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ABSTRACT
In this paper, we discuss some very important features for getting exploitable simulation results for
multibody systems, relying on the example of a humanoid robot. First, we provide a comparison
of simulation speed and accuracy for kinematics modeling relying on relative vs. absolute coor-
dinates. This choice is particularly critical for mechanisms with long serial chains (e.g. legs and
arms). Compliance in the robot actuation chain is also critical to enhance the robot safety and en-
ergy efficiency, but makes the simulator more sensitive to modeling errors. Therefore, our second
contribution is to derive the full electro-mechanical model of the inner dynamics of the compliant
actuators embedded in our robot. Finally, we report our reasoning for choosing an appropriate
contact library. The recommended solution is to couple our simulator with an open-source contact
library offering both accurate and fast full-body contact modeling.

Keywords: Multibody dynamics, compliant actuators, contact dynamics, humanoid robot, Robo-
tran, Simbody

1 INTRODUCTION
In this article, we present a multibody model of the COMAN humanoid robot1 [1]. The key
features of the proposed model are:

1. an efficient multibody dynamics allowing short simulation computational time;

2. the full electromechanical model of compliant actuators [2] made up with ordinary differen-
tial equations of the actuators inner dynamics;

3. a reliable mesh-to-mesh contact processing in order to simulate the robot self-collision and
contacts with the environment.

For deriving the multibody equations, the Robotran symbolic generator was selected due to its
reliability and efficiency [3]. This work further builds upon [4] by proposing a new actuator
modeling and more powerful contact processing. Accurate mesh-to-mesh contacts were obtained
through a coupling between the C-code provided by the Robotran generator and the C++ functions
provided by the open-source library Simbody [5]. This model proved to be useful to speed up the
synthesis and tuning of movement controllers, and can easily be adapted to the simulation of other
robots.

1This work is supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under
Grant 611832 (WALK-MAN).



The structure of the article is the following. First, we describe the multibody system (MBS) of the
humanoid robot we have to simulate and control and describe our requirements for a simulator to
accurately reproduce the behavior of this MBS. Then we compare three open-source multibody
platforms used in robotics – that is the Robotran generator [3], Open Dynamics Engine ODE [6]
and Simbody [5]. In the following section, we describe two approaches for contact simulation
— i.e. rigid and compliant contact — and show our reasoning for choosing one of them. Based
on this analysis, we derive the full MBS model of robot mechanics, which is augmented with its
electromechanical model of the compliant actuators. Finally, we share the technical details for
coupling the C-code of the Robotran generator with the contact module of the open-source physic
engine Simbody.

2 STRUCTURE OF THE ROBOT AND SIMULATOR OVERVIEW
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Figure 1. MBS COMAN model (left) and a simulator structure(right).

The multibody model of COMAN consists of 24 absolutely rigid bodies and has a tree-structure
shown in Figure 1. The root body Waist is a floating base and has 6 degrees of freedom (DoFs).
The other 23 bodies (4 segments for the torso, 4 for each arm and 6 for each leg) are serially
attached to their parents by revolute joints. So, the model has 29 mechanical DoFs (among which
6 DoFs for the floating base).

Similarly to the real robot, the model is equipped with 23 series elastic actuators [7] in the revolute
joints, each producing a motor torque τi, i = 1 . . .23. This torque depends on the corresponding
joint angle, joint velocity and the motor angle qm

i and velocity q̇m
i , i = 1 . . .23. Dynamics of this

inner actuator variable qm is governed by a differential equation involving the current Ii in the
motor, which in turn satisfies a DC motor differential equation with a controllable voltage input



Vi. Furthermore, the robot legs are equipped with tunable springs going in parallel to the motors
[2]. These springs thus deliver the torques τττ p(ppp,qqq) at the pitch leg joints, where ppp = (p1, . . . , p6)
is the controllable spring pretensions. Physical model of both types of actuators and differential
equations that govern the variables qqqm = (qm

1 , . . . ,q
m
23) are discussed in details in Section 4.

To accurately simulate this MBS, we need a simulator which combines several modules being
connected as represented in Figure 1, on the right. The simulator core is a direct dynamics module
(block A) deriving the acceleration of the MBS links based on the MBS structure and forces
(external and control) applied to MBS. The way to represent of the MBS structure influences the
speed of simulation as well as its accuracy (see Section 3).

