was 

performed before and after the intervention with respect to the ICF framework: body 

structure and function (upper limb kinematics, Box and Block test, QUEST, strength and 

spasticity), activities (Abilhand-Kids, PEDI) and participation (MHAVIE). 

Results – During each RAT session, patients performed 744 movements on average with 

the REAplan. Among the variables assessed, the smoothness of movement (p<0.01) and 

manual dexterity assessed by the Box and Block test (p=0.04) improved significantly more 

in the Robotic group than in the Control group.  

Conclusions – This single-blind randomized controlled trial provides the first evidence that 

RAT is effective in children with CP. Future studies should investigate the long-term 

effects of this therapy. 

Key words: Rehabilitation; Robotics; Cerebral Palsy; Kinematics; Motor learning ; 

Pediatrics; International Classification of Functioning, Disability and Health.  
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2. Introduction 
 
Cerebral Palsy (CP) is a neuro-developmental disease related to non-progressive 

cerebral abnormalities that occur before birth or early in life, and it affects 2 to 3 

children out of every 1000163. The CP children have hemi-, quadri- or di-plegia, 

which could be associated with abnormal sensibility, motor control, strength and 

tonus (i.e., spasticity) of the upper limb6,7. These impairments may restrict a CP 

child’s functional capacity and participation in activities of daily living (ADL)4,90. 

 

Recent recommendations state that intensive rehabilitation is necessary for 

improving motor function in children with CP4,90. These recommendations, based 

on motor learning theories, suggest that repetitive and assist-as-needed movements 

that are associated with sensory feedback and an attractive environment are likely 

to promote reorganization of the neuronal networks (i.e., neuroplasticity) and 

motor development after brain injuries4,164,165. 

 

Robot-Assisted Therapy (RAT) of the upper limb has the potential to satisfy these 

recommendations in CP children22,35,99,166. RAT is conducted using robotic devices 

that enable the patients to perform specific upper limb movements14. The main 

interest in using robots is to allow the patients to achieve a large amount of 

movement in a limited time. For instance, children with CP were able to perform 

640 movements during 60-minute RAT sessions35. Additionally, the attractive 

human/machine interface has the capacity to motivate the child to perform his or 

her therapy14. This visual interface can be adapted to be kid-friendly through 

playful games such as car races22,35,99 or to perform exercises that mimic ADL, 

such as reaching for a cup22. Moreover, robotic devices allow the patient to receive 

visual, auditory or sensory feedbacks35,99. Finally, the haptic interaction of the 

robot gives performance-based assistance to the patients38,105. This assistance can 
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enhance the neuronal plasticity by enabling the patients to initiate and accomplish 

movements as actively as possible105. 

 

RAT efficacy has been studied in stroke patients92. A recent meta-analysis 

concluded that RAT could improve upper limb structure and function and the ADL 

of these patients. Some pilot studies have described the feasibility and interest in 

using this therapy in CP children22,35,99,100,167. However, there are no currently 

published randomized controlled trials, and a recent review has noted that such 

studies are needed to confirm the usefulness of RAT in CP children4. 

 

Pilot studies have investigated RAT efficacy in place of, but not combined with, 

conventional therapy (CT)22,35,99,100,167. In everyday life, the combination of RAT, 

involving substantial movement, and CT could enable the therapist to re-allocate 

his or her time and energy to transferring the benefits of these repetitive 

movements (for instance, motor control improvement in stroke patients92) to ADL 

and patient social integration. 

 

According to these considerations, the purpose of this study was to assess the 

effectiveness of RAT combined with CT compared to conventional therapy alone 

in children with CP. This comparison was performed in a single-blind, randomized 

controlled trial. The assessment protocol was in accordance with the 3 International 

Classification of Functioning (ICF) domains.  

3. Materials and Methods 
 

The Ethics Board of our Faculty of Medicine approved this study. All parents 

freely accepted the participation of their children in the study and provided written 

informed consent.  
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Patients Selection 

Sixteen patients were recruited from a school for children with physical disabilities 

(Institut Royal de l’Accueil du Handicap Moteur, Brussels, Belgium). This sample 

size was dependent on the recruitment possibilities in the school. MG and AR 

enrolled the children. The patients’ characteristics are described in Table 1. The 

inclusion criteria were a history of CP; a maximum age of 18 years; the ability to 

understand simple instructions; and moderate to severe impairments of the upper 

limbs, corresponding to a Manual Ability Classification System (MACS) score 

greater than 1. The exclusion criteria were epileptic patients and upper limb 

therapeutic intervention within the previous 6 months, such as a Botulinum toxin 

injection or neuro-orthopedic surgery. The patients were equally randomized into 2 

groups (1:1): a Robotic group and a Control group. A stratified randomization 

assigned participants to their groups after the first evaluation using a computer-

generated random number. The same persons (MG and AR) generated each 

allocation sequence. The stratification classified the subjects according to their 

upper limb manual capacity, as assessed by the MACS score (moderate disability, 

MACS range [2-3]; and severe disability, MACS range [4-5]). The trial was 

registered at ClinicalTrials.gov, number NCT01700153. 

 

REAplan 

The robot used in this study was a robot research prototype named REAplan, 

which is illustrated in Figure 1a38. REAplan is an end-effector robot than can move 

the patient's upper limb in a horizontal plane via a handle that the patient can grasp 

or to which he or she may be attached by an orthosis if his or her hand is too weak. 

REAplan is fitted with force and position sensors (acquisition frequency: 100 Hz), 

allowing for control of the lateral (F,-./) and longitudinal (F,-0�1) interaction forces 

between the patient and the robot. Below, the description of these two interaction 

forces (F, -./ and F,-0�1) and how these forces are automatically adapted in function 

of the patient’s performance.  



Robot-assisted therapy in cerebral palsy 

 

131 

The patient has to perform the movement along a reference trajectory. This 

reference trajectory corresponds to the ideal path that the patient must follow to 

perform the exercise. F,-./ corresponds to a lateral interaction force, perpendicular 

to the reference trajectory, that helps the patient stay on the path. The higher this 

interaction force, the more the robot is helping the patient stay on the reference 

trajectory. F,-0�1  corresponds to a longitudinal interaction force, parallel to the 

reference trajectory, that helps the patient move along the trajectory at a reference 

velocity. The higher this force, the more the robot helps the patient move along the 

reference trajectory at this reference velocity. For this study, the reference velocity 

was standardized at 5 cm/s. After reaching the end of a given trajectory (i.e., the 

target), F,-0�1  and F, -./  are automatically adapted in function of the patient’s 

performance. If the patient reaches the target with a velocity that is below the 

reference velocity, F,-0�1 increases to help the patient with respect to the reference 

velocity, and vice versa. If the patient does not maintain the reference path when he 

moves toward the target, F,-./ increases to help the patient follow the path, and vice 

versa. 

The size of the workspace was adapted to the child’s morphology, within a square 

that was 0.8 m long on each side. Indeed, this workspace was as large as possible 

to stimulate the children, with regards to their arm lengths, to perform the largest 

movements with the robot. A screen and a speaker were installed in the robot to 

give visual and auditory feedback for performance. 

 

Interventions 

Both groups (Robotic and Control) received 5 sessions of therapy per week over 

the course of 8 weeks (40 sessions in all). Each session lasted 45 minutes. For the 

Control group, all of the sessions were CT. The Robotic group received 2 RAT 

sessions and 3 CT sessions per week. 
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The children underwent their CT sessions with their regular physiotherapists and 

occupational therapists. The physiotherapists practiced neurodevelopmental 

therapy, and occupational therapists specifically focused on the ADL. The 

therapists maintained their standard protocols and adapted the rehabilitation to 

match each child’s needs.  

 

All RAT sessions were supervised by the same physiotherapist (MG), who is 

experienced with the use of robot. RAT sessions consisted of many duplicate 

exercises. Each exercise consisted of 160 consecutive movements toward a specific 

target, as suggested by Fasoli et al.35, with the REAplan robotic device (for 

illustration, see Figure 1b). A force field helped the children to reach the targets 

(see the REAplan section). The reaching of each target consecutively resulted in 

audio feedback, the deletion of the target and the appearance of a new target on the 

screen. This new target was randomly placed on the visual screen at a distance of 

10 cm from the last one. These targets were enlarged for children with visual 

impairments. For half of the exercises, the target was motionless as long as the 

patient did not reach it. For the other half, the target was dynamic, moving a 

distance of 1 cm vertically or horizontally every 0.5 seconds. 

