
Available at:
http://hdl.handle.net/2078.1/162835

[Downloaded 2019/04/19 at 04:05:40]

" Use Cases and Operational Experience with Multipath TCP"

Bonaventure, Olivier ; Paasch, Christoph ; Detal, Gregory

Abstract

This document discusses both use cases and operational experience with
Multipath TCP in real world networks. It lists several prominent use cases for
which Multipath TCP has been considered and is being used. It also gives insight
to some heuristics and decisions that have helped to realize these use cases.

Document type : Rapport (Report)

Référence bibliographique

Bonaventure, Olivier ; Paasch, Christoph ; Detal, Gregory. Use Cases and Operational
Experience with Multipath TCP. (2015) 24 pages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DIAL UCLouvain

https://core.ac.uk/display/34092725?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

MPTCP Working Group O. Bonaventure
Internet-Draft C. Paasch
Intended status: Informational UCLouvain
Expires: January 7, 2016 G. Detal
 UCLouvain and Tessares
 July 06, 2015

 Use Cases and Operational Experience with Multipath TCP
 draft-ietf-mptcp-experience-02

Abstract

 This document discusses both use cases and operational experience
 with Multipath TCP in real world networks. It lists several
 prominent use cases for which Multipath TCP has been considered and
 is being used. It also gives insight to some heuristics and
 decisions that have helped to realize these use cases.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79 .

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/ .

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on January 7, 2016.

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4 .e of

Bonaventure, et al. Expires January 7, 2016 [Page 1]

https://tools.ietf.org/pdf/bcp78
https://tools.ietf.org/pdf/bcp79
http://datatracker.ietf.org/drafts/current/
https://tools.ietf.org/pdf/bcp78
http://trustee.ietf.org/license-info

Internet-Draft MPTCP Experience July 2015

 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Use cases . 3
 2.1 . Datacenters . 3
 2.2 . Cellular/WiFi Offload 4
 2.3 . Multipath TCP proxies 7
 3. Operational Experience 8
 3.1 . Middlebox interference 8
 3.2 . Congestion control 10
 3.3 . Subflow management 11
 3.4 . Implemented subflow managers 11
 3.5 . Subflow destination port 13
 3.6 . Closing subflows . 14
 4. Packet schedulers . 15
 5. Segment size selection 16
 6. Interactions with the Domain Name System 16
 7. Captive portals . 17
 8. Conclusion . 18
 9. Acknowledgements . 18
 10. Informative References 18
 Appendix A . Changelog . 23
 Authors’ Addresses . 23

1. Introduction

 Multipath TCP was standardized in [RFC6824] and four implementations
 have been developed [I-D.eardley-mptcp-implementations-survey].
 Since the publication of [RFC6824], experience has been gathered by
 various network researchers and users about the operational issues
 that arise when Multipath TCP is used in today’s Internet.

 When the MPTCP working group was created, several use cases for
 Multipath TCP were identified [RFC6182]. Since then, over use cases
 have been proposed and some have been tested and even deployed. We
 describe these use cases in section Section 2 .

 The second part of the document focuses on the operational experience
 with Multipath TCP. Most of this experience comes from the
 utilisation of the Multipath TCP implementation in the Linux kernel
 [MultipathTCP-Linux]. This open-source implementation has been
 downloaded and is used by thousands of users all over the world.
 Many of these users have provided direct or indirect feedback by
 writing documents (scientific articles or blog messages) or posting
 to the mptcp-dev mailing list (see https://listes-

Bonaventure, et al. Expires January 7, 2016 [Page 2]

https://tools.ietf.org/pdf/rfc6824
https://tools.ietf.org/pdf/rfc6824
https://tools.ietf.org/pdf/rfc6182
https://listes-/

Internet-Draft MPTCP Experience July 2015

 2.sipr.ucl.ac.be/sympa/arc/mptcp-dev). This Multipath TCP
 implementation is actively maintained and continuously improved. It
 is used on various types of hosts, ranging from smartphones or
 embedded routers to high-end servers.

 The Multipath TCP implementation in the Linux kernel is is not, by
 far, the most widespread deployment of Multipath TCP. Since
 September 2013, Multipath TCP is also supported on smartphones and
 tablets running iOS7 [IOS7]. There are likely hundreds of millions
 of Multipath TCP enabled devices. However, this particular Multipath
 TCP implementation is currently only used to support a single
 application. Unfortunately, there is no public information about the
 lessons learned from this large scale deployment.

 The second part of this is document is organized as follows.
 Supporting the middleboxes was one of the difficult issues in
 designing the Multipath TCP protocol. We explain in section
 Section 3.1 which types of middleboxes the Linux Kernel
 implementation of Multipath TCP supports and how it reacts upon
 encountering these. Section Section 3.2 summarises the MPTCP
 specific congestion controls that have been implemented. Sections
 Section 3.3 and Section 4 discuss heuristics and issues with respect
 to subflow management as well as the scheduling across the subflows.
 Section Section 5 explains some problems that occurred with subflows
 having different MSS values. Section Section 6 presents issues with
 respect to content delivery networks and suggests a solution to this
 issue. Finally, section Section 7 documents an issue with captive
 portals where MPTCP will behave suboptimal.

2. Use cases

 Multipath TCP has been tested in several use cases. There is already
 an abundant scientific literature on Multipath TCP [MPTCPBIB].
 Several of the papers published in the scientific litterature have
 identified possible improvements that are worth being discussed here.

2.1 . Datacenters

 A first, although initially unexpected, documented use case for
 Multipath TCP has been the datacenters [HotNets][SIGCOMM11]. Today’s
 datacenters are designed to provide several paths between single-
 homed servers. The multiplicity of these paths comes from the
 utilization of Equal Cost Multipath (ECMP) and other load balancing
 techniques inside the datacenter. Most of the deployed load
 balancing techniques in these datacenters rely on hashes computed or
 the five tuple to ensure that all packets from the same TCP
 connection will follow the same path to prevent packet reordering.
 The results presented in [HotNets] demonstrate by simulations that

Bonaventure, et al. Expires January 7, 2016 [Page 3]

Internet-Draft MPTCP Experience July 2015

 Multipath TCP can achieve a better utilization of the available
 network by using multiple subflows for each Multipath TCP session.
 Although [RFC6182] assumes that at least one of the communicating
 hosts has several IP addresses, [HotNets] demonstrates that there are
 also benefits when both hosts are single-homed. This idea was
 pursued further in [SIGCOMM11] where the Multipath TCP implementation
 in the Linux kernel was modified to be able to use several subflows
 from the same IP address. Measurements performed in a public
 datacenter showed performance improvements with Multipath TCP
 [SIGCOMM11].

