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Abstract

   This document discusses both use cases and operational experience
   with Multipath TCP in real world networks.  It lists several
   prominent use cases for which Multipath TCP has been considered and
   is being used.  It also gives insight to some heuristics and
   decisions that have helped to realize these use cases.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78  and BCP 79 .

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at http://datatracker.ietf.org/drafts/current/ .
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1.  Introduction

   Multipath TCP was standardized in [ RFC6824] and four implementations
   have been developed [ I-D.eardley-mptcp-implementations-survey ].
   Since the publication of [ RFC6824], experience has been gathered by
   various network researchers and users about the operational issues
   that arise when Multipath TCP is used in today’s Internet.

   When the MPTCP working group was created, several use cases for
   Multipath TCP were identified [ RFC6182].  Since then, over use cases
   have been proposed and some have been tested and even deployed.  We
   describe these use cases in section Section 2 .

   The second part of the document focuses on the operational experience
   with Multipath TCP.  Most of this experience comes from the
   utilisation of the Multipath TCP implementation in the Linux kernel
   [ MultipathTCP-Linux ].  This open-source implementation has been
   downloaded and is used by thousands of users all over the world.
   Many of these users have provided direct or indirect feedback by
   writing documents (scientific articles or blog messages) or posting
   to the mptcp-dev mailing list (see https://listes-
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   2.sipr.ucl.ac.be/sympa/arc/mptcp-dev ).  This Multipath TCP
   implementation is actively maintained and continuously improved.  It
   is used on various types of hosts, ranging from smartphones or
   embedded routers to high-end servers.

   The Multipath TCP implementation in the Linux kernel is is not, by
   far, the most widespread deployment of Multipath TCP.  Since
   September 2013, Multipath TCP is also supported on smartphones and
   tablets running iOS7 [ IOS7].  There are likely hundreds of millions
   of Multipath TCP enabled devices.  However, this particular Multipath
   TCP implementation is currently only used to support a single
   application.  Unfortunately, there is no public information about the
   lessons learned from this large scale deployment.

   The second part of this is document is organized as follows.
   Supporting the middleboxes was one of the difficult issues in
   designing the Multipath TCP protocol.  We explain in section
   Section 3.1  which types of middleboxes the Linux Kernel
   implementation of Multipath TCP supports and how it reacts upon
   encountering these.  Section Section 3.2  summarises the MPTCP
   specific congestion controls that have been implemented.  Sections
   Section 3.3  and Section 4  discuss heuristics and issues with respect
   to subflow management as well as the scheduling across the subflows.
   Section Section 5  explains some problems that occurred with subflows
   having different MSS values.  Section Section 6  presents issues with
   respect to content delivery networks and suggests a solution to this
   issue.  Finally, section Section 7  documents an issue with captive
   portals where MPTCP will behave suboptimal.

2.  Use cases

   Multipath TCP has been tested in several use cases.  There is already
   an abundant scientific literature on Multipath TCP [ MPTCPBIB].
   Several of the papers published in the scientific litterature have
   identified possible improvements that are worth being discussed here.

2.1 .  Datacenters

   A first, although initially unexpected, documented use case for
   Multipath TCP has been the datacenters [ HotNets ][SIGCOMM11].  Today’s
   datacenters are designed to provide several paths between single-
   homed servers.  The multiplicity of these paths comes from the
   utilization of Equal Cost Multipath (ECMP) and other load balancing
   techniques inside the datacenter.  Most of the deployed load
   balancing techniques in these datacenters rely on hashes computed or
   the five tuple to ensure that all packets from the same TCP
   connection will follow the same path to prevent packet reordering.
   The results presented in [ HotNets ] demonstrate by simulations that
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   Multipath TCP can achieve a better utilization of the available
   network by using multiple subflows for each Multipath TCP session.
   Although [ RFC6182] assumes that at least one of the communicating
   hosts has several IP addresses, [ HotNets ] demonstrates that there are
   also benefits when both hosts are single-homed.  This idea was
   pursued further in [ SIGCOMM11] where the Multipath TCP implementation
   in the Linux kernel was modified to be able to use several subflows
   from the same IP address.  Measurements performed in a public
   datacenter showed performance improvements with Multipath TCP
   [ SIGCOMM11].

