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Abstract

AIMS: Hypolipidemic drugs are prescribed in the most of cases for the treatment
of cardiovascular diseases. Several studies have showed that the gut microbiota
is able to regulate the host cholesterol metabolism. This study aimed to
investigate the potential impact of hypolipidemic drugs on the gut microbiota
in mice, and to correlate it to the regulation of cholesterol metabolism. MAIN
METHODS: Male C57Bl/6J mice were divided into four groups fed either a
control diet alone (CT), or supplemented with simvastatin (0.1% w/w, Zocor®,
MSD), or ezetimibe (0.021% w/w, Ezetrol®, MSD) or a combination of simvastatin
and ezetimibe (0.1% and 0.021%, respectively) for one week. KEY FINDINGS:
The combination of ezetimibe and simvastatin is required to observe a drop
in cholesterolemia, linked to a huge activation of hepatic SREBP-2 and the
consequent increased expression of genes involved in LDL cholesterol uptake
and cholesterol synthesis. The gut microbiota analysis revealed no change in t...
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Aims: Hypolipidemic drugs are prescribed in the most of cases for the treatment of cardiovascular diseases. Sev-
eral studies have showed that the gut microbiota is able to regulate the host cholesterol metabolism. This study
aimed to investigate the potential impact of hypolipidemic drugs on the gutmicrobiota inmice, and to correlate it
to the regulation of cholesterol metabolism.
Main methods:Male C57Bl/6J mice were divided into four groups fed either a control diet alone (CT), or supple-
mentedwith simvastatin (0.1%w/w, Zocor®, MSD), or ezetimibe (0.021%w/w, Ezetrol®, MSD) or a combination
of simvastatin and ezetimibe (0.1% and 0.021%, respectively) for one week.
Key findings: The combination of ezetimibe and simvastatin is required to observe a drop in cholesterolemia,
linked to a huge activation of hepatic SREBP-2 and the consequent increased expression of genes involved in
LDL cholesterol uptake and cholesterol synthesis. The gut microbiota analysis revealed no change in total bacte-
ria, and in major Gram positive and Gram negative bacteria, but a selective significant increase in Lactobacillus
spp. in mice treated with the ezetimibe and a decrease by the combination. The changes in lactobacilli level ob-
served in ezetimibe or combination treated-mice are negatively correlated to expression of genes related to cho-
lesterol metabolism.
Significance: The present study showed that ezetimibe taken alone is able to modify the composition of gut mi-
crobiota in favor of Lactobacillus spp. These results suggest that members of the genus Lactobacillus play an im-
portant role in cholesterol metabolism, even in normocholesterolemic mouse model.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Cholesterol is an important component of mammalian cell mem-
braneswhich takes part in the control ofmembranefluidity, permeabil-
ity and trafficking [1]. Impaired LDL-cholesterol (LDLc) level in the
bloodstream leads to the development of cardiovascular diseases,
such as atherosclerosis [2,3]. Today 17 million people die of cardiovas-
cular disease each year and this number will double by 2030 [4]. Cho-
lesterol metabolism regulation is mediated by several transcription
factors, among which the sterol regulatory element binding protein
2 (SREBP-2) is the key regulator [5]. SREBP-2 upregulates the

expression of cholesterol synthesis genes including the rate limiting
enzyme of cholesterol synthesis, the 3-hydroxy-3-methylglutaryl-
coenzyme A reductase (HMGCoAR). Moreover, SREBP-2 activation
increases the expression of the low density lipoprotein receptor
(LDLr), responsible for the tissue uptake of LDLc [6,7]. To date,
many hypolipidemic drugs have been developed to reduce and to
prevent hypercholesterolemia. Among these drugs, statins are com-
petitive inhibitors of HMGCoAR, used since the late 1980s [8]. More
recently ezetimibe, a non-competitive inhibitor of the Niemann–
Pick C1-like 1 (NPC1L1) transporter mediating cholesterol absorp-
tion in the apical brush border membrane of jejunum enterocytes,
has been introduced as hypocholesterolemic treatment [9]. In fact,
the addition of ezetimibe to ongoing statin therapy provides an ef-
fective means for further reducing LDLc levels and bringing more
high-risk patients to their LDLc goals [10].