 Although ECMP is widely used inside datacenters, this is not the only
 environment where there are different paths between a pair of hosts.
 ECMP and other load balancing techniques such as LAG are widely used
 in today’s network and having multiple paths between a pair of
 single-homed hosts is becoming the norm instead of the exception.
 Although these multiple paths have often the same cost (from an IGP
 metrics viewpoint), they do not necessarily have the same
 performance. For example, [IMC13c] reports the results of a long
 measurement study showing that load balanced Internet paths between
 that same pair of hosts can have huge delay differences.

2.2 . Cellular/WiFi Offload

 A second use case that has been explored by several network
 researchers is the cellular/WiFi offload use case. Smartphones or
 other mobile devices equipped with two wireless interfaces are a very
 common use case for Multipath TCP. As of this writing, this is also
 the largest deployment of Multipath-TCP enabled devices [IOS7].
 Unfortunately, as there are no public measurements about this
 deployment, we can only rely on published papers that have mainly
 used the Multipath TCP implementation in the Linux kernel for their
 experiments.

 The performance of Multipath TCP in wireless networks was briefly
 evaluated in [NSDI12]. One experiment analyzes the performance of
 Multipath TCP on a client with two wireless interfaces. This
 evaluation shows that when the receive window is large, Multipath TCP
 can efficiently use the two available links. However, if the window
 becomes smaller, then packets sent on a slow path can block the
 transmission of packets on a faster path. In some cases, the
 performance of Multipath TCP over two paths can become lower than the
 performance of regular TCP over the best performing path. Two
 heuristics, reinjection and penalization, are proposed in [NSDI12] to
 solve this identified performance problem. These two heuristics have
 since been used in the Multipath TCP implementation in the Linux
 kernel. [CONEXT13] explored the problem in more details and revealed
 some other scenarios where Multipath TCP can have difficulties in

Bonaventure, et al. Expires January 7, 2016 [Page 4]

https://tools.ietf.org/pdf/rfc6182

Internet-Draft MPTCP Experience July 2015

 efficiently pooling the available paths. Improvements to the
 Multipath TCP implementation in the Linux kernel are proposed in
 [CONEXT13] to cope with some of these problems.

 The first experimental analysis of Multipath TCP in a public wireless
 environment was presented in [Cellnet12]. These measurements explore
 the ability of Multipath TCP to use two wireless networks (real WiFi
 and 3G networks). Three modes of operation are compared. The first
 mode of operation is the simultaneous use of the two wireless
 networks. In this mode, Multipath TCP pools the available resources
 and uses both wireless interfaces. This mode provides fast handover
 from WiFi to cellular or the opposite when the user moves.
 Measurements presented in [CACM14] show that the handover from one
 wireless network to another is not an abrupt process. When a host
 moves, it does not experience either excellent connectivity or no
 connectivity at all. Instead, there are regions where the quality of
 one of the wireless networks is weaker than the other, but the host
 considers this wireless network to still be up. When a mobile host
 enters such regions, its ability to send packets over another
 wireless network is important to ensure a smooth handover. This is
 clearly illustrated from the packet trace discussed in [CACM14].

 Many cellular networks use volume-based pricing and users often
 prefer to use unmetered WiFi networks when available instead of
 metered cellular networks. [Cellnet12] implements the support for
 the MP_PRIO option to explore two other modes of operation.

 In the backup mode, Multipath TCP opens a TCP subflow over each
 interface, but the cellular interface is configured in backup mode.
 This implies that data only flows over the WiFi interface when both
 interfaces are considered to be active. If the WiFi interface fails,
 then the traffic switches quickly to the cellular interface, ensuring
 a smooth handover from the user’s viewpoint [Cellnet12]. The cost of
 this approach is that the WiFi and cellular interfaces likely remain
 active all the time since all subflows are established over the two
 interfaces.

 The single-path mode is slightly different. This mode benefits from
 the break-before-make capability of Multipath TCP. When an MPTCP
 session is established, a subflow is created over the WiFi interface.
 No packet is sent over the cellular interface as long as the WiFi
 interface remains up [Cellnet12]. This implies that the cellular
 interface can remain idle and battery capacity is preserved. When
 the WiFi interface fails, new subflows are established over the
 cellular interface in order to preserve the established Multipath TCP
 sessions. Compared to the backup mode described earlier, this mode
 of operation is characterised by a throughput drop while the cellular

Bonaventure, et al. Expires January 7, 2016 [Page 5]

Internet-Draft MPTCP Experience July 2015

 interface is brought up and the subflows are reestablished. During
 this time, no data packet is transmitted.

 From a protocol viewpoint, [Cellnet12] discusses the problem posed by
 the unreliability of the ADD_ADDR option and proposes a small
 protocol extension to allow hosts to reliably exchange this option.
 It would be useful to analyze packet traces to understand whether the
 unreliability of the REMOVE_ADDR option poses an operational problem
 in real deployments.

 Another study of the performance of Multipath TCP in wireless
 networks was reported in [IMC13b]. This study uses laptops connected
 to various cellular ISPs and WiFi hotspots. It compares various file
 transfer scenarios and concludes based on measurements with the
 Multipath TCP implementation in the Linux kernel that "MPTCP provides
 a robust data transport and reduces variations in download
 latencies".

 A different study of the performance of Multipath TCP with two
 wireless networks is presented in [INFOCOM14]. In this study the two
 networks had different qualities : a good network and a lossy
 network. When using two paths with different packet loss ratios, the
 Multipath TCP congestion control scheme moves traffic away from the
 lossy link that is considered to be congested. However, [INFOCOM14]
 documents an interesting scenario that is summarised in the Figure 1.

 client ----------- path1 -------- server
 | |
 +--------------- path2 ------------+

 Figure 1: Simple network topology

 Initially, the two paths have the same quality and Multipath TCP
 distributes the load over both of them. During the transfer, the
 second path becomes lossy, e.g. because the client moves. Multipath
 TCP detects the packet losses and they are retransmitted over the
 first path. This enables the data transfer to continue over the
 first path. However, the subflow over the second path is still up
 and transmits one packet from time to time. Although the N packets
 have been acknowledged over the first subflow (at the MPTCP level),
 they have not been acknowledged at the TCP level over the second
 subflow. To preserve the continuity of the sequence numbers over the
 second subflow, TCP will continue to retransmit these segments until
 either they are acknowledged or the maximum number of retransmissions
 is reached. This behavior is clearly inefficient and may lead to
 blocking since the second subflow will consume window space to be
 able to retransmit these packets. [INFOCOM14] proposes a new

Bonaventure, et al. Expires January 7, 2016 [Page 6]

Internet-Draft MPTCP Experience July 2015

 Multipath TCP option to solve this problem. In practice, a new TCP
 option is probably not required. When the client detects that the
 data transmitted over the second subflow has been acknowledged over
 the first subflow, it could decide to terminate the second subflow by
 sending a RST segment. If the interface associated to this subflow
 is still up, a new subflow could be immediately reestablished. It
 would then be immediately usable to send new data and would not be
 forced to first retransmit the previously transmitted data. As of
 this writing, this dynamic management of the subflows is not yet
 implemented in the Multipath TCP implementation in the Linux kernel.