The amount of movement, adapted to each patient, was as high as possible to 

stimulate improvements but was also adapted to the child’s tiredness. Each child 

could have an optional rest between exercises and during each exercise (of 

approximately 1 minute). Finally, the RAT sessions were in the form of video 

games. An avatar (the cursor that the child had to move) and a cartoon animal (the 

target that the child had to reach) were integrated into a appropriate landscape 

(Figure 1b). The cartoon animal and its corresponding landscape were changed 

each week. Finally, at the end of each exercise, a personalized feedback was posted 

on the visual interface to congratulate the child and give him his time score for 

achieving the 160 targets. 
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Figure 1: (A) View of REAplan. 1: planar end-effector robot; 2: visual interface for the patient; 

3: physiotherapist’s interface; 4: adaptive button for the table height. (B) Zoomed-in view of 

the visual interface during a session of robotic-assisted therapy. 5: Cursor to move; 6: Target to 

reach. 

 

ICF assessment  

All of the children were assessed before and after the intervention through a 

protocol that took into account the 3 domains of the ICF.  

 

The primary outcome was upper limb kinematics. The first part of this PhD 

thesis116,117 provided a standardized protocol to quantitatively assess active 

movements of the upper limb in stroke patients, including several kinematic 

indices. The short version of this protocol (5 indices) was used for this study. This 

protocol consisted of performing 4 different tasks (Free Amplitude, Target, Square 

and Circle), as described below.  

For the Free Amplitude task, the subject had to reach straight out in front of them 

as far as they could and brought the arm back to the starting position. For the 

Target task, the subject made movements in the most precise and direct manner 

2 3 

1 

4 6 

 5 

(A) (B) 



Part 2 

134 

toward a specific target placed at a distance of 10 cm in front of the subject. After 

performing this task, the robot brought the subject’s arm back to the starting 

position. For the Square and Circle tasks, the subject had to draw two geometrical 

shapes: a square of 6 cm side and a circle of 4 cm radius. These shapes were 

performed clockwise with the right upper limb, and counter-clockwise with the left 

one. These tasks were performed with REAplan, without any assistance (i.e., no 

interaction forces) and at spontaneous velocities.  

For the Free Amplitude task, the computed indices were the amplitude and the 

coefficient of variation (CV) of the straightness. For the Target task, the speed 

metric index was calculated. For the Square and Circle tasks, the CVjerk metric and 

CVspeed metric indices, respectively, were computed. Each index of this short protocol 

was computed for each of the 10 cycles of movement and was then averaged.  

The kinematic assessment started after a 10-minute training phase to limit learning 

bias. For the acquisition phase, the order of tasks was randomly assigned. Each 

task was performed 10 consecutive times, during which the end-effector position 

was recorded (acquisition frequency: 100 Hz). The rest period between tasks was 1 

minute. This kinematic assessment was performed 3 times within the 2 weeks 

preceding the intervention to evaluate a possible learning effect of the protocol and 

then once after the intervention. The same blinded physiotherapist (DD) performed 

each kinematic assessment. 

 

For the secondary outcomes of the body structure and function domain of the ICF, 

the assessment included the Box and Block test (BB)132; the 4 subscales 

(dissociated movements, grasps, weight bearing and protective extension) of the 

Quality of Upper Extremity Skills Test (QUEST)48,168; the Modified Ashworth 

Scale (6 muscular groups were tested: shoulder adductors, elbow flexors and 

extensors, pronators, wrist and finger flexors)169; and the strength of 2 muscular 

groups (elbow flexors and extensors), assessed with a hand-held dynamometer 

(Microfet2TM, Orsay, France)170. For the calculation of muscle torque, the result 
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obtained with the dynamometer was multiplied by the distance measured between 

the lateral epicondyle and radial styloide171. All of these assessment tools were 

reliable and valid for the studied population13 and were used by the same blinded 

occupational therapist (DH). 

 

The secondary outcomes of the activity and participation domains of the ICF 

correspond to 3 questionnaires. For the activity domain, the French versions of the 

Abilhand-Kids172 and Pediatric Evaluation of Disability Inventory (PEDI)50 

questionnaires were filled out by each child’s therapist. For the participation 

domain, the French version of Life Habits was completed by each child’s parent173.  

 

Statistics 

Statistical tests were performed using SigmaStat 3.5 software (WPCubed GmbH, 

Munich, Germany). For tests with parametric measures, the normal distribution and 

equality of variance were verified for all comparisons. For each test, the 

significance level was 0.05. 

For each parametric and non-parametric measure, a 1-way analysis of variance 

(ANOVA) or a Mann-Whitney test was performed to verify the parity of the 

baseline results between groups. To verify the learning effect of the primary 

outcome, a 1-way repeated ANOVA was performed for each kinematic index on 

the 3 measures computed before the intervention. 

For each parametric variable, a 2-way repeated ANOVA was performed to analyze 

the interaction between the time (before vs. after interventions) and groups 

(Control vs. Robotic groups). For each significant interaction, a Bonferroni-

adjusted post hoc (Holm Sidak) test was used to analyze the differences in the 

change between groups. For each non-parametric variable, a Mann-Whitney test 

and a Wilcoxon test were performed to analyze the treatment effects between 

groups and within each group, respectively.  
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4. Results 
 

The recruitment and baseline assessments were performed in September 2012, and 

the interventions were started in October 2012. The final interventions were 

completed in December 2012. The final assessments were performed between one 

and seven days following the final rehabilitation session. The flowchart of this 

study is illustrated in Figure 2. 

All 16 patients completed the study. During each RAT session, the patients 

performed 744 (224) (mean [SD]) movements on average with the REAplan. For 

the Robotic group, the children performed 15 (0) sessions of RAT and 23 (0.9) 

sessions of CT. For the Control group, the children received 38.4 (1.7) sessions of 

CT. No adverse events were reported. All results are presented in Tables 1, 2 and 3 

and are illustrated in Figure 3. 
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Figure 2: Flow diagram of the participants through each stage of the study (i.e., Enrollment, 

Allocation and Analysis) (adapted from CONSORT [Moher et al., 2010]). 

 

Similarity between groups at baseline and learning effect 

Before the interventions, the results of the kinematic indices were similar between 

groups, except for the CVstraightness of the Free Amplitude task (p=0.03) (Table 1). 

There was no learning effect for the primary outcome (Table 1). Indeed, for all 

merged tasks, the kinematic indices were similar within the 3 measures computed 

before the intervention (p>0.09). For this reason, the average of these 3 kinematic 

measures was considered to be the baseline results.  
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Effect of therapy  

For the body structure and function domain, an interaction between the time and 

groups revealed that the smoothness in discrete and unidirectional upper limb 

movements only improved in children who received RAT (p<0.01) (Table 2). 

Indeed, for the Target task, the speed metric index increased from 0.42 (0.05) to 

0.49 (0.03) in the Robotic group, but this index score did not change in the Control 

group (0.46 [0.05] to 0.46 [0.06]). For the 3 other tasks (Free Amplitude, Square 

and Circle), the kinematics indices did not change after intervention (p>0.05).  

 

An interaction between time and groups showed that the manual dexterity of the 

upper limb improved significantly more in children who received RAT than 

children who only received CT (p=0.04) (Table 2). Indeed, the BB score improved 

from 13.0 (7.3) to 16.6 (9.9) blocks/min in the Robotic group, while this score 

increased only slightly from 13.4 (9.6) to 13.8 (9.7) in the Control group.  

The capacity to perform analytical movements of the upper limb similarly 

improved in both groups (p<0.05) (Table 3). Indeed, the scores of the dissociated 

movements subscale of the QUEST significantly increased for the Robotic (median 

increased from 37.0 to 63.3/100) and Control (median increased from 44.4 to 68.8) 

groups (p<0.04). However, these improvements were not different between the 

groups (p=0.87) (Table 3).  