A critical component of an integrated robotic simulator is an algorithm for contact processing
(block B in Figure.1). Contacts between two segments of a robot (i.e. self-collisions) and with the
environment (ubiquitous in walking or grasping), produce external forces that strongly influence
the system dynamics. The inputs of block B are the state variables in the general sense, i.e. also
including variables capturing the environment state, and the outputs are the contact forces. We
discuss this block in Section 5.

To model the actuators used in COMAN, a simulator should provide a tool that allows to integrate
the differential equations for the actuators internal state variables together with the MBS mechan-
ical equations (so-called “strong coupling” for multiphysics systems [3]). For the series elastic
actuators equipping this robot, these equations are those governing the motor current dynamics
and external position. The inputs of this block (C in in Figure 1) are the control input (in our case
voltages and spring pretensions) and the state variables. The outputs are the actuator forces and
the derivatives of the actuator state variables.

A unified interface between the robot controller and simulator is very helpful for facilitating the
development of the controller robot. Ideally, the developed controller should not depend on the
specific command and data format of the simulator (Figure 1, block E) (see, e.g., [8, 9]). This
would permit to easily transfer the controller code to the real robot or to other simulators, providing
connections to a unique interface.

3 DIRECT DYNAMICS MODULE
The direct dynamics module aims at establishing the equation of motion of the MBS using a
formalism based on Newton-Euler, virtual work or Lagrange equations (direct dynamics module).
Here we focus on the influence of relative vs. absolute and symbolical vs. numerical approaches
for the direct dynamics module.

3.1 Relative vs. absolute coordinates
The dynamic equations algorithm computes the MBS velocities and accelerations when the initial
positions, velocities and the time evolution of the external and internal forces are given. To this
respect, two approaches compete in the literature, namely those based on relative and absolute
coordinates.

Most physics engines (e.g., Robotran, MuJoCo [10], and Simbody) use a minimal set of relative
coordinates to determine the state of a multibody system and to avoid introducing algebraic con-
straints when possible. It means that for tree-structured multibody systems – in which bodies are
connected without explicit constraints between the generalized coordinates and velocities – the
number of generalized coordinates introduced in the system of equations is equal to the number
of degrees of freedom of the system. To capture the connection between two adjacent bodies, for
example by means of a revolute joint, only one coordinate and one velocity are needed – namely
an angle and its time derivative. The set of Newton-Euler equations governing the dynamics of
such a system is typically built by a recursive algorithm [11].

Alternatively, in the physics engines that were initially built for video-games and now are widely



used in robotics (e.g. Open Dynamics Engine (ODE) [6], Bullet [12]), absolute coordinates are
used to specify the positions of the rigid bodies. It means that for the connection between two
adjacent bodies (e.g. by means of a revolute joint), such an engine requires to introduce 6 DoFs
per body and 5 bilateral algebraic constraints. This paradigm likely emerged because of the neces-
sity to compute a lot of random impacts, ubiquitous in video games. The impacts were treated as
simultaneously added algebraic unilateral constraints. However, this approach may lead to unreal-
istic behavior of the systems, constraint violations and inaccuracies (about artifacts in video-game
engines and their reasons, see chapter 1.2 in [13]).

We carried out a comparison of absolute and relative approaches on a simple example of a com-
pound pendulum (a mass, a length l of a segment between the fixed point and the center of mass,
gravity acceleration g normalized to 1, diagonal inertia matrix with principal moments equal to
0.5). These dynamic equations were simulated in the ODE physics engine (absolute coordinates)
and Robotran (relative coordinates). Since it is impossible to separate equation generation and nu-
meric integration in ODE, motion was simulated for 25 units of time (one second equals one unit
of time multiplied by

√
g
l , where g and l are in meters/sec2 and meters, respectively). For ODE we

used a built-in numeric integrator and the default parameters for the variables governing stability
and accuracy (CFM equals 1×10−10 and ERP equals 0.2, for more details see ODE wiki [14]). We
used equations generated by Robotran in Matlab. The selected numeric integrator was the Runge-
Kutta method of 4-5 order with time-varying step. The absolute and relative tolerances were equal
to 2.2×10−14 (ode45). As ground truth solution, the differential equations of the pendulum were
integrated with the Matlab ode45 function with the same parameters. Initial conditions were set
to get a continuous rotational motion of the pendulum (pendulum is oriented downward and the
angular velocity equals 1.8). The full mechanical energy fluctuations and the angular coordinate
error over time for Robotran are around 4× 10−13, i.e. the absolute tolerance multiplied by the
simulation time. The error of the ODE solution depends on the time-step. The smallest error was
achieved for a time-step of about 1×10−7: constraint violation is around 6×10−13; full mechani-
cal energy fluctuations are around 7×10−8. The time-curve for angular coordinate error is shown
in Figure 2. The error grows up with time and cannot be decreased with smaller time-steps. Fur-
thermore, it is likely that such errors would propagate over serial joints and segments for systems
having more DoFs than the simple one presented here. Finally, this tolerance was achieved at the
expense of a greedy simulation time (for ODE it took more than 5 hours to simulate 25 time units
on a 3.4 GHz PC, for Robotran in Matlab environment, 7.4 sec only).
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Figure 2. Absolute error of the angular coordinate and full mechenical energy of the com-
pound pendulum for ODE (blue line) and Robotran (green line).



3.2 Symbolic vs. numeric generation
Again, two schools compete regarding the computation of the direct dynamic model, namely sym-
bolic and numerical. A symbolic generation for a given system is run only once. Its output is a
symbolic code providing the time derivatives of the state variables in analytical form. Examples of
multibody simulators using symbolic algorithms are Robotran and MapleSim [15]. This approach
permits to apply automatic symbolic simplifications on the dynamic equations (for example, Robo-
tran performs trigonometric and recursive simplifications) during the equation generation. In the
case of sparse mass matrices, the Robotran generator eliminates the useless terms. In the case
of recursive simplifications, the full equations that are not used in the subsequent steps are also
eliminated (for details, see [3]).

The automatic procedure for numeric generation of derivatives is the same for all multi-body
systems, so it is impossible to perform ‘system-specific’ simplifications, as offered by the sym-
bolic approach. This automatic rebuilding of the derivatives during time-integration is potentially
helpful if event-based changes appear in the system, for instance if the system includes unilat-
eral constraints like contacts. We will focus on the connection between the contact algorithm and
symbolic/numerical algorithms in the following section.
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Figure 3. CPU time for the computation of generalized accelerations versus number of DoFs
for the COMAN multibody system in Simbody (blue line) and Robotran (green line) physics
engines.

As an illustration of the potential superiority of the symbolic vs. numerical approach in direct
dynamics module when accuracy and speed are required, we carried out a comparison between
two representative algorithms of each family. The tested setup was a tree-like multibody system
representing a humanoid robot (full description is provided in Section 2). This MBS was created
in two different simulators: Robotran, adopting the symbolic approach, and Simbody, adopting
the numerical one (both in relative coordinates), with identical inertial and geometric parameters.
For both engines, we provided the same discrete random inputs: 29 joint positions, 29 joint veloc-
ities, and 23 generalized torques in the rotational joints. We then compared the produced outputs,
i.e. the generalized accelerations, and computation time. The produced accelerations were thus
not integrated to get the next velocity, in order to compare the computational time of the direct
dynamics module only, disregarding issues related to the selection of a specific time integrator.
These simulations revealed that the average relative difference in the generated accelerations was
1.9× 10−11%. Both physics engines are thus eligible. The computation speed for full COMAN



is approximately 3.5 times faster for the Robotran physics engine as compared to the Simbody
one (on the same computer). Figure 3 shows an evolution of the computational time required to
compute the joint accelerations, as a function of the number of degrees of freedom in this system.
Comparison was performed for 12 (waist and one leg), 18 (waist and two legs), 21 (full torso and
two legs, without arms), and 29 degrees of freedom. It shows that for both algorithms, computa-
tional time grows up as a linear function of the number of DoFs. Moreover, the Robotran slope is
about 2 times smaller than the Simbody one. Therefore, the relative superiority of the symbolic
vs. numeric approach further grows up with the number of DoFs.