2.3 . Multipath TCP proxies

 As Multipath TCP is not yet widely deployed on both clients and
 servers, several deployments have used various forms of proxies. Two
 families solutions are currently being used or tested
 [I-D.deng-mptcp-proxy].

 A first use case is when a Multipath TCP enabled client wants to use
 several interfaces to reach a regular TCP server. A typical use case
 is a smartphone that needs to use both its WiFi and its cellular
 interface to transfer data. Several types of proxies are possible
 for this use case. An HTTP proxy deployed on a Multipath TCP capable
 server would enable the smartphone to use Multipath TCP to access
 regular web servers. Obviously, this solution only works for
 applications that rely on HTTP. Another possibility is to use a
 proxy that can convert any Multipath TCP connection into a regular
 TCP connection. The SOCKS protocol [RFC1928] is an example of such a
 protocol. Other proxies have been proposed
 [I-D.wei-mptcp-proxy-mechanism] [HotMiddlebox13b]. Measurements
 performed with smartphones [Mobicom15] show that popular applications
 work correctly through a SOCKS proxy and Multipath TCP enabled
 smartphones. Thanks to Multipath TCP, long connections can be spread
 over the two available interfaces. However, for short connections,
 most of the data is sent over the initial subflow that is created
 over the interface corresponding to the default route and the second
 subflow is almost not used.

 A second use case is when Multipath TCP is used by middleboxes,
 typically inside access networks. Various network operators are
 discussing and evaluating solutions for hybrid access networks
 [BBF-WT348]. Such networks arise when a network operator controls
 two different access network technologies, e.g. DSL and LTE, and
 wants to combine them to improve the bandwidth offered to the
 endusers [I-D.lhwxz-hybrid-access-network-architecture]. Several
 solutions are currently investigated for such networks [BBF-WT348].
 Figure 2 shows the organisation of such a network. When a client
 creates a normal TCP connection, it is intercepted by the Hybrid CPE

Bonaventure, et al. Expires January 7, 2016 [Page 7]

https://tools.ietf.org/pdf/rfc1928

Internet-Draft MPTCP Experience July 2015

 (HPCE) that converts it in a Multipath TCP connection so that it can
 use the available access networks (DSL and LTE in the example). The
 Hybrid Access Gateway (HAG) does the opposite to ensure that the
 regular server see a normal TCP connection. Some of the solutions
 that are currently discussed for those hybrid networks use Multipath
 TCP on the HCPE and the HAG. Other solutions rely on tunnels between
 the HCPE and the HAG [I-D.lhwxz-gre-notifications-hybrid-access].

 client --- HCPE ------ dsl ------- HAG --- internet --- server
 | |
 +------- lte -----------+

 Figure 2: Hybrid Access Network

3. Operational Experience

3.1 . Middlebox interference

 The interference caused by various types of middleboxes has been an
 important concern during the design of the Multipath TCP protocol.
 Three studies on the interactions between Multipath TCP and
 middleboxes are worth being discussed.

 The first analysis was described in [IMC11]. This paper was the main
 motivation for including inside Multipath TCP various techniques to
 cope with middlebox interference. More specifically, Multipath TCP
 has been designed to cope with middleboxes that :

 o change source or destination addresses

 o change source or destination port numbers

 o change TCP sequence numbers

 o split or coalesce segments

 o remove TCP options

 o modify the payload of TCP segments

 These middlebox interferences have all been included in the MBtest
 suite [MBTest]. This test suite has been used [HotMiddlebox13] to
 verify the reaction of the Multipath TCP implementation in the Linux
 kernel when faced with middlebox interference. The test environment
 used for this evaluation is a dual-homed client connected to a
 single-homed server. The middlebox behavior can be activated on any
 of the paths. The main results of this analysis are :

Bonaventure, et al. Expires January 7, 2016 [Page 8]

Internet-Draft MPTCP Experience July 2015

 o the Multipath TCP implementation in the Linux kernel is not
 affected by a middlebox that performs NAT or modifies TCP sequence
 numbers

 o when a middlebox removes the MP_CAPABLE option from the initial
 SYN segment, the Multipath TCP implementation in the Linux kernel
 falls back correctly to regular TCP

 o when a middlebox removes the DSS option from all data segments,
 the Multipath TCP implementation in the Linux kernel falls back
 correctly to regular TCP

 o when a middlebox performs segment coalescing, the Multipath TCP
 implementation in the Linux kernel is still able to accurately
 extract the data corresponding to the indicated mapping

 o when a middlebox performs segment splitting, the Multipath TCP
 implementation in the Linux kernel correctly reassembles the data
 corresponding to the indicated mapping. [HotMiddlebox13] shows on
 figure 4 in section 3.3 a corner case with segment splitting that
 may lead to a desynchronisation between the two hosts.

 The interactions between Multipath TCP and real deployed middleboxes
 is also analyzed in [HotMiddlebox13] and a particular scenario with
 the FTP application level gateway running on a NAT is described.

 From an operational viewpoint, knowing that Multipath TCP can cope
 with various types of middlebox interference is important. However,
 there are situations where the network operators need to gather
 information about where a particular middlebox interference occurs.
 The tracebox software [tracebox] described in [IMC13a] is an
 extension of the popular traceroute software that enables network
 operators to check at which hop a particular field of the TCP header
 (including options) is modified. It has been used by several network
 operators to debug various middlebox interference problems. tracebox
 includes a scripting language that enables its user to specify
 precisely which packet is sent by the source. tracebox sends packets
 with an increasing TTL/HopLimit and compares the information returned
 in the ICMP messages with the packet that it sends. This enables
 tracebox to detect any interference caused by middleboxes on a given
 path. tracebox works better when routers implement the ICMP extension
 defined in [RFC1812].

 A closer look at the packets received on the multipath-tcp.org server
 showed that among the 184 thousands Multipath TCP connections in the
 trace, we observed only 125 of them falling back to regular TCP,
 which happened with 28 different client IP addresses. These include
 91 HTTP connections and 34 FTP connections. The FTP interference is

Bonaventure, et al. Expires January 7, 2016 [Page 9]

https://tools.ietf.org/pdf/rfc1812

Internet-Draft MPTCP Experience July 2015

 expected and due to Application Level Gateways running on NAT boxes.
 The HTTP interference appeared only on the direction from server to
 client and could have been caused by transparent proxies deployed in
 cellular or enterprise networks.

 Users of the Multipath TCP implementation have reported some
 experience with middlebox interference. The strangest scenario has
 been a middlebox that accepts the Multipath TCP options in the SYN
 segment but later replaces Multipath TCP options with a TCP EOL
 option [StrangeMbox]. This causes Multipath TCP to perform a
 fallback to regular TCP without any impact on the application.