Of interest, studies have shown that the gutmicrobiota is able to reg-
ulate cholesterol metabolism [11,12]. Indeed germ-free mice fed a high
fat diet have an altered cholesterol metabolism characterized by an ele-
vation of hepatic cholesterol storage, an overexpression of hepatic
SREBP-2 and an increased dietary cholesterol absorption [11]. Moreover
other studies have demonstrated that themodulation of gut microbiota
by nutrients influences also the host cholesterol metabolism. We have
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reported that supplementationwith dietary inulin-type fructans, which
promotes several bacterial gender levels in the gut, reduces lipidemia,
lowers hepatic cholesterol content and inhibits hepatic SREBP-2 path-
way, in n−3 polyunsaturated fatty acid-depletedmice [13]. The current
study investigated the potential impact of two hypolipidemic drugs,
simvastatin and ezetimibe, administered separately or in combination,
on hepatic and intestinal molecular targets of cholesterol metabolism
as well as on gut microbiota modulation. The aim was to highlight the
potential link between bacterial composition and drug-modulation of
cholesterol metabolism.

2. Material and methods

2.1. Animals and diets

Nine-week-old male C57Bl/6J mice (Charles River, Brussels, Belgium)
were housed in a colony of fourmice per cagewith a 12 h light/dark cycle
at 22 °C. Mice were acclimatized for one week with free access to control
(CT) diet (AO4, SAFE, Augy, France) and water.

Mice were separated into four groups. CT mice were fed a CT diet,
EZ mice were fed a CT diet supplemented with ezetimibe (0.021% w/
w; Ezetrol® 10 mg, Merck, New Jersey, USA), SIM mice were fed a CT
diet supplemented with simvastatin (0.1% w/w; Zocor® 20 mg,
Merck, New Jersey, USA) and E/S mice were fed a CT diet supple-
mented with ezetimibe and simvastatin (0.021% w/w and 0.1% w/w,
respectively) for seven days ad libitum. The two hypolipidemic
drugs were powdered and mixed with CT diet by trituration.

After the period of treatment, at the end of the dark cycle, mice have
been anesthetized with isoflurane (Forene®, Abbott, Queenborough,
Kent, England) before exsanguination and tissue sampling, and then
they were killed by cervical dislocation.

The experiments were approved by and performed in accordance
with the guidelines of the local ethics committee. Housing conditions
were specified by the Belgian Law of May 29, 2013, regarding the pro-
tection of laboratory animals (agreement no. LA1230314).

2.2. Blood and tissue sampling

Portal and cava vein blood samples were collected in EDTA tubes
and centrifuged (3 min at 13,000 g) for further analysis. Liver, cecal
tissue and cecal content were removed, weighed and immediately
frozen in liquid nitrogen. The samples were stored at−80 °C for fur-
ther analysis.

2.3. Blood biochemical analysis

Plasma triacylglycerols (TG), total (TC) and high density lipoprotein
cholesterol (HDLc) concentrations were measured in non-thawed cava
vein blood using kits (DiaSys Diagnostic and Systems, Holzheim,
Germany) coupling an enzymatic reaction and spectrophotometric de-
tection of the final product. LDLc was estimated by the Friedewald for-
mula [14]. Bile acids (BA) were measured using kit (DiaSys Diagnostic
and Systems, Holzheim, Germany) in non-thawed portal vein blood.

2.4. Real-time quantitative PCR

Total RNA was isolated from the liver, jejunum and ileum by
TriPure reagent (Roche, Basel, Switzerland). cDNA was prepared by
reverse transcription of 1 μg total RNA using Reverse Transcription
System kit (Promega, Leiden, The Netherlands). Real-time qPCRs
were performed with a StepOnePlus™ instrument and software (Ap-
plied Biosystems, Foster City, CA, USA) using Mesa Fast qPCR™
(Eurogentec, Seraing, Belgium) for detection. Ribosomal protein
L19 (RPL19) RNA was chosen as a housekeeping gene. Primers and
gene details are summarized in Table 1. All samples were run in du-
plicate in a single 96-well reaction plate and data were analyzed

according to the 2−ΔΔCT method [15]. The identity and purity of the
amplified product were checked through analysis of the melting
curve carried out at the end of amplification.

