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Abstract

Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases.
While carrying three copies of chromosome 21 increases the risk for CHD, trisomy
21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or
environmental factors could contribute to the CHD risk. Here we report genomic
variations that in oncert with trisomy 21, determine the risk for CHD in DS.
This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53,
VSD = 65) as cases, and 151 DS without CHD as controls. Chromosome 21-
specific association studies revealed rs2832616 and rs1943950 as CHD risk
alleles (adjusted genotypic P-values &lt; 0.05). These signals were confirmed in
a replication cohort of 92 DS-CHD cases and 80 DS-without CHD (nominal P-
value 0.0022). Furthermore, CNV analyses using a customized chromosome 21
aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three
CNV regions associated with AVSD risk (FDR ≤ 0.05). Two of these regions that
are located...

Document type : Article de périodique (Journal article)

Référence bibliographique

Sailani, M. Reza ; Makrythanasis, Periklis ; Valsesia, Armand ; Santoni, Federico A. ; Deutsch,
Samuel ; et. al. The complex SNP and CNV genetic architecture of the increased risk of congenital
heart defects in Down syndrome. In: Genome Research, Vol. 23, no. 9, p. 1410-1421 (2013)

DOI : 10.1101/gr.147991.112

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DIAL UCLouvain

https://core.ac.uk/display/34091647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Research

The complex SNP and CNV genetic architecture
of the increased risk of congenital heart defects
in Down syndrome
M. Reza Sailani,1,2 Periklis Makrythanasis,1 Armand Valsesia,3,4,5 Federico A. Santoni,1

Samuel Deutsch,1 Konstantin Popadin,1 Christelle Borel,1 Eugenia Migliavacca,1

Andrew J. Sharp,1,20 Genevieve Duriaux Sail,1 Emilie Falconnet,1 Kelly Rabionet,6,7,8
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Congenital heart defect (CHD) occurs in 40% of Down syndrome (DS) cases. While carrying three copies of chromosome
21 increases the risk for CHD, trisomy 21 itself is not sufficient to cause CHD. Thus, additional genetic variation and/or
environmental factors could contribute to the CHD risk. Here we report genomic variations that in concert with trisomy
21, determine the risk for CHD in DS. This case-control GWAS includes 187 DS with CHD (AVSD = 69, ASD = 53, VSD = 65)
as cases, and 151 DS without CHD as controls. Chromosome 21–specific association studies revealed rs2832616 and
rs1943950 as CHD risk alleles (adjusted genotypic P-values <0.05). These signals were confirmed in a replication cohort of
92 DS-CHD cases and 80 DS-without CHD (nominal P-value 0.0022). Furthermore, CNV analyses using a customized
chromosome 21 aCGH of 135K probes in 55 DS-AVSD and 53 DS-without CHD revealed three CNV regions associated
with AVSD risk (FDR £ 0.05). Two of these regions that are located within the previously identified CHD region on
chromosome 21 were further confirmed in a replication study of 49 DS-AVSD and 45 DS- without CHD (FDR £ 0.05).
One of these CNVs maps near the RIPK4 gene, and the second includes the ZBTB21 (previously ZNF295 ) gene, highlighting
the potential role of these genes in the pathogenesis of CHD in DS. We propose that the genetic architecture of the CHD
risk of DS is complex and includes trisomy 21, and SNP and CNV variations in chromosome 21. In addition, a yet-
unidentified genetic variation in the rest of the genome may contribute to this complex genetic architecture.

[Supplemental material is available for this article.]

Down syndrome (DS) is a common genomic disorder caused by

trisomy of human chromosome 21 (Antonarakis 1998; Antonarakis

et al. 2002, 2004; Antonarakis and Epstein 2006). Some of its

phenotypes (e.g., cognitive impairment) are consistently present

in all DS individuals albeit in variable severity, while others show

incomplete penetrance (Antonarakis et al. 2002, 2004; Antonarakis

and Epstein 2006). Among the most notable phenotypes with

reduced penetrance are the congenital heart defects (CHD), since

;40% of DS individuals present some form of CHD (Ferencz et al.

1989). The most frequent forms of CHD in DS cases are atrioven-

tricular septal defects (AVSD), comprising 43% of the CHD cases,

while ventricular septal defects (VSD), atrial septal defects (ASD),

and tetralogy of fallot (TOF) comprise 32%, 19%, and 6% of the

CHD in DS, respectively. In fact, AVSDs are almost exclusively seen

in DS (Ferencz et al. 1989; Roizen and Patterson 2003). The com-

plete underlying genomic or gene expression variation that con-

tributes to the presence of a CHD in DS is unknown. Extensive

efforts over the past years to gain a better understanding of the

genetic basis of CHD in DS using rare cases of partial trisomy 21

have led to identification of genomic regions on chromosome 21

that, when triplicated, are consistently associated with CHD. An

initial study of rare partial trisomy 21 cases suggested a minimal

CHD candidate region on 21q22.3 of ;5.27 Mb between markers

D21S3 and PFKL (Barlow et al. 2001); this region was later nar-

rowed down to 1.77 Mb (DSCAM-ZBTB21) (Korbel et al. 2009). In

another similar study of partial trisomy 21 cases, the CHD region

was mapped to a larger telomeric genomic segment of 15.4 Mb that

overlaps with the segment described above (Lyle et al. 2009). An

association study in the mid 1990s using a few microsatellite

markers on chromosome 21 hinted at a potential association be-

tween variation of the COL6A1 gene region with CHD in Down

syndrome (Davies et al. 1995). Also, Grossman et al. (2011) used

Drosophila, mouse transgenesis, and a cardiac myoblast H9C2 cell

model to show that the overexpression of DSCAM and COL6A2

genes cooperatively contributes to ASD in mice, increased abnor-

malities of heart rhythm, and failure in Drosophila, and promoted
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substrate adhesion in the H9C2 cell line. Recent studies also sug-

gest the potential contribution of VEGFA (Ackerman et al. 2012),

ciliome and Hedgehog (Ripoll et al. 2012), and folate (Locke et al.