3.2 . Congestion control

 Congestion control has been an important problem for Multipath TCP.
 The standardised congestion control scheme for Multipath TCP is
 defined in [RFC6356] and [NSDI11]. This congestion control scheme
 has been implemented in the Linux implementation of Multipath TCP.
 Linux uses a modular architecture to support various congestion
 control schemes. This architecture is applicable for both regular
 TCP and Multipath TCP. While the coupled congestion control scheme
 defined in [RFC6356] is the default congestion control scheme in the
 Linux implementation, other congestion control schemes have been
 added. The second congestion control scheme is OLIA [CONEXT12].
 This congestion control scheme is also an adaptation of the NewReno
 single path congestion control scheme to support multiple paths.
 Simulations and measurements have shown that it provides some
 performance benefits compared to the the default congestion control
 scheme [CONEXT12]. Measurement over a wide range of parameters
 reported in [CONEXT13] also indicate some benefits with the OLIA
 congestion control scheme. Recently, a delay-based congestion
 control scheme has been ported to the Multipath TCP implementation in
 the Linux kernel. This congestion control scheme has been evaluated
 by using simulations in [ICNP12]. The fourth congestion control
 scheme that has been included in the Linux implementation of
 Multipath TCP is the BALIA scheme
 [I-D.walid-mptcp-congestion-control].

 These different congestion control schemes have been compared in
 several articles. [CONEXT13] and [PaaschPhD] apply an experimental
 design approach to compare these algorithms in an emulated
 environment. The evaluation showed that the delay-based congestion
 control scheme is less able to efficiently use the available links
 than the three other schemes. Reports from some users indicate that
 they seem to favor OLIA.

Bonaventure, et al. Expires January 7, 2016 [Page 10]

https://tools.ietf.org/pdf/rfc6356
https://tools.ietf.org/pdf/rfc6356

Internet-Draft MPTCP Experience July 2015

3.3 . Subflow management

 The multipath capability of Multipath TCP comes from the utilisation
 of one subflow per path. The Multipath TCP architecture [RFC6182]
 and the protocol specification [RFC6824] define the basic usage of
 the subflows and the protocol mechanisms that are required to create
 and terminate them. However, there are no guidelines on how subflows
 are used during the lifetime of a Multipath TCP session. Most of the
 experiments with Multipath TCP have been performed in controlled
 environments. Still, based on the experience running them and
 discussions on the mptcp-dev mailing list, interesting lessons have
 been learned about the management of these subflows.

 From a subflow viewpoint, the Multipath TCP protocol is completely
 symmetrical. Both the clients and the server have the capability to
 create subflows. However in practice the existing Multipath TCP
 implementations [I-D.eardley-mptcp-implementations-survey] have opted
 for a strategy where only the client creates new subflows. The main
 motivation for this strategy is that often the client resides behind
 a NAT or a firewall, preventing passive subflow openings on the
 client. Although there are environments such as datacenters where
 this problem does not occur, as of this writing, no precise
 requirement has emerged for allowing the server to create new
 subflows.

3.4 . Implemented subflow managers

 The Multipath TCP implementation in the Linux kernel includes several
 strategies to manage the subflows that compose a Multipath TCP
 session. The basic subflow manager is the full-mesh. As the name
 implies, it creates a full-mesh of subflows between the communicating
 hosts.

 The most frequent use case for this subflow manager is a multihomed
 client connected to a single-homed server. In this case, one subflow
 is created for each interface on the client. The current
 implementation of the full-mesh subflow manager is static. The
 subflows are created immediately after the creation of the initial
 subflow. If one subflow fails during the lifetime of the Multipath
 TCP session (e.g. due to excessive retransmissions, or the loss of
 the corresponding interface), it is not always reestablished. There
 is ongoing work to enhance the full-mesh path manager to deal with
 such events.

 When the server is multihomed, using the full-mesh subflow manager
 may lead to a large number of subflows being established. For
 example, consider a dual-homed client connected to a server with
 three interfaces. In this case, even if the subflows are only

Bonaventure, et al. Expires January 7, 2016 [Page 11]

https://tools.ietf.org/pdf/rfc6182
https://tools.ietf.org/pdf/rfc6824

Internet-Draft MPTCP Experience July 2015

 created by the client, 6 subflows will be established. This may be
 excessive in some environments, in particular when the client and/or
 the server have a large number of interfaces. A recent draft has
 proposed a Multipath TCP option to negotiate the maximum number of
 subflows . However, it should be noted that there have been reports
 on the mptcp-dev mailing indicating that users rely on Multipath TCP
 to aggregate more than four different interfaces. Thus, there is a
 need for supporting many interfaces efficiently.

 Creating subflows between multihomed clients and servers may
 sometimes lead to operational issues as observed by discussions on
 the mptcp-dev mailing list. In some cases the network operators
 would like to have a better control on how the subflows are created
 by Multipath TCP [I-D.boucadair-mptcp-max-subflow]. This might
 require the definition of policy rules to control the operation of
 the subflow manager. The two scenarios below illustrate some of
 these requirements.

 host1 ---------- switch1 ----- host2
 | | |
 +-------------- switch2 --------+

 Figure 3: Simple switched network topology

 Consider the simple network topology shown in Figure 3. From an
 operational viewpoint, a network operator could want to create two
 subflows between the communicating hosts. From a bandwidth
 utilization viewpoint, the most natural paths are host1-switch1-host2
 and host1-switch2-host2. However, a Multipath TCP implementation
 running onthese two hosts may sometimes have difficulties to obtain
 this result.

 To understand the difficulty, let us consider different allocation
 strategies for the IP addresses. A first strategy is to assign two
 subnets : subnetA (resp. subnetB) contains the IP addresses of
 host1’s interface to switch1 (resp. switch2) and host2’s interface to
 switch1 (resp. switch2). In this case, a Multipath TCP subflow
 manager should only create one subflow per subnet. To enforce the
 utilization of these paths, the network operator would have to
 specify a policy that prefers the subflows in the same subnet over
 subflows between addresses in different subnets. It should be noted
 that the policy should probably also specify how the subflow manager
 should react when an interface or subflow fails.

 A second strategy is to use a single subnet for all IP addresses. In
 this case, it becomes more difficult to specify a policy that
 indicates which subflows should be established.

Bonaventure, et al. Expires January 7, 2016 [Page 12]

Internet-Draft MPTCP Experience July 2015

 The second subflow manager that is currently supported by the
 Multipath TCP implementation in the Linux kernel is the ndiffport
 subflow manager. This manager was initially created to exploit the
 path diversity that exists between single-homed hosts due to the
 utilization of flow-based load balancing techniques. This subflow
 manager creates N subflows between the same pair of IP addresses.
 The N subflows are created by the client and differ only in the
 source port selected by the client. It was not designed to be used
 on multihomed hosts.

3.5 . Subflow destination port

 The Multipath TCP protocol relies on the token contained in the
 MP_JOIN option to associate a subflow to an existing Multipath TCP
 session. This implies that there is no restriction on the source
 address, destination address and source or destination ports used for
 the new subflow. The ability to use different source and destination
 addresses is key to support multihomed servers and clients. The
 ability to use different destination port numbers is worth being
 discussed because it has operational implications.

 For illustration, consider a dual-homed client that creates a second
 subflow to reach a single-homed server as illustrated in Figure 4.

 client ------- r1 --- internet --- server
 | |
 +----------r2-------+

 Figure 4: Multihomed-client connected to single-homed server

 When the Multipath TCP implementation in the Linux kernel creates the
 second subflow it uses the same destination port as the initial
 subflow. This choice is motivated by the fact that the server might
 be protected by a firewall and only accept TCP connections (including
 subflows) on the official port number. Using the same destination
 port for all subflows is also useful for operators that rely on the
 port numbers to track application usage in their network.

 There have been suggestions from Multipath TCP users to modify the
 implementation to allow the client to use different destination ports
 to reach the server. This suggestion seems mainly motivated by
 traffic shaping middleboxes that are used in some wireless networks.
 In networks where different shaping rates are associated to different
 destination port numbers, this could allow Multipath TCP to reach a
 higher performance. As of this writing, we are not aware of any
 implementation of this kind of tweaking.

Bonaventure, et al. Expires January 7, 2016 [Page 13]

Internet-Draft MPTCP Experience July 2015

 However, from an implementation point-of-view supporting different
 destination ports for the same Multipath TCP connection introduces a
 new performance issue. A legacy implementation of a TCP stack
 creates a listening socket to react upon incoming SYN segments. The
 listening socket is handling the SYN segments that are sent on a
 specific port number. Demultiplexing incoming segments can thus be
 done solely by looking at the IP addresses and the port numbers.
 With Multipath TCP however, incoming SYN segments may have an MP_JOIN
 option with a different destination port. This means, that all
 incoming segments that did not match on an existing listening-socket
 or an already established socket must be parsed for an eventual
 MP_JOIN option. This imposes an additional cost on servers,
 previously not existent on legacy TCP implementations.

3.6 . Closing subflows

 client server
 | |
 MPTCP: established | | MPTCP: established
 Sub: established | | Sub: established
 | |
 | DATA_FIN |
 MPTCP: close-wait | <------------------------ | close() (step 1)
 Sub: established | DATA_ACK |
 | ------------------------> | MPTCP: fin-wait-2
 | | Sub: established
 | |
 | DATA_FIN + subflow-FIN |
 close()/shutdown() | ------------------------> | MPTCP: time-wait
 (step 2) | DATA_ACK | Sub: close-wait
 MPTCP: closed | <------------------------ |
 Sub: fin-wait-2 | |
 | |
 | subflow-FIN |
 MPTCP: closed | <------------------------ | subflow-close()
 Sub: time-wait | subflow-ACK |
 (step 3) | ------------------------> | MPTCP: time-wait
 | | Sub: closed
 | |

 Figure 5: Multipath TCP may not be able to avoid time-wait state
 (even if enforced by the application).

 Figure 5 shows a very particular issue within Multipath TCP. Many
 high-performance applications try to avoid Time-Wait state by
 deferring the closure of the connection until the peer has sent a
 FIN. That way, the client on the left of Figure 5 does a passive

Bonaventure, et al. Expires January 7, 2016 [Page 14]

Internet-Draft MPTCP Experience July 2015

 closure of the connection, transitioning from Close-Wait to Last-ACK
 and finally freeing the resources after reception of the ACK of the
 FIN. An application running on top of a Multipath TCP enabled Linux
 kernel might also use this approach. The difference here is that the
 close() of the connection (Step 1 in Figure 5) only triggers the
 sending of a DATA_FIN. Nothing guarantees that the kernel is ready
 to combine the DATA_FIN with a subflow-FIN. The reception of the
 DATA_FIN will make the application trigger the closure of the
 connection (step 2), trying to avoid Time-Wait state with this late
 closure. This time, the kernel might decide to combine the DATA_FIN
 with a subflow-FIN. This decision will be fatal, as the subflow’s
 state machine will not transition from Close-Wait to Last-Ack, but
 rather go through Fin-Wait-2 into Time-Wait state. The Time-Wait
 state will consume resources on the host for at least 2 MSL (Maximum
 Segment Lifetime). Thus, a smart application, that tries to avoid
 Time-Wait state by doing late closure of the connection actually ends
 up with one of its subflows in Time-Wait state. A high-performance
 Multipath TCP kernel implementation should honor the desire of the
 application to do passive closure of the connection and successfully
 avoid Time-Wait state - even on the subflows.

 The solution to this problem lies in an optimistic assumption that a
 host doing active-closure of a Multipath TCP connection by sending a
 DATA_FIN will soon also send a FIN on all its in subflows. Thus, the
 passive closer of the connection can simply wait for the peer to send
 exactly this FIN - enforcing passive closure even on the subflows.
 Of course, to avoid consuming resources indefinitely, a timer must
 limit the time our implementation waits for the FIN.

4. Packet schedulers

 In a Multipath TCP implementation, the packet scheduler is the
 algorithm that is executed when transmitting each packet to decide on
 which subflow it needs to be transmitted. The packet scheduler
 itself does not have any impact on the interoperability of Multipath
 TCP implementations. However, it may clearly impact the performance
 of Multipath TCP sessions. The Multipath TCP implementation in the
 Linux kernel supports a pluggable architecture for the packet
 scheduler [PaaschPhD]. As of this writing, two schedules have been
 implemented: round-robin and lowest-rtt-first. They are compared in
 [CSWS14]. The experiments and measurements described in [CSWS14]
 show that the lowest-rtt-first scheduler appears to be the best
 compromise from a performance viewpoint. Another study of the packet
 schedulers is presented in [PAMS2014]. This study relies on
 simulations with the Multipath TCP implementation in the Linux
 kernel. These simulations confirm the impact of the packet scheduler
 on the performance of Multipath TCP.

Bonaventure, et al. Expires January 7, 2016 [Page 15]

Internet-Draft MPTCP Experience July 2015

5. Segment size selection

 When an application performs a write/send system call, the kernel
 allocates a packet buffer (sk_buff in Linux) to store the data the
 application wants to send. The kernel will store at most one MSS
 (Maximum Segment Size) of data per buffer. As MSS can differ amongst
 subflows, an MPTCP implementation must select carefully the MSS used
 to generate application data. The Linux kernel implementation had
 various ways of selecting the MSS: minimum or maximum amongst the
 different subflows. However, these heuristics of MSS selection can
 cause significant performances issues in some environment. Consider
 the following example. An MPTCP connection has two established
 subflows that respectively use a MSS of 1420 and 1428 bytes. If
 MPTCP selects the maximum, then the application will generate
 segments of 1428 bytes of data. An MPTCP implementation will have to
 split the segment in two (a 1420-byte and 8-byte segments) when
 pushing on the subflow with the smallest MSS. The latter segment
 will introduce a large overhead as for a single data segment 2 slots
 will be used in the congestion window (in packets) therefore reducing
 by ~2 the potential throughput (in bytes/s) of this subflow. Taking
 the smallest MSS does not solve the issue as there might be a case
 where the sublow with the smallest MSS will only participate
 marginally to the overall performance therefore reducing the
 potential throughput of the other subflows.

 The Linux implementation recently took another approach [DetalMSS].
 Instead of selecting the minimum and maximum values, it now
 dynamically adapts the MSS based on the contribution of all the
 subflows to the connection’s throughput. For this it computes, for
 each subflow, the potential throughput achieved by selecting each MSS
 value and by taking into account the lost space in the cwnd. It then
 selects the MSS that allows to achieve the highest potential
 throughput.

6. Interactions with the Domain Name System

 Multihomed clients such as smartphones can send DNS queries over any
 of their interfaces. When a single-homed client performs a DNS
 query, it receives from its local resolver the best answer for its
 request. If the client is multihomed, the answer returned to the DNS
 query may vary with the interface over which it has been sent.

Bonaventure, et al. Expires January 7, 2016 [Page 16]

Internet-Draft MPTCP Experience July 2015

 cdn1
 |
 client -- cellular -- internet -- cdn3
 | |
 +----- wifi --------+
 |
 cdn2

 Figure 6: Simple network topology

 If the client sends a DNS query over the WiFi interface, the answer
 will point to the cdn2 server while the same request sent over the
 cellular interface will point to the cdn1 server. This might cause
 problems for CDN providers that locate their servers inside ISP
 networks and have contracts that specify that the CDN server will
 only be accessed from within this particular ISP. Assume now that
 both the client and the CDN servers support Multipath TCP. In this
 case, a Multipath TCP session from cdn1 or cdn2 would potentially use
 both the cellular network and the WiFi network. This would violate
 the contract between the CDN provider and the network operators. A
 possible solution to prevent this problem would be to modify the DNS
 resolution on the client. The client subnet EDNS extension defined
 in [I-D.vandergaast-edns-client-subnet] could be used for this
 purpose. When the client sends a DNS query from its WiFi interface,
 it should also send the client subnet corresponding to the cellular
 interface in this request. This would indicate to the resolver that
 the answer should be valid for both the WiFi and the cellular
 interfaces (e.g., the cdn3 server).

7. Captive portals

 Multipath TCP enables a host to use different interfaces to reach a
 server. In theory, this should ensure connectivity when at least one
 of the interfaces is active. In practice however, there are some
 particular scenarios with captive portals that may cause operational
 problems. The reference environment is shown in Figure 7.

 client ----- network1
 |
 +------- internet ------------- server

 Figure 7: Issue with captive portal

 The client is attached to two networks : network1 that provides
 limited connectivity and the entire Internet through the second
 network interface. In practice, this scenario corresponds to an open

Bonaventure, et al. Expires January 7, 2016 [Page 17]

Internet-Draft MPTCP Experience July 2015

 WiFi network with a captive portal for network1 and a cellular
 service for the second interface. On many smartphones, the WiFi
 interface is preferred over the cellular interface. If the
 smartphone learns a default route via both interfaces, it will
 typically prefer to use the WiFi interface to send its DNS request
 and create the first subflow. This is not optimal with Multipath
 TCP. A better approach would probably be to try a few attempts on
 the WiFi interface and then try to use the second interface for the
 initial subflow as well.

8. Conclusion

 In this document, we have documented a few years of experience with
 Multipath TCP. The information presented in this document was
 gathered from scientific publications and discussions with various
 users of the Multipath TCP implementation in the Linux kernel.

9. Acknowledgements

 This work was partially supported by the FP7-Trilogy2 project. We
 would like to thank all the implementers and users of the Multipath
 TCP implementation in the Linux kernel. This document has benefited
 from the comments of John Ronan, Yoshifumi Nishida, Phil Eardley and
 Jaehyun Hwang.

10. Informative References

 [BBF-WT348]
 Fabregas (Ed), G., "WT-348 - Hybrid Access for Broadband
 Networks", Broadband Forum, contribution bbf2014.1139.04 ,
 June 2015.

 [CACM14] Paasch, C. and O. Bonaventure, "Multipath TCP",
 Communications of the ACM, 57(4):51-57 , April 2014,
 < http://inl.info.ucl.ac.be/publications/multipath-tcp >.

 [CONEXT12]
 Khalili, R., Gast, N., Popovic, M., Upadhyay, U., and J.
 Leboudec, "MPTCP is not pareto-optimal performance issues
 and a possible solution", Proceedings of the 8th
 international conference on Emerging networking
 experiments and technologies (CoNEXT12) , 2012.

Bonaventure, et al. Expires January 7, 2016 [Page 18]

http://inl.info.ucl.ac.be/publications/multipath-tcp

Internet-Draft MPTCP Experience July 2015

 [CONEXT13]
 Paasch, C., Khalili, R., and O. Bonaventure, "On the
 Benefits of Applying Experimental Design to Improve
 Multipath TCP", Conference on emerging Networking
 EXperiments and Technologies (CoNEXT) , December 2013,
 < http://inl.info.ucl.ac.be/publications/benefits-applying-
 experimental-design-improve-multipath-tcp >.

 [CSWS14] Paasch, C., Ferlin, S., Alay, O., and O. Bonaventure,
 "Experimental Evaluation of Multipath TCP Schedulers",
 SIGCOMM CSWS2014 workshop , August 2014.

 [Cellnet12]
 Paasch, C., Detal, G., Duchene, F., Raiciu, C., and O.
 Bonaventure, "Exploring Mobile/WiFi Handover with
 Multipath TCP", ACM SIGCOMM workshop on Cellular Networks
 (Cellnet12) , 2012,
 < http://inl.info.ucl.ac.be/publications/
 exploring-mobilewifi-handover-multipath-tcp >.

 [DetalMSS]
 Detal, G., "Adaptive MSS value", Post on the mptcp-dev
 mailing list , September 2014, < https://listes-
 2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/2014-09/
 msg00130.html >.

 [HotMiddlebox13]
 Hesmans, B., Duchene, F., Paasch, C., Detal, G., and O.
 Bonaventure, "Are TCP Extensions Middlebox-proof?", CoNEXT
 workshop HotMiddlebox , December 2013,
 < http://inl.info.ucl.ac.be/publications/
 are-tcp-extensions-middlebox-proof >.

 [HotMiddlebox13b]
 Detal, G., Paasch, C., and O. Bonaventure, "Multipath in
 the Middle(Box)", HotMiddlebox’13 , December 2013,
 < http://inl.info.ucl.ac.be/publications/
 multipath-middlebox >.

 [HotNets] Raiciu, C., Pluntke, C., Barre, S., Greenhalgh, A.,
 Wischik, D., and M. Handley, "Data center networking with
 multipath TCP", Proceedings of the 9th ACM SIGCOMM
 Workshop on Hot Topics in Networks (Hotnets-IX) , 2010,
 < http://doi.acm.org/10.1145/1868447.1868457 >.

Bonaventure, et al. Expires January 7, 2016 [Page 19]

http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-improve-multipath-tcp
http://inl.info.ucl.ac.be/publications/benefits-applying-experimental-design-improve-multipath-tcp
http://inl.info.ucl.ac.be/publications/exploring-mobilewifi-handover-multipath-tcp
http://inl.info.ucl.ac.be/publications/exploring-mobilewifi-handover-multipath-tcp
https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/2014-09/msg00130.html
https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/2014-09/msg00130.html
https://listes-2.sipr.ucl.ac.be/sympa/arc/mptcp-dev/2014-09/msg00130.html
http://inl.info.ucl.ac.be/publications/are-tcp-extensions-middlebox-proof
http://inl.info.ucl.ac.be/publications/are-tcp-extensions-middlebox-proof
http://inl.info.ucl.ac.be/publications/multipath-middlebox
http://inl.info.ucl.ac.be/publications/multipath-middlebox
http://doi.acm.org/10.1145/1868447.1868457

Internet-Draft MPTCP Experience July 2015

 [I-D.boucadair-mptcp-max-subflow]
 Boucadair, M. and C. Jacquenet, "Negotiating the Maximum
 Number of MPTCP Subflows", draft-boucadair-mptcp-max-
 subflow-00 (work in progress), June 2015.

 [I-D.deng-mptcp-proxy]
 Lingli, D., Liu, D., Sun, T., Boucadair, M., and G.
 Cauchie, "Use-cases and Requirements for MPTCP Proxy in
 ISP Networks", draft-deng-mptcp-proxy-01 (work in
 progress), October 2014.

 [I-D.eardley-mptcp-implementations-survey]
 Eardley, P., "Survey of MPTCP Implementations", draft-
 eardley-mptcp-implementations-survey-02 (work in
 progress), July 2013.

 [I-D.lhwxz-gre-notifications-hybrid-access]
 Leymann, N., Heidemann, C., Wasserman, M., Xue, L., and M.
 Zhang, "GRE Notifications for Hybrid Access", draft-lhwxz-
 gre-notifications-hybrid-access-01 (work in progress),
 January 2015.

 [I-D.lhwxz-hybrid-access-network-architecture]
 Leymann, N., Heidemann, C., Wasserman, M., Xue, L., and M.
 Zhang, "Hybrid Access Network Architecture", draft-lhwxz-
 hybrid-access-network-architecture-02 (work in progress),
 January 2015.

 [I-D.vandergaast-edns-client-subnet]
 Contavalli, C., Gaast, W., Leach, S., and E. Lewis,
 "Client Subnet in DNS Requests", draft-vandergaast-edns-
 client-subnet-02 (work in progress), July 2013.

 [I-D.walid-mptcp-congestion-control]
 Walid, A., Peng, Q., Hwang, J., and S. Low, "Balanced
 Linked Adaptation Congestion Control Algorithm for MPTCP",
 draft-walid-mptcp-congestion-control-02 (work in
 progress), January 2015.

 [I-D.wei-mptcp-proxy-mechanism]
 Wei, X., Xiong, C., and E. Ed, "MPTCP proxy mechanisms",
 draft-wei-mptcp-proxy-mechanism-02 (work in progress),
 June 2015.

 [ICNP12] Cao, Y., Xu, M., and X. Fu, "Delay-based congestion
 control for multipath TCP", 20th IEEE International
 Conference on Network Protocols (ICNP) , 2012.

Bonaventure, et al. Expires January 7, 2016 [Page 20]

https://tools.ietf.org/pdf/draft-boucadair-mptcp-max-subflow-00
https://tools.ietf.org/pdf/draft-boucadair-mptcp-max-subflow-00
https://tools.ietf.org/pdf/draft-deng-mptcp-proxy-01
https://tools.ietf.org/pdf/draft-eardley-mptcp-implementations-survey-02
https://tools.ietf.org/pdf/draft-eardley-mptcp-implementations-survey-02
https://tools.ietf.org/pdf/draft-lhwxz-gre-notifications-hybrid-access-01
https://tools.ietf.org/pdf/draft-lhwxz-gre-notifications-hybrid-access-01
https://tools.ietf.org/pdf/draft-lhwxz-hybrid-access-network-architecture-02
https://tools.ietf.org/pdf/draft-lhwxz-hybrid-access-network-architecture-02
https://tools.ietf.org/pdf/draft-vandergaast-edns-client-subnet-02
https://tools.ietf.org/pdf/draft-vandergaast-edns-client-subnet-02
https://tools.ietf.org/pdf/draft-walid-mptcp-congestion-control-02
https://tools.ietf.org/pdf/draft-wei-mptcp-proxy-mechanism-02

Internet-Draft MPTCP Experience July 2015

 [IMC11] Honda, M., Nishida, Y., Raiciu, C., Greenhalgh, A.,
 Handley, M., and H. Tokuda, "Is it still possible to
 extend TCP?", Proceedings of the 2011 ACM SIGCOMM
 conference on Internet measurement conference (IMC ’11) ,
 2011, < http://doi.acm.org/10.1145/2068816.2068834 >.

 [IMC13a] Detal, G., Hesmans, B., Bonaventure, O., Vanaubel, Y., and
 B. Donnet, "Revealing Middlebox Interference with
 Tracebox", Proceedings of the 2013 ACM SIGCOMM conference
 on Internet measurement conference , 2013,
 < http://inl.info.ucl.ac.be/publications/
 revealing-middlebox-interference-tracebox >.

 [IMC13b] Chen, Y., Lim, Y., Gibbens, R., Nahum, E., Khalili, R.,
 and D. Towsley, "A measurement-based study of MultiPath
 TCP performance over wireless network", Proceedings of the
 2013 conference on Internet measurement conference (IMC
 ’13) , n.d., < http://doi.acm.org/10.1145/2504730.2504751 >.

 [IMC13c] Pelsser, C., Cittadini, L., Vissicchio, S., and R. Bush,
 "From Paris to Tokyo on the suitability of ping to measure
 latency", Proceedings of the 2013 conference on Internet
 measurement conference (IMC ’13) , 2013,
 < http://doi.acm.org/10.1145/2504730.2504765 >.

 [INFOCOM14]
 Lim, Y., Chen, Y., Nahum, E., Towsley, D., and K. Lee,
 "Cross-Layer Path Management in Multi-path Transport
 Protocol for Mobile Devices", IEEE INFOCOM’14 , 2014.

 [IOS7] "Multipath TCP Support in iOS 7", January 2014,
 < http://support.apple.com/kb/HT5977 >.

 [MBTest] Hesmans, B., "MBTest", 2013,
 < https://bitbucket.org/bhesmans/mbtest >.

 [MPTCPBIB]
 Bonaventure, O., "Multipath TCP - An annotated
 bibliography", Technical report , April 2015,
 < https://github.com/obonaventure/mptcp-bib >.

 [Mobicom15]
 De Coninck, Q., Baerts, M., Hesmans, B., and O.
 Bonaventure, "Poster - Evaluating Android Applications
 with Multipath TCP", Mobicom 2015 (Poster) , September
 2015.

Bonaventure, et al. Expires January 7, 2016 [Page 21]

http://doi.acm.org/10.1145/2068816.2068834
http://inl.info.ucl.ac.be/publications/revealing-middlebox-interference-tracebox
http://inl.info.ucl.ac.be/publications/revealing-middlebox-interference-tracebox
http://doi.acm.org/10.1145/2504730.2504751
http://doi.acm.org/10.1145/2504730.2504765
http://support.apple.com/kb/HT5977
https://bitbucket.org/bhesmans/mbtest
https://github.com/obonaventure/mptcp-bib

Internet-Draft MPTCP Experience July 2015

 [MultipathTCP-Linux]
 Paasch, C., Barre, S., and . et al, "Multipath TCP
 implementation in the Linux kernel", n.d.,
 < http://www.multipath-tcp.org >.

 [NSDI11] Wischik, D., Raiciu, C., Greenhalgh, A., and M. Handley,
 "Design, implementation and evaluation of congestion
 control for Multipath TCP", In Proceedings of the 8th
 USENIX conference on Networked systems design and
 implementation (NSDI11) , 2011.

 [NSDI12] Raiciu, C., Paasch, C., Barre, S., Ford, A., Honda, M.,
 Duchene, F., Bonaventure, O., and M. Handley, "How Hard
 Can It Be? Designing and Implementing a Deployable
 Multipath TCP", USENIX Symposium of Networked Systems
 Design and Implementation (NSDI12) , April 2012,
 < http://inl.info.ucl.ac.be/publications/how-hard-can-it-
 be-designing-and-implementing-deployable-multipath-tcp >.

 [PAMS2014]
 Arzani, B., Gurney, A., Cheng, S., Guerin, R., and B. Loo,
 "Impact of Path Selection and Scheduling Policies on MPTCP
 Performance", PAMS2014 , 2014.

 [PaaschPhD]
 Paasch, C., "Improving Multipath TCP", Ph.D. Thesis ,
 November 2014, < http://inl.info.ucl.ac.be/publications/
 improving-multipath-tcp >.

 [RFC1812] Baker, F., "Requirements for IP Version 4 Routers", RFC
 1812 , June 1995.

 [RFC1928] Leech, M., Ganis, M., Lee, Y., Kuris, R., Koblas, D., and
 L. Jones, "SOCKS Protocol Version 5", RFC 1928 , March
 1996.

 [RFC6182] Ford, A., Raiciu, C., Handley, M., Barre, S., and J.
 Iyengar, "Architectural Guidelines for Multipath TCP
 Development", RFC 6182 , March 2011.

 [RFC6356] Raiciu, C., Handley, M., and D. Wischik, "Coupled
 Congestion Control for Multipath Transport Protocols", RFC
 6356 , October 2011.

 [RFC6824] Ford, A., Raiciu, C., Handley, M., and O. Bonaventure,
 "TCP Extensions for Multipath Operation with Multiple
 Addresses", RFC 6824 , January 2013.

Bonaventure, et al. Expires January 7, 2016 [Page 22]

http://www.multipath-tcp.org/
http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-implementing-deployable-multipath-tcp
http://inl.info.ucl.ac.be/publications/how-hard-can-it-be-designing-and-implementing-deployable-multipath-tcp
http://inl.info.ucl.ac.be/publications/improving-multipath-tcp
http://inl.info.ucl.ac.be/publications/improving-multipath-tcp
https://tools.ietf.org/pdf/rfc1812
https://tools.ietf.org/pdf/rfc1812
https://tools.ietf.org/pdf/rfc1928
https://tools.ietf.org/pdf/rfc6182
https://tools.ietf.org/pdf/rfc6356
https://tools.ietf.org/pdf/rfc6356
https://tools.ietf.org/pdf/rfc6824

Internet-Draft MPTCP Experience July 2015

 [SIGCOMM11]
 Raiciu, C., Barre, S., Pluntke, C., Greenhalgh, A.,
 Wischik, D., and M. Handley, "Improving datacenter
 performance and robustness with multipath TCP",
 Proceedings of the ACM SIGCOMM 2011 conference , n.d.,
 < http://doi.acm.org/10.1145/2018436.2018467 >.

 [StrangeMbox]
 Bonaventure, O., "Multipath TCP through a strange
 middlebox", Blog post , January 2015,
 < http://blog.multipath-tcp.org/blog/html/2015/01/30/
 multipath_tcp_through_a_strange_middlebox.html >.

 [tracebox]
 Detal, G., "tracebox", 2013, < http://www.tracebox.org >.

Appendix A . Changelog

 o initial version : September 16th, 2014 : Added section Section 5
 that discusses some performance problems that appeared with the
 Linux implementation when using subflows having different MSS
 values

 o update with a description of the middlebox that replaces an
 unknown TCP option with EOL [StrangeMbox]

 o version ietf-02 : July 2015, answer to last call comments

 * Reorganised text to better separate use cases and operational
 experience

 * New use case on Multipath TCP proxies in Section 2.3

 * Added some text on middleboxes in Section 3.1

 * Removed the discussion on SDN

 * Restructured text and improved writing in some parts

Authors’ Addresses

 Olivier Bonaventure
 UCLouvain

 Email: Olivier.Bonaventure@uclouvain.be

Bonaventure, et al. Expires January 7, 2016 [Page 23]

http://doi.acm.org/10.1145/2018436.2018467
http://blog.multipath-tcp.org/blog/html/2015/01/30/multipath_tcp_through_a_strange_middlebox.html
http://blog.multipath-tcp.org/blog/html/2015/01/30/multipath_tcp_through_a_strange_middlebox.html
http://www.tracebox.org/

Internet-Draft MPTCP Experience July 2015

 Christoph Paasch
 UCLouvain

 Email: Christoph.Paasch@gmail.com

 Gregory Detal
 UCLouvain and Tessares

 Email: Gregory.Detal@tessares.net

Bonaventure, et al. Expires January 7, 2016 [Page 24]