   Although ECMP is widely used inside datacenters, this is not the only
   environment where there are different paths between a pair of hosts.
   ECMP and other load balancing techniques such as LAG are widely used
   in today’s network and having multiple paths between a pair of
   single-homed hosts is becoming the norm instead of the exception.
   Although these multiple paths have often the same cost (from an IGP
   metrics viewpoint), they do not necessarily have the same
   performance.  For example, [ IMC13c ] reports the results of a long
   measurement study showing that load balanced Internet paths between
   that same pair of hosts can have huge delay differences.

2.2 .  Cellular/WiFi Offload

   A second use case that has been explored by several network
   researchers is the cellular/WiFi offload use case.  Smartphones or
   other mobile devices equipped with two wireless interfaces are a very
   common use case for Multipath TCP.  As of this writing, this is also
   the largest deployment of Multipath-TCP enabled devices [ IOS7].
   Unfortunately, as there are no public measurements about this
   deployment, we can only rely on published papers that have mainly
   used the Multipath TCP implementation in the Linux kernel for their
   experiments.

   The performance of Multipath TCP in wireless networks was briefly
   evaluated in [ NSDI12].  One experiment analyzes the performance of
   Multipath TCP on a client with two wireless interfaces.  This
   evaluation shows that when the receive window is large, Multipath TCP
   can efficiently use the two available links.  However, if the window
   becomes smaller, then packets sent on a slow path can block the
   transmission of packets on a faster path.  In some cases, the
   performance of Multipath TCP over two paths can become lower than the
   performance of regular TCP over the best performing path.  Two
   heuristics, reinjection and penalization, are proposed in [ NSDI12] to
   solve this identified performance problem.  These two heuristics have
   since been used in the Multipath TCP implementation in the Linux
   kernel.  [ CONEXT13] explored the problem in more details and revealed
   some other scenarios where Multipath TCP can have difficulties in
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   efficiently pooling the available paths.  Improvements to the
   Multipath TCP implementation in the Linux kernel are proposed in
   [ CONEXT13] to cope with some of these problems.

   The first experimental analysis of Multipath TCP in a public wireless
   environment was presented in [ Cellnet12 ].  These measurements explore
   the ability of Multipath TCP to use two wireless networks (real WiFi
   and 3G networks).  Three modes of operation are compared.  The first
   mode of operation is the simultaneous use of the two wireless
   networks.  In this mode, Multipath TCP pools the available resources
   and uses both wireless interfaces.  This mode provides fast handover
   from WiFi to cellular or the opposite when the user moves.
   Measurements presented in [ CACM14] show that the handover from one
   wireless network to another is not an abrupt process.  When a host
   moves, it does not experience either excellent connectivity or no
   connectivity at all.  Instead, there are regions where the quality of
   one of the wireless networks is weaker than the other, but the host
   considers this wireless network to still be up.  When a mobile host
   enters such regions, its ability to send packets over another
   wireless network is important to ensure a smooth handover.  This is
   clearly illustrated from the packet trace discussed in [ CACM14].

   Many cellular networks use volume-based pricing and users often
   prefer to use unmetered WiFi networks when available instead of
   metered cellular networks.  [ Cellnet12 ] implements the support for
   the MP_PRIO option to explore two other modes of operation.

   In the backup mode, Multipath TCP opens a TCP subflow over each
   interface, but the cellular interface is configured in backup mode.
   This implies that data only flows over the WiFi interface when both
   interfaces are considered to be active.  If the WiFi interface fails,
   then the traffic switches quickly to the cellular interface, ensuring
   a smooth handover from the user’s viewpoint [ Cellnet12 ].  The cost of
   this approach is that the WiFi and cellular interfaces likely remain
   active all the time since all subflows are established over the two
   interfaces.

   The single-path mode is slightly different.  This mode benefits from
   the break-before-make capability of Multipath TCP.  When an MPTCP
   session is established, a subflow is created over the WiFi interface.
   No packet is sent over the cellular interface as long as the WiFi
   interface remains up [ Cellnet12 ].  This implies that the cellular
   interface can remain idle and battery capacity is preserved.  When
   the WiFi interface fails, new subflows are established over the
   cellular interface in order to preserve the established Multipath TCP
   sessions.  Compared to the backup mode described earlier, this mode
   of operation is characterised by a throughput drop while the cellular
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   interface is brought up and the subflows are reestablished.  During
   this time, no data packet is transmitted.

   From a protocol viewpoint, [ Cellnet12 ] discusses the problem posed by
   the unreliability of the ADD_ADDR option and proposes a small
   protocol extension to allow hosts to reliably exchange this option.
   It would be useful to analyze packet traces to understand whether the
   unreliability of the REMOVE_ADDR option poses an operational problem
   in real deployments.