There was no significant effect of treatment for the other scales and for the 3 

questionnaires assessing the activity and participation domains (p>0.06) (Tables 2 

and 3).  

 



 

Figure 3: For the Target task in each group (Robotic and Control), illustration of the typical traces 

computed for 1 child before (

the displacement plots of 10 consecutive trials. The lower graphs

progress trial.  
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or the Target task in each group (Robotic and Control), illustration of the typical traces 

computed for 1 child before (left graphs) and after (right graphs) treatment. The upper graphs show 

the displacement plots of 10 consecutive trials. The lower graphs show the velocity curve of 1 in
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or the Target task in each group (Robotic and Control), illustration of the typical traces 

) treatment. The upper graphs show 

curve of 1 in-
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Table 1: Characteristics of the subjects included in the Robotic and Control groups and results of the baseline measurement comparison between the groups and the learning effects of the upper limb kinematics 

in all children. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Q1=First quartile; Q3=Third quartile; R=Right; L=Left; MACS=Manual Ability Classification System; BB=Box and Block test; MAS=Modified Ashword Scal 
† indicates results with Median [1st quartile-3rd quartile]; * corresponds to a significant baseline difference. 

 Robotic Group 
Mean (SD) 

(n=8) 

Control Group 
Mean (SD) 

(n=8) 

 
P-value 

Test 1 
Mean (SD) 

(n=16) 

Test 2 
Mean (SD) 

(n=16) 

Test 3 
Mean (SD) 

(n=16) 

 
P-value 

Characteristics        
Age, years, mean (SD) 10.8 (4.6) 11.0 (3.5)      
MACS (1-5), median [Q1-Q3] 3 [2-3.3] 2.5 [2-4]      
Quadri/Di/Hemi-plegic, n 4/4/0 3/4/1      
Dominance, R/L, n  3/5 4/4      
Kinematic indices         
Amplitude (cm) 14.9 (7.2) 20.1 (5.0) 0.12 17.5 (7.0) 17.8 (6.6) 17.1 (7.0) 0.62 
CVstraightness (%) 6.9 (3.0) 3.7 (2.3) 0.03* 5.6 (3.7) 4.9 (3.5) 5.4 (5.0) 0.83 

Speed metric 0.42 (0.05) 0.46 (0.05) 0.10 0.45 (0.05) 0.43 (0.07) 0.45 (0.06) 0.25 
CVjerk metric (%) 18.8 (2.8) 20.1 (2.7) 0.36 19.5 (5.1) 20.1 (7.1) 16.4 (5.0) 0.09 
CVspeed metric (%) 17.9 (4.1) 20.9 (7.9) 0.39 18.7 (4.5) 19.1 (4.8) 20.5 (5.4) 0.66 
BB (blocks.min-1) 13.0 (7.3) 13.4 (9.6) 0.93     
QUEST (/100)†        
Dissociated mvts 37 [21.1-43.8] 44.4 [25-54.7] 0.54     
Grasp 51.9 [18.5-72.5] 51.9[25.9-75.0] 0.80     
Weight bearing 45.5 [23.0-77.6] 74.0[29.1-97.5] 0.66     
Protective extension 0.0 [0.0-50.0] 41.7 [8.3-87.5] 0.45     
Muscle torques (N.m)        
Elbow flexion  9.9 (5.3) 11.7 (5.2) 0.52     
Elbow extension  9.3 (4.0) 11.5 (5.8) 0.40     
MAS (/4)†        
Shoulder adduction 1.0 [0.0-1.3] 0.0 [0.0-0.0] 0.28     
Elbow flexion 2.0 [0.8-2.0] 0.5 [0.0-2.0] 0.57     
Elbow extension  0.0 [0.0-0.3] 2.0 [0.0-2.0] 0.13     
Elbow pronation 1.5 [0.0-2.0] 0.5 [0.0-2.0] 0.78     
Wrist flexion 1.0 [0.8-2.0] 0.0 [0.0-2.0] 0.20     
Finger flexion 0.0 [0.0-1.3] 0.0 [0.0-0.5] 0.51     
Abilhand-Kids (Logits) -1 (3.6) -1.2 (3.4) 0.92     
PEDI (/63)† 21 [20-39.5] 27 [18.5-46] 0.90     
Life-Health (/248)† 106.5 [67.5-136.8] 148 [137-153.5] 0.15     
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Table 2: Two-way ANOVA results for parametric variables comparing the treatment effects between the Robotic and Control  

 

* indicates significant results (p<0.05). 

Effect size was rated as large, medium and small with Cohen’d scores >0.8, 0.5-0.8 and <0.5, respectively.  

 T1-T0  

Mean difference (SD) 

  

Group effect 

P-value 

  

Time effect 

P-value 

 Interaction 

Group x Time effect 

P-value 

 

Effect size 

Cohen’s d 

Robotic group 

(n=8) 

Control group 

(n=8) 

  

Kinematic indices        

Free amplitude        

Amplitude (cm) 1.7 (1.6) 0.6 (3.1) 0.15 0.37 0.08 0.48 

CVstraightness (% ) 0.8 (6.4) 1.1 (2.5) 0.05 0.92 0.45 -0.06 

Target       

Speed metric 0.07(0.05) 0.00 (0.05) 0.75 <0.01* 0.01* 1.52 

Square       

CVjerk metric (%) -0.8 (6.5) 0.4 (8.2) 0.49 0.50 0.50 -0.17 

Circle       

CVspeed metric (%) 2.5 (6.8) 0.0 (7.1) 0.26 0.75 0.92 0.36 

BB (blocks.min-1) 3.6 (3.6) 0.4 (2.1)   0.79 0.04* 0.02* 1.14 

Muscle torques (N.m)       

Elbow flexion  1.5 (4.9) 2.9 (3.3) 0.59 0.53 0.07 -0.34 

Elbow extension  0.6 (2.5) 2.1 (3.1) 0.45 0.31 0.09 -0.54 

Abilhand-Kids 

(Logits) 

-0.2 (0.8) -1.1 (1.3) 0.71 0.15 0.06 0.93 
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Table 3: Results of the Mann-Whitney and Wilcoxon tests for non-parametric variables comparing the treatment effects between the Robotic and Control groups and within each group 

The values are presented as Medians [First Quartiles; Third Quartiles]. T0 and T1 correspond to the results before and after the intervention, respectively. T1-T0 corresponds to the difference 

between the results obtained after (T1) and before (T0) the intervention. 

  Abbreviation: MAS=Modified Ashword Scale.  

  * indicates a significant difference (p<0.05).  