2.5. Gut microbiota analysis

The metagenomic DNA from cecal content was extracted using a
QIAamp-DNA stool mini kit (Qiagen, Hilden, Germany) according
to the manufacturer's instructions. Quantitative PCR for total bacte-
ria, Bifidobacterium spp., Lactobacillus spp., Bacteroides-Prevotella
spp., Roseburia spp. and Lactobacillus murinus/animalis was performed
as described before in [16] using Mesa Fast qPCR™ (Eurogentec, Se-
raing, Belgium) for detection. The cycle threshold of each sample was
compared with a standard curve (performed in duplicate) made by di-
luting genomic DNA (five-fold serial dilution) (BCCM/LMG, Ghent,
Belgium and DSMZ, Braunschweig, Germany). Prior to isolating the
DNA, the cell counts were determined in culture and expressed as
“colony-forming unit” (CFU) [16]. Denaturing Gradient Gel Electro-
phoresis (DGGE) was performed to study the effect of the treatments
in lactobacilli group. For that purpose a 16S-rRNA nested PCR ap-
proachwas used. The first PCR roundwas performedwith lactobacilli
group-specific primers SGLAB0159F and SGLAB0667R as described
previously [17] followed by a second amplification with primers
338F-GC with a GC clamp of 40 bp and 518R [18]. All amplification
products were checked by electrophoresis on a 1.5% agarose gel.
DGGE was performed with the use of a PhorU system (Ingeny) in
0.5× TAE buffer at 60 °C. PCR products were loaded onto 8% v/v poly-
acrylamide gels in 0.5× TAE. The electrophoretic conditions were the
following: 16 h at 120 V in a 40 to 60% urea–formamide denaturant
agent gradient. The gels were stained in 1× TAE buffer with SYBR
Gold and visualized with UV radiation. Individual bands were cut
out from the gel and re-amplified with the original primer pairs.
PCR and the PCR products were subjected to sequencing using the
services of Macrogen (Amsterdam, The Netherlands). The sequences
were compared with those available in the GenBank database using
NCBI BLAST (http://www.ncbi.nlm.nih.gov/).

2.6. Western blotting

Cytoplasmic and nuclear proteins were extracted following the
manufacturer's instruction (NE-PER®, Thermo Scientific, Waltham,
USA) from 50 mg of hepatic tissue. Equal amount proteins were sep-
arated by 10% SDS/PAGE and transferred to the nitrocellulose mem-
brane, blocked in tris-buffered saline Tween-20 (TTBS) containing
5% non-fat dry milk for 1 h at room temperature. The membranes
were incubated overnight at 4 °C with the rabbit anti-SREBP-2 anti-
body (Abcam, Cambridge, UK) in TTBS containing 1% non-fat dry
milk. Signals were revealed using ECL western blotting substrates
(SuperSignal West Pico Substrate, Thermo Scientific, Waltham,

Table 1
Sequences for the primers used in real-time qPCR. SREBP-2, sterol regulatory element
binding protein 2; HMGCoAR, 3-hydroxy-3-methylglutaryl-coenzyme A reductase; LDLr,
low density lipoprotein receptor; ABCG5, ATP-binding cassette G5; ABCG8, ATP-binding
cassette G8; CYP7A1, cytochrome 7A1; CYP7B1, cytochrome 7B1; RPL19, ribosomal pro-
tein L19; NPC1L1, Niemann–Pick C1-like 1.

