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Abstract

Progressive liver fibrosis is a major health issue for which no effective
treatment is available, leading to cirrhosis and orthotopic liver transplantation.
However, organ shortage is a reality. Hence, there is an urgent need to find
alternative therapeutic strategies. Cellbased therapy using mesenchymal stem
cells (MSCs) may represent an attractive therapeutic option, based on their
immunomodulatory properties, their potential to differentiate into hepatocytes,
allowing the replacement of damaged hepatocytes, their potential to promote
residual hepatocytes regeneration and their capacity to inhibit hepatic stellate cell
activation or induce their apoptosis, particularly via paracrine mechanisms. The
current review will highlight recent findings regarding the input of MSC-based
therapy for the treatment of liver fibrosis, from in vitro studies to pre-clinical and
clinical trials. Several studies have shown the ability of MSCs to reduce liver
fibrosis and improve liver function. Howev...
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Abstract
Progressive liver fibrosis is a major health issue for 
which no effective treatment is available, leading to 
cirrhosis and orthotopic liver transplantation. However, 
organ shortage is a reality. Hence, there is an urgent 
need to find alternative therapeutic strategies. Cell-
based therapy using mesenchymal stem cells (MSCs) 
may represent an attractive therapeutic option, based on 

their immunomodulatory properties, their potential to 
differentiate into hepatocytes, allowing the replacement 
of damaged hepatocytes, their potential to promote 
residual hepatocytes regeneration and their capacity 
to inhibit hepatic stellate cell activation or induce their 
apoptosis, particularly via  paracrine mechanisms. The 
current review will highlight recent findings regarding 
the input of MSC-based therapy for the treatment of 
liver fibrosis, from in vitro  studies to pre-clinical and 
clinical trials. Several studies have shown the ability of 
MSCs to reduce liver fibrosis and improve liver function. 
However, despite these promising results, some 
limitations need to be considered. Future prospects will 
also be discussed in this review.
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Core tip: Liver fibrosis is a major public health issue 
for which no treatment is available. Cell therapy and, 
in particular, mesenchymal stem cells (MSCs), repr-
esent a promising strategy, based mainly on their immu-
nomodulatory properties and differentiation capa-city. In 
the current review, we discuss the rationale to propose 
cell therapy and, in particular, MSCs to treat liver fibrosis, 
overview of the current knowledge in this field and 
highlight future prospects.
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LIVER FIBROSIS: A MAJOR HEALTH 
ISSUE
Liver fibrosis refers to the excessive accumulation of  extra-
cellular matrix into the liver parenchyma in response to 
chronic injury. Injuries may result from viral, autoimmune, 
cholestatic, toxic or metabolic disease, including nonal-
coholic steatohepatitis. Chronic fibrosis progresses from 
fibrosis to cirrhosis characterised by septa formation and 
rings of  scar tissue surrounding nodules of  surviving 
hepatocytes[1]. Epidemiological data suggest that cirrhosis 
affects hundreds of  millions people worldwide[1]. It 
represents the 14th most common cause of  death in adults 
worldwide (resulting in 1.03 million death per year) but the 
fourth in central Europe[2]. In the European population, 
less than 1% (approximately 0.1%) of  the population is 
affected by cirrhosis, corresponding to 14-26 new cases per 
100000 inhabitants per year or an estimated 170000 deaths 
per year[3].

CLINICAL ASPECTS
Although mild fibrosis remains largely asymptomatic, its 
progression towards cirrhosis is a major cause of  morbidity 
and mortality. Fibrosis and distorted vasculature lead to 
portal hypertension and related complications, namely 
upper gastrointestinal bleeding from ruptured gastro-
oesophageal varices, portal hypertensive gastropathy, 
ascites, renal dysfunction, and hypersplenism leading to 
thrombocytopenia and hepatopulmonary syndrome[4]. 
Furthermore, cirrhosis is associated with hepatocellular 
insufficiency, impaired metabolic capacity and dysfunction 
of  other organs such as the gastrointestinal tract[5] and 
kidneys[6], as well as the cardiovascular[7], respiratory[8] and 
skeletal systems[9]. Cirrhosis can lead to hepatocellular 
carcinoma[10].

HISTOLOGY OF LIVER FIBROSIS
Following acute injury, liver parenchymal cells regenerate 
and replace the necrotic damaged cells. During this process, 
an inflammatory response is observed accompanied by 
limited deposition of  extracellular matrix in the liver 
parenchyma. In the case of  persistence of  the injury, the 
regenerative capacity of  parenchymal cells is impaired and 
dead hepatocytes are replaced by an abundant accum-
ulation of  the extracellular matrix, mainly secreted by 
activated hepatic stellate cells[11]. The pattern of  fibrosis 
is related to the pathogenic mechanism of  the underlying 
disease. In chronic viral hepatitis, autoimmune hepatitis 
and chronic cholestatic disorders, the fibrotic tissue 
will initially be located in the periportal areas. However, 
in alcohol-induced liver disease, the pericentral and 
perisinusoidal areas represent the initial localisation of  
extracellular matrix deposition[12], most likely because 
alcohol is mainly metabolised in these regions.

Following disease progression, the collagen fibres will 
progressively evolve to bridging fibrosis, leading finally 

to cirrhosis. Cirrhosis is defined histologically as a diffuse 
process characterised by fibrosis and the conversion 
of  normal liver architecture into structurally abnormal 
nodules[13].

In the advanced stages of  fibrosis, the liver contains 
approximately 6 times more extracellular matrix deposition 
levels than a normal liver, including collagens (types Ⅰ, Ⅲ 
and Ⅳ), fibronectin, undulin, elastin, laminin, hyaluronan 
and proteoglycans[11]. The accumulation of  extracellular 
matrix in the liver parenchyma results from both increa-
sed synthesis and decreased degradation by matrix metal-
loproteinases.

PHYSIOPATHOLOGY OF LIVER FIBROSIS
Cellular effectors: Extracellular matrix producing cells
Extracellular matrix is mainly produced by hepatic stellate 
cells (HSCs), located in the space of  Disse between 
the hepatocytes and sinusoids. Following liver injury, 
HSCs are “activated” and evolve to myofibroblast-
like cells following paracrine and autocrine signalling. 
This activation is characterised by an increase in cell 
proliferation and extracellular matrix protein deposition, 
loss of  vitamin A droplets and acquisition of  contractile 
features. HSC activation has been well identified as a key 
event in the fibrotic response to liver injury. Proliferating 
activated HSCs are typically located in the regions of  
greatest injury. This phenomenon is preceded by an influx 
of  inflammatory cells and is associated with extracellular 
matrix accumulation[14].