   Another study of the performance of Multipath TCP in wireless
   networks was reported in [ IMC13b].  This study uses laptops connected
   to various cellular ISPs and WiFi hotspots.  It compares various file
   transfer scenarios and concludes based on measurements with the
   Multipath TCP implementation in the Linux kernel that "MPTCP provides
   a robust data transport and reduces variations in download
   latencies".

   A different study of the performance of Multipath TCP with two
   wireless networks is presented in [ INFOCOM14].  In this study the two
   networks had different qualities : a good network and a lossy
   network.  When using two paths with different packet loss ratios, the
   Multipath TCP congestion control scheme moves traffic away from the
   lossy link that is considered to be congested.  However, [ INFOCOM14]
   documents an interesting scenario that is summarised in the Figure 1.

   client ----------- path1 -------- server
     |                                  |
     +--------------- path2 ------------+

                     Figure 1: Simple network topology

   Initially, the two paths have the same quality and Multipath TCP
   distributes the load over both of them.  During the transfer, the
   second path becomes lossy, e.g. because the client moves.  Multipath
   TCP detects the packet losses and they are retransmitted over the
   first path.  This enables the data transfer to continue over the
   first path.  However, the subflow over the second path is still up
   and transmits one packet from time to time.  Although the N packets
   have been acknowledged over the first subflow (at the MPTCP level),
   they have not been acknowledged at the TCP level over the second
   subflow.  To preserve the continuity of the sequence numbers over the
   second subflow, TCP will continue to retransmit these segments until
   either they are acknowledged or the maximum number of retransmissions
   is reached.  This behavior is clearly inefficient and may lead to
   blocking since the second subflow will consume window space to be
   able to retransmit these packets.  [ INFOCOM14] proposes a new
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   Multipath TCP option to solve this problem.  In practice, a new TCP
   option is probably not required.  When the client detects that the
   data transmitted over the second subflow has been acknowledged over
   the first subflow, it could decide to terminate the second subflow by
   sending a RST segment.  If the interface associated to this subflow
   is still up, a new subflow could be immediately reestablished.  It
   would then be immediately usable to send new data and would not be
   forced to first retransmit the previously transmitted data.  As of
   this writing, this dynamic management of the subflows is not yet
   implemented in the Multipath TCP implementation in the Linux kernel.

2.3 .  Multipath TCP proxies

   As Multipath TCP is not yet widely deployed on both clients and
   servers, several deployments have used various forms of proxies.  Two
   families solutions are currently being used or tested
   [ I-D.deng-mptcp-proxy ].

   A first use case is when a Multipath TCP enabled client wants to use
   several interfaces to reach a regular TCP server.  A typical use case
   is a smartphone that needs to use both its WiFi and its cellular
   interface to transfer data.  Several types of proxies are possible
   for this use case.  An HTTP proxy deployed on a Multipath TCP capable
   server would enable the smartphone to use Multipath TCP to access
   regular web servers.  Obviously, this solution only works for
   applications that rely on HTTP.  Another possibility is to use a
   proxy that can convert any Multipath TCP connection into a regular
   TCP connection.  The SOCKS protocol [ RFC1928] is an example of such a
   protocol.  Other proxies have been proposed
   [ I-D.wei-mptcp-proxy-mechanism ] [ HotMiddlebox13b ].  Measurements
   performed with smartphones [ Mobicom15 ] show that popular applications
   work correctly through a SOCKS proxy and Multipath TCP enabled
   smartphones.  Thanks to Multipath TCP, long connections can be spread
   over the two available interfaces.  However, for short connections,
   most of the data is sent over the initial subflow that is created
   over the interface corresponding to the default route and the second
   subflow is almost not used.

   A second use case is when Multipath TCP is used by middleboxes,
   typically inside access networks.  Various network operators are
   discussing and evaluating solutions for hybrid access networks
   [ BBF-WT348].  Such networks arise when a network operator controls
   two different access network technologies, e.g.  DSL and LTE, and
   wants to combine them to improve the bandwidth offered to the
   endusers [ I-D.lhwxz-hybrid-access-network-architecture ].  Several
   solutions are currently investigated for such networks [ BBF-WT348].
   Figure 2 shows the organisation of such a network.  When a client
   creates a normal TCP connection, it is intercepted by the Hybrid CPE
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   (HPCE) that converts it in a Multipath TCP connection so that it can
   use the available access networks (DSL and LTE in the example).  The
   Hybrid Access Gateway (HAG) does the opposite to ensure that the
   regular server see a normal TCP connection.  Some of the solutions
   that are currently discussed for those hybrid networks use Multipath
   TCP on the HCPE and the HAG.  Other solutions rely on tunnels between
   the HCPE and the HAG [ I-D.lhwxz-gre-notifications-hybrid-access ].