4 DYNAMIC EQUATIONS AND COMPLIANT ACTUATORS’ MODELS
Based on the comparison and arguments provided in Section 3, the Robotran symbolic generator
was selected for symbolical generation of MBS dynamic equation for DirectDynamics module
together with the compliant contact processing. So, the second-order mechanical multibody model
of the robot is provided by Robotran in the symbolic form:

MMM(qqq)q̈qq+CCC(qqq, q̇qq)+GGG(qqq)+NNNc(qqq)nnn(qqq, q̇qq) = TTT 1(qqq)τττ(qqq, q̇qq,qqqm, q̇qqm)+TTT 2(qqq)τττ p(ppp,qqq), (1)

where qqq = (q1, . . . ,q29) is the vector of angular joint positions plus cartesian coordinates of the
floating base, MMM(qqq) is the mass-inertia matrix, CCC(qqq, q̇qq) represents Coriolis and centrifugal forces,
GGG(qqq) represents gravitational forces and torques. Contact forces and torques nnn(qqq, q̇qq) have 6Nc

components, where Nc is the number of active contacts. For walking, for example, we have
Nc equal to 1 or 2 depending on a gate phase. Control is provided by the 23 serial actuators’s
torques τττ(qqq, q̇qq,qqqm, q̇qqm) and 6 parallel actuators’ torques τττ p(ppp,qqq). Control torques and contact
forces propagate through the MBS by 29× 23, 29× 6 and 29× 6Nc matrices TTT 1(qqq), TTT 2(qqq), and
NNNc(qqq) correspondingly (they are all symbolically generated and simplified by Robotran).

Dynamic models of realistic actuators are often missing in existing simulators, where the joint
actuators are rather considered as sources of pure torque or position (depending on the mode of
control). The motor inertia when reflected to the output of gearbox often has the same order
of magnitude as the link inertia. On the other hand, the robotics community recently promoted
the use of compliant actuators to enhance the robot safety and energy efficiency, mainly when
contacts with the environment are ubiquitous. Typically, these solutions require to design flexible
joint robotic systems, where the electric motors are connected in series with a compliant element
to mainly provide better force regulation and also shock absorption against environmental impacts.
A diagram of such actuators as used in [2] is shown in Figure 4. Therefore the links in robots with
flexible joints are indirectly driven by the torque provided by the spring deflections.

For each actuated joint we have an equation that governs motor inner variable qm
i :

Jq̈m
i +Dmq̇m

i + τi(qi, q̇i,qm
i , q̇

m
i ) = Kt Im

i , i = 1, . . . ,23 (2)

where J is the motor inertia (including rotor and the moving parts such as gearbox), Dm is the
motor’s mechanical damping, Kt is torque constant and Im is the motor current. The motor load
torque is given by

τi(qi, q̇i,qm
i , q̇

m
i ) = Ks(qi −qm

i )+Ds(q̇i − q̇m
i ), (3)

where Ks and Ds are stiffness and damping of serial spring respectively.

The current dynamics for i-th motor is modelled as

Lİm
i +RIm

i +Kω q̇m
i =Vi (4)

where L,R,Kω and Vi are motor inductance, resistance, back EMF constant and applied input
voltage.



If a parallel spring is further added, its torque is given in (5), where r is the radius of the joint’s
pulley, kp and dp are the spring stiffness and damping. The leg pitch joints with a parallel spring
are indexed with i where i = 7,10,12,13,16,18 according to Figure 1.

τ
p
j (p j,qi) =

{
kp(p j − rqi)+dp(ṗ j − rq̇i), if (p j − rqi)< 0
0, if (p j − rqi)≥ 0

, j = 1, . . . ,6. (5)

Figure 4. The series and parallel branch of a compliant actuator of the COMAN.

The last term that we need to describe here is the contact term nnn(qqq, q̇qq). A contact dynamics module
does not exist in the Robotran and has to be implemented. In the next section we provide some
details on the algorithms and share our experience of coupling the Robotran simulator with external
contact library.

5 CONTACT PROCESSING
The physics of contact is very complicated by itself [16]. Developers of contact modules face
different types of problems, from the challenges of establishing the constitutive laws of impacts
to the mathematical problems of stability and convergence of numerical methods. Imprecisions of
the contact model and parameters introduce the largest inaccuracies in simulation [17]. Contact
algorithms are quite expensive regarding computational cost. Moreover, a given algorithm that a
simulator uses for contact modeling influences the choice of the associated numeric integrators
and the internal representations of the equations of motion. Choosing a contact algorithm is thus
challenging. Here we provide some reasoning to help making this choice. It is important to make
a distinction between compliant and rigid contacts. Precise definitions and extended comparisons
between these two approaches for contact modeling can be found in [18]. Here below, the pros and
cons of rigid and compliant contact modeling are overviewed with a global point of view, i.e. with
the objective to emphasize connections between the different contact modules with the equation
formalism as discussed above.