2010) pathways to the pathogenicity of CHD in DS. There are also

several mouse models for partial or complete trisomy syntenic to

human chromosome 21 (Sago et al. 1998; Shinohara et al. 2001;

Dunlevy et al. 2010; Yu et al. 2010). CHDs have been observed in

the full ‘‘trisomy 21’’ homologous mice Tc1 (Dunlevy et al. 2010)

and Dp(10)1Yey/+; Dp(16)1Yey/+; Dp(17)1Yey/+ mice (Yu et al.

2010). In addition, CHDs have been observed in the partial ‘‘trisomy

21’’ model Ts65Dn that is trisomic for 13.4 Mb of the 22.9-Mb

chromosome 21 syntenic regions (Moore 2006; Williams et al.

2008). Also, recently engineered duplication of a 5.43-Mb region of

Mmu16 from Tiam1 to Kcnj6 in the mouse model, Dp(16)2Yey, was

reported to cause CHD (Liu et al. 2011).

Candidate non–chromosome 21 genes have also been iden-

tified for susceptibility to several CHDs and AVSD in particular (not

related to DS). Pathogenic mutations in the CRELD1 gene (on

3p25) have been found in 6% of individuals with non–trisomy 21–

related AVSD (Robinson et al. 2003). Also, GATA4 mutations (on

8p23) have been found in families with cardiac malformations that

included AVSD, VSD, insufficiency of cardiac valves, ASD, and

thickening of the pulmonary valve; the data in these families suggest

that the same pathogenic mutation could predispose to different

types of heart defects in different individuals (Garg et al. 2003). The

creation of transgenic mouse strains using cardiac-specific gene in-

activation of hypomorphic Bmp4 alleles resulted in AVSDs that

correlate with the level of Bmp4 expression (Jiao et al. 2003). Thus,

it is conceivable that gene expression variation of certain loci

could contribute to the phenotypic variation of heart defects in

DS. Also, CNVs are important components of the overall genomic

variability among individual genomes (Sharp et al. 2005; Beckmann

et al. 2007). Rare and common CNVs have been associated with

various phenotypes (Redon et al. 2006; Beckmann et al. 2007;

Conrad et al. 2010; Craddock et al. 2010; Priest et al. 2012), and

possibly they could also be one cause of the CHD risk in DS.

Our present hypothesis for the CHD phenotypes in DS in-

dividuals is that three copies of functional genomic elements on

chromosome 21 and genetic variation of chromosome 21 and

non–chromosome 21 loci predispose to abnormal heart devel-

opment. Additional variables for these phenotypes could include

unknown environmental factors and stochastic events. Thus, the

CHD phenotypes are likely to be multifactorial, caused both by

variation at multiple loci and interactions among them and with

nongenetic factors. Here we aimed to contribute to the description

of the genetic architecture of CHD in DS, and report the results of

genome-wide and chromosome 21–specific SNP and CNV associ-

ation studies using samples from DS individuals with and without

CHD. We have also used SNPs that are associated with cis-eQTLs as

a subset of the SNP space to test the hypothesis that sites con-

trolling the quantitative difference in gene expression contribute

to the development of CHD. Furthermore, genome-wide SNP-

based interaction studies (GWIS) were attempted to further explore

the complex genetic architecture of CHD in DS.

Results

Genome-wide association study of CHD and its subphenotypes
in DS

To identify genome-wide risk variants for the CHD in DS, we

performed a case-control association study using 431,962

non–chromosome 21 SNPs. The cases were 187 samples of DS with

various forms of CHD; the controls were 151 samples of DS with-

out detectable CHD (see Methods). Figure 1 shows the ‘‘Manhattan

plots’’ of the GWAS P-values for all combinations of heart defects

(all CHD, AVSD alone, VSD alone, ASD alone). Our intent was to

potentially detect GWAS significant signals for the different CHD

subclasses. Supplemental Table S1 summarizes the top P-values

from all of these association studies. Only one signal remains

marginally significant after Bonferroni correction (Bonferroni

adjusted P-value 0.03), with marker rs160890 on chromosome 5

when only the ASD phenotypic class was considered. The Q–Q

plots of SNP association test of P-values are shown in Supple-

mental Figure S1.

Association study using chromosome 21 SNP genotypes

To identify genomic risk variants on chromosome 21 for CHD in

DS, we performed an association study using 7238 chromosome 21

trisomic SNPs. For this special trisomic association test, we calcu-

lated allelic and genotypic P-values (comparing the frequency of

the four genotypic classes AAA, AAB, ABB, and BBB) in cases versus

controls. The Bonferroni correction for multiple testing was used

based on 7238 trisomic SNPs tested. The single-locus association

test for 187 DS with CHD and 151 DS without CHD showed

rs2832616 (nominal genotypic, P = 3.08 3 10�6) and rs1943950

(nominal genotypic, P = 6.83 3 10�6) as CHD risk alleles ( Figure 2;

Table 1). Both SNPs are located in the same LD block (r2 = 1) in the

intergenic region between GRIK1 and CLDN17. Interestingly, both

SNPs are cis-eQTLs for the KRTAP7-1 (Dimas et al. 2009; Yang et al.

2010).

To validate these results, we genotyped the two risk CHD SNPs

in a replication sample of 92 DS-CHD and 80 DS without CHD. The

nominal genotypic P-value was 0.0022 for both SNPs (Table 1).

Thus, we consider that these two SNPs were validated in the rep-

lication sample. When the separate phenotypic classes of CHD

were considered, no statistically significant associations were

found, except for DS-ASD using allelic P-values (Table 1). However,

for this analysis, genotypic P-values were not significant (Table 1).

This result was not further investigated.

Two-locus interactions

To test the hypothesis that there exist two loci interactions for

CHD risk in DS, we used logistic regression to model the in-

teraction between any two SNPs. Three different models were

studied: (1) interactions among SNPs on the diploid fraction of

the genome (i.e., excluding the chromosome 21); (2) interactions

among SNPs on the trisomic fraction of the genome; and (3) in-

teractions between trisomic SNPs on chromosome 21 and non–

chromosome 21 cis-eQTLs.

Model 1: Interactions among SNPs on the diploid fraction of the genome

Since DS is likely to be a disorder of gene expression (Prandini et al.

2007), a two-locus interaction study was first performed using only

cis-eQTL markers that are functionally related to gene expression

variation. We used 8900 SNPs with strong association with gene

expression (empirical P-value < 1.0 3 10�4) selected from the Ge-

neva GenCord (Dimas et al. 2009) and HapMap3 CEU data sets

(Stranger et al. 2012). After pruning the SNPs as described in

Methods, 8126 SNPs remained. The interaction analysis was done

by the fast-epistasis option in PLINK. The results are summarized in

Table 2. In total, 33,011,875 SNP 3 SNP tests were done, and an
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uncorrected P-value of 6.0 3 10�9 was used to establish signifi-

cance in our genome-wide cis-eQTL interaction study at the 0.05

level. Correction for multiple testing is done based on n 3 (n � 1)/

8, where n is the number of SNPs tested (Becker et al. 2011). This

cis-eQTL-SNP based interaction study for DS-CHD risk showed

a significant interaction signal between rs972372 on chromosome

2 and rs681418 on chromosome 11 (P-value = 8.7 3 10�10) (Sup-

plemental Fig. 2; Table 2). rs972372 is an intronic variant in the

MAP4K4 gene and is associated with expression of the CNOT11

gene, while rs681418 is an intronic variant in the SPA17 gene and

is associated with expression of the NRGN gene. This SNP–SNP

interaction was tested in a replication study of 83 DS-CHD and 71

DS-without CHD, and the nominal P-value is 0.047 (Table 2). This

marginal significance does not justify a clear declaration of vali-

dation of the SNP–SNP interaction result.

Furthermore, a two-locus interaction analysis was performed

on the entire set of 431,962 SNPs genome-wide. An uncorrected

P-value of 2.1 3 10�12 (Becker et al. 2011) was used to establish

genome-wide significance at the 0.05 level. Supplemental Table S3

shows a summary of these analyses. None of the interacting pairs

of SNPs become significant after correcting for multiple testing.

Performing the same analysis after SNP LD pruning did not yield

any significant signal (data not shown).

Model 2: Interactions among SNPs on the trisomic chromosome 21

For the study of interactions between SNPs on chromosome 21

contributing to CHD, three different tests were performed. First, all

7238 genotyped SNPs on chromosome 21 were used, performing

26,190,703 interaction tests (P-value cutoff for 0.05-level genome-

wide significance: 7.5 3 10�9). Then, after LD SNP pruning, only

2950 SNPs were used for interaction analysis, performing 4,349,775

tests (P-value cutoff for 0.05-level genome-wide significance: 4.5 3

10�8). Finally, all chromosome 21 cis-eQTLs (166 cis-eQTLs) avail-

able from the Geneva GenCord and HapMap3 CEU data sets were

used for interaction analysis based on cis-eQTLs. A total of 13,695

tests were performed (P-value cutoff for 0.05-level significance: 1.4 3

10�5). None of these tests showed a significant result after correcting

for multiple testing (data not shown).

Model 3: Interactions between SNPs on chromosome 21 and SNPs
on the diploid fraction of the genome

An interaction analysis was performed between all chromosome

21 SNPs (7238 trisomic SNPs) and cis-eQTLs present in the non–

chromosome 21 fraction of the genome (8126 SNPs) in order to

identify possible interactions between trisomic and disomic re-

gions of the genome contributing to CHD. None of the tested

32,209,100 SNP pair comparisons remained significant after

adjusting for multiple testing (an uncorrected P-value of 6.2 3 10�9

was used to establish genome-wide significance at the 0.05 level)

(data not shown).

Chromosome 21 CNV association analyses

Copy number variation on the trisomic chromosome 21 could also

contribute to the CHD risk in DS and particularly for the AVSD risk

(Beckmann et al. 2007; de Smith et al. 2010). After calling CNVs on

chromosome 21 (see Methods), association tests using 55 DS-AVSD

as cases and 53 DS-without CHD as controls were performed on

4401 CNV tests obtained after performing intersection across all

the samples. The P-values of association tests are shown in Figure 3.

CNV association tests with FDR #0.05 or simpleM P-value #0.05

were considered to be significant. Twenty-one CNV tests out of

4401 passed this threshold, constituting three different CNVregions

(Table 3). Both FDR and simpleM-based multiple testing correction

identified the same CNV regions as significantly associated. These

CNV regions, termed here as CNV1, CNV2, and CNV3, are covered

by 42, 20, and 62 consecutive probes in our customized NimbleGen

CGH array, respectively. All of these consecutive probes for each

CNV region showed the same copy number state.

CNV1 (Chr21: 42,066,443–42,071,313) (P-value = 2.5 3 10�4,

FDR = 0.05) is a 4.9-kb CNV region located 6 kb upstream of RIPK4

(Fig. 3B; Table 3). It contains PBX3 and BCL3 transcription factor

binding sites detected in different cell lines (Fig. 3B). Whereas de-

letions and duplications were found in 25% of DS-AVSDs, no such

events were observed in the controls (Table 3). The risk ratio for this

CNV is 2.29 (95% CI: 1.82–2.82) (Table 3). Moreover, CNV1

overlaps with an inversion reported in the Database of Genomic

Figure 1. Genome-wide Manhattan plots for CHD in DS and its different subphenotypes across 431,962 SNPs based on allelic associations. �log10

P-values of SNP association tests are plotted relative to their position on each chromosome (alternating black and gray). Chromosome 21 trisomic SNPs
are not included here (for details, see text and Fig. 2). The results shown are for DS-CHD (A), DS-AVSD (B), DS-ASD (C ), and DS-VSD (D).
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Variants (Variation_37237) (DGV, http://dgv.tcag.ca/) (Fig. 3B). Also

for CNV1, there is a SNP probe for rs13048349 that resides within

this CNVregion and shows the presence of variation in copy number

in this region in GenCord cohort (Dimas et al. 2009) that are 215

healthy individuals genotyped by Illumina 550K SNP beadchips,

and in our collection of Down syndrome individuals (Supple-

mental Fig. S3C,D), while the adjacent SNP probe for rs13048349

outside of this CNV region did not show any copy number varia-

tion (Supplemental Fig. S3A,B).

CNV2 (Chr21: 42,284,480–42,286,300) (P-value = 1.9 3 10�4,

FDR = 0.05) is a 1.8-kb CNV region located within ZBTB21 in-

cluding its final exon. Whereas deletions were found in 24% of

DS-AVSDs, no deletion was observed in the controls (Table 3). The

risk ratio for this CNV region is 1.85 (95% CI: 1.33–2.56) (Table 3).

Interestingly, both CNV1 and CNV2 fall within the 1.7-Mb CHD

critical region defined before (Korbel et al. 2009). CNV3 (Chr21:

45,541,600–45,555,054) (P-value = 4.8 3 10�5, FDR = 0.05) is a

13.5-kb region located 9 kb upstream of the POFUT2 gene. CNV3

includes many transcription factor binding sites identified in

a variety of cell lines (EP300, CTCF, BCL3, PBX3, TAF1, CEBPB,

HEY1) and a long noncoding RNA (LINC00315). While the fre-

quency of deletion and duplication in DS-AVSDs is 26%, no such

events were observed in the controls (Table 3). The risk ratio for this

CNV is 2.26 (95% CI: 1.80–2.83) (Table 3). Moreover, CNV3 over-

Figure 2. (A) Chromosome 21–wide Manhattan plot and (B) Q–Q plot of SNP genotypic association test P-values for 187 DS-CHD and 151 DS-without
CHD using 7238 SNPs on chromosome 21. (Red line) The Bonferroni threshold for chromosome 21–wide a = 0.05. SNPs are plotted in megabases relative
to their position on chromosome 21. Two SNPs within the same LD block (r 2 = 1) reached chromosome 21–wide significance (P # 0.05) (for details, see
Table 1). (C ) Regional association plot for the region identified to associate with DS-CHD. The panel shows the recombination rate in the region estimated
from HapMap CEU data (http://hapmap.ncbi.nlm.nih.gov/), pairwise LD between SNPs in the region and the SNP identified (purple), and P-values for
strength of associations and genes in the region. The r 2 values are color-coded according to the scale on the panel.
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laps with a duplicated fragment (Variation_53268) reported in the

DGV. In addition, all three detected CNV regions overlap with

much larger deletions and duplications reported in the DECIPHER

database (https://decipher.sanger.ac.uk) associated with develop-

mental delay (Fig. 3).

To detect the presence of these CNVs in the general (appar-

ently healthy) population, we used qPCR to see if CNV1, CNV2,

and CNV3 are present in the Geneva GenCord cohort (62 sam-

ples). We observed duplication of CNV1, CNV2, and CNV3 with

9%, 14%, and 16% frequencies, respectively (Supplemental Fig.

S4), while no deletions were detected.

Furthermore, we correlated these CNV states detected by

qPCR in the GenCord cohort and gene expression of nearby genes

based on mRNA-seq data available from the same data set (Sup-

plemental Fig. S5; Gutierrez-Arcelus et al. 2013). CNV2, which

resides in the final exon of ZBTB21, correlated with increased ex-

pression of this gene compared with copy neutral state (one-sided

Mann-Whitney U-test, P = 0.024) (Supplemental Fig. S5). CNV2 is

also associated with expression of the C2CD2 gene (one-sided

Mann-Whitney U-test, P = 0.0029), which lies 108 kb upstream.

CNV3 also is associated with an increase in expression of the nearby

gene COL18A1 (one-sided Mann-Whitney U-test, P = 0.045), which

lies 158 kb upstream (Supplemental Fig. S5).

We subsequently tested the significance of these risk CNVs in

a replication study of 49 DS-AVSD cases and 45 DS-without CHD

controls using NanoString nCounter technology (see Methods).

The one-sided Mann-Whitney U-test was used to assess the pres-

ence of copy number differences between cases and controls for

the three detected AVSD-DS risk CNVs. The presence of less copies

for CNV1 in DS-AVSD cases as compared with DS-without CHD is

shown by two probes (FDR # 0.05) and marginally by an addi-

tional two probes (FDR < 0.1) out of eight probes tested (Table 4).

Also, the presence of less copies for CNV2 in DS-AVSD as compared

with DS-without CHD is shown by six probes (FDR # 0.05) out of

seven probes tested (Table 4). Thus, we conclude that the risk

CNV1 and CNV2 were validated in a replication sample. For CNV3,

none of the 11 probes tested show any significant signal.

Discussion
Recently, significant progress has been made in the definition of

regulatory pathways that control normal and abnormal cardiac

valve development involving well-regulated mechanisms for cell

movements and cell–cell interactions among distinct populations

of heart precursor cells (Gumbiner 1996; Santiago-Martinez et al.

2006; Totong et al. 2011). This suggests that molecules that regu-

late cell migration and cell–cell adhesion may contribute to CHD.

The fact that the frequency of CHD in DS is much higher than in

normal euploid individuals raises the hypothesis that dosage-

sensitive genes on chromosome 21 greatly increase the risk for

CHD. However, the underlying genomic or gene expression vari-

ation and the allelic architecture that contributes to the manifes-

tation of a CHD in DS are unknown.

In this study, our hypothesis is that three copies of functional

genomic elements on chromosome 21 and genetic variation of

chromosome 21 and non–chromosome 21 loci predispose to CHD

in DS. Moreover, to test the hypothesis that quantitative difference

in gene expression contributes to the development of CHD, cis-

eQTLs were used as a subset of the genomic variation space. Ge-

nome-wide interaction studies (GWIS) were attempted to further

reveal the complex genetic architecture of CHD in DS. Further-

more, we hypothesized that chromosome 21 CNVs could also

contribute to the increased risk of the CHD in DS.

These GWAS and GWIS were performed on a population of

187 DS individuals with CHD and 151 DS individuals without

CHD. Although the sample size of this study is not large, power

Table 2. P-values of the top three pairs of potentially interacting cis-eQTLs for DS CHD

SNP1_Chr SNP location cis-eQTL SNP2_Chr SNP location cis-eQTL Cohorta P-value Bonf b

rs972372_2 MAP4K4 CNOT11 rs681418_11 SPA17 NRGN S1 8.70 3 10L10 0.007
rs1815333_13 Intergenic ATP8A2 rs1539871_18 Intergenic SMAD2 S1 1.80 3 10�08 0.149
rs848212_1 SPEN CLCNKA and TMEM51 rs11191692_10 PDCD11 USMG5 and FAM26B S1 9.80 3 10�08 0.809
rs972372_2 MAP4K4 CNOT11 rs681418_11 SPA17 NRGN S2 0.047

Shown in bold are statistically significant pairs. Interaction is based on 8126 genome-wide cis-eQTLs from the Geneva GenCord and HapMap3 CEU data
sets.
aS1 represents the initial samples of 187 DS-CHD (cases) and 151 DS-without CHD (controls), and S2 represents samples from replication study
(83 DS-CHD and 71 DS-without CHD).
bAdjusted P-values for multiple testing.

Table 1. Significant chromosome 21 trisomic SNPs association test results for DS-CHD and DS -ASD

SNP BP Allelesa Closest genes cis-eQTL Cohortb OR (95% CI) Genotypic P Bonf1 Allelic P Bonf2

rs2832616 30,395,663 C/T GRIK1 and CLDN17 KRTAP7-1 S1 2.8 (1.9–4.2) 3.1 3 10�6 0.0224 1.1 3 10�6 0.009
rs1943950 30,401,723 C/T GRIK1 and CLDN17 KRTAP7-1 S1 2.7 (1.8–4.1) 6.8 3 10�6 0.0492 3.3 3 10�6 0.024
rs2832616 30,395,663 C/T GRIK1 and CLDN17 KRTAP7-1 S2 1.4 (0.9–2.1) 0.0022 0.0052
rs1943950 30,401,723 C/T GRIK1 and CLDN17 KRTAP7-1 S2 1.4 (0.9–2.1) 0.0022 0.0052
rs2183593 45,616,280 C/T LINC00315 and COL18A1 ADARB1 ASD 4.0 (2.3–7.0) 2.57 3 10�5 0.18 1.3 3 10�07 0.0009
rs7282991 45,605,451 C/T LINC00315 and COL18A1 ADARB1 ASD 3.5 (2.0–5.8) 9.18 3 10�5 0.66 1.3 3 10�7 0.01

(BP) Base position. (OR) Odds ratio (95% confidence interval). (Genotypic P) Unadjusted genotypic P-value. (Allelic P) Unadjusted allelic P-value. (Bonf1
and Bonf2) Bonferroni-corrected P-value for the number of SNPs (n = 7238) tested for genotypic and allelic tests, respectively. rs2183593 and rs7282991
(ASD-associated risk SNPs) were not validated in the replication study because of a lack of enough ASD samples in the replication cohort.
aAlleles: Minor allele is shown in bold.
bS1 represents the initial samples of 187 DS-CHD (cases) and 151 DS-without CHD (controls); S2 represents samples from the replication study
(92 DS-CHD and 80 DS-without CHD); ASD represents 53 DS-ASD samples and 151 DS-without CHD (controls).
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Figure 3. (A) Chromosome 21–wide Manhattan plot of P-values for DS-AVSD across 4401 consecutive chromosomal regions for CNV association. The
P-values are calculated by a two-by-three Fisher’s exact test. (Horizontal line) The FDR threshold for chromosome 21–wide a # 0.05; CNV tests are plotted
in equidistance. Three CNV regions reached genome-wide significance (FDR # 0.05). (B) Overview of the CNV1 region (Chr21: 42,066,443–42,071,313)
6 kb upstream of the RIPK4 gene. This 4870-bp CNV region (in gray) is defined by merging six contiguous CNV tests (in black) (for details, see text). CTCF,
REST, and other transcription factor binding sites are present in this region as well as the histone mark H3K4me1 (data from http://genome.ucsc.edu/
ENCODE/). Additionally, an inversion (in pink), reported in the database of genomic variation, overlaps with this CNV region. (C ) Overview of the 1820-bp
CNV2 region (Chr21: 42,284,480–42,286,300) defined by merging two contiguous CNV tests overlapping with the last exon of the ZBTB21 gene.

http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/
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calculations (Purcell et al. 2003) suggest that we could likely

identify loci with odds ratio >2. PCA analyses did not reveal any

considerable population stratification (cases and controls showed

similar distributions in the space defined by the first two Principal

Components), and we did not formally detect any significant in-

flation factor (lambda = 1.01) (Supplemental Fig. S7).

The most notable results of this study regarding identifying

CHD risk loci in DS, that have been verified in our replication study

as well, were as follows:

1. rs2832616 and rs1943950 within the same LD block on chro-

mosome 21 (both cis-eQTLs for KRTAP7-1 gene) are CHD risk

alleles (odds ratios of 2.8 and 2.7, respectively).

2. A 4.9-kb CNV upstream of the RIPK4 gene (CNV1) in the pre-

viously reported CHD region of chromosome 21 with a risk ratio

of 2.29.

3. A 1.8-kb CNV within the ZBTB21 gene (CNV2) in the pre-

viously reported CHD region of chromosome 21 with a risk ratio

of 1.85.

4. A pair of interacting cis-eQTLs involving CNOT11 on chromo-

some 2 and NRGN on chromosome 11 (Bonferroni-adjusted

P-value < 0.05).

The chromosome 21 CNV analyses revealed three CNV

regions, two of which (CNV1 and CNV2) were verified in an

independent replication study and map within the previously

reported CHD region of chromosome 21 in DS (Fig. 3; Tables 3, 4).

The combined effect of trisomy 21 and the presence of less copies

than the neutral state for CNV1 and CNV2 seem to be associated

with the AVSD risk in DS. This highlights the importance of local

copy number variation on chromosome 21 in the context of tri-

somy in the pathogenicity of AVSD in DS. CNV1, which resides 6

kb upstream of RIPK4, contains two transcription factor binding

sites (PBX3 and BCL3) and shows enrichment for H3K4me1 de-

tected in different cell lines (Fig. 3B), suggesting that this CNV

region may contain regulatory elements for the nearby gene RIPK4.