Initiation represents the first activation phase and 
refers to early changes in gene expression and phenotype. 
HSCs are stimulated by paracrine signals, including 
exposure to lipid peroxides and products released from 
damaged hepatocytes as well as biochemical signals 
from Kupffer and endothelial cells. In the perpetuation 
phase, the activated phenotype is maintained, and fibrosis 
is generated. Autocrine as well as paracrine loops are 
implicated. Resolution refers either to the reversion to a 
quiescent phenotype or to clearance through apoptosis[14]. 
At the structural level, activated HSCs lose their large 
vitamin A-containing lipid droplets and up-regulate the 
expression of  cell adhesion molecules such as intercellular 
adhesion molecule-1 (ICAM-1) and vascular cell adhesion 
molecule-1 (VCAM-1), promoting the recruitment of  
inflammatory cells to the injured liver. The up-regulation 
of  adhesion molecules expression has been studied 
in vitro and in vivo [15]. The expression of  α-smooth 
muscle actin is also up-regulated and the secretion of  
pro-inflammatory cytokines is increased[14,16]. During 
fibrosis, the enhanced expression of  the cytoskeletal 
protein alpha-smooth muscle actin (α-SMA) confers a 
contractile potential to HSCs, that is a determinant of  
increased portal resistance[14]. High expression level of  
α-SMA correlates with an extent of  disease progression. 
Some particularities have been documented as in kidney. 
Indeed, renal fibrosis progression (in experimental 
glomerulonephritis model) was enhanced in mice lacking 
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this protein in myofibroblasts, while tissue fibrosis was 
ameliorated by forced expression of  α-SMA in renal 
interstitial myofibroblasts[17]. These data suggest that 
α-SMA expression could play a role in moderating chro-
nic organ fibrosis.

In addition to HSCs, other cellular sources contributing 
to extracellular matrix accumulation have been identified. 
These cells include portal fibroblasts (mainly implicated 
in biliary fibrosis)[18], circulating fibrocytes, and bone-
marrow derived cells[19], as well as fibroblasts derived from 
epithelial-mesenchymal transition (EMT) of  hepatocytes 
and bile duct epithelial cells[20]. EMT is characterised by the 
loss of  cell adhesion, repression of  E-cadherin expression 
and increased cell mobility. Transforming growth factor 
beta (TGFβ) induces the acquisition of  a fibroblastoid 
phenotype by hepatocytes and their expression of  pro-
teins characteristic for EMT and fibrogenesis. After 
EMT, hepatocytes will contribute to the population 
of  myofibroblasts and consequently, participate to 
fibrogenesis[21]. This phenomenon represents an attractive 
target for liver fibrosis treatment.

Other cellular sources involved in fibrogenesis
Biliary progenitor cells: In biliary fibrosis, the prolif-
erating biliary progenitor cells secrete several factors 
that attract and activate HSCs into proliferative and 
extracellular matrix-producing cells. This phenomenon 
is amplified by several molecules secreted by the surro-
unding myofibroblasts and by inflammatory cells, such as 
interleukin (IL)-6 and fibroblast growth factor[22].

Liver sinusoidal endothelial cells: In perisinusoidal 
fibrosis, liver sinusoidal endothelial cells (LSECs) 
are activated and proliferate. LSECs contribute to 
extracellular matrix production and secrete cytokines 
and growth factors [such as TGFβ and platelet-derived 
growth factor (PDGF)] that activate HSCs as well as 
factors contributing to intrahepatic vasoconstriction. 
Myofibroblasts activate LSECs via the secretion of  
angiogenic factors such as vascular endothelial growth 
factor (VEGF) and angiopoietin-1[23].

Inflammatory cells: CD4+T cells with Th2 polarization 
also promote fibrogenesis. These cells secrete IL-4 
and IL-13, which can stimulate the differentiation of  
fibrogenic myeloid cells and macrophages[24]. Th17 
cells, induced by TGF-β1 and IL-6, secrete IL-17A, 
which activates myofibroblasts directly and indirectly 
by stimulating TGF-β1 release by inf lammatory 
cells[25]. Regulatory T cells can either favour or inhibit 
fibrogenesis by secreting TGF-β1 (profibrotic) or IL-10 
(anti-fibrotic)[22]. CD4+ Th1 cells have an anti-fibrotic 
effect[22].

NK cells can reduce fibrosis by killing activated 
HSCs and by producing interferon γ[26]. Monocytes 
play a key role in inflammation and fibrosis. They are 
precursors of  fibrocytes, macrophages and dendritic 
cells[27]. Macrophages are fibrogenic during fibrosis 

progression and fibrolytic during its reversal[22].

Key factors
Factors involved in HSC proliferation: PDGF-β signaling 
is one of  the best characterised pathways involved in 
the HSC activation process. After PDGF-β binding to 
its receptor, several intracellular pathways are activated 
(including the Ras-MAPK, PI3K-AKT/PKB and PKC 
pathways) supporting cellular proliferation. In early HSC 
activation, a rapid induction of  PDGF-β receptor is 
observed[28,29].

Even if  PDGF is the most potent mitogen towards 
HSC, other growth factors such as TGFα, epidermal 
growth factor and VEGF can also stimulate HSC proli-
feration[30].

Fibrogenic molecules: TGFβ1 is derived from both 
autocrine and paracrine sources and represents the most 
potent fibrogenic cytokine in the liver. TGFβ1 recruits 
Smad2/3, leading to its phosphorylation and stimulation 
of  fibrogenic gene expression[31]. Leptin also has a pro-
fibrotic action through suppression of  peroxisome 
proliferator-activated receptor-γ (PPARγ)[32]. Connective 
tissue growth factor, secreted by HSCs, is also fibrogenic.

Chemokines: The migration of  HSCs to the site of  
injury is promoted by several chemokines (such as 
CCL5) secreted by HSCs which express the respective 
receptors[30].