 Mann-Whitney test Wilcoxon test 

 Robotic group (n=8) 
T1-T0 

Control group (n=8) 
T1-T0 

Robotic group (n=8) 
              T0                                  T1 

Control group (n=8) 
              T0                                  T1 

QUEST (/100)   
Dissociated movements 23.5 [5.7;41.0] 28.1 [21.9;36.4] 37.0 [21.1;43.8] 63.3 [41.3;74.3]* 44.4 [25;54.7] 68.8 [44.9;83.3]* 
Grasp 9.3 [-9.5;23.1] 12.7 [1.9;23.2] 51.9 [18.5;72.5] 59.3 [41.7;85.2] 51.9 [25.9;75.0] 55.6 [39.8;75.8] 
Weight bearing 10.3 [3.0;24.5] 0.0 [-9.0;0.0] 45.5 [23.0;77.6] 65.0 [30.0;88.0] 74.0 [29.1;97.5] 71.0 [16.0;94.5] 
Protective extension 0.0 [0.0;19.5] 0.0 [0.0;2.1] 0.0 [0.0;50.0] 27.8 [12.5;100] 41.7 [8.3;87.5] 52.8 [9.0;92.4] 
MAS (/4)       
Shoulder adduction 0.0 [-0.3;0.0] 0.0 [0.0;0.0] 1.0 [0.0;1.3] 0.0 [0.0;1.3] 0.0 [0.0;0.0] 0.0 [0.0;0.0] 
Elbow flexion 0.0 [-0.3;0.0] 0.0 [0.0;0.0] 2.0 [0.8;2.0] 1.5 [0.0;2.0] 0.5 [0.0;2.0] 1.0 [0.0;2.0] 
Elbow extension  0.0 [0;0.3] 0.0 [0.0;0.5] 0.0 [0.0;0.3] 0.0 [0.0;2.0] 2.0 [0.0;2.0] 2.0[1.8;2.0] 
Elbow pronation 0.0 [-1.0;0.0] 0.0 [-0.3;0.0] 1.5 [0.0;2.0] 1.0 [0.0;2.0] 0.5 [0.0;2.0] 0.0 [0.0;0.5] 
Wrist flexion 0.0[-1.0;0.0] 0.0 [0.0;0.0] 1.0 [0.8;2.0] 0.5 [0.0;1.3] 0.0 [0.0;2.0] 0.0 [0.0;2.0] 
Finger flexion 0.0 [0.0;0.0] 0.0 [0.0;0.0] 0.0 [0.0;1.3] 0.5 [0.0;1.0] 0.0 [0.0;0.5] 0.0 [0.0;0.0] 
PEDI (/63) 0.0 [-1.5;2] 2.0 [-2.5;3.5] 21.0 [20.0; 39.5] 24.0 [20.3;32.3] 27.0 [18.5;46.0] 42.5 [18.0;48.5] 
Life-H (/248) 8.5[-6.3;30.0] 12.0[-9.0;21.0] 106.5 [67.5;136.8] 113.5[101.3;135.5] 148.0[137.0;153.5] 154.0[139.0;163.0] 
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5. Discussion 
 

The aim of this study was to compare the effect of conventional therapy (CT) to the 

combination of RAT and CT in children with CP in a single-blind randomized 

controlled protocol. This comparison took into account the 3 domains of the ICF11. 

  

Body structure and function domain 

Some upper limb kinematic indices, assessed by the robot REAplan, and manual 

dexterity, assessed by the Box and Block test, had significantly more improvement 

after RAT and CT than after CT alone. Both results suggest a motor learning 

effect164. Indeed, the RAT of this study consisted of repetitive discrete movements 

(reaching targets), and the observed improvements were specifically related to 

discrete movements (Target Task of the kinematic assessment and BB).  

The assessment protocol of this study followed current recommendations. Indeed, 

kinematics was chosen as a primary outcome to quantitatively and objectively 

assess upper limb movements39, avoiding the disadvantages (e.g., non-parametrical 

statistics) of qualitative, subjective and ordinal scales12,39. After that, this protocol 

was established to be easily reproduced in clinical routines. Because a robotic 

device, such as the REAplan, has the potential to rehabilitate and assess patients116, 

we suggest that combining both abilities in one tool is more advantageous in 

clinical routines than adding other kinematic assessment tools, such as an 

expensive optoelectronic system.   

However, one can argue that the kinematic improvement observed in the Robotic 

group could be related to the child’s learning of the specific robot tasks. Even so, 

the 3 kinematic assessments performed before the intervention did not show any 

leaning effect. More importantly, the Robotic group transferred the improvement to 

a more functional task (BB) that was not directly related to robot therapy. Indeed, 

improvement in the BB test showed a high effect size (Cohen’s d = 1.1), which 
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suggests that RAT can significantly influence gross manual ability in children. 

However, although minimal detectable change in CP is unknown, the change 

measured (3.6 blocks/min) is below the known minimum for stroke patients (6 

block/min)174 and cannot therefore be assumed to represent a meaningful 

improvement. These results are consistent with an observational study that has 

shown kinematic improvements after RAT in children with CP61. Finally, 

randomized controlled trials assessing RAT efficacy in stroke patients have also 

shown improvements in kinematics and manual dexterity, as assessed by a 

robot34,175 and the BB23, respectively.  

The dissociated movements of the QUEST showed improvements in both groups, 

but no difference between groups. Previous observational studies identified 

significant improvements on this same subscale after RAT35,61. The present results 

illustrate the necessity of a control group in clinical trials to avoid misinterpretation 

of the results110. The improvement observed in both groups could be explained by 

the fact that this study started after the summer holidays (lasting 2 months), during 

which most children did not have rehabilitation. This observation suggests that CT, 

with or without RAT, could preserve the children’s capacity to dissociate upper 

limb movements. 

 

Activity and participation domains  

The improvements of impairments after only 8 weeks of RAT seem promising. 

However, these improvements did not translate into improved ADL. This result is 

disappointing because the patients yearn to improve their capacity for ADL as well 

as their social integration. These results can be explained by the following 

hypotheses. First, the various exercises were designed to stimulate the patients to 

repeat discrete reaching movements. However, ADL involves discrete reaching 

movements (e.g., pushing on a light switch) along with rhythmic reaching 

movements (e.g., washing the upper body) and grasping movements (e.g., open a 

bag chips) (for these examples, see Abilhand-Kids172). Further studies should 
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expand the exercises to enable the patients to repeat a wide variety of movements 

(e.g., rhythmic, discrete, with or without hand implication), as suggested by Krebs 

et al.61. Moreover, these exercises could be in the form of ADL22 or serious 

games176. Second, the activity and participation assessments were presented in the 

form of questionnaires completed by parents and therapists50,172,173. Because the 

parents and therapists were not blinded, their judgment could have been altered. To 

increase the responsiveness of this activity assessment, future studies should also 

use tools to assess the child’s performance in ADL, such as the Melbourne 

Assessment of Unilateral Upper Limb Function177 or the Assisting Hand 

Assessment178.  

 

Limitations and perspectives 

This study lays the groundwork for future research on the use of RAT in CP.  

Even though the sample size was sufficient to show significant results, it was too 

small to generalize the results to the clinical setting and to determine the subgroups 

of children who will be more responsive to RAT. Finally, the sample size did not 

allow the stratification to take other factors, such as the patients’ ages, into 

account. This bias was limited because the mean age of each group was similar 

(Table 1). Then, further multicenter trials should be planned to (1) confirm these 

results with a larger sample and variety of settings110, (2) add other stratification 

factors, such as the patients’ age, since learning capacities and video games playing 

experience are not the same among young children and adolescents and (3) 

establish the correlations between the improvements and the children’s 

characteristics (e.g., impairment severity, age, etc.).  

In this study, the proportion of robotic sessions (2/5) was limited by the feasibility 

of performing the study at school, and the number of RAT sessions (n=15) was 

chosen in agreement with previous studies35,99. However, we still do not know 

whether more intensive use of the robot or the use of RAT over a longer period of 

time would yield better results. Additionally, we do not know whether similar 
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results could be obtained with reduced use of the robot. This issue could be 

addressed through a study conducted over a longer period of time with a regular 

evaluation of the evolution of the patients’ function instead of only at the beginning 

and after therapy.  

This study assessed the effect of RAT directly after therapy but not a few months 

later for logistical reasons. There was no long-term follow-up, therefore the results 

do not provide any indication that benefits are maintained or of the necessity to 

repeat RAT regularly or to use it continuously. This limitation could be addressed 

by evaluating the evolution of improvements over time, as Krebs et al.61 have 

shown for kinematics.  

Finally, Sakzewski et al.90 are interested in combining Botulinum toxin with other 

upper limb therapies. Future studies should evaluate the effectiveness of the 

combination of RAT with Botulinum toxin injection in the upper limb. This 

combination showed promising results in a pilot study and could maximize the 

improvements to upper limb impairments and activities after RAT179. 

6. Conclusions 
 

In conclusion, this study is the first single-blind randomized controlled trial to 

assess the efficacy of RAT in children with CP. This therapy improved upper limb 

kinematics and manual dexterity but did not improve functional activities and 

social participation. Further studies should confirm these preliminary results on 

larger populations and assess if RAT could lead to more functional improvements 

in the long term. The REAplan robotic device provides an intensive and assist-as-

needed therapy associated with motivational and performance feedbacks. Robotic 

devices offer children fun and intensive rehabilitation that a human therapist cannot 

provide. These robots can be easily integrated as a relevant complement to therapy 

in the clinical setting. 
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General discussion and perspectives 
Genera l d iscussion and perspectives 

1. Synthesis of the PhD thesis 
 
This PhD thesis investigated the clinical interest of robotic devices to assess and 

rehabilitate upper limb movements in cerebral palsy (CP) children and stroke 

adults. For each part of the thesis, a synthesis is provided below. 

 

A robot to assess upper limb movements 

The present PhD thesis used the REAplan robot to develop a standardized, norm-

referenced, reproducible, valid, responsive and concise protocol to objectively and 

quantitatively assess upper limb kinematics in CP children and stroke adults. This 

objective was fulfilled because a standardized protocol was developed that 

assessed upper limb kinematics in CP children120 and healthy children129,180 as well 

as in stroke adults116,117 and healthy adults180 using the REAplan robot. This 

protocol showed reproducible results in both populations116,120, which were 

quantified with minimal detectable change (MDC) values116. These MDC values 

could be used to (i) calculate the sample size of future randomized controlled trials 

(RCTs)110 and (ii) identify meaningful improvement after an intervention155. 

Furthermore, age effects and reference standards of this protocol were established 

in 370 healthy subjects aged 3-93 years old180, which was recommended by 

Balasubramanian39. Then a short version of this protocol was provided to facilitate 

the assessment of upper limb kinematics in routine clinical practice116. This 

protocol could thus be used to monitor patients’ progress over time and to detect 

changes in upper limb kinematics after a specific intervention12,40. For instance, we 

showed that upper limb kinematics improved significantly more in children who 

received robot-assisted therapy (RAT) than in those who only received 

conventional therapy (CT)120. However, further studies should confirm the 

responsiveness of this protocol by assessing kinematic changes after other 



General discussion and perspectives 

152 

interventions such as constraint-induced movement therapy (CIMT)79 or Hand-

Arm Bimanual Intensive Therapy (HABIT)106. 

 

The construct validity of this protocol was also established in CP children and 

stroke patients116,129, showing that upper limb kinematics quantified specific 

movement characteristics (i.e., the quality of upper limb movements) that were not 

assessed by usual clinical scales. However, other analyses should be added in the 

first part of this thesis (first chapter)129. In this chapter, the correlations between 

upper limb kinematics and psychomotor abilities of the upper limb, assessed by 

Bruininks-Oseretsky test of motor proficiency (BOTMP), were computed in 

healthy children aged 3 to 12 years. These correlation results could be biased 

because both scales (kinematics and BOTMP) are influenced by age129. Therefore, 

for each child, the raw results of the kinematic indices and BOTMP subtests were 

converted into Z-scores. Correlations between the Z-scores of each kinematic index 

and each BOTMP subtest were performed with a Spearman correlation test, using 

SigmaStat 3.5 software (WPCubed GmbH, Munich, Germany). The results are 

presented in Table 1. Interestingly, all the kinematic indices showed no or poor 

correlation with both BOTMP subtests. These results confirmed that the 

correlations between kinematics and psychomotor abilities of the upper limb 

observed in the first chapter of the thesis corresponded to an age effect129. These 

poor correlations between upper limb kinematics and motor abilities were 

consistent with the fourth chapter of the first thesis part116. Indeed, it could be 

suggested that our protocol is able to reflect some specific movement 

characteristics (smoothness, straightness, reproducibility) that are otherwise 

difficult to assess by clinical scales (e.g. Fugl-Meyer test, BOTMP). 
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Table 1: Results of the Spearman’s correlation test for Z-scores of each 

kinematic index and each BOTMP subtest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Indices with a significant correlation (p < 0.05) are shown in bold 

 

Finally, the content of this kinematic protocol has evolved through the PhD thesis. 

This progress was essential to adapt the computation of tasks and kinematic indices 

in function of our clinical and statistical results. For instance, the calculation of 

shape inaccuracy index was modified in the last chapters in comparison to the third 

one (first thesis part). This change was essential to analyze the subject’s ability to 

draw a shape without any normalization of the patient’s performance. To 

 Coefficient correlation (r) 
 Visual-Motor 

Control 
Velocity and 

Dexterity 

Free amplitude   
Amplitude (cm) 0.00 0.10 
CVamplitude (%) -0.22 -0.04 
Straightness -0.01 0.06 
CVstraightness (%) 0.14 -0.07 
Velocity (cm/s) -0.05 0.05 
CVvelocity (%) 0.14 -0.03 
Smoothness 0.12 0.22 
CVsmoothness (%) 0.00 -0.13 
Target   
Target Inaccuracy (cm) -0.01 -0.01 
CV iarget inaccuracy (%) -0.03 -0.25 
Straightness 0.07 0.17 
CVstraightness (%) 0.03 -0.13 
Velocity (cm/s) -0.02 0.06 
CVvelocity (%) 0.07 -0.09 
Smoothness -0.07 0.13 
CVsmoothness (%) -0.26 -0.06 
Square   
Shape inaccuracy (cm) -0.01 0.17 
CVshape_inaccuracy (%) 0.09 0.06 
Velocity (cm/s) 0.07 0.01 
CVvelocity (%) 0.17 0.05 
Smoothness -0.08 0.01 
CVsmoothness (%) 0.12 0.02 
Circle   
Shape inaccuracy (cm) -0.23 0.06 
CVshape_inaccuracy (%) 0.02 0.06 
Velocity (cm/s) -0.07 0.05 
CVvelocity (%) 0.06 -0.02 
Smoothness -0.12 0.02 
CVsmoothness (%) 0.03 -0.05 
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summarize the results of this PhD thesis, the annexes 1 and 2 provide the details of 

the final kinematic protocol.  

 

A robot to rehabilitate upper limb movements 

The first part of this PhD thesis developed a standardized RAT protocol in CP 

children according to the neuro-rehabilitation recommendations and investigated 

the efficacy of RAT in such children through a single-blind RCT, considering the 

three domains of the International Classification of Functioning, Disability, and 

Health (ICF). This objective was fulfilled; a RAT protocol that followed the 

current recommendations in CP neurorehabilitation4 was created using the 

REAplan robot120. Notably, these recommendations encourage the execution of 

repetitive and motivating movements4,101, which should be assisted as needed and 

associated with feedbacks16,102. By using our protocol, CP children performed 

many movements (744 [224], mean [SD]) in a limited period of time (45 minutes). 

This finding is (i) consistent with previous studies17,35 and (ii) unfeasible for human 

therapists in routine clinical practice103. These repetitive movements were assisted 

as needed due to the interaction forces between the patient and the robot, as in 

previous studies16,38,105,120. In addition to this assistance, inference rules were 

created to modulate the intensity of these interaction forces. These inference rules 

allowed for assistance and challenge of the patients’ movements in real time as a 

function of their impairments (e.g., spasticity) and performances (e.g., were the 

movements kinematically correct?). These methods and inference rules are 

currently being filed as a patent. Additionally, the exercises of this RAT protocol 

corresponded to a kid-friendly video game that motivated children to perform 

many movements. Such motivating programs have already been implemented in 

several previous protocols22,99,104,181–183, whereas several other studies have 

developed rudimentary target tasks18,34,35,97. We believe that serious games 

(rehabilitating games, ed.) are essential in promoting motivation and recovery in 

patients (cf. perspectives below)101. Finally, patients received visual, sensory and 
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auditory feedbacks similar to that provided by other devices18,34,35,97,99, as 

recommended by Molier et al.102.  

 

Additionally, the RCT performed in this PhD thesis showed that the combination 

of CT and RAT more significantly improved upper limb kinematics and manual 

dexterity in CP children compared with CT alone. The limitations and perspectives 

of this study are discussed in the second part of this thesis120, including the lack of 

improvement in performing activities of daily living (ADL) and the necessity of 

combining RAT with other interventions (e.g., botulinum toxin injections179). This 

first study could be the foundation for further studies of using RAT in CP. 

2. Perspectives 
 
Robotic assessment  

This PhD thesis standardized a protocol to assess upper limb kinematics in CP 

children and stroke adults. Further studies could use this norm-referenced protocol 

to (i) assess alterations of upper limb movements in other neurological diseases 

such as multiple sclerosis134,135 or Parkinson’s disease136,137 and (ii) monitor the 

evolution of upper limb kinematics in patients during interventions such as 

RAT34,60,61,120, CIMT79 and Botulinum toxin injection72,73,80. Moreover, kinematics 

assesses the body functions and structures domain of the ICF. Further studies 

should assess the relationship between this protocol and other scales that assess the 

activity (e.g., Abilhand-Kids
172 in CP children and Abilhand

147 in stroke adults) and 

participation domains (e.g., Stroke Impact Scale
51 in adults and Assessment of Life 

Habits
173 in CP children). Next, upper limb kinematics was computed with a planar 

end-effector robotic device, while kinematics could also be assessed using 

optoelectric54–58 or electrogoniometer59 systems (for review, see tables 3 and 4 of 

the general introduction). Further studies could compare results of upper limb 

kinematics computed with a planar end-effector robotic (e.g. REAplan) to results 
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of three-dimensional assessment devices (e.g. optoelectric system). Such a 

comparison could finalize the validation of our kinematic protocol. Finally, this 

protocol assessed the quality of upper limb movements without any assistance 

provided by the robot. Further studies could use the robotic advantages (e.g., 

assistance, reactivity) to quantitatively and objectively assess specific neurological 

impairments6,7,10 such as force25
 and muscles overactivity20,184. 

To illustrate this perspective, the muscles overactivity of the upper limb was 

recently quantified in twelve stroke patients using the REAplan robot185. Each 

patient had moderate to severe elbow flexor spasticity, corresponding to a 

Modified Ashworth Scale score greater than 0. For this experiment, the REAplan 

robot passively moved the patients’ upper limbs at various velocities (10, 20, 30, 

40 and 50 cm/s) in a back-and-forth trajectory (Figure 1). For each velocity 

condition, ten back-and-forth upper limb movements were performed. During these 

movements, the end-effector recorded the force needed (in Newtons) to passively 

mobilize the upper limb (Figure 1). Each patient performed this protocol with both 

the impaired and non-impaired upper limbs. Moreover, the patients performed this 

protocol with their impaired upper limbs before, just after and a day after receiving 

an anesthetic block (Lidocaine 1%) injection. This injection was performed on the 

axilla near the musculo-cutaneous nerve. The results of this study, illustrated in 

Figure 1 and presented in Table 2, showed that the force needed to mobilize the 

patients’ upper limb was significantly greater in the impaired arm than in the non-

impaired arm (p<0.001). Moreover, greater mobilization velocity was associated 

with greater force required to mobilize the patients’ impaired arms (p<0.001). 

Finally, in the 40 cm/s condition, this force was significantly lower just after the 

anesthetic block injection than before and the day after this injection was given 

(p<0.05). This study showed that robotic devices could objectify muscles 

overactivity of the upper limb.  
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Figure 1: Typical traces of passive mobilization of a stroke patient’s impaired upper limb. This 

mobilization was performed at 40 cm/s. (A) Illustrations of the requested task presented on the visual 

interface (left column) and the evolution of the end-effector positions as a function of time during ten 

back and forth movements (right column). (B) Illustrations of the force necessary to passively 

mobilize the upper limb during one back and forth movement before (left column), just after (middle 

column) and the day after (right column) anesthetic block injection. The positive and negative force 

values respectively correspond to the necessary force to pull (extension movements) and brake 

(flexion movements) the upper limb during the movement.  
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Table 2: The results of 1-way repeated analysis of variance (ANOVA) comparing the muscles overactivity between the non-impaired and impaired arms for each velocity 

condition and before the anesthetic block injection (T0). Moreover, the results of 2-way ANOVA analyzing the injection effect as a function of velocity.  

 Stroke patients 
n=12 

 10 cm/s 
mean (SD) 

20 cm/s 
mean (SD) 

30 cm/s 
mean (SD) 

40 cm/s 
mean (SD) 

50 cm/s 
mean (SD) 

 N-I  I N-I I N-I I N-I I  N-I I 
Overactivity of the 

elbow flexors, in N 

          

T0 8.2 (3.5) 32.4 
(17.5) 

9.7 (3.2) 40.6 (18.3) 10.5 (4.3) 49.8 (17.0) 10.3 (4.0) 60.4 (24.5) 10.8 (5.6) 64.4 (23.4) 

Mean of the 
difference 

          

T0 – T1  3.8 (11.6)  5.7 (9.2)  5.4 (11.8)  15.2 (16.8)*  16.4 (14.4)* 
T2 – T1  2.3 (6.7)  7.9 (8.9)  4.0 (10.0)  12.4 (14.2)*  8.0 (10.0)* 
T0 – T2  1.5 (7.4)  -2.1 (7.0)  1.4 (13.0)  2.9 (13.8)  8.4 (12.0)* 

Abbreviations: N-I = non-impaired arm; I = impaired arm; SD = standard deviation; T0 = before the injection of anesthetic block; T1 = just after the injection; T2 = day 

after the injection. For each velocity condition, the muscles overactivity of the impaired arm was significantly higher than that in the non-impaired arm (p<0.001).  

* indicates significant results for the injection effect (p<0.05).  
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Robotic rehabilitation  
This PhD thesis developed a standardized RAT protocol in CP children according 

to neuro-rehabilitation recommendations. The exercises included in this protocol 

enabled children to repeat discrete reaching movements (i.e., reaching targets). We 

are now developing other exercises to adapt this protocol to adult populations and 

to expand the variety of movements, as it has been suggested by previous 

studies61,120. The exercises that should be developed, which are illustrated in Figure 

2, correspond to simple discrete (e.g., reaching targets without following a specific 

path), complex discrete (e.g., reaching targets while following a specific path) and 

cyclic tasks (e.g., repeating closed loops). Moreover, these exercises are not 

performance based. Further developments should include a game that would adapt 

its scenario as a function of a patient’s performance in real time. This last 

perspective is being investigated by the research project ROBiGAME (main 

investigator: Pr. Thierry Lejeune). Indeed, ROBiGAME aims to combine a clever 

game with an interactive robot. This combination would adapt the game scenario 

and robotic assistance as functions of the motivational, cognitive and motor 

performances of the patient in real time. 
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Figure 2: Illustrations of three exercises computed by the REAplan robot. The simple target task 

corresponds to reaching targets without following a specific path (here, a tomato). The complex target 

task corresponds to reaching targets while following a specific path (here, golf balls). Cyclic tasks 

correspond to repeating closed loops (here, playing a car racing game). 

 

Further studies could also investigate the benefits of upper limb RAT in stroke 

patients. The evidence-based recommendations of upper limb interventions and 

RAT in stroke patients are summarized in the general introduction of this thesis (cf. 

supra). Most RCTs investigating the efficacy of RAT have been performed in 

chronic stroke patients17,25,34,93,94,96 (>6 months after stroke), whereas patient 

recovery has been primarily observed in the acute (<1 months after stroke) and 

sub-acute (<3 months after stroke) stroke stages10,186. The lack of studies in the 

acute stage of stroke rehabilitation could be related to the difficulty in 

distinguishing between real treatment effects and spontaneous recovery186. 

Moreover, most trials have assessed patients’ upper limb impairments but not their 
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abilities to perform ADL and their social integration12,18,34,92,95,97,98 unless these 

assessments were recommended by the World Health Organization41. To enhance 

the evidence supporting RAT in stroke patients, a multi-center single-blind RCT 

began in May 2014 to investigate the efficacy of RAT in acute stroke patients 

while considering the three ICF domains. For this study, sixty acute stroke patients 

are being recruited from the Cliniques universitaires Saint-Luc (Brussels), the 

Centre Neurologique William Lennox (Ottignies) and the Valida Hospital 

(Brussels). The patients are randomized into two groups (control and robotic 

groups), and the therapeutic intervention lasts nine weeks. For the control group, 

all rehabilitation sessions (fifteen sessions/week) correspond to CT. For the robotic 

group, RAT replaces four of these fifteen CT sessions such that thirty-six sessions 

of RAT are performed during the nine weeks. For each center, a therapist blinded 

to the patient allocation assesses the patients before the intervention, just after the 

end of the nine-week program, and at six months post stroke using a protocol that 

considers the three ICF domains. This study is registered at ClinicalTrials.gov 

(NCT02079779). 

 

Three-dimensional (3D) robotic devices 
This PhD thesis highlighted the interests of a robot that allows end-effector 

movements in two spatial dimensions (2D). Further studies could also assess the 

interests of 3D exoskeleton robots. Indeed, we believe that 2D end-effector robots 

are clinically different from 3D exoskeletons to rehabilitate upper limb movements. 

On one hand, the adaptations of current 3D exoskeleton robots (e.g., ARMin27) to 

patient morphology appear to be more time and energy consuming than those of 

2D end-effector robots (e.g., MIT-manus34), which could limit their application in 

clinical routines. On the other hand, 3D exoskeleton robotic devices have the 

advantages to increase movements’ accuracy by independently moving and 

controlling the different joints of the mobilized limb. These devices also enable 
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patients to perform realistic movements for ADL such as reaching for a cup at a 

certain height15.  

Today, both devices seem to have their own advantages. However, it could be 

suggested that further-developed 3D exoskeleton robots should be adapted to 

patients by clinicians as easily as planar robots. For example, Galinski et al.187 

developed a free-alignment mechatronic structure, for which alignment between 

the robot and patient joints is unnecessary. This structure could facilitate 

exoskeleton adaptation to patient morphology and enhance its acceptance in 

routine clinical practice. The development of such structures could lead to further 

studies comparing the interests of 2D versus 3D robotic rehabilitation, which has 

not yet been studied.  

 

Bimanual robotic rehabilitation 

This thesis focused on the unimanual REAplan robot; thus, bimanual robotic 

devices were not considered. The following part discusses how bimanual robotic 

devices, which are illustrated in Figure 3, could rehabilitate upper limb movements 

in CP children and stroke adults.  
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Figure 3: Illustrations of bimanual robotic devices: (1) REA2Plan (inventor: Dr. Julien Sapin), (2) 

MIME188 and (3) Bi-Manu-Track189. These three devices correspond to end-effector robotic devices 

that enable patients to perform proximal (REA2Plan and MIME) or distal (Bi-Manu-Track) bimanual 

movements. 

 
Bimanual rehabilitation, either involving robots (e.g., Bi-Manu-Track189

 [Figure 3]) 

or not (e.g., HABIT106), appears to improve upper limb impairments and abilities to 

perform ADL in CP children87,106,190 and stroke adults188,191–195. Interestingly, recent 

RCTs196,197 and systematic reviews198,199 have shown similar efficacies of uni- and 

bimanual rehabilitation. These findings are consistent with current evidence-based 

recommendations in both populations88,89. The combination of uni- and bimanual 

exercises with200,201 or without202 a robot could optimize CP and stroke 

rehabilitation. Indeed, uni- and bimanual movements are involved in many ADL 

tasks203. Training these two types of movement could improve both of 

them199,203,204. Moreover, the neurophysiological effects appeared different for both 

concepts203,205,206, possibly due to the involvement of additional neuroplastic 
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mechanisms205,207,208. Additionally, one review suggested that the effectiveness of 

uni- versus bi-manual rehabilitation depended on the patients’ severity (e.g., 

bimanual training was recommended in stroke patients with severe impairments) 

and the time post stroke (e.g., unimanual training was recommended in chronic 

stroke patients)198. These findings support that both concepts could be additional 

tools used throughout patients’ rehabilitation. According to the above 

considerations, further studies should assess the interests of combining uni- and 

bimanual rehabilitation with200,201 or without202 a robot. This perspective is 

consistent with current recommendations promoting combination treatments to 

optimize upper limb rehabilitation90,199.  

 

Finally, most of the current bimanual robots (Figure 3) allow more rudimentary 

movements than current unimanual robots. For instance, The Bi-Manu-Track189 

robot allows only either pro/supination or flexion/extension movements of the 

wrist. It could be suggested that further-developed bimanual robots should involve 

movements of both upper limbs. For instance, the prototype REA2Plan is an end-

effector planar robot that can mobilize both upper limbs (shoulders and elbows) of 

the patients in a horizontal plane (Figure 3). As indicated above, uni- and bimanual 

movements are distinct philosophies in neuro-rehabilitation203,205. Thus, the further-

protocols implemented in these bimanual robots should take into account the 

existing bimanual concepts106,190,203. 

 
Robotics in routine clinical practice  
The primary objective of this research was to investigate the clinical relevance of 

robotic devices to assess and rehabilitate upper limb movements in CP children and 

stroke adults. This objective was achieved via laboratory experiments and scientific 

publications116,117,120,129,180. Implementing robots in routine clinical practice appears 

to be important, as both clinicians and patients benefited from this experiment. 

This implementation could be made possible by transferring the scientific data 

from this thesis into clinical use, as recommended by Stein: “Ultimately, 
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rehabilitation robots must move out of the laboratory and into the clinic if they are 

to be used as a component of routine clinical care
1
”. This transfer was achieved 

due to constant collaboration between clinicians, researchers, engineers and 

technicians throughout this research. This close collaboration enabled our team (i) 

to adapt the first research prototype of the REAplan robotic device (Figure 4a) into 

a device that patients can use in routine clinical practice (Figure 4b) and (ii) to 

develop ergonomic software (Figure 4c) that facilitates the use of robotic devices 

by clinicians during routine clinical practice. 

 

This transfer could further enable clinicians to easily use robotics in routine clinical 

practice. However, some clinicians are reluctant to use rehabilitation technologies. 

Thus, patients and clinicians must be (i) informed of the complementary effects of 

robots and humans in rehabilitation14, (ii) provided with evidence-based 

information92 and (iii) enabled to experience the haptic interaction. Finally, training 

is essential to efficiently and safely assess and rehabilitate patients using a robotic 

device. A user manual is provided to facilitate this training. 
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Figure 4: Illustrations of the (A) previous and (B) actual versions of the REAplan robot. (C) 

Presentation of the main menu displayed on the therapist’s interface, which enables the clinician to 

(right column) connect the patient and (left column) choose a therapeutic action ([1] assessment, [2] 

rehabilitation, [3] assessment evolution, and [4] rehabilitation evolution). 

 

3. Conclusions 
 
This thesis provides clinical evidence regarding the use of upper limb robotic 

devices in neuro-rehabilitation. This research developed a standardized assessment 

protocol using a robot and performed a single-blind RCT to assess the efficacy of 

RAT in CP children, considering the ICF model41. Future studies should extend the 
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use of these protocols to other neurological impairments and pathologies (e.g., 

multiple sclerosis) and to other devices (e.g., 3D exoskeleton and bimanual robotic 

devices). 

The thesis would not have been possible without close collaboration between 

engineers, technicians, clinicians and researchers. We would like to encourage 

further similar collaborations (i) to develop and validate new protocols using 

robotic devices and (ii) to transfer scientific data to clinical use. This PhD training 

allowed me to develop new skills in scientific, clinical and technical domains. My 

wish is to allow researchers and clinicians to benefit from this experience to 

stimulate new technological research projects in neuro-rehabilitation and to enable 

patients to benefit from these technologies. 

 

 

 

“Technology as destiny”
1,2. I definitely believe that technology and humans have 

complementary skills. By cleverly combining the two, the rehabilitation and assessment of 

CP children and stroke adults can be improved. 
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Abbreviations 

 
2D 2 Spatial Dimensions 

3D 3 Spatial Dimensions 

ADL  Activities of Daily Living 

ANOVA Analysis of Variance 

AVC Accidents Vasculaires Cérébraux 

BB Box and Block test 

BMI Body Mass Index 

BOTMP Bruininks-Oseretsky Test of Motor Proficiency 

CIMT Constraint-Induced Movement Therapy 

CP Cerebral Palsy 

CT Conventional Therapy 

CV Coefficient of Variation 

ICC Intraclass Correlation Coefficient 

ICF International Classification of Functioning, Disability, and Health 

IMoC Infirmité Motrice d’origine Cérébrale 

IQR Interquartile Range 

L Left 

MACS Manual Ability Classification System 

MAS Modified Ashworth Scale 

MDC Minimal Detectable Change 

N/A Not Applicable 

PCA Principal Component Analysis 

PEDI Pediatric Evaluation of Disability Inventory 

Q1 First Quartile 

Q3 Third Quartile 

QUEST Quality of Upper Extremity Skills Test 

R Right 

RAT Robot-Assisted Therapy 

RCT Randomized Controlled Trial 
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SD Standard Deviation 

SEM Standard Error of Measurement 

SIAS Stroke Impairment Assessment Set 

USFMA Upper Limb Sub-score of the Fugl-Meyer Assessment 
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Annex 1  
The first of part of this PhD thesis standardized a protocol to assess upper limb 

kinematics in Cerebral Palsy (CP) children and stroke adults, by using the 

REAplan robot. This annex aims helping clinicians and researchers to reproduce 

this protocol, by providing the details of patient installation, tasks instructions and 

interpretation of kinematic indices.  

