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Stabilization of the Modelling of a Radio-Frequency

Quadrupole Based on Quasi-Helmholtz Projectors

Christopher Raucy∗, Francesco P. Andriulli†, and Christophe Craeye∗

Abstract — This paper presents a stabilization of
a Radio-Frequency Quadrupole simulation based on
the quasi-Helmholtz projectors. A boundary ele-
ment method applied to this case undergoes a low-
frequency breakdown i.e the associated system of
equations becomes increasingly ill-conditioned for
decreasing frequencies. This in practice implies that
the convergence of iterative methods which are used
to solve the linear system is poor. This paper re-
ports that a quasi-Helmholtz projectors based sta-
bilization is sufficient to handle the level of realism
required by applications.

1 INTRODUCTION

A Radio Frequency Quadrupole (RFQ) [1], [2]
is one of the most important part of a LINear
ACcelerator (LINAC). It is situated at the very
beginning of the accelerator and its goals are
focusing the beam coming out of the ion source,
bunching it (making packets of particles), and
giving a first acceleration to it. Because of its
strategic function, an RFQ must be designed as
carefully as possible. The electromagnetic solver
and the motion solver should provide accurate
results within a reasonable computation time.
Presently, most of RFQ solvers are based on the
hypothesis that the fields are quasi-static. For
instance, Toutatis [3] is one of the most famous
solvers used for RFQ simulations and it is based
on the Poisson’s equation.

The RFQ chosen for our simulations is the
Myrrha’s accelerator [9]. Fig. 1 shows the mesh of
the Myrrhas RFQ. The accelerator is made of four
rods which are supported by four stems. The beam
is accelerated between these rods. Each given stem
is connected to two rods of the same voltage while
its two neighbours are connected to the two rods of
opposite voltage. Actually, the rods and the stems
constitute a resonant circuit that should resonate at
a given frequency. The frequency is chosen in func-
tion of the rods’ profile and the input beam energy
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in order to synchronize the beam and bunches with
the RF fields.

Figure 1: Mesh of Myrrha’s RFQ.

The RFQ design is based on the well-known
electrostatic quadrupole. In order to obtain an
accelerating field and to bunch the beam, the rods
must be curved in the direction of acceleration of
the beam and an RF source must be used. The
structure is only few wavelengths long. It means
that the BEM system of equations is ill conditioned
because of the low-frequency-breakdown. Iterative
solvers such as GMRES [6] are often used for
BEM solution because of the heavy computational
cost of direct solvers. Iterative solvers such as
GMRES tend to converge quickly when the system
of equations is well-conditioned.

The goal of this work is to show that with a
Boundary Element Method (BEM) solver, it is pos-
sible to perform effective field simulations for an
RFQ when low frequency stabilization is used. The
use of a full-wave solver may improve the accuracy
of the fields when compared to Toutatis. Because
the structure operates in a low-frequency regime
the BEM impedance matrix suffers from a low-
frequency breakdown [4], [5]. In order to decrease
the number of iterations required by GMRES [6],
[7] to solve the BEM system, several low-frequency
preconditioners have been proposed (see [8] and
references therein). In order to stabilize the simu-
lations of the RFQ, this work will adopt the low-
frequency preconditioner in [8].

2 SOLUTION METHODOLOGY

The preconditioner we used here was proposed in
[8]. The main results of this paper are recalled here-



under. The EFIE impedance matrix is given by

Zkl = jη(kΣ(Jk, J l) +
1

k
Γ(Jk, J l))

with the two bilinear forms define as

Σ : V ec(S)2 → C :

(Jk, J l) →
∫
S

∫
S

k < Jk|J l > Gdr′dr

Γ : V ec(S)2 → C :

(Jk, J l) →
∫
S

∫
S

[∇s · Jk][∇s · J l]Gdr
′dr

where η is the free-space impedance, k is the wave
number, j ≡

√
−1, {Jk}k∈[1,...,N ] is a set of ba-

sis/testing functions, G is the Green’s function, S
is a compact connected piecewise smooth manifold,
∇s is the Laplace-Beltrami operator and V ec(S) is
a vector fields on the tangent bundle of S. In this
paper, S can refer to the discretized surface as well.

The basis/testing functions used in this pa-
per are the well known RWGs [11]. Let be
E ≡ span < RWG1, ..., RWGN > the vector space
of the current distributions spanned by the RWGs
with N the total number of basis functions. Let
be T : CN → E : (x1, ..., xN )→

∑N
i=1 xiRWGi the

isomorphism between E and CN . CN is called the
coefficients space. Let L(CN ) be the vector space
of linear applications in the coefficients space.
Any bilinear form A discretized with the RWG is
denoted by [A] ∈ L(CN ) and is a matrix.