Neurotransmitters: Following chronic liver injury, the 
local neuroendocrine system is up-regulated, and HSCs 
express different receptors, including those regulating 
cannabinoid signalling, and secrete endogenous canna-
binoid. The activation of  CB1 receptor is pro-fibrogenic, 
but the CB2 receptor is anti-fibrotic. Opioid and sero-
tonin pathways, as well as thyroid hormones, have a pro-
fibrotic effect[30].

Inflammatory pathways: Finally, inflammatory path-
ways are also involved in the HSC activation process. 
HSCs secrete inflammatory chemokines and interact 
directly with immune cells through the expression of  
adhesion molecules, including ICAM-1 and VCAM-1[33]. 
Moreover, apoptotic hepatocyte DNA can interact with 
Toll-like receptor 9 expressed on HSCs, repressing HSC 
migration and increasing collagen production[34].

CURRENT THERAPEUTIC APPROACHES
Anti-fibrotic drugs
Liver fibrosis is a dynamic process that may undergo 
reversal[35]. The best aim of  anti-fibrotic therapy is to 
eliminate the underlying disease process. For chronic 
viral hepatitis, anti-viral treatment efficacy has been 
recently documented to improve liver fibrosis. In the 
context of  chronic hepatitis B, prevention of  developing 
cirrhosis and fibrosis regression has been demonstrated 
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for entecavir and tenofovir, two third-generation nucl-
eotide analogues. Chang et al [36] firstly documented 
histological improvements and reversal of  fibrosis/
cirrhosis in patients with chronic hepatitis B treated with 
entecavir for a period of  at least 3 years. More recently, 
Marcellin and colleagues reported regression of  fibrosis 
and cirrhosis among patients with chronic hepatitis B 
infection treated for 5 years with tenofovir disoproxil 
fumarate. Seventy-four percent of  the patients with 
cirrhosis were no longer cirrhotic at year 5[37]. With 
respect to chronic hepatitis C, significant regression of  
fibrosis has been shown among patients presenting mild-
to-moderate fibrosis after treatment with Peginterferon 
alpha-2a or alpha-2b plus ribavirin during 24 or 48 
wk, depending on genotype[38]. However, beyond the 
strict enrolment criteria of  the studies, the long term 
efficacy and safety of  these anti-viral treatments have 
to be confirmed with older patients presenting several 
comorbidities and treated with other medications.

In the case of  impossibility to treat the underlying 
process, anti-fibrotic therapy would be ideal. Currently, 
there is no anti-fibrotic drugs available in a clinical 
setting[1,39,40]. Although specific agents are under 
investigation, none has been approved as anti-fibrotic 
therapy.

The use of  anti-fibrotic drugs has been reported in 
preclinical and clinical studies. This approach targets 
several aims[41-43], such as: (1) downregulation of  HSC 
activation[44-51]; (2) neutralisation of  the proliferative, 
fibrogenic, and contractile responses of  HSCs[52-58]; (3) 
promotion of  HSC apoptosis[59,60]; (4) promotion of  
matrix degradation[61,62]; (5) reduction of  inflammation[63-68]; 
and (6) inhibition of  collagen Ⅰ cross-linking[69], as shown 
in Table 1. Overall, anti-fibrotic agents have been shown 
to be highly effective in animal models and represent 
potential anti-fibrotic drugs. Several anti-fibrotic agents 
that have been transitioned to clinical studies are PPAR-γ 
agonist[45,46], interferon γ (IFN-γ)[48,49] , angiotensin Ⅱ 
antagonist[55], colchicine[57], interleukin 10 (IL-10)[64], anti-
tumour necrosis factor alpha (TNF-α)[66], ursodeoxycolic 
acid[68], and antioxidants[51].

Given the supportive preclinical data, however, the 
data in human are mixed. Moreover, most of  these 
studies were performed in small numbers of  patients 
over a short period of  time, but fibrosis is a long lasting, 
slowly progressive event. Human studies have examined 
the effect of  PPAR-γ agonist[45] and IFN-γ[48] in patients 
with liver fibrosis. In addition to the promising results 
in small-scale studies[45,48], longer and larger studies have 
failed to demonstrate any beneficial effect[46,49].

Compared with preclinical studies, clinical studies 
of  several anti-fibrotic agents have been shown to yield 
dramatically different results[51,57,64] that may be due to 
several reasons. In animal models, anti-fibrotic drugs 
were investigated against the development of  fibrosis. 
On the other hand, in real clinical settings, and in 
most clinical trials, patients had advanced fibrosis. The 
potential of  collagen degradation also differs between 

the rodent model and humans because of  difference 
in the cross-linking of  ECM. Compared with human 
fibrosis, which requires years to develop, fibrosis in 
rodents occurs over weeks or months and contains less 
chemical cross linking. In addition, differences in the 
pharmacokinetics of  anti-fibrotic drugs between animal 
models and humans contribute to the different results[42].

Furthermore, a crucial issue that remains to be 
investigated is how to translate the preclinical evidence 
of  other potential anti-fibrotic agents into a benefit 
for patients. In general, the development of  anti-
fibrotic drugs in humans meets several obstacles[41]. 
First, liver fibrosis is a slowly progressive event, most 
likely requiring several years of  follow up to establish 
efficacy. Second, the gold-standard tool to evaluate 
fibrosis remains to be histology. Patients and physicians 
may be reluctant to perform repeated biopsies due to 
possible adverse events[70]. Moreover, sampling error in 
liver biopsy and inter-observer variability may interfere 
with the results[71]. For all of  these reasons, noninvasive 
diagnostic tools would be highly desirable, ranging 
from physical examination, laboratory investigation, 
radiographic testing, to specific serum markers[42]. 
Transient elastography has also been developed to 
measure liver stiffness using ultrasound principles[72].

Orthotopic liver transplantation
Currently, orthotopic liver transplantation (OLT) 
remains the most effective treatment for this condition. 
Over time, the survival rate after OLT has progressively 
increased, reaching currently 83% after 1 year. Liver 
cirrhosis remains the main indication for OLT in Europe 
(59%) (EASL 2013). In children, a survival rate above 
80% has been reported 10 years after OLT[73]. However, 
over the last 10 years, the annual number of  OLTs 
has stopped growing because organ donation has not 
kept up with demand, leading to increased mortality 
and morbidity[74]. Moreover, some limitations such as 
operative risk, post-transplant rejection, recurrence of  
the pre-existing liver disease and high costs must be 
considered[75]. Moreover, fibrosis often develops in the 
liver grafts as early as one year after transplantation. One 
year after paediatric OLT, portal fibrosis is present in 
31% of  liver grafts[76].

The prevalence of  fibrosis increases to 65% five 
years after OLT and to 71% at 10 years, with 29% of  
severe fibrosis[77].

Cell-based therapy
Cell-based therapy has been proposed as a less invasive 
potential alternative to OLT. The rationale is mainly 
based on the ability of  several cells to: (1) improve the 
hepatic inflammatory microenvironment; (2) inhibit 
the activation or induce apoptosis of  HSCs; (3) replace 
damaged hepatocytes; and (4) promote the regeneration 
of  residual hepatocytes.

Isolated hepatocytes: Hepatocyte transplantation has 
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Table 1  Preclinical and clinical studies representing the development of anti-fibrotic strategies
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Antifibrotic drug Preclinical/clinical results Disease model Ref.

Downregulation of hepatic stellate cell (HSC) activation
Peroxisomal proliferator-activated 
receptor gamma agonist (pioglitazone)

Inhibition of HSC activation and amelioration of hepatocyte 
necroinflammation in rats after 8 wk

Carbon tetrachloride (CCl4)-induced 
liver fibrosis

[44]

Reduction of steatosis, but not fibrosis compared to placebo, in 
patients with NASH after 6 mo (26 pioglitazone; 21 placebo)

Nonalcoholic steatohepatitis 
(NASH)

[45]

No benefit of pioglitazone over placebo in term of steatosis and 
fibrosis in patients with NASH after 96 wk (80 pioglitazone; 83 

placebo)

NASH [46]

Interferon gamma (IFN-γ) Inhibition of the activation of HSC and extracellular matrix 
production

CCl4-induced liver fibrosis [47]

Improvement of fibrosis scores in patients with chronic hepatitis 
B virus (HBV) infection after 9 mo (54 IFN-γ; 29 control)

Chronic HBV infection [48]

Antioxidant (vitamin E) No reversion of fibrosis in patients with advanced liver disease 
after 1 yr (IFN-γ1b 100 μg 169; IFN-γ1b 200 μg 157; placebo 162)

Chronic hepatitis C virus (HCV) 
infection

[49]

Protective effects against liver damage and cirrhosis in rats CCl4-induced liver fibrosis [50]
No benefit on liver function tests in patients with mild to 

moderate alcoholic hepatitis after 1 yr (25 vitamin E, 26 placebo)
Alcoholic hepatitis [51]

Neutralization of proliferative, fibrogenic and contractile responses of HSC
Anti-transforming growth factor beta 
(TGF-β)

Supression of fibrosis in rats after 3 wk Dimethylnitrosamine-induced liver 
fibrosis

[52]

Short interference RNA Inhibition of the expression of TGF-β1 and attenuation of liver 
fibrosis in rats

High-fat diet and CCl4-induced 
model of liver fibrosis

[58]

Endothelin antagonist Nonpeptide endothelin-A receptor antagonist, LU 135252, 
reduced collagen accumulation in rats after 6 wk

Secondary biliary fibrosis [53]

Angiotensin system inhibitor Olmesartan, an angiotensin Ⅱ type 1 receptor blocker, decreased 
expression of collagen genes and attenuated liver fibrosis in rats 

after 15 wk

Methionine-choline-deficient rat 
model of NASH

[54]

Angiotensin-converting enzyme inhibitors (ACEi) and angiotensin 
receptor-1 blocker (ARB) did not retard the progression of liver 

fibrosis in patients with advanced liver fibrosis after 3.5 yr 
(66 ACEi/ARB, 126 non-ACEi/ARB, 343 no antihypertensive 

medication)

Chronic hepatitis C [55]

Colchicine Colchicine and colchiceine (metabolite of colchicine) prevented 
the increase in collagen synthesis and increased the intracellular 

degradation of collagen rats

CCl4-induced liver fibrosis [56]

Colchicine improved fibrosis marker expression, but not 
histological finding, in patients with hepatic fibrosis after 12 mo (21 

colchicine; 17 control)

Liver fibrosis of various etiologies [57]

Promotion of HSC apoptosis
Gliotoxin Morphologic alterations typical of HSC apoptosis in vitro 

(activated rat and human HSCs) and reduction of the number of 
activated HSCs in rats

CCl4-induced liver fibrosis [59]

Sulfasalazine Induction of activated HSC apoptosis, by inhibiting nuclear factor 
kappa B-dependent gene transcription, both in vitro (activated rat 

and human HSC) and in vivo

CCl4-induced liver fibrosis [60]

Promotion of matrix degradation
Matrix metalloproteinase (MMP) 
inducer

Urokinase-type plasminogen activator, an initiator of the matrix 
proteolysis cascade, induced collagenase expression and reversal 

of fibrosis rats

CCl4-induced liver fibrosis [61]

Tissue inhibitor of matrix 
metalloproteinase (TIMP) inhibitor

Polaprezinc, a zinc-carnosine chelate compound, attenuated 
fibrosis by inhibiting TIMP expression during a later phase, thus 

promoting fibrinolysis, in mice after 10 wk

Dietary methionine and choline 
deficient (MCD)-induced NASH

[62]

Reduce inflammation
Interleukin 10 Inhibition of HSC activation and decrease of the expression of 

TGF-β1, MMP-2, and TIMP-1 in rats
CCl4-induced liver fibrosis [63]

Anti-inflammatory effect, but increased HCV viral burden via 
alterations in immunologic viral surveillance, in patients (30 

subjects for 3-dose trial)

Chronic hepatitis C [64]

Anti-tumour necrosis factor-α Infliximab decreased necrosis, inflammation, and fibrosis in rats Dietary MCD-induced NASH [65]
Infliximab improved Maddrey’s score in patients after 28 d (20 

subjects)
Alcoholic hepatitis [66]

Ursodeoxycholic acid (UDCA) Reversion of liver damage in rats CCl4-induced liver fibrosis [67]
Reduction of periportal necroinflammation and, if initiated at 

the earlier stages Ⅰ-Ⅱ of the disease, delay of the progression of 
histologic stage in patients after 2 yr (200 UDCA, 167 placebo)

Primary biliary cirrhosis [68]
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provided the proof-of-concept that cell therapy could 
be used to treat some liver diseases such as metabolic 
disorders and acute liver failure[78-80]. A decrease in 
liver fibrosis and restoration of  phospholipid secretion 
were also observed in a mouse model of  progressive 
familial intrahepatic cholestasis type Ⅲ after hepatocyte 
transplantation[81]. The feasibility and safety of  this 
technique are supported by the numerous clinical trials 
performed with hepatocytes.

However, the efficacy of  hepatocyte transplantation 
seems to have a limited durability, with a progressive 
decrease in the observed effects[82]. Moreover, hepatocytes 
are poorly resistant to cryopreservation, which can be 
limitative as fresh hepatocytes are not always available[83]. 
Moreover, hepatocytes are rare materials and cannot be 
expanded in vitro. Therefore, finding a new and readily 
available cell source was primordial.

Stem/progenitor cells: Stem/progenitor cells have 
progressively emerged as an attractive alternative to 
hepatocytes in the context of  cell-based therapy. Stem/
progenitor cells are can proliferate in culture, are resistant to 
cryopreservation and have three interesting characteristics: 
plasticity, migration and engraftment.

Embryonic stem cells and induced pluripotent stem 
cells
Pluripotent embryonic stem cells (ESCs) are derived from 
the inner cell mass of  blastocyst embryos. Several in vivo 
studies have revealed the potency of  ESCs to differentiate 
into hepatocyte-like cells and reduce induced liver 
fibrosis. Mouse ESC-derived green fluorescent protein+ 
cells injected into CCl4-injured mice[84], undifferentiated 
mouse ESCs injected into CCl4-treated mice[85,86], and 
human differentiated ESCs transplanted into CCl4-
injured SCID mice[87] showed hepatic differentiation, 
integrated into the liver parenchyma, and reduced liver 
fibrosis without evidence of  tumourigenicity. The result 
of  these studies should be further confirmed, however, 
because teratoma formation was observed in other 
studies. Splenic teratomas were formed in mice with 
induced hepatocellular injury 35 d after the administration 
of  undifferentiated mouse ESCs and 60 d after the 
transplantation of  mouse ESC-derived alpha-fetoprotein-
producing cells[88]. Injection of  undifferentiated mouse 
ESCs into the spleen of  immunosuppressed nude mice 
also gave rise to splenic teratomas[89]. Although ESCs 
have the ability to differentiate into hepatocytes, their 
malignant potential and ethical issues remain the major 
obstacles to develop ESC treatment in clinical settings. 
Moreover, there may be genetic/epigenetic changes and 
immune rejection problems when ESCs are transplanted, 
due to their allogeneic nature[90].

To avoid these issues, new technologies have enabled 
tissue cells to become induced pluripotent stem cells 
(iPSCs). Along with the development in the field of  
stem cell reprogramming, iPSCs represent promising 
stem cells in cell-based liver therapy. Song and colleagues 
provided evidence of  hepatocyte differentiation of  human 
iPSCs for the first time[91]. At various differentiation 
stages, human iPSC-derived hepatic cells from different 
organs repopulated the liver of  mice with induced liver 
cirrhosis. The engraftment potential of  differentiated 
iPSCs was comparable to that of  human hepatocytes 
and was higher than that of  undifferentiated human 
ESCs or iPSCs[92]. iPSCs provide an unlimited source for 
regenerative medicine since patient-specific cells produce 
no ethical issue and problem of  cell rejection. Despite 
the promise of  iPSCs, the potential risk of  genetic 
manipulation and mutagenesis should be considered 
before any clinical application. Other issues that remain 
to be addressed in recruiting iPSCs are (1) the source 
of  iPSCs, whether patient-specific iPSCs should be 
derived from the diseased tissue portion; (2) the directed 
hepatic differentiation protocol; and (3) extensive 
characterisation of  hepatic differentiation[93].

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) have extensively been 
investigated as potential therapeutic options for the 
treatment of  various degenerative diseases and immune 
disorders, mainly because of  their differentiation 
potential and immunoregulatory properties[94]. The MSC 
secretion profile also represents an attractive property, 
as MSCs are known to secrete several anti-fibrotic 
molecules such as hepatocyte growth factor (HGF)[95]. 
Compared with embryonic stem cells, MSCs do not cause 
ethical problems and have a safer profile in terms of  
oncogenicity[96].

The different properties of  MSCs make them an 
attractive therapeutic tool in the context of  liver fibrosis, 
a topic that will be discussed in the following paragraphs.

PROPERTIES OF MSCs AND THEIR 
POTENTIAL USE IN REGENERATIVE 
MEDICINE
General features
In 2006, the International Society for Cellular Therapy 
proposed minimal criteria to define human MSCs[97]. 
First, MSCs must be plastic-adherent when maintained 
under standard culture conditions. Second, ≥ 95% of  the 
MSC population must express CD105, CD73 and CD90, 
and lack the expression (≤ 2% positive) of  CD45, CD34, 
CD14 or CD11b, CD79α or CD19 and HLA class Ⅱ 
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surface molecules. Third, MSCs must differentiate into 
osteoblasts, adipocytes and chondroblasts under standard 
in vitro differentiating conditions[97].

MSCs are spindle-shaped fibroblast-like cells and 
have the ability of  self-renewal. They can be isolated and 
expanded with high efficiency[98].

Differentiation potential
The high degree of  plasticity of  MSCs has widely been 
described during the last decade[99-102].

MSCs have been shown to differentiate into various 
mesodermal cell lineages (including adipocytes, osteoblasts, 
chondroblasts, myocytes and cardiomyocytes) and into 
non-mesodermal cells (such as hepatocytes and neurons), 
depending on their microenvironment[103].

In particular, in vitro models have provided evidence 
of  the differentiation potential of  MSCs into hepatocyte-
like cells with functional properties such as albumin and 
urea production, glycogen storage, LDL uptake and 
phenobarbital-induced cytochrome p450 expression[104,105]. 

Moreover, the in vivo hepatic differentiation of  MSCs 
has been demonstrated in rats[106,107] , mice[108], sheep[109] 
and humans[110].

In comparison with extra-hepatic MSCs, adult-derived 
human liver stem/progenitor cell, a subtype of  MSCs 
derived from the adult human liver, has a preferential 
hepatocyte differentiation pattern[111,112].

This hepatic differentiation potential is essential 
for MSC-based therapies in the context of  chronic 
liver diseases in which the injured hepatocytes cannot 
regenerate[74].

Immunomodulatory properties
The ability of  MSCs to modulate the immune response 
has attracted great interest, in the context of  cell-based 
therapy and allogeneic transplantation.

It is well known that MSCs suppress the activity of  
cells from both adaptive and innate immunity. Indeed, 
MSCs can inhibit the proliferation of  CD8+ cytotoxic 
lymphocytes and increase the relative proportion of  
CD4+ T helper-2 lymphocytes and CD4+ regulatory T 
lymphocytes[113,114]. This effect on T lymphocytes indirectly 
suppresses the function of  B lymphocytes because their 
activation is mainly T cell dependent. Moreover, MSCs can 
modulate B cell functions by inhibiting their proliferation, 
differentiation into antibody-secreting cells and chemotaxis. 
Soluble factors such as transforming growth factor 
β1, hepatocyte growth factor, prostaglandin E2 and 
indoleamine 2,3-dioxygenase seem to be implicated in this 
immunosuppressive activity[115].

MSCs also exert inhibitory effects on monocytes, 
dendritic cells, macrophages and NK cells, which 
belong to the innate immune system. MSCs inhibit the 
maturation of  monocytes into dendritic cells, which play 
a role in antigen presentation to naïve T-cells. MSCs also 
inhibit the secretion of  TNF-α, INF-γ and interleukin-12 
by dendritic cells and increase their secretion of  IL-10, 
reducing their proinflammatory potential[116,117]. This 

inhibitory effect exerted by MSCs seems to be mediated 
by soluble factors, including prostaglandin E2 (PGE2)[118]. 
MSCs can also suppress NK cell’s proliferation, cytolytic 
activity and secretion of  cytokines. The role of  PGE2 and 
indoleamine 2,3- dioxygenase has been established[119].

Because of  all these characteristics, MSCs have generated 
a great interest for their potential use in regenerative 
medicine.

In summary, although having less potential to diff-
erentiate into endodermal cells compared with ESCs 
and iPSCs, MSCs can be readily obtained and expanded 
into large quantities. Moreover, MSCs are resistant 
to cryopreservation and maintain a stable phenotype 
following passages in culture[120]. Furthermore, the use of  
MSCs sidesteps many obstacles for conducting human 
trials, such as ethical concerns, the risk of  rejection, 
and teratoma formation. Considering the unrelieved 
concerns regarding safety and efficacy, there has not 
been a clinical trial using human ESCs and iPSC-derived 
hepatocytes for liver regeneration.

Homing and engraftment
MSCs have the potential to migrate to the injured site 
and thereafter to engraft into the concerned organ. This 
involves their ability to migrate across the endothelial 
cells and to integrate the organ.

It is well known that injured tissues express several 
receptors and ligands (such as CXCR4 and SDF-1) that 
facilitate the migration of  MSCs to the damaged sites. 
Furthermore, chemokines are released following injury, 
creating a gradient followed by MSCs[121]. This represents 
a key mediator of  the trafficking of  MSCs to the site 
of  injury. Finally, MSCs also express some integrins, 
selectins and chemokine receptors involved in the 
adhesion and migration of  leucocytes[122,123].

The advantage of  this property is that MSCs can 
participate in liver regeneration and ensure continued 
delivery of  trophic signal molecules. However, follow-up 
studies are necessary to assess the long-term engraftment 
rate of  MSCs.

Therapeutic significance of the MSC secretome
Soluble factors secreted by MSCs have been described to 
play an important role in liver regeneration and to protect 
hepatocytes from cell death. It has been demonstrated 
that bone marrow MSC conditioned medium has anti-
apoptotic and pro-mitotic effects on cultured hepatocytes. 
Moreover, systemic infusion of  MSC conditioned 
medium could inhibit hepatocyte cell death and enhance 
liver regeneration in vivo, in a D-galactosamine-induced 
rat model of  acute liver injury[124]. Zhang and colleagues 
demonstrated that human umbilical cord matrix stem cells 
provide a significant survival benefit in mice with CCl4-
induced acute liver failure, through paracrine effects, by 
stimulating endogenous liver regeneration[125]. 

In addition to liver regeneration, the MSC secretome 
has also been described to have anti-fibrotic properties. 
Li et al[126] demonstrated that transplantation of  exosomes 
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derived from human umbilical cord MSCs could alleviate 
CCl4-induced liver fibrosis by inhibiting EMT and by 
protecting hepatocytes.

MSC-BASED THERAPY FOR LIVER 
FIBROSIS TREATMENT: FROM IN VITRO 
STUDIES TO CLINICAL TRIALS
Over the past few years, an increasing number of  studies 
have evaluated the anti-fibrotic potential of  MSCs. In 
vivo studies have highlighted the ability of  MSCs to 
reduce liver fibrosis in animal models. In vitro studies 
have been aimed to elucidate the underlying mechanisms 
by which MSC could modulate HSC activation. Finally, 
clinical trials have evaluated the efficiency of  MSC 
transplantation for the treatment of  liver fibrosis in 
humans.

Preclinical studies
Several in vivo studies were performed to evaluate the 
therapeutic potential of  mesenchymal stem cells in the 
context of  liver fibrosis (Table 2)[127-135].

In most of  the studies, liver fibrosis was induced by 
intraperitoneal or subcutaneous injection of  CCl4. This 
model has the advantage of  being the best characterized 
model with respect to histological, biochemical, cellular 
and molecular changes associated with the development 
of  liver fibrosis. Moreover, it can reproduce the pattern 
of  most of  the diseases observed in human fibrosis. 
However, this model has some limitations. First, it is 
not a suitable model to study all types of  liver fibrosis, 
such as biliary fibrosis. Second, it cannot provide a 
perfect simulation of  a human disease because there 
are large species differences in immune reactions, gene 
expression/regulation, and metabolic, pharmacological 
and tissue responses[136].

The most studied MSCs are those from the bone 
marrow. These cells have been reported to be beneficial 
in the prevention of  pulmonary fibrotic lesions[137]. 
However, aspiration of  the bone marrow remains an 
invasive procedure. The bleeding tendency of  cirrhotic 
patients and their general condition may represent an 
obstacle for autologous cell transplantation.

Alternative sources of  MSCs such as adipose tissue 
and umbilical blood cord have subsequently been 
proposed but the number of  studies in the context 
of  liver fibrosis treatment remains limited, such as 
studies using human MSCs in animal models. Most of  
the cell sources used in the in vivo studies are murine 
MSCs. To our knowledge, tissue based MSCs and bone 
marrow-derived MSCs have not been compared in 
terms of  efficacy for liver fibrosis treatment until now. 
The beneficial effects were observed regardless of  the 
origin of  MSCs, even if  the superiority in terms of  
immunomodulation has been demonstrated in vitro for 
adipose tissue-derived MSCs in comparison with bone 
marrow-derived MSCs[138].

The results of  the in vivo studies are promising 
because they report a decrease in the liver fibrosis with 
frequent improvement of  hepatic functions. Most 
of  the time, these results are observed 4 wk after cell 
infusion. Long-term studies would be of  great interest 
to evaluate whether the observed anti-fibrotic effect 
persists over time. However, the CCl4 injections need to 
be continued after MSC injection to avoid a regression 
of  liver fibrosis. This represents an obstacle to long-
term studies, because animals can hardly support CCl4 
injections over a long period of  time. In addition to an 
improvement in liver fibrosis and liver function, one 
study reported an improvement in liver microcirculation 
after MSC injection[128]. In two other studies, the decrease 
in the collagen deposition was correlated to a decrease 
in α-SMA expression, a classical marker of  activated 
stellate cells[133,135].

In vivo studies highlight the controversy that remains 
concerning the exact mechanisms by which MSCs 
exert their beneficial effect. Indeed, some studies have 
mentioned the differentiation of  MSCs into hepatocyte-like 
cells[127,131] and/or the expression of  metalloproteinases by 
MSCs[131,132,135]. The promotion of  hepatocyte proliferation 
and modulation of  inf lammation have also been 
proposed[130].

The question of  the ideal route of  MSC administration 
remains one of  the main unsolved issues regarding 
efficient injection of  MSCs. Even if  the tail vein seems to 
be the most often used administration route in animals, 
the portal vein[128,131] and intrahepatic injections [129] 
also seem to be efficient. The optimal doses of  cells 
also need to be evaluated because there are significant 
variations among studies in terms of  the number of  cells 
injected per animal.

In vitro studies
As mentioned above, following liver injury, hepatic 
stellate cells (HSCs) are activated into proliferative, 
α-smooth muscle actin positive, myofibroblast-like and 
extracellular matrix-producing cells[14]. Hence, activated 
HSCs represent an attractive target for antifibrotic 
therapy.

Several in vitro studies have demonstrated the ability 
of  MSCs to modulate HSC activation indirectly via 
paracrine mechanisms and directly through cell-cell 
contacts. The use of  in vitro models is supported by the 
ability of  HSC activation to be mimicked in vitro, when 
HSCs are in contact with the plastic culture dishes[14].

Paracrine mechanisms: Using indirect co-culture 
systems, Parekkadan et al[139] showed that human bone 
marrow-derived MSCs could inhibit collagen synthesis 
in activated HSCs from rats and, to a lesser extent, 
in immortalized human HSCs, as demonstrated by 
a significant reduction in the procollagen type Ⅰ C-
peptide secretion level. Moreover, MSCs could inhibit 
HSC’s proliferation and induce their apoptosis, even if  
HSCs did nott revert to a quiescent state. The underlying 
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Table 2  In vivo  studies using mesenchymal stem cells to treat liver fibrosis

mechanisms in the modulation of  HSC activity by MSCs 
were attributed to IL-10, TNFα and HGF. IL-10 and 
TNFα secretion by MSCs seemed to inhibit synergistically 
the collagen secretion and the proliferation of  HSCs but 
MSC-derived HGF induced apoptosis in activated HSCs, 
as demonstrated by antibody-neutralisation studies.

Adipose tissue derived human MSCs could also 
indirectly inhibit murine HSC proliferation. This growth 
inhibition is partially mediated by TGF-β3 and HGF, 
which are secreted by MSCs. Neutralisation of  both 
cytokines synergistically decreased the percentage of  
cells in the G0/G1 cell cycle phase. A decrease in the 
phosphorylation of  extracellular signal-regulated kinase 
½ by MSCs seemed to be partially involved in the supp-
ressive effect of  MSCs on HSCs. Gene expression of  
collagen type Ⅰ and Ⅲ was also inhibited by MSCs[140].

NGF released from human bone marrow-derived 
MSCs may also represent an important paracrine loop 
by which human HSC activation can be modulated. 
Using indirect co-culture systems, Lin and colleagues 
demonstrated that NGF could inhibit HSC proliferation 
and promote their apoptosis. The same effect was 
reproduced using recombinant NGF. NF-κB and its 
target gene, Bcl-xl, seem to participate in the regulation 
of  this process[141].

Cell-cell contacts: Other studies have evaluated the 

effects of  direct interplay and juxtacrine signaling bet-
ween MSCs and HSCs.

Rat bone marrow-derived MSCs were shown to 
significantly inhibit rat HSC proliferation and reduce 
their α-SMA expression level, through a cell-cell contact 
mode. The Notch pathway, known to induce cell cycle 
arrest, is activated following MSC-HSC contact. This 
signalling pathway may participate in the inhibition of  
HSC proliferation. In addition, the PI3k/Akt pathway 
seems to be involved in the growth inhibition of  HSCs 
by the Notch pathway[142].

Human bone marrow-derived MSCs were also shown 
to inhibit the proliferation and activation of  HSCs 
(LX-2 cell line) through cell-cell contact and through the 
secretion of  HGF. This HSC modulation is mediated by 
an inhibition of  the TLR4/NF-κB signaling pathway[143].

Taken together, these studies shed light on new 
insights regarding the mechanisms responsible for the 
anti-fibrotic effects of  MSCs.

Clinical trials
Over the past few years, nine clinical trials using human 
MSCs to treat patients presenting liver fibrosis have been 
published (Table 3)[144-152].

The endpoints of  the studies were to evaluate the 
safety and efficacy of  bone marrow and umbilical cord 
MSCs transplantation. The cells were mostly infused 
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Species Fibrosis 
induction

Administration 
route

MSC source Number of 
cells injected/ 

animal

Results Anti-fibrotic mechanisms 
proposed

Ref.

Rats CCl4 IP Tail vein Human umbilical 
cord blood 

1 × 106 Liver fibrosis alleviated 4 wk 
post-infusion Improvement of 

liver function

Differentiation into hepatocyte-
like cells

[127]

Rats CCl4 IP Portal vein Rat adipose tissue 2 × 106 Improvement of liver functional 
tests, histological findings and 

microcirculation 6 wk post-
infusion

Not mentioned [128]

Mice CCl4 IP Intrahepatic Murine bone 
marrow

1 × 106 Reduced fibrosis and apoptosis 
30 d post-infusion

Improvement of liver function

Not mentioned [129]

Mice CCl4 IP Tail vein Murine bone 
marrow

1 × 106 Thinner fibrotic areas and 
decreased collagen depositions 

4 wk post-infusion
Improvement of liver function

Promotion of hepatocyte 
proliferation and modulation of 

inflammation

[130]

Rats CCl4 SC Portal vein Human bone 
marrow

1 × 106 Reduced fibrosis 4 wk post-
infusion

Improvement of liver function

Differentiation into hepatocyte-
like cells expression of MMPs by 

MSCs

[131]

Mice CCl4 IP Tail vein Murine bone 
marrow

1 × 106 Decrease in liver fibrosis 4 wk 
after transplantation

Increased expression of MMPs [132]

Rats CCl4 SC/DMN 
IP

Intraveinous Rat bone marrow 3 × 106 Decrease in collagen deposition 
and of α-SMA expression

Improvement of liver function

Not mentioned [133]

Rats CCl4 SC Tail vein Rat bone marrow 3 × 106 Decrease in collagen deposition
Elevation of serum albumin

Not mentioned [134]

Mice CCl4 IP Tail vein Human bone 
marrow

5 × 105 Reduction in fibrosis 4 wk after 
cell infusion

Enhanced expression of MMP-9 
and decreased expression of 
α-SMA, TNFα and TGFβ

[135]

MSC: Mesenchymal stem cell; DMN: Dimethylnitrosamine; MMP: Matrix metalloproteinase; α-SMA: Alpha-smooth muscle actin; TNFα: Tumour necrosis 
factor-α; TGFβ: Transforming growth factor beta.
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Table 3  Clinical trials using mesenchymal stem cell to treat liver fibrosis

intravenously even if  two studies reported infusions via 
the hepatic artery[149,152]. Additionally, in one study, the 
cells were even injected into the spleen[151]. There is a 
great variation in the number of  cells infused per patient 
and in the frequency of  injection in the different trials. 
The results of  the studies seemed promising in terms 
of  improvement of  liver function and model for end-
stage liver disease score. This score is based on objective 
variables (INR, serum albumin and serum bilirubin) 
and has been validated as a predictor of  survival among 
patients with advanced liver disease[153].

However, there is a lack of  data regarding the evaluation 
of  liver histology after cell transplantation, except in one 
study reporting histological improvements[152].

Globally, the size of  the samples is small in most 
studies and there is a lack of  controls in five studies. 
The follow up period is quite short, except in one study 
with a 192-wk follow up. We believe that it is crucial 
to evaluate the long term efficacy, prognosis and safety 
before proposing this therapy routinely in the clinical 
practice. Using other types of  MSCs and other patient 
populations could also be of  great interest to evaluate 
the best therapeutic option for each pathology.

The use of  MSCs in clinical practice is currently 

hindered by the incapacity to monitor the transplanted 
cells in the patients and by the lack of  standardised 
transplantation protocols. Standardised protocols pr-
oviding information concerning the timing of  cell 
injection following the stage of  liver fibrosis, number of  
cells and administration route would be useful.

Only randomised controlled clinical trials can assess 
the potential clinical benefit of  MSCs for patients 
affected by liver fibrosis. According to the clinical 
trials Website of  the United States sponsored by the 
National Institutes of  Health (http://clinicaltrials.gov), 
approximately 24 clinical trials are currently ongoing.

FUTURE PROSPECTS
MSCs may represent a clinically relevant solution for 
the treatment of  liver fibrosis, given their interesting 
properties and the promising results of  preclinical and 
clinical studies.

However, several issues need to be clarified before 
MSCs can be routinely proposed as a therapeutic option 
to treat liver fibrosis.

Over the past few years, concerns have been raised 
about the long-term effectiveness of  MSC-based the-
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Cell source Administration 
route

Number of cells 
infused

Patient population Number of 
patients

Follow 
up 

period

Endpoints Efficacy Ref.

Umbilical 
cord

Intravenous 5 × 105/kg, 3 
times

Chronic hepatitis B 30 treatment
15 control

1 yr Safety/efficacy Improvement of liver function 
and MELD score
Reduced acites

[144]

Umbilical 
cord

Intravenous 5 × 105/kg, 3 
times

Chronic hepatitis B 24 treatment
19 control

48 or 72 
wk

Safety/efficacy Improvement of liver function 
and MELD score

Increased survival rates

[145]

Umbilical 
cord

Intravenous 5 × 105/kg, 3 
times

Primary biliary 
cirrhosis

7 48 wk Safety/efficacy Decrease in serum 
alkaline phosphatase and 

γ-glutamyltransferase levels
Alleviation of fatigue and 

pruritus
Decrease of ascites

[146]

Bone marrow 
(autologous)

Intravenous 30 × 106/patient 3 cryptogenic
1 autoimmune 

hepatitis

4 1 yr Safety/efficacy Improvement of MELD score [147]

Bone marrow 
(autologous)

Intravenous 
(peripheral 

vein or portal 
vein)

30 × 106-50 × 
106/patient

4 chronic hepatitis B
1 chronic hepatitis C
1 alcoholic cirrhosis

2 cryptogenic

8 24 wk Safety/efficacy Improvement of liver function 
and MELD score

[148]

Bone marrow 
(autologous)

Hepatic artery 3,4 × 108/patient Chronic hepatitis B 53 treatment
105 control

192 wk Safety/efficacy Improvement of Alb, TBIL, 
PT and MELD score

[149]

Bone marrow 
(autologous)

Intravenous 1 × 106/kg Chronic hepatitis C 15 treatment
10 control

6 mo Efficacy Improvement of liver function 
and MELD score

[150]

Bone marrow 
(autologous)

Intrasplenic 10 × 106/patient Chronic hepatitis C 20 6 mo Safety/efficacy Decrease od TBIL, AST, ALT, 
PT and INR

Increase of the albumin levels

[151]

Bone marrow 
(autologous)

Hepatic artery 5 × