

Digital access to libraries

"Pedogenesis of Belgian loess-derived soils. Meteoric 10Be inventories derived from authigenic 10Be/9Be ratios. "

Vanacker, Veerle ; Campforts, Benjamin ; Govers ; Smolders, Eric ; Baeken, Stijn ; Christl, Marcus

Document type : Contribution à ouvrage collectif (Book Chapter)

Référence bibliographique

Vanacker, Veerle ; Campforts, Benjamin ; Govers ; Smolders, Eric ; Baeken, Stijn ; et. al. *Pedogenesis of Belgian loess-derived soils. Meteoric 10Be inventories derived from authigenic 10Be/9Be ratios.* In: *ETH Eidgenössische Techn. Hochschule, Zürich (Ed.) Annual report 2014. Laboratory of Ion Beam Physics.*, Librum Publishers and Editors LLC : Hochwald 2014

PEDOGENESIS OF BELGIAN LOESS-DERIVED SOILS

Meteoric ¹⁰Be inventories derived from authigenic ¹⁰Be/⁹Be ratios

V. Vanacker¹, B. Campforts², G. Govers², E. Smolders², S. Baeken², M; Christl

Soils developed on loess deposits are widespread in Europe, and provide fertile soils for agriculture and forestry. In the Belgian loess belt, the youngest loess accumulation period lasted most likely until the Heinrich 2 event (25 - 20 ka). Soil genesis is mainly characterized by decarbonisation followed by clay migration [1].

Fig. 1: Soil profile (90 masl) developed in loess deposits in the Bertem Forest, located about 20 km east of Brussels.

In this study, we use meteoric ¹⁰Be as a tracer of soil development. One undisturbed soil profile was analysed in the Bertem forest, at the northern edge of the Belgian loess belt. The soil profile was dug down to the calcareous loess of the C horizon (610 cm). Dry soil bulk densities ranged from 0.60 to 1.84 g cm⁻³, with highest densities measured for the Bt argic horizon.

Eight soil samples (taken at depths of 7, 14, 27, 50, 72, 73, 115 and 550 cm) were analyzed for their authigenic ¹⁰Be/⁹Be ratio and ⁹Be concentration. Two fully processed blanks were also measured to assess potential contamination with ¹⁰Be or ⁹Be during the preparation of the carrier-free samples.

Carrier-free ¹⁰Be/⁹Be ratios were measured using the TANDY AMS facility (600 kV) at ETH Zurich [2], and ⁹Be concentrations were measured independently using an Agilent 7700x ICP-MS at KULeuven (Belgium). The mean deviation of the ⁹Be concentration from certified samples was 4%, while the total error on the natural ¹⁰Be/⁹Be after background corrections ranged between 2.4 and 5.2%.

Fig. 2: Plot of meteoric ¹⁰Be concentration as a function of depth in the undisturbed soil profile.

Our results show a systematic variation of ¹⁰Be with depth. Concentrations of ¹⁰Be range from 4.14×10^7 to 2.65×10^8 atoms ¹⁰Be (g soil)⁻¹. The concentrations are systematically higher in the clay-enriched Bt and Btx horizons, and lower in the organo-mineral horizons.

- [1] V. Brahy et al., Eur. J. Soil Sci. 51 (2000) 1
- [2] M. Christl et al., Nucl. Instr. & Meth. B 294 (2013) 29

¹ Earth & Life Institute, University of Louvain, Belgium

² Soil and Water Management, KULeuven, Belgium