The [Σ] operator is of full rank when discretized
with RWG while the [Γ] operator has a non-null
kernel that is spanned by the set of loop basis func-
tions

ker([Γ]) ≡ {x = (x1, ..., xN )|∇s · T (x) = 0}

Since the Γ operator is inversely proportional to
the frequency and the Σ operator is proportional
to the frequency, the two operators tend to be un-
balanced at low frequency. Since the Γ operator
has a non-null kernel, one may build currents that,
when evaluated through the EFIE impedance ma-
trix, generate image vectors respectively propor-
tional and inversely proportional to the frequency.
Let S be a complementary space to ker([Γ]) such
that E = S

⊕
ker([Γ]). Let [x] ∈ ker([Γ]) be such

that ‖x‖2 = 1, then one has

[Z][x] = jηk[Σ][x] ∝ k

Now, let us take [x] ∈ S such that ‖x‖2 = 1, one
has

[Z][x] = jη(k[Σ][x] +
1

k
[Γ][x]

These two relations show that for a fixed ge-
ometry, ∃K > 0,K ∈ R such that ∀k < one has
‖[Z][x]‖2 << ‖[Z][y]‖2 for [x] ∈ ker(Γ)], [y] ∈ S]
and ‖[x]‖2 = ‖[y]‖2 = 1. This means, by definition,
that one ends up with a wide spectrum of singular
values. Let be M = dim(ker([Γ])), there should
be M singular values of much lower value than the
N −M other ones.

The idea of the low-frequency preconditioner con-
sists of performing a rescaling of these two op-
erators by rescaling the currents living in S and
in ker([Γ]). It means, one needs to generate two
bases for S and ker([Γ]) to perform the rescaling.
Since it can be cumbersome to build the loop ba-
sis functions, an other approach is considered. A
natural idea would be to invoke the Helmholtz de-
composition theorem [12] and to try to build the
space of non-solenoidal currents which is orthog-
onal to the solenoidal currents subspace (for the
metric on the Riemann manifold). However, be-
cause one uses div-conforming basis functions, it
can be shown that there is no way to build curl-
free currents with RWG [13]. However, it is shown
in [13] that one may build a subspace S that is or-
thogonal to the loop currents but the orthogonal-
ity has to be understood in the coefficients space
with the canonic scalar product of CN . The space
S = span < S1, ..., SN−M is spanned by the well-
known star basis functions. The coefficients of the
star basis functions as linear combination of RWG
can be gathered together into a matrix denoted [S]
in which each column corresponds to a star basis
function. Similarly, the loop basis functions are
gathered in the matrix [L]. The orthogonal prop-
erty between the stars and the loops implies that
[S]t[L] = 0. Now, thanks to the orthogonality prop-
erty, one may build two projectors that are used to
rescale any current decomposed as a unique sum of
two vectors, one defined in S and one defined in
ker([Γ]). The two orthogonal projectors are given
by

[Ps] = [S]([S]T [S])−1[S]T

[Pl] = [I]− [Ps]

Where [Pl] is equal to [Pl] = [L]([L]t[L])−1[L]t.

Now, one may define a preconditioner as follows



[P ] = [Ps]
√
k + [Pl]

1

j
√
k

And the BEM system of equations one has to
solve becomes

[P ][Z][P ][x] = [P ][E]

where [E] is the excitation vector. Since the sys-
tem of equations is solved with an iterative solver,
the inversion inside the star projector [Ps] does not
need to be explicitly calculated. The inversion of
this sparse matrix is performed with the help of an
algebraic multi-grid solver [14], [15], [16] which
performs the computation with a linear complexity.

3 NUMERICAL SIMULATIONS

In order to analyse numerically each step of the
preconditioner, a section of the accelerator was in-
vestigated as shown Fig. 2. The accelerator is fed

Figure 2: A section of the accelerator.

by an RF source as shown Fig. 3. The simulation
was performed at 176Mhz. Fig 4 shows the spec-
trum of the impedance matrix and of the precon-
ditioned impedance matrix. The condition number

Figure 3: Feeding of the accelerator

Figure 4: Spectrum of the impedance matrix in red and
the spectrum of the preconditioned impedance matrix
in blue.

of the preconditioned impedance matrix is 3.5104,
while the condition number of the impedance ma-
trix is 3.5105. Hence, the condition number is bet-
ter by one order of magnitude. It might seem a
relatively small improvement, but if one analyses
a little bit closer the spectrum of the precondi-
tioned impedance matrix, one may see that there
are about 6 minimal singular values that are com-
pletely unbalanced (much lower in this case) than
the rest of the spectrum. These 6 points induced
only 6 additional iterations of GMRES. The rest
of the spectrum is relatively flat, the ratio between
the highest value and the smallest value is around
500. It means that one should expect a very good
convergence of GMRES in comparison to the non-
preconditioned BEM. As expected, for a residual
error of 10−3, GMRES needs 473 iterations for the
non preconditioned BEM, while with the precondi-
tioner GMRES only needs 148 iterations. This is
a great improvement since the complexity of each
additional iteration of GMRES grows superlinearly.

4 CONCLUSION

The preconditioner has proven to improve the
GMRES convergence rate. The spectrum of the
impedance matrix might be further improved with
the help of a Calderon preconditioner. Indeed, the
accelerator mesh is relatively irregular (the variance
of triangle sizes is relatively big) as shown Fig 5.
Since a Calderon preconditioner is immune from
the mesh size variation, it may further improve the
spectrum of the impedance matrix.



Figure 5: Triangle size distribution
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