 

Patient installation 

The standardization of patient's installation is essential to ensure patient’s security 

and reliability of the procedure. This installation depends on patients’ 

impairments/morphology and should be the same at each assessment session. 

Please respect these following instructions: 

 

- Place the patient in a fixed and stable chair. To avoid any transfer, a 

wheelchair with reliable brakes is recommended. 

- Place the patient in the middle and approximately 2 cm from the table edge 

(see illustrations below). 
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- The patient’s feet should be stable. If necessary, place them on a footrest to 

stabilize them. 

- A specific belt was developed to secure the patient’s trunk, whatever the 

chair uses (classic chair or wheelchair). Secure the patient's trunk to 

minimize compensatory movements by respecting the following steps:  

          

 

- Two handpieces were developed to adapt the assessment in function of 

patients’ impairments. Choose the handpiece in function of the following 

instructions: 

Cylindrical handpiece Spherical handpiece 
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The cylindrical handpiece is 
recommended in patients without 
spasticity of the forearm pronating 

muscles. 

The spherical handpiece is 
recommended in patients with spasticity 

of the forearm pronating muscles. 

 

- Place the chosen handpiece by respecting the following steps: 

 
 

- A structure was developed to support the forearm in patients with shoulder 

weakness. Place the support by respecting the following steps: 
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Three shell sizes of this support are available. Choose the size according to the 

patient’s morphology, as described below: 

Medium shell  

 

Recommended in small 
children 

Large shell 

 

Recommended in small 
adults and tall children 

Extra large shell 

 

Recommended in tall adults 
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- A glove was developed to support the hand in patients with hand 

weakness. Place the glove by respecting the following steps: 

 
 

Three glove sizes are available. Choose the size according to the patient’s 

morphology, as described below: 

 

Medium glove  

 

Recommended in small 
children 

Large glove  

 

Recommended in small 
adults and tall children 

Extra large glove 

 

Recommended in tall adults 
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Tasks instructions 

For each task, a training phase should precede the registration phase. For each task, 

ten consecutive movements are performed and no velocity instruction is provided 

to the patient. The specific instructions of each task are provided below. 

 

Free amplitude Target 

“Reach straight out in front of you as far as 
possible and brought your arm back to the 

starting position.” 
 

Remarks: 
- No break between the ten back 

and forth movements; 
- Verbal Stimuli are allowed. 

 

“Go to the target as direct and accurate as 

possible” 

 
Remark: 

- For each trial, patient goes himself 
to the target but the robot 
performs the return movement. 

Circle Square 

 “Drive around the circle as best as you can, 
without stopping” 

 
Remarks: 

- No break between the ten 
movements; 

- Verbal Stimuli are allowed. 
- The movements are performed 

clockwise with the right upper 
limb and counter-clockwise with 
the left one. 

 “Drive around the square as best as you can, 
without stopping” 

 
Remarks: 

- No break between the ten 
movements; 

- Verbal Stimuli are allowed. 
- The movements are performed 

clockwise with the right upper 
limb and counter-clockwise with 
the left one. 
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Kinematic indices 

 Each task is linked to specific indices. These indices are listed in the following table. For each index and task, YES means that the index is 

computed while NO means that the index is not computed. The interpretation of each index is also provided.  

Abbreviation: CV = coefficient of variation 

Tasks 

 
Indices 

 
Target 

 
Free 

Amplitude 

 
Circle 

 
Square 

 

Interpretation 

Amplitude (cm) NO YES NO NO Higher amplitude score indicates larger movements 

CV Amplitude (%) NO YES NO NO Higher CV amplitude score indicates more variability in the amplitude of movements 

Inaccuracy (cm) YES NO YES YES Higher inaccuracy score indicates more inaccurate movements 

CV inaccuracy (%) YES NO YES YES Higher CV inaccuracy score indicates more variability in the movements’ accuracy 

Straightness YES YES NO NO Higher straightness score indicates more linear movements 

CV Straightness (%) YES YES NO NO Higher CV straightness score indicates more variability in the movements’ linearity 

Velocity (cm/s) YES YES YES YES Higher velocity score indicates faster movements 

CV Velocity (%) YES YES YES YES Higher CV velocity score indicates more variability in the movements’ velocity 

Smoothness YES YES YES YES Higher smoothness score indicates smoother movements 

CV Smoothness (%) YES YES YES YES Higher CV smoothness indicates more variability in the movements’ smoothness 
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Annex 2 

The first of part of the PhD thesis standardized a protocol to assess upper limb 

kinematics in Cerebral Palsy (CP) children and stroke adults, by using the 

REAplan robot. The four chapters did not provide all precisions about kinematic 

analyses. This annex aims helping researchers to reproduce analyses of these 

kinematic indices with REAplan or other devices. 

 

For each task, the X and Y positions was recorded in function of time by the 

REAplan robot (frequency acquisition: 125 HZ). These acquisitions were analyzed 

by a specific customized program in a LabWindows/CVI (8.5) environment, as 

followed:  

 

- X and Y position data were firstly filtered (Butterworth filter; cutoff 

frequency=12Hz; Order=2); 

- The filtered X and Y position data were derived to obtain velocity data in 

function of time. Each velocity data was computed by the following ratio:  

23 =
4(3 + 5)− 4(3 − 5)

2. 5.Δ7  

Where 2i is a velocoty data for the frame i, 4(i+n) is the 5th position supra, 

4(i-n) is the 5th position infra, 5=5 and Δ7 is the elapsed time. 

 

From these velocity and position data, the kinematic indices were computed as 

followed: 

- Amplitude index (Free Amplitude task) corresponds to the farthest Y 

position obtained during the back and forth movement; 

- Straightness index (Free Amplitude and Target tasks) corresponds to the 

optimal path divided by the path length covered by the subject; the optimal 
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path corresponds to the distance between the starting position and the final 

position of the movement. 

- Target inaccuracy index (Target task) corresponds to the distance between 

the target position that the subject had to reach and the end position 

achieved by the subject; 

- Shape inaccuracy index (Shape tasks) corresponds to: 

 

∑ �(Rxi − 	Pxi)� + (Ryi− 	Pyi)��
���

n
 

 

where n corresponds to the number of positions acquired during the exercise and 

related to the analyzed shape, Pxi and Pyi correspond to the X and Y coordinates of 

its positional data point and Rxi and Ryi correspond to the X and Y coordinates of 

the orthogonal projection of its point on the reference shape (cf. illustration in the 

Figure below). Thus, the shape inaccuracy index corresponds to the average of the 

distances between the measured performance points and their corresponding 

reference points (higher scores indicate more inaccurate movements). 

 

 
Figure. Illustrations of (A) the circle of reference (black circle) and a circle performed by a stroke 

patient (black triangle symbols) and of (B) the calculation of the shape inaccuracy index. Each 
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reference point (grey circle symbol, [Rxi, Ryi]) corresponds to the minimal orthogonal projection of 

the performance point (Pxi, Pyi) on the shape of reference. The distances between all the related 

reference and performance points were measured and averaged to obtain the shape inaccuracy result. 

 

- Velocity (all tasks) corresponds to the average of the velocity data 

computed during the movement.  

- Smoothness index (all tasks) corresponds to the ratio of the mean velocity 

and the peak velocity. Mean velocity corresponds to the average of the 

velocity data computed during the movement. Peak velocity corresponds to 

the maximal velocity computed during the movement. 

- Coefficient of Variation index (all tasks and all indices) is calculated from 

the subjects’ 10 movements. For each index, the coefficient of variation 

corresponds to the ratio of the standard deviation and the average of the 10 

kinematic results computed during the 10 movements. 
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