Previously, our laboratory has shown an exceptional overexpression

of RIPK4 in the heart tissue of the Ts65Dn DS mouse model (Lyle

et al. 2004). This, combined with the fact that RIPK4 resides in

the minimal critical CHD region on chromosome 21 (Korbel et al.

2009), suggests a possible important role in the pathogenicity of

CHD in DS. CNV2, which also maps within the critical chromo-

some 21 CHD region, involves the last and largest exon of ZBTB21,

which encodes the functional portion of the protein (Fig. 3C).

ZBTB21, which acts as a transcription repressor (Wang et al. 2005),

has been shown to interact with PPP2R2B (Glatter et al. 2009),

which in Drosophila regulates the WNT/beta-catenin signaling

pathway. This pathway is required for cardiac differentiation in

human embryonic stem cells (Paige et al. 2010).

Furthermore, our genome-wide two-locus interaction anal-

ysis based on whole-genome cis-eQTLs for CHD shows a signifi-

cant pair of interacting SNPs located in the MAP4K4 and SPA17

genes (Table 2). Interaction analyses based on whole-genome

markers revealed no significant interacting pair of SNPs after

adjusting for multiple testing (Supplemental Table S3). Analysis

of Gene Ontology (GO) categories (Huang et al. 2009) on the af-

fected genes showed no significant enrichment (Supplemental

Table S7).

In summary, the findings of this study reveal several candidate

risk loci for CHD in DS. It is reasonable that many genes or other

functional genomic elements may contribute to the development of

CHD, since a very large number of genes and signaling pathways

regulate heart development, and variation in all of these genes may

have a contribution (minor or major) to the risk of CHD in DS. Our

results support a multifactorial model for the development of CHD,

and a complex architecture of risk alleles with cumulative effects

that explain the developmental phenotypes.

Methods

Sample collection and genotyping
To identify the genetic components that confer susceptibility to
the CHD phenotypes, a cohort of 187 DS patients with well-
characterized CHD phenotypes (through ultrasonography, echo-
cardiography, and/or surgery) (AVSD, VSD, ASD) and 151 ethni-
cally matched DS controls (DS without a CHD) were genotyped
to perform genetic association studies. Informed consent was
obtained for all samples, and the study was approved by the
Geneva University Ethics Committee. All DS individuals (cases and
controls) are fully trisomic for the entire chromosome 21. The
distribution of phenotypical attributes of 187 DS-CHD individuals is
as follows: AVSD = 69 (37.0%), ASD = 51 (27.2%), VSD = 67 (35.8%)
(Supplemental Table S2).

The genomic DNA used in our GWAS was extracted from
blood. Genotyping of 750 ng of genomic DNA was performed us-
ing Illumina 550K and 610K BeadChips according to the manu-
facturer’s Infinium II protocol (Illumina).

The genomic DNA used in our replication study was extracted
from blood or lymphoblastoid cell lines. The distribution of phe-
notypical attributes of our replication samples of 92 DS-CHD
individuals collected at the Cardiology Department of Hôpital
Necker-Enfants malades (Paris) after obtaining informed consent is
as follows: AVSD = 64, ASD = 7, VSD = 16, and others = 5. The 80 DS
without CHD controls of the replication study come from the
Jérôme Lejeune Foundation (Paris).

Table 4. NanoString CNV probe association test results in the
replication study

Probe Probe coordinate P FDR_BH

Control regionsa

Chr6 control 1 Chr6: 12915005–12915104 0.158 0.34
Chr6 control 2 Chr6: 47278334–47278433 0.261 0.48
Chr6 control 3 Chr6: 151086524–151086623 0.040 0.10
Chr21 control 1 Chr21: 17132182–17132276 0.624 0.78
Chr21 control 2 Chr21: 24809678–24809777 0.913 0.96
Chr21 control 3 Chr21: 32970669–32970768 0.805 0.94
Chr21-aCGH control 1 Chr21: 40187019–40187108 0.440 0.65
Chr21-aCGH control 2 Chr21: 41125716–41125805 0.848 0.95

CNV 1
Probe 2 Chr21: 42068170–42068245 0.001 0.02
Probe 3 Chr21: 42068733–42068812 0.017 0.05
Probe 6 Chr21: 42071172–42071242 0.036 0.08
Probe 8 Chr21: 42071172–42071242 0.039 0.08

CNV 2
Probe 1 Chr21: 42284095–42284184 0.014 0.05
Probe 2 Chr21: 42284470–42284542 0.018 0.05
Probe 4 Chr21: 42285199–42285288 0.001 0.02
Probe 5 Chr21: 42285633–42285722 0.004 0.02
Probe 6 Chr21: 42286068–42286157 0.016 0.05
Probe 7 Chr21: 42286320–42286409 0.008 0.04

(P) Nominal P-value; (FDR_BH) false discovery rate control by the Benjamini–
Hochberg procedure.
aChr6 controls 1, 2, and 3, and Chr21 controls 1, 2, and 3 are Nanostring
Technologies control regions. Chr21-aCGH controls 1 and 2 are control re-
gions that did not show any copy number changes in our initial Nimblegen
CGH array experiment between cases and controls.
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For quality-control analyses, data from samples were used if
a minimum of a 98% call rate was observed for the sample in
GenomeStudio data analysis software (Illumina) across all the SNPs
common to both HumanHap550 and HumanHap610 BeadChips.
Other criteria for SNP filtering were as follows: cluster separation >

0.3, MAF > 0.04, HWE P-value > 0.05, HET � 0.2 < 0 > 0.2. Due to
the complexity of SNP calling in trisomic regions of the genome,
we removed chromosome 21 SNPs (trisomic SNPs) from this phase
of analysis and called and analyzed them separately (see below).
After filtering, subsequent analyses were performed on a data
set of 431,962 SNPs with the overall call rate of 99.997%. For
linkage disequilibrium (LD)–based SNP pruning, we used the op-
tion based on recursively removing SNPs within a sliding window
of 50 SNPs that shifts 5 SNPs along with each step, and a variance
inflation factor (VIF) threshold of 2 (as recommended in the PLINK
toolset).

Chromosome 21 SNPs calling

Clustering programs such as GenomeStudio (Illumina) assume a
diploid state for each SNP. Since there is no standard algorithm
for calling triploid genomes, chromosome 21 SNPs were not ade-
quately called by the software; thus, they were investigated sepa-
rately and genotypes were called by an in-house procedure. In
GenomeStudio software, we used the filter option to choose only
chromosome 21 SNPs (trisomic SNPs). Subsequently, we used the
sample graph option in GenomeStudio to discriminate four clus-
ters of SNPs by plotting intensity (R) versus allele ratio (theta) for
each individual. These four clusters represented the homozygous
AAA genotypes (samples with a low theta value), the heterozygous
AAB genotypes (samples with an intermediate low theta value), the
ABB genotypes (samples with an intermediate high theta value),
and the homozygous BBB genotypes (samples with high theta
values) (Supplemental Fig. S6). The boundaries for each cluster were
defined visually, and we avoid including SNPs located between
the boundaries of any two adjacent clusters. Then the SNP data
for each cluster were imported in an Excel spreadsheet and were
assigned to the respective genotype (AAA, AAB, ABB, and BBB)
manually. This manual procedure was performed for calling chro-
mosome 21 trisomic SNPs for all the DS samples used in this study.
All the DS samples are fully trisomic for chromosome 21 and
clearly showed four clusters of genotypes in the GenomeStudio
software for chromosome 21 SNPs. To evaluate the quality of tri-
somic SNPs called by Illumina beadchips, we genotyped rs7282991
and rs2183593 on chromosome 21 by pyrosequencing for 96 DS
samples that were also genotyped by Illumina BeadChips. We
found 100% concordance for the genotypes called by both
methods. To check for trisomic SNPs that violate Hardy-Weinberg
equilibrium (HWE) in Down syndrome individuals, we used a
method previously developed (Kerstann et al. 2004). HWE was
tested using a two-by-four Fisher’s exact test (HWE P-value >

0.05). A total of 7238 SNPs out of 8251 chromosome 21 SNPs were
retained.

Association analysis for non–chromosome 21 SNPs was per-
formed by a Fisher’s exact test of allele counts in DS individuals
with CHD and its different classes (AVSD, ASD, and VSD) and DS
individuals without CHD, as implemented in PLINK toolset v0.99q
software (Purcell et al. 2007). Quantile-quantile plots (Q–Q plots)
were generated by WGAViewer (Ge et al. 2008) to detect inflation
of statistics due to population stratification. LocusZoom software
was used for showing the regional association plot (Pruim et al.
2010). A logistic regression model provided in PLINK was applied
for genome-wide interaction analyses based on the coefficient b3
in Y ; b0 + b1.A + b2.B + b3.AB + e, which is a model based on allele
dosage for each SNP, A and B (Purcell et al. 2007).

For chromosome 21 trisomic SNPs association and interaction
studies, custom scripts implemented in R programming language
were used. To test for possible differences in disease susceptibility
due to single- and two-locus interaction, a Fisher’s exact test and
a logistic regression model were applied, respectively. Logistic re-
gression was also used to assess the statistical interaction of tri-
somic SNPs on chromosome 21 with the disomic SNPs (only cis-
eQTLs) on the rest of the genome.

Population stratification

Population stratification for the GWAS data was examined by
Principal Component Analysis (PCA) using the EIGENSTRAT
software v3.0 (Price et al. 2006). We also estimated ancestry pro-
portion by an identity-by-state-based (IBS) clustering method
implemented in the PLINK toolset. Briefly, 104,338 SNPs were used
by the EIGENSTRAT software and all available SNPs (n = 431,962) by
the PLINK IBS clustering method to assess an underlying population
structure (Supplemental Fig. S7). There was no evidence of pop-
ulation stratification, because the genomic inflation factor calcu-
lated by both EIGENSTRATand PLINK is 1.01 and 1.02, respectively.

SNP genotyping by pyrosequencing and Sanger sequencing

Pyrosequencing was performed for genotyping rs2832616, rs2183593,
rs7282991, and rs9723772. Sanger sequencing was used for ge-
notyping rs1943950 and rs681418, which we were not able to
genotype by pyrosequencing.

The PCR primers were designed using Pyrosequencing Assay
Design version 1.0.6 (Qiagen; Supplemental Tables S5, S6). The
pyrosequencing reactions were automatically performed with a
PSQ 96MA system (Qiagen) according to the manufacturer’s
instructions. All reactions were constructed as recommended by
the manufacturer’s instructions. The PCR conditions for pyrose-
quencing were 94°C for 5 min; (94°C for 30 sec, 60°C for 30 sec; Tm

reduces 1⁄2 °C per cycle, and 72°C for 20 sec) for nine cycles; (94°C
for 30 sec, 55°C for 30 sec, and 72°C for 20 sec) for 29 cycles; 72°C
for 5 min. The PCR conditions for Sanger sequencing were 94°C for
2 min; (94°C for 30 sec, 55°C for 30 sec, and 72°C for 45 sec) for 26
cycles; 72°C for 5 min.

Chromosome 21 CNVs analyses

To assess whether CNVs on chromosome 21 could predispose to
CHD, we comprehensively searched both for known and novel
CNVs on chromosome 21 using a custom CGH array. A subset of 55
DS with AVSD and 53 DS without CHD samples were compared in
a case-control approach.

Array design

To detect CNVs potentially contributing to the CHD in DS,
NimbleGen 12 3 135K custom arrays were used. These arrays were
designed to screen human chromosome 21 for both known and de
novo CNVs. High-density coverage (a mean of one probe per 100
bp) was used for a 9-Mb region (Chr21: 38,000,000–46,944,323)
that is known to be associated with a CHD in DS. 89,443 probes
were printed for this region. In addition, to genotype 95 known
chromosome 21 CNVs (Conrad et al. 2010), a minimum of 30
probes per known CNV was printed on the arrays. Furthermore,
500 probes on the unique portions of chromosome X and chro-
mosome Y were printed on each subarray to act as internal controls
in sex-mismatched hybridizations and to allow detection of pos-
sible sample mixes in our cohort. The remaining euchromatic
portion of chromosome 21 (Chr21: 13,260,001–37,999,999)
was covered by the remaining 42,876 probes available on the
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NimbleGen 12 3 135K array. As a reference DNA, a lymphoblastoid
cell line derived from a DS individual without CHD was used for
all analyses. The reference DNA is fully trisomic for chromosome
21 (Supplemental Fig. S8). Dye swap experiments and technical
replicates (between and within arrays and subarrays) were per-
formed to measure dye bias effects and to remove random errors
introduced in the experiment.

Hybridization signals were extracted using NimbleScan soft-
ware v2.5 to generate General Feature Format (GFF) files, and Sig-
nalMap software v1.9.0.05 (NimbleGen) was used subsequently to
visualize and analyze the data. Log2 ratios were obtained at each
probe position and then were quantile-normalized to correct for
interarray variability (Supplemental Fig. S9). Putative CNVs were
called as chromosomal segments with unusually high or low log2

ratios of fluorescent intensity between the test DNA (DS with or
without CHD) and reference DNA (a DS individual without CHD)
using the genome alteration detection analysis (GADA) algorithm
(Pique-Regi et al. 2008) using the options ‘‘-M 10 -T 12 -a 0.2.’’

CNVs calling by GADA were followed by intersection across
all the individuals to obtain CNV intersected regions (CNV tests)
(Valsesia et al. 2011). A total of 4401 intersected CNV tests span-
ning the entire chromosome 21 were identified according to three
classes (deletion, duplication, and copy neutral). We applied a two-
by-three Fisher’s exact test to detect any association signal for 4401
intersected CNV tests. CNV tests with FDR # 0.05 were considered
to be significant, and contiguous CNV tests with FDR # 0.05 were
merged into CNV regions. Moreover, we used simpleM (Gao et al.
2008, 2010), a data-driven approach based on PCA that estimates
the actual number of effective tests (Meff) in association studies.
Briefly, it computes eigenvalues from the pairwise 4401 3 4401
CNV correlation matrix and then derives the Meff using PCA. Meff is
then used in a Bonferroni correction on the P-values resulting from
two-by-three Fisher’s exact test for 4401 CNV tests.

NanoString CodeSet design

NanoString nCounter technology was used to verify the detected
risk CNVs in a replication study of 49 DS-AVSD and 45 DS-without
CHD following NanoString’s recommended protocol for CNV
analyses. The three detected DS-AVSD-associated risk CNVs were
included in the CodeSet in addition to six control regions selected
by NanoString Technologies (three regions on chromosome
21 and three regions on chromosome 6) and an additional two
control regions on chromosome 21 that, based on our previous
NimbleGen CGH arrays, did not show any copy number variation
between cases and controls. CNV1, CNV2, and CNV3 were covered
by eight, seven, and 11 probes, respectively. The CodeSet also
contains a set of 10 probes called invariant probes designed against
autosomal genomic regions that are not copy number variant. The
invariant probes were used for normalization purposes. Moreover,
the CodeSet includes six positive dsDNA control probes, each
targeting a unique DNA sequence present in every assay. The
positive control probes were used for technical normalization.
Probe sets for each CNV region in the CodeSet were designed and
synthesized at NanoString Technologies. All procedures related to
DNA quantification, hybridization, detection, and scanning were
carried out as recommended by NanoString Technologies at the
Genomics platform at the University of Geneva.

NanoString data processing started with a technical nor-
malization of raw NanoString counts for each designed probe
using the counts obtained for positive-control probe sets prior to
normalization using an invariant probe set. All normalization
procedures were performed by nSolver software v1.1 (NanoString
Technologies). Finally, we estimated the copy number ratio for
each probe relative to the reference sample. One-sided Mann–

Whitney U-tests were used to compare the fold change ratio for each
probe between cases and controls. The P-value related to each probe
was FDR-corrected based on the total 35 probes tested.

Quantitative polymerase chain reaction

Since CNV risk alleles for AVSD in DS should be also common
CNVs in normal healthy individuals (healthy non–Down syn-
drome individuals), quantitative polymerase chain reaction
(qPCR) was used to verify their frequency in the normal pop-
ulation. For this purpose, we used 62 DNA samples from the Ge-
neva GenCord collection (Dimas et al. 2009). The primers designed
for each risk CNV plus a control region are shown in Supplemental
Table S4. Primer pairs were tested and efficiencies were measured
using standard curves from serial dilutions of genomic DNA. qPCR
was performed using the SYBR Green PCR Kit with a standard
protocol, in conjunction with the 7900HT Real-Time PCR System
from Applied Biosystems (ABI). Each reaction was carried out in
triplicate in 384-well plates in a total volume of 10 mL containing
13 ABI CyberGreen Master mix, 0.9 mM each primer, and with ;2
ng of DNA. Liquid handling for the 384-well plates was performed
with a Biomek robot (Beckman Coulter). The thermal profile rec-
ommended by Applied Biosystems was used for amplification
(50°C for 2 min, 95°C for 10 min, 40 cycles of 95°C for 15 sec, and
60°C for 1 min). The generated data were analyzed with SDS 2.2
software (Applied Biosystems). The quantification was carried out
using a pair of primers for the ADARB1 gene on chromosome 21 as
a reference gene. For gene copy number assignment, the CT values
for each set of triplicates were averaged and normalized against the
control primers for the reference gene. The relative copy number
for each CNV was calculated as described before (Livak and
Schmittgen 2001). We applied a Gaussian Mixture Modeling
(GMM) method (Valsesia et al. 2012) to detect copy number vari-
ation from the distribution of copy number ratios in an un-
supervised approach. We also performed Mann–Whitney U-tests
between these CNV states and gene expression of nearby genes
(Supplemental Fig. S5). The gene expression data based on mRNA-
seq for the Geneva GenCord cohort (Gutierrez-Arcelus et al. 2013)
are available for primary fibroblast cells, T cells, and lympho-
blastoid cell lines (LCLs).

Genome annotation

Human genome hg18/NCBI 36 was used as our reference.

Data access
The genotyping and chromosome 21 CNV data from this study
have been submitted to the EMBL-EBI European Genome-phe-
nome Archive (http://www.ebi.ac.uk/ega/) under accession num-
ber EGAS00000000129.
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