   client --- HCPE ------ dsl ------- HAG --- internet --- server
               |                       |
               +------- lte -----------+

                      Figure 2: Hybrid Access Network

3.  Operational Experience

3.1 .  Middlebox interference

   The interference caused by various types of middleboxes has been an
   important concern during the design of the Multipath TCP protocol.
   Three studies on the interactions between Multipath TCP and
   middleboxes are worth being discussed.

   The first analysis was described in [ IMC11].  This paper was the main
   motivation for including inside Multipath TCP various techniques to
   cope with middlebox interference.  More specifically, Multipath TCP
   has been designed to cope with middleboxes that :

   o  change source or destination addresses

   o  change source or destination port numbers

   o  change TCP sequence numbers

   o  split or coalesce segments

   o  remove TCP options

   o  modify the payload of TCP segments

   These middlebox interferences have all been included in the MBtest
   suite [ MBTest ].  This test suite has been used [ HotMiddlebox13 ] to
   verify the reaction of the Multipath TCP implementation in the Linux
   kernel when faced with middlebox interference.  The test environment
   used for this evaluation is a dual-homed client connected to a
   single-homed server.  The middlebox behavior can be activated on any
   of the paths.  The main results of this analysis are :
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   o  the Multipath TCP implementation in the Linux kernel is not
      affected by a middlebox that performs NAT or modifies TCP sequence
      numbers

   o  when a middlebox removes the MP_CAPABLE option from the initial
      SYN segment, the Multipath TCP implementation in the Linux kernel
      falls back correctly to regular TCP

   o  when a middlebox removes the DSS option from all data segments,
      the Multipath TCP implementation in the Linux kernel falls back
      correctly to regular TCP

   o  when a middlebox performs segment coalescing, the Multipath TCP
      implementation in the Linux kernel is still able to accurately
      extract the data corresponding to the indicated mapping

   o  when a middlebox performs segment splitting, the Multipath TCP
      implementation in the Linux kernel correctly reassembles the data
      corresponding to the indicated mapping.  [ HotMiddlebox13 ] shows on
      figure 4 in section 3.3  a corner case with segment splitting that
      may lead to a desynchronisation between the two hosts.

   The interactions between Multipath TCP and real deployed middleboxes
   is also analyzed in [ HotMiddlebox13 ] and a particular scenario with
   the FTP application level gateway running on a NAT is described.

   From an operational viewpoint, knowing that Multipath TCP can cope
   with various types of middlebox interference is important.  However,
   there are situations where the network operators need to gather
   information about where a particular middlebox interference occurs.
   The tracebox software [ tracebox ] described in [ IMC13a] is an
   extension of the popular traceroute software that enables network
   operators to check at which hop a particular field of the TCP header
   (including options) is modified.  It has been used by several network
   operators to debug various middlebox interference problems. tracebox
   includes a scripting language that enables its user to specify
   precisely which packet is sent by the source. tracebox sends packets
   with an increasing TTL/HopLimit and compares the information returned
   in the ICMP messages with the packet that it sends.  This enables
   tracebox to detect any interference caused by middleboxes on a given
   path. tracebox works better when routers implement the ICMP extension
   defined in [ RFC1812].

   A closer look at the packets received on the multipath-tcp.org server
   showed that among the 184 thousands Multipath TCP connections in the
   trace, we observed only 125 of them falling back to regular TCP,
   which happened with 28 different client IP addresses.  These include
   91 HTTP connections and 34 FTP connections.  The FTP interference is
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   expected and due to Application Level Gateways running on NAT boxes.
   The HTTP interference appeared only on the direction from server to
   client and could have been caused by transparent proxies deployed in
   cellular or enterprise networks.

   Users of the Multipath TCP implementation have reported some
   experience with middlebox interference.  The strangest scenario has
   been a middlebox that accepts the Multipath TCP options in the SYN
   segment but later replaces Multipath TCP options with a TCP EOL
   option [ StrangeMbox ].  This causes Multipath TCP to perform a
   fallback to regular TCP without any impact on the application.

3.2 .  Congestion control

   Congestion control has been an important problem for Multipath TCP.
   The standardised congestion control scheme for Multipath TCP is
   defined in [ RFC6356] and [ NSDI11].  This congestion control scheme
   has been implemented in the Linux implementation of Multipath TCP.
   Linux uses a modular architecture to support various congestion
   control schemes.  This architecture is applicable for both regular
   TCP and Multipath TCP.  While the coupled congestion control scheme
   defined in [ RFC6356] is the default congestion control scheme in the
   Linux implementation, other congestion control schemes have been
   added.  The second congestion control scheme is OLIA [ CONEXT12].
   This congestion control scheme is also an adaptation of the NewReno
   single path congestion control scheme to support multiple paths.
   Simulations and measurements have shown that it provides some
   performance benefits compared to the the default congestion control
   scheme [ CONEXT12].  Measurement over a wide range of parameters
   reported in [ CONEXT13] also indicate some benefits with the OLIA
   congestion control scheme.  Recently, a delay-based congestion
   control scheme has been ported to the Multipath TCP implementation in
   the Linux kernel.  This congestion control scheme has been evaluated
   by using simulations in [ ICNP12].  The fourth congestion control
   scheme that has been included in the Linux implementation of
   Multipath TCP is the BALIA scheme
   [ I-D.walid-mptcp-congestion-control ].

   These different congestion control schemes have been compared in
   several articles.  [ CONEXT13] and [ PaaschPhD] apply an experimental
   design approach to compare these algorithms in an emulated
   environment.  The evaluation showed that the delay-based congestion
   control scheme is less able to efficiently use the available links
   than the three other schemes.  Reports from some users indicate that
   they seem to favor OLIA.
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3.3 .  Subflow management

   The multipath capability of Multipath TCP comes from the utilisation
   of one subflow per path.  The Multipath TCP architecture [ RFC6182]
   and the protocol specification [ RFC6824] define the basic usage of
   the subflows and the protocol mechanisms that are required to create
   and terminate them.  However, there are no guidelines on how subflows
   are used during the lifetime of a Multipath TCP session.  Most of the
   experiments with Multipath TCP have been performed in controlled
   environments.  Still, based on the experience running them and
   discussions on the mptcp-dev mailing list, interesting lessons have
   been learned about the management of these subflows.

   From a subflow viewpoint, the Multipath TCP protocol is completely
   symmetrical.  Both the clients and the server have the capability to
   create subflows.  However in practice the existing Multipath TCP
   implementations [ I-D.eardley-mptcp-implementations-survey ] have opted
   for a strategy where only the client creates new subflows.  The main
   motivation for this strategy is that often the client resides behind
   a NAT or a firewall, preventing passive subflow openings on the
   client.  Although there are environments such as datacenters where
   this problem does not occur, as of this writing, no precise
   requirement has emerged for allowing the server to create new
   subflows.

3.4 .  Implemented subflow managers

   The Multipath TCP implementation in the Linux kernel includes several
   strategies to manage the subflows that compose a Multipath TCP
   session.  The basic subflow manager is the full-mesh.  As the name
   implies, it creates a full-mesh of subflows between the communicating
   hosts.

   The most frequent use case for this subflow manager is a multihomed
   client connected to a single-homed server.  In this case, one subflow
   is created for each interface on the client.  The current
   implementation of the full-mesh subflow manager is static.  The
   subflows are created immediately after the creation of the initial
   subflow.  If one subflow fails during the lifetime of the Multipath
   TCP session (e.g. due to excessive retransmissions, or the loss of
   the corresponding interface), it is not always reestablished.  There
   is ongoing work to enhance the full-mesh path manager to deal with
   such events.

   When the server is multihomed, using the full-mesh subflow manager
   may lead to a large number of subflows being established.  For
   example, consider a dual-homed client connected to a server with
   three interfaces.  In this case, even if the subflows are only
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   created by the client, 6 subflows will be established.  This may be
   excessive in some environments, in particular when the client and/or
   the server have a large number of interfaces.  A recent draft has
   proposed a Multipath TCP option to negotiate the maximum number of
   subflows .  However, it should be noted that there have been reports
   on the mptcp-dev mailing indicating that users rely on Multipath TCP
   to aggregate more than four different interfaces.  Thus, there is a
   need for supporting many interfaces efficiently.