Forward primer (5′ to 3′) Reverse primer (5′ to 3′)

SREBP-2 GTGCGCTCTCGTTTTACTGAAGT GTATAGAAGACGGCCTTCACCAA

HMGCoAR CCTGACACTGAACTGAAGCG TCTTTCCAGAACACAGCACG

LDLr CTGTGGGCTCCATAGGCTATCT GCGGTCCAGGGTCATCTTC

ABCG5 TGGCCCTGCTCAGCATCT ATTTTTAAAGGAATGGGCATCTCTT

ABCG8 CCGTCGTCAGATTTCCAATGA GGCTTCCGACCCATGAATG

CYP7A1 GGGATTGCTGTGGTAGTGAGC GGTATGGAATCAACCCGTTGTC

CYP7B1 TAGGCATGACGATCCTGAAA TCTCTGGTGAAGTGGACTGAAA

RPL19 GAAGGTCAAAGGGAATGTGTTCA CCTTGTCTGCCTTCAGCTTGT

NPC1L1 GGCTCCATCTGGAGTAGCTG ATCGCACTACCATCCAGGAC
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USA). TATA binding protein (TBP) was used as loading control. The
corresponding bands were scanned and quantified using ImageJ soft-
ware (http://rsb.info.nih.gov/ij/).

2.7. Statistical analysis

Results are presented as mean ± SEM. Statistical significance be-
tween groupswas assessed by one-wayANOVA. Dixon's Q-testwasper-
formed to statistically reject outliers (95% confidence level). When the
sampling was not normal, a nonparametric one-way ANOVA using
Wilcoxon test was performed. If variances between groups are unequal,
we have carried out a Welch's ANOVA. The statistically significant
ANOVA tests were followed by post hoc Tukey's multiple comparison
tests using JMP®10 (SAS, North Carolina, USA). Data with different su-
perscript letters were significantly different (p ≤ 0.05) according to
the post hoc ANOVA statistical analysis. Associations between variables
were assessed by Pearson correlation test (GraphPad Prism version
4.00). p ≤ 0.05 was considered as statistically significant.

3. Results

3.1. Hypolipidemia is induced by combination of ezetimibe and simvastatin

Hepatic lipid content is not significantly affected by the different
treatments, compared to control (CT) mice (data not shown). The

Table 2
Plasma and portal lipid concentration of CT, SIM, EZ and E/S mice. TG, CHOL, HDLc and
LDLc concentration (mM) in cava vein and BA concentration (μM) in portal vein of mice
fed a control diet (CT; n = 7-to-8), a control diet supplemented with simvastatin (SIM;
n=6-to-7), a control diet supplementedwith ezetimibe (EZ; n=8) or a control diet sup-
plemented with the combination (E/S; n = 7-to-8) for one week. Data are the mean ±
SEM. Data with one or more different superscript letters (a, b or c) were significantly dif-
ferent (p ≤ 0.05) according to the post hoc ANOVA statistical analysis.

Parameters CT SIM EZ E/S

Cava vein
Triglyceridemia
(mM)

0.93 ± 0.04a 0.88 ± 0.11a 0.94 ± 0.08a 0.43 ± 0.07b

Cholesterolemia
(mM)

1.52 ± 0.07a 1.35 ± 0.03a 1.29 ± 0.09a 0.92 ± 0.07b

HDLc (mM) 0.69 ± 0.02a 0.57 ± 0.02b 0.49 ± 0.02b 0.52 ± 0.03b

LDLc (mM) 0.39 ± 0.07 0.36 ± 0.03 0.38 ± 0.07 0.20 ± 0.05

Portal vein
Bile acids (μM) 93.14 ± 25.02 68.08 ± 18.3 82.12 ± 16.5 90.4 ± 8.94

Fig. 1.mRNA content of SREBP-2 (A) and two of its target genes (HMGCoAR, LDLr) (A) and nuclear content of the active SREBP-2 (nSREBP-2) form (B) in the liver ofmice fed a control diet
(CT; n = 8), a control diet supplemented with simvastatin (SIM; n = 8), a control diet supplemented with ezetimibe (EZ; n = 7-to-8) and a control diet supplemented with both sim-
vastatin and ezetimibe (E/S; n = 8) for one week. The bands corresponding to the nuclear SREBP-2 in the immunoblot were scanned and quantified. Data are the mean ± SEM. Data
with one or more different superscript letters (a, b or c) were significantly different (p ≤ 0.05) according to the post hoc ANOVA statistical analysis.
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combination of the two drugs in E/S mice was essential to decrease sig-
nificantly the triglyceridemia (TG) and the cholesterolemia (CHOL)
(Table 2). EZ or SIM alone had no effect on triglyceridemia and total
cholesterolemia. All treatments led to a reduction in HDLc compared
to controls. Only the combination treatment affected significantly the
LDLc concentration compared to CT mice but none treatment affected
the BA portal vein concentration (Table 2).

3.2. Combination of ezetimibe and simvastatin led to a synergistic and
drastic effect on SREBP-2 activation in the liver

SREBP-2 mRNA expression was increased in the liver of E/S mice
compared to the three other groups and this was accompanied by a
significant increase in the mRNA expression of LDLr and HMGCoAR,
two SREBP-2 target genes (Fig. 1A). Hepatic SREBP-2 gene expres-
sion was increased by both SIM and EZ treatment alone, although
for the latter it was not significantly different from CT mice due to
the drastic effect of the combination. SIM and EZ supplementation
did not modify LDLr mRNA expression, whereas HMGCoAR mRNA
was significantly increased by five-fold in the liver of SIM mice com-
pared to CT mice (Fig. 1A). SREBP-2 is synthesized as an inactive pre-
cursor embedded in the endoplasmic reticulum. By using western
blot, we quantified the nuclear active form of SREBP-2 released fol-
lowing two specific protein cleavages. The band analysis revealed a
higher nuclear content of the active SREBP-2 protein in the liver of
E/S mice compared to all groups (Fig. 1B), confirming that the com-
bination of ezetimibe and simvastatin acts in synergy to activate
the SREBP-2 pathway (Fig. 1B).

Other pathways that are involved in cholesterol homeostasis are
the hepatic cholesterol biliary excretion and the hepatic BA synthe-
sis. We measured by RT-qPCR the expression of several important
genes involved in these pathways. The expression of the heterodimer
ATP-binding cassette G5 and G8 (ABCG5/G8), involved in the hepatic
cholesterol excretion in the biliary canaliculus, was not changed by EZ

supplementation but was increased by two-fold in the liver of SIM
mice compared to CT mice. The combination enhanced the effect of
SIM alone as we observed a five-fold increase in their expression in
the liver of E/S mice compared to CT mice (Fig. 2A). Cytochrome P450
7A1 (CYP7A1) and CYP7B1 are rate-limiting enzymes in the hepatic
classical and alternative BA synthesis pathways, respectively. Hepatic
CYP7A1 mRNA expression was not modified by any treatment
(Fig. 2B). CYP7B1 expression was not affected following SIM or EZ
treatment. However, the combination of E/S significantly decreased
CYP7B1 mRNA expression by two-fold (Fig. 2B).

3.3. SREBP-2 and related gene expression in the upper and lower intestine
are differently modulated upon ezetimibe and simvastatin treatments

In the jejunum, both SIM and EZ alone increased the gene expression
of SREBP-2, HMGCoAR and LDLr. This increase was even more impor-
tant when the two drugs are combined in the jejunum (Fig. 3A). Unlike
the jejunum and the liver, EZ had no effect on the mRNA expression in
the ileum, whereas SIM, alone or in combination with EZ, raised the
mRNA expression of HMGCoAR, LDLr and SREBP-2 (Fig. 3B).

The jejunum NPC1L1 mRNA expression is decreased by SIM, EZ and
combination treatments, compared to CT mice (Fig. 3C).

3.4. The combination of ezetimibe and simvastatin reveals a selective
modification in Lactobacillus spp. count in the cecum

To investigate possible changes in gut microbiota composition in-
duced by treatments, we carried out an analysis of the microbiota by
qPCR. The abundance of the total bacteria measured in the cecal con-
tent was not affected by any treatment (Fig. 4A). Similarly, the abun-
dance of Bacteroides-Prevotella spp. and Roseburia spp. did not differ
between groups (Fig. 4B). Two Gram-positive bacteria, namely
Bifidobacterium spp. and Lactobacillus spp. were analyzed by qPCR
of 16S-rRNA. Bifidobacteria level is not modified by the treatments.

Fig. 2.mRNA content of several genes involved in hepatic cholesterol secretion into the bile (ABCG5 and ABCG8, A), in hepatic BA synthesis (CYP7A1 and CYP7B1, B) in the liver ofmice fed
a control diet (CT; n=7-to-8), a control diet supplementedwith simvastatin (SIM; n=7-to-8), a control diet supplementedwith ezetimibe (EZ; n=8) and a control diet supplemented
with both simvastatin and ezetimibe (E/S; n=7-to-8) for one week. Data are the mean± SEM. Data with one or more different superscript letters (a, b or c) were significantly different
(p ≤ 0.05) according to the post hoc ANOVA statistical analysis.
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Interestingly a significant drop in Lactobacillus spp. was observed in
mice treated with ezetimibe.

According to this observation, a DGGE analysis was performed to as-
sess cecal composition of Lactobacillus spp (Fig. 5A). The analysis re-
vealed enrichment in the band that corresponds to L. murinus/animalis
in EZ mice compared to the other groups. Unfortunately it was not con-
firmed by qPCR of 16S-rRNA analysis. However, the DGGE analysis sug-
gests that the drop in Lactobacillus spp. observed in E/S mice is most
probably due to a significant decrease of L. murinus/animalis count in
the cecum, confirmed by qPCR of 16S-rRNA (Fig. 5B).

3.5. Lactobacillus spp. is negatively correlated with hepatic cholesterol
metabolism related expression genes

Correlation analyses were performed between the cecal level of
Lactobacillus spp., bacterial groupmodified by E/S treatment and several
lipid parameters. The hepatic gene expression of SREBP-2, HMGCoAR
and LDLr appeared negatively correlated with the cecal content of
Lactobacillus spp. Conversely, the hepatic CYP7B1mRNA, involved in al-
ternative BA synthesis, was positively correlated to the Lactobacillus spp.
In the intestine, only jejunumNPC1L1mRNA expressionwas negatively
correlatedwith the Lactobacillus spp. cecal level (Table 3). The intestinal

gene expression of SREBP-2, HMGCoAR and LDLr was not correlated to
Lactobacillus spp. in the jejunum or ileum.

4. Discussion

The association of simvastatin and ezetimibe is often considered in a
substantial proportion of cases when statin therapy seems to be not
sufficient to prevent or decrease cardiovascular disease risks [8,19]. In-
deed most clinical studies have reported a higher decrease in total
cholesterolemia, LDLc and triglyceridemia in hypercholesterolemic pa-
tients treated with E/S combination, compared to the changes observed
by EZ or SIM treatment alone [20–23]. Our study is performed on wild-
type mice fed a standard diet, without cardiovascular risks. The de-
creased triglyceridemia and total cholesterolemia were promoted only
with the combination E/S, whereas in other atherosclerotic models,
statin [24,25] and ezetimibe [26,27] treatment, as well as E/S combina-
tion are well known to reduce total cholesterolemia and LDLc [28].
Ezetimibe, simvastatin and combination reduced significantly the
HDLc concentration. It could be due to an increased HDLc uptake by
the liver, since it is considered as an important process in reverse cho-
lesterol transport [24]. ATP-binding cassette A1, involved in hepatic
cholesterol efflux to lipid-poor lipoproteins A1 and to form the HDL na-
scent [2], is not altered by any treatment suggesting that there is no

Fig. 3.mRNA content of SREBP-2 and two of its target genes (HMGCoAR, LDLr) in the jejunum (A) and in the ileum (B) and jejunum NPC1L1 mRNA content (C) of mice fed a control diet
(CT; n = 6-to-8), a control diet supplemented with simvastatin (SIM; n = 8), a control diet supplemented with ezetimibe (EZ; n = 7-to-8) and a control diet supplemented with both
simvastatin and ezetimibe (E/S; n= 8) for one week. Data are the mean ± SEM. Data with one or more different superscript letters (a, b or c) were significantly different (p ≤ 0.05) ac-
cording to the post hoc ANOVA.

81E. Catry et al. / Life Sciences 132 (2015) 77–84



Author's personal copy

decrease in the HDL synthesis. Moreover, the combination of ezetimibe
and simvastatin hugely increased the hepatic expression of SREBP-2,
HMGCoAR and LDLr suggesting an enhanced activity of SREBP-2. We
confirm this activation, assessed by the increase in the nuclear fractions
of the protein by western blot. The intestine is the second place for cho-
lesterol synthesis after the liver, so we analyzed the mRNA expression
of these genes in the upper and lower intestine. In the jejunum combi-
nation of ezetimibe and simvastatin led to a more important upregula-
tion of mRNA expression of SREBP-2, HMGCoAR and LDLr than in
treatments not combined. Otherwise only simvastatin and combination
were able to upregulate the pathway supporting the fact that the target
tissue of ezetimibe action is the jejunum, and not the ileum. An in vivo
study, performed on female pig, has been focused on the impact of the
combination simvastatin and ezetimibe on cholesterol metabolism at
the intestinal level [25]. They reported an increase in mRNA expression
of SREBP-2 and its target genes, in EZ pigs and E/S pigs compared to CT
[25]. In the opposite of our work, they did not distinguish the different
intestinal segments.

In coherence with our observation, the overexpression of SREBP-
2 in mice can be associated with an increase expression of genes in-
volved in cholesterol excretion, as the heterodimer ABCG5/G8 [26].
One of most important ABCG5/G8 regulators is the liver X receptor.
Interestingly, CYP7B1, involved in the alternative BA synthesis, is sig-
nificantly decreased in E/S mice, suggesting the maintenance of a

high level of oxysterols, cholesterol derivatives produced by a
shunt in the cholesterol synthesis. These cholesterol derivatives are
able to activate the liver X receptor.

The major purpose of our work was to try to evaluate potential
changes in the gut microbiota that could be due to the hypolipidemic
treatment. Numerous studies have proposed that gutmicrobiota partic-
ipates in the regulation of cholesterol metabolism [11,13,27]. Changing
gut microbiota composition, mainly in favor of Bifidobacterium spp., led
to an inhibition of the cholesterol synthesis pathway [13]. Members of
the genus Lactobacillus play also an important role in the cholesterol
metabolism. For example, in vivo studies with Lactobacillus rhamnosus
GG or Lactobacillus sakei NR28 administration are able to decrease
lipogenic genes expression in the mouse liver, such as Fatty Acid syn-
thase or Stearoyl-coA Desaturase 1 [28]. Another study confirms these
observations of the modulation of lipid metabolism by selected
Lactobacilli. In fact, the combination of Lactobacillus plantarum KY1032
and Lactobacillus curvatus HYV7601 or Lactobacillus curvatus HYV7601
alone can modulate cholesterol metabolism by decreasing the expres-
sion of hepatic gene expression as HMGCoAR [29]. More, most of the
Bifidobacterium spp. and Lactobacillus spp. strains have been shown to
be able to reduce the cholesterol availability for intestinal absorption
by assimilation [30], by binding it to the bacterial cellular surface or
by incorporation into the bacterial membranes [31]. In addition, lactic
acid bacteria are also able to increase the deconjugation of bile salt by

Fig. 4. qPCR analysis of 16S-rRNA of total bacteria, Bifidobacterium spp., Lactobacillus spp., Bacteroides-Prevotella spp. and Roseburia spp. in the cecal content of mice fed a control diet (CT;
n = 7-to-8), a control diet supplemented with simvastatin (SIM; n = 8), a control diet supplemented with ezetimibe (EZ; n = 7-to-8) and a control diet supplemented with both sim-
vastatin and ezetimibe (E/S; n = 7-to-8) for one week. Data are the mean ± SEM. Data with one or more different superscript letters (a, b or c) were significantly different (p ≤ 0.05)
according to the post hoc ANOVA statistical analysis.
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the action of the bile salt hydrolase enzyme [30,32]. These deconjugated
bile acids are less reabsorbed by the enterohepatic circulation, resulting
in higher biliary excretion in feces.

In vitro, the incubation of Caco-2 cells in the presence of Lactoba-
cillus acidophilus ATCC 4356, has demonstrated that soluble factors
produced by bacteria suppress NPC1L1 expression [33]. In vivo, we
observed also a negative correlation between Lactobacillus spp.
cecal level and the NPC1L1 expression. Another in vivo study in
which rats were fed a cholesterol enriched diet and supplemented
with the same strain Lactobacillus (at 109 CFU/day) confirmed that
this microorganism is able to decrease the cholesterol absorption
by inhibition of NPC1L1 transcription [34]. These data are in agree-
ment with our preliminary results. The modification of gut microbi-
ota in disfavor of Lactobacillus spp. observed in combination
treated-mice, suggests that it could be more of a consequence than
a cause of the change in host gene expression.

There is an increasing interest in the role of gut microbiota in the
metabolism and pharmacokinetics/dynamics of some xenobiotics [35].
Finally, we cannot exclude that themodification of gut microbiota com-
position could lead to a change of ezetimibe metabolism, thereby mod-
ifying, the pharmacodynamics and/or pharmacokinetics of the drug.
This type of study would be an interesting perspective of experimental
research in the future.

5. Conclusion

Thehypolipidemic drug, ezetimibe, taken alone does significantly af-
fect the composition of gut microbiota in favor of Lactobacillus spp. but
the association of ezetimibe and simvastatin is able to induce a drop in
a specific species, the Lactobacillus animalis/murinus. One perspective
would be to adapt the protocol in “pathological”model, to paymore at-
tention on bacterial metabolic functions, rather than focusing on the
phylogenic analysis of the gut microbiota, in a hypercholesterolemic
context.
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Fig. 5.Denaturing gradient (40 to 60%) gel electrophoresis (DGGE) performedwith primers targeting the 16S-rRNA region of specific lactobacilli (A). The bans correspond to bacteria spe-
cies as follows: Lactobacillus gasseri/johnsonii (a), Lactobacillus acidophilus (b), L. murinus/animalis (c), Lactobacillus ruminis (d) and Lactobacillus reuteri (e). qPCR analysis (B) of L. murinus/
animalis and of L. reuteri in the cecum of mice fed a control diet (CT; n=8), a control diet supplemented with simvastatin (SIM; n=7-to-8), a control diet supplemented with ezetimibe
(EZ; n=8) and a control diet supplementedwith both simvastatin and ezetimibe (E/S; n=8) for oneweek. Data are themean± SEM. Data with one ormore different superscript letters
(a, b or c) were significantly different (p ≤ 0.05) according to the post hoc ANOVA statistical analysis.

Table 3
Correlation between Lactobacillus spp. and lipid metabolism parameters. Pearson correla-
tion test between Lactobacillus spp. cecal count and the expression of several genes in-
volved in the regulation of cholesterol metabolism in the liver and in the jejunum of
mice fed a control diet (CT; n = 6-to-8), a control diet supplemented with simvastatin
(SIM; n= 8), a control diet supplemented with ezetimibe (EZ; n= 7-to-8) and a control
diet supplemented with both simvastatin and ezetimibe (E/S; n = 8) for one week. p ≤
0.05 is significantly different according to the Pearson correlation test.

Parameters Lactobacillus spp.

Pearson (r) p-Value

Liver SREBP-2 −0.3696 0.0374
Liver HMGCoAR −0.4408 0.0116
Liver LDLr −0.4101 0.0198
Liver ABCG5 −0.2920 0.1109
Liver ABCG8 −0.2346 0.2040
Liver CYP7B1 0.4254 0.0152
Jejunum NPC1L1 −0.4457 0.0154
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