5.1 Rigid Contact
Briefly speaking, rigid contact means that a contact between two (or more) bodies is treated as an
instantaneously imposed unilateral constraint without interpenetration of bodies. So the inputs of
such algorithm are the positions and velocities of bodies before contact, the constitutive impact
law (i.e. the rule to compute the post-impact velocities – in the simplest case, through a restitu-
tion coefficient), and some properties of the system, like inertial matrices and bilateral constraints.
The outputs of the algorithm are the velocities of all bodies after impact and, the corresponding



reaction forces. These velocities should satisfy all constraints (unilateral and bilateral). There is
thus no interpenetration of the bodies and the mechanical compression and decompression phases
are not explicitly calculated. The contact reaction forces – making the contact constraints to be
satisfied – depend on other (bilateral or unilateral) constraints that are imposed to the system. Dif-
ferent algorithms exist for rigid contact processing (see [18], [19]): LCP (linear complementarity
problem), NLCP methods (non-linear complementarity problem) and others. In fact all of them
implement different numeric algorithms for solving the same systems of equations (sometimes
called complementary slackness mechanical systems, see [18]).

We identified two bottlenecks related to this approach. First, regarding the constitutive impact law,
for complicated systems and multiple impacts, a simple restitution coefficient may vary depending
on the impact conditions. Second, rigid algorithms treat unilateral constraints as imposed to points
and not to surfaces. So it is necessary to specify the points where the contact constraints (i.e. no
interpenetration) are expected to be fulfilled. While this is reasonably easy to do for primitives
like spheres and boxes, this is much more challenging for complex and possibly non-convex sur-
faces covering robots. The localization of the contact points in this case is a difficult mathematical
problem. Also, rigid algorithms could introduce inaccuracies when used with some passive com-
pliances like rubber covers of some parts of robots. Nevertheless these algorithms are fast and
solve impacts in a single time step, ideally preventing penetration of the bodies. All ‘absolute
coordinate’ engines (ODE, Bullet) and MuJoCo implement rigid contact algorithms.

5.2 Compliant Contact
Compliant contact algorithms integrate contact modelling within the time-dependent multibody
equations, through a compression and decompression phase. A repelling force is calculated via a
visco-elastic model using the relative distance and velocity between pairs of points on the surfaces
of the bodies in contact (elastic foundation model, EFM) [5, 18]. In general, for two bodies
bounded by triangular meshes M1 and M2, a resulting contact force and torque is a sum:

fff contact(qqqc, q̇qqc) = 0.5∑1
(

fff normal + fff tangent
)
+0.5∑2

(
fff normal + fff tangent

)
(6)

τττ
contact(qqqc, q̇qqc) = 0.5∑1rrriii × ( fff normal + fff tangent)+0.5∑2rrriii × ( fff normal + fff tangent) (7)

The summation ∑1 goes through the triangles of the mesh M1 that overlap the mesh M2 and vice
versa for ∑2. Forces fff normal and fff tangent are normal and tangent components of elementary re-
pelling force applied to the current triangle. They depend on relative propagation and velocity
of the corresponding triangle with respect to the opposite mesh; rrri is a vector from a center of a
contact patch to the center of the triangle. Thus, such an algorithm calculates a force and a torque
(applied to the computed center of patch) from the positions and velocities of both bodies in con-
tact,i.e. qqqc and q̇qqc. Models for fff normal and fff tangent can vary for particular models (vicso-elastic
models, viscous, dry, or Stribeck friction, etc).

The main shortcomings of this approach are (i) the difficulties of selecting the appropriate param-
eters for the elastic layer; and (ii) a ubiquitous trade-off between keeping the interpenetrations of
the bodies within reasonable limits and maintaining the computational cost low enough. Indeed,
the stiffness of the associated differential equations is directly correlated with the interpenetration
magnitude: for high stiffness k, the bodies interpenetrations are of order O(k−2/3) and the time-
step is of order O(k−1/2)[18]. So, the computational speed and accuracy critically depends on
this parameter. The EFM algorithm is faster and at the same time well approximates finite ele-
ments algorithms (FEM), which are considered as an etalon for the deformable bodies [20], [21].
EFM algorithms can simulate interpenetration of the body pairs, micro-slips, and repeated impacts
which also occur in the real world.

To summarize, rigid contacts are fast and generate zero or negligible interpenetration of the bodies.
This approach is more suitable for perfectly rigid bodies, for example for stainless balls, or railway



wheels. It can be adapted to real-time applications when some lack of accuracy can be permitted.
Rigid contact modeling can also produce incorrect output, mainly for complex body shapes. Since
it is difficult to separate the direct dynamics module from the contact one, the potential inaccuracy
source is usually challenging to identify. This approach can further produce inaccuracies in simu-
lations of robots with passive compliance, for example, covered by a deformable layer. Compliant
contact algorithms are more expensive regarding computational load and imply additional stiffness
to the numerical solutions of the ordinary differential equations. These algorithms can be easily
isolated from the other parts of the simulator and thus coupled to any core of the multibody simu-
lator. They are more accurate for deformable bodies such as rubber foots and hands, if appropriate
parameters are well estimated. These algorithms require more computational power to be executed
in real-time applications, although not out of the capacities of modern computers.

We propose to use for contacts forces nnn in Equations (1) the compliant model for contacts (6,7):
nnn = ( fff contact

1 ,τττcontact
1 , . . . , fff contact

Nc ,τττcontact
Nc ). Here, we augment Robotran simulator with external

open-source library providing compliant contact. This offers a general algorithm for handling
contact in the Robotran framework, especially for complex objects whose shape requires to be
modeled by a polygonal mesh. In the next section we explain how we coupled the Simbody
compliant library with the MBS equations of motion generated by Robotran.

5.3 COUPLING ROBOTRAN SIMULATOR WITH COMPLIANT CONTACT LIBRARY

Figure 5. Scheme of coupling between Robotran and Simbody.

Contact processing was made possible by coupling Robotran with an external C++ contact library



developed by the Simbody team [5]. This library was selected based on the following reasons:

• It is open-source and is distributed under permissive Apache 2.0 License;

• It provides compliant contact of two types: Hertz-model and elastic foundation model (EFM,
more details can be found in [5, 21]).

• It allows to use WaveFront object files encoding triangular meshes to define complex body
shapes;

The scheme of coupling is shown in Figure 5. Concretely, during the building of the multibody
structure (that has to be constructed in a the Robotran’s GUI-editor MBSPad), the user needs to add
S-sensors and F-sensors for each body which will have contact surfaces (i.e. the so-called contact
bodies, CBs). A “S-sensor” is a Robotran tool that is used for mapping relative coordinantes and
velocities to absolute coordinates and velocities of the CBs. A “F-sensor” is a Robotran tool that
allows to define user-external forces. The Robotran server then generates both the MBS equations
of motion, and the coordinate tranforms being required to manage contacts through S-sensors and
F-sensors. The user further needs to specify the number of CBs, the physical properties governing
contact (such as stiffness, viscosity, friction coefficients) for each of them (including ground) and
to define the surface of contact, through primitives or meshes, in a C-code template.

The execution starts with the initialization of all the variables that are used during the simulation
loop. An instance of the Simbody class world is created. In this world a shadow free body with 6
DoFs for each CB is created. The computation is thus separated between Robotran (in charge of
the dynamic integration, complying with the mechanical constraints between the successive bod-
ies) and Simbody (in charge of the computation of the contact forces through the 6-DoFs shadow
bodies). Simulating COMAN walking on a rough terrain requires creating only two shadow bod-
ies, i.e. one for both feet, with mesh contact surfaces and a ground in the Simbody world.

In the simulation loop, relative positions and velocities are transformed into absolute positions
and velocities, through the code generated for the S-sensors. These positions and velocities are
then imposed for each shadow CB in the Simbody world. Then the Simbody library processes
the contact and returns values of external forces and moments due to contacts. These forces and
moments are then applied to the MBS in Robotran (relying on the F-sensors) and included to
update the bodies dynamics.

In Figure 6 two representative tasks that extensively use 3D mesh-to-mesh contact are shown: that
are a manipulation task and a locomotion task (with a gait controller presented in [22]).

Figure 6. On the left: Manipulation task – COMAN takes a box from a table. On the right:
Locomotion task – COMAN goes over a 3D bump .



6 CONCLUSIONS
In the frame of this work, a fast and accurate model of a humanoid robot is derived. Comparison
of time-efficiency of different method for direct dynamics module is provided. The full elec-
tromechanical models for series compliant actuators and for parallel elastic branch are derived.
Coupling of symbolic MBS differential equations with open-source external compliant contact li-
brary is made. The simulator that integrates over time the presented multiphysics model shows
reliable results for locomotion and manipulation tasks.
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