   Creating subflows between multihomed clients and servers may
   sometimes lead to operational issues as observed by discussions on
   the mptcp-dev mailing list.  In some cases the network operators
   would like to have a better control on how the subflows are created
   by Multipath TCP [ I-D.boucadair-mptcp-max-subflow ].  This might
   require the definition of policy rules to control the operation of
   the subflow manager.  The two scenarios below illustrate some of
   these requirements.

           host1 ----------  switch1 ----- host2
             |                   |            |
             +--------------  switch2 --------+

                Figure 3: Simple switched network topology

   Consider the simple network topology shown in Figure 3.  From an
   operational viewpoint, a network operator could want to create two
   subflows between the communicating hosts.  From a bandwidth
   utilization viewpoint, the most natural paths are host1-switch1-host2
   and host1-switch2-host2.  However, a Multipath TCP implementation
   running onthese two hosts may sometimes have difficulties to obtain
   this result.

   To understand the difficulty, let us consider different allocation
   strategies for the IP addresses.  A first strategy is to assign two
   subnets : subnetA (resp. subnetB) contains the IP addresses of
   host1’s interface to switch1 (resp. switch2) and host2’s interface to
   switch1 (resp. switch2).  In this case, a Multipath TCP subflow
   manager should only create one subflow per subnet.  To enforce the
   utilization of these paths, the network operator would have to
   specify a policy that prefers the subflows in the same subnet over
   subflows between addresses in different subnets.  It should be noted
   that the policy should probably also specify how the subflow manager
   should react when an interface or subflow fails.

   A second strategy is to use a single subnet for all IP addresses.  In
   this case, it becomes more difficult to specify a policy that
   indicates which subflows should be established.
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   The second subflow manager that is currently supported by the
   Multipath TCP implementation in the Linux kernel is the ndiffport
   subflow manager.  This manager was initially created to exploit the
   path diversity that exists between single-homed hosts due to the
   utilization of flow-based load balancing techniques.  This subflow
   manager creates N subflows between the same pair of IP addresses.
   The N subflows are created by the client and differ only in the
   source port selected by the client.  It was not designed to be used
   on multihomed hosts.

3.5 .  Subflow destination port

   The Multipath TCP protocol relies on the token contained in the
   MP_JOIN option to associate a subflow to an existing Multipath TCP
   session.  This implies that there is no restriction on the source
   address, destination address and source or destination ports used for
   the new subflow.  The ability to use different source and destination
   addresses is key to support multihomed servers and clients.  The
   ability to use different destination port numbers is worth being
   discussed because it has operational implications.

   For illustration, consider a dual-homed client that creates a second
   subflow to reach a single-homed server as illustrated in Figure 4.

           client ------- r1 --- internet --- server
               |                   |
               +----------r2-------+

       Figure 4: Multihomed-client connected to single-homed server

   When the Multipath TCP implementation in the Linux kernel creates the
   second subflow it uses the same destination port as the initial
   subflow.  This choice is motivated by the fact that the server might
   be protected by a firewall and only accept TCP connections (including
   subflows) on the official port number.  Using the same destination
   port for all subflows is also useful for operators that rely on the
   port numbers to track application usage in their network.

   There have been suggestions from Multipath TCP users to modify the
   implementation to allow the client to use different destination ports
   to reach the server.  This suggestion seems mainly motivated by
   traffic shaping middleboxes that are used in some wireless networks.
   In networks where different shaping rates are associated to different
   destination port numbers, this could allow Multipath TCP to reach a
   higher performance.  As of this writing, we are not aware of any
   implementation of this kind of tweaking.
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   However, from an implementation point-of-view supporting different
   destination ports for the same Multipath TCP connection introduces a
   new performance issue.  A legacy implementation of a TCP stack
   creates a listening socket to react upon incoming SYN segments.  The
   listening socket is handling the SYN segments that are sent on a
   specific port number.  Demultiplexing incoming segments can thus be
   done solely by looking at the IP addresses and the port numbers.
   With Multipath TCP however, incoming SYN segments may have an MP_JOIN
   option with a different destination port.  This means, that all
   incoming segments that did not match on an existing listening-socket
   or an already established socket must be parsed for an eventual
   MP_JOIN option.  This imposes an additional cost on servers,
   previously not existent on legacy TCP implementations.

3.6 .  Closing subflows

                    client                       server
                       |                           |
   MPTCP: established  |                           | MPTCP: established
   Sub: established    |                           | Sub: established
                       |                           |
                       |         DATA_FIN          |
   MPTCP: close-wait   | <------------------------ | close()   (step 1)
   Sub: established    |         DATA_ACK          |
                       | ------------------------> | MPTCP: fin-wait-2
                       |                           | Sub: established
                       |                           |
                       |  DATA_FIN + subflow-FIN   |
   close()/shutdown()  | ------------------------> | MPTCP: time-wait
   (step 2)            |        DATA_ACK           | Sub: close-wait
   MPTCP: closed       | <------------------------ |
   Sub: fin-wait-2     |                           |
                       |                           |
                       |        subflow-FIN        |
   MPTCP: closed       | <------------------------ | subflow-close()
   Sub: time-wait      |        subflow-ACK        |
   (step 3)            | ------------------------> | MPTCP: time-wait
                       |                           | Sub: closed
                       |                           |

     Figure 5: Multipath TCP may not be able to avoid time-wait state
                  (even if enforced by the application).

   Figure 5 shows a very particular issue within Multipath TCP.  Many
   high-performance applications try to avoid Time-Wait state by
   deferring the closure of the connection until the peer has sent a
   FIN.  That way, the client on the left of Figure 5 does a passive
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   closure of the connection, transitioning from Close-Wait to Last-ACK
   and finally freeing the resources after reception of the ACK of the
   FIN.  An application running on top of a Multipath TCP enabled Linux
   kernel might also use this approach.  The difference here is that the
   close() of the connection (Step 1 in Figure 5) only triggers the
   sending of a DATA_FIN.  Nothing guarantees that the kernel is ready
   to combine the DATA_FIN with a subflow-FIN.  The reception of the
   DATA_FIN will make the application trigger the closure of the
   connection (step 2), trying to avoid Time-Wait state with this late
   closure.  This time, the kernel might decide to combine the DATA_FIN
   with a subflow-FIN.  This decision will be fatal, as the subflow’s
   state machine will not transition from Close-Wait to Last-Ack, but
   rather go through Fin-Wait-2 into Time-Wait state.  The Time-Wait
   state will consume resources on the host for at least 2 MSL (Maximum
   Segment Lifetime).  Thus, a smart application, that tries to avoid
   Time-Wait state by doing late closure of the connection actually ends
   up with one of its subflows in Time-Wait state.  A high-performance
   Multipath TCP kernel implementation should honor the desire of the
   application to do passive closure of the connection and successfully
   avoid Time-Wait state - even on the subflows.

   The solution to this problem lies in an optimistic assumption that a
   host doing active-closure of a Multipath TCP connection by sending a
   DATA_FIN will soon also send a FIN on all its in subflows.  Thus, the
   passive closer of the connection can simply wait for the peer to send
   exactly this FIN - enforcing passive closure even on the subflows.
   Of course, to avoid consuming resources indefinitely, a timer must
   limit the time our implementation waits for the FIN.

4.  Packet schedulers

   In a Multipath TCP implementation, the packet scheduler is the
   algorithm that is executed when transmitting each packet to decide on
   which subflow it needs to be transmitted.  The packet scheduler
   itself does not have any impact on the interoperability of Multipath
   TCP implementations.  However, it may clearly impact the performance
   of Multipath TCP sessions.  The Multipath TCP implementation in the
   Linux kernel supports a pluggable architecture for the packet
   scheduler [ PaaschPhD].  As of this writing, two schedules have been
   implemented: round-robin and lowest-rtt-first.  They are compared in
   [ CSWS14].  The experiments and measurements described in [ CSWS14]
   show that the lowest-rtt-first scheduler appears to be the best
   compromise from a performance viewpoint.  Another study of the packet
   schedulers is presented in [ PAMS2014].  This study relies on
   simulations with the Multipath TCP implementation in the Linux
   kernel.  These simulations confirm the impact of the packet scheduler
   on the performance of Multipath TCP.
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5.  Segment size selection

   When an application performs a write/send system call, the kernel
   allocates a packet buffer (sk_buff in Linux) to store the data the
   application wants to send.  The kernel will store at most one MSS
   (Maximum Segment Size) of data per buffer.  As MSS can differ amongst
   subflows, an MPTCP implementation must select carefully the MSS used
   to generate application data.  The Linux kernel implementation had
   various ways of selecting the MSS: minimum or maximum amongst the
   different subflows.  However, these heuristics of MSS selection can
   cause significant performances issues in some environment.  Consider
   the following example.  An MPTCP connection has two established
   subflows that respectively use a MSS of 1420 and 1428 bytes.  If
   MPTCP selects the maximum, then the application will generate
   segments of 1428 bytes of data.  An MPTCP implementation will have to
   split the segment in two (a 1420-byte and 8-byte segments) when
   pushing on the subflow with the smallest MSS.  The latter segment
   will introduce a large overhead as for a single data segment 2 slots
   will be used in the congestion window (in packets) therefore reducing
   by ~2 the potential throughput (in bytes/s) of this subflow.  Taking
   the smallest MSS does not solve the issue as there might be a case
   where the sublow with the smallest MSS will only participate
   marginally to the overall performance therefore reducing the
   potential throughput of the other subflows.

   The Linux implementation recently took another approach [ DetalMSS ].
   Instead of selecting the minimum and maximum values, it now
   dynamically adapts the MSS based on the contribution of all the
   subflows to the connection’s throughput.  For this it computes, for
   each subflow, the potential throughput achieved by selecting each MSS
   value and by taking into account the lost space in the cwnd.  It then
   selects the MSS that allows to achieve the highest potential
   throughput.

6.  Interactions with the Domain Name System

   Multihomed clients such as smartphones can send DNS queries over any
   of their interfaces.  When a single-homed client performs a DNS
   query, it receives from its local resolver the best answer for its
   request.  If the client is multihomed, the answer returned to the DNS
   query may vary with the interface over which it has been sent.
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                      cdn1
                       |
           client -- cellular -- internet -- cdn3
              |                   |
              +----- wifi --------+
                       |
                     cdn2

                     Figure 6: Simple network topology

   If the client sends a DNS query over the WiFi interface, the answer
   will point to the cdn2 server while the same request sent over the
   cellular interface will point to the cdn1 server.  This might cause
   problems for CDN providers that locate their servers inside ISP
   networks and have contracts that specify that the CDN server will
   only be accessed from within this particular ISP.  Assume now that
   both the client and the CDN servers support Multipath TCP.  In this
   case, a Multipath TCP session from cdn1 or cdn2 would potentially use
   both the cellular network and the WiFi network.  This would violate
   the contract between the CDN provider and the network operators.  A
   possible solution to prevent this problem would be to modify the DNS
   resolution on the client.  The client subnet EDNS extension defined
   in [ I-D.vandergaast-edns-client-subnet ] could be used for this
   purpose.  When the client sends a DNS query from its WiFi interface,
   it should also send the client subnet corresponding to the cellular
   interface in this request.  This would indicate to the resolver that
   the answer should be valid for both the WiFi and the cellular
   interfaces (e.g., the cdn3 server).

7.  Captive portals

   Multipath TCP enables a host to use different interfaces to reach a
   server.  In theory, this should ensure connectivity when at least one
   of the interfaces is active.  In practice however, there are some
   particular scenarios with captive portals that may cause operational
   problems.  The reference environment is shown in Figure 7.

           client -----  network1
                |
                +------- internet ------------- server

                    Figure 7: Issue with captive portal

   The client is attached to two networks : network1 that provides
   limited connectivity and the entire Internet through the second
   network interface.  In practice, this scenario corresponds to an open

Bonaventure, et al.      Expires January 7, 2016               [Page 17]



 
Internet-Draft              MPTCP Experience                   July 2015

   WiFi network with a captive portal for network1 and a cellular
   service for the second interface.  On many smartphones, the WiFi
   interface is preferred over the cellular interface.  If the
   smartphone learns a default route via both interfaces, it will
   typically prefer to use the WiFi interface to send its DNS request
   and create the first subflow.  This is not optimal with Multipath
   TCP.  A better approach would probably be to try a few attempts on
   the WiFi interface and then try to use the second interface for the
   initial subflow as well.

8.  Conclusion

   In this document, we have documented a few years of experience with
   Multipath TCP.  The information presented in this document was
   gathered from scientific publications and discussions with various
   users of the Multipath TCP implementation in the Linux kernel.
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Appendix A .  Changelog

   o  initial version : September 16th, 2014 : Added section Section 5
      that discusses some performance problems that appeared with the
      Linux implementation when using subflows having different MSS
      values

   o  update with a description of the middlebox that replaces an
      unknown TCP option with EOL [ StrangeMbox ]

   o  version ietf-02 : July 2015, answer to last call comments

      *  Reorganised text to better separate use cases and operational
         experience

      *  New use case on Multipath TCP proxies in Section 2.3

      *  Added some text on middleboxes in Section 3.1

      *  Removed the discussion on SDN

      *  Restructured text and improved writing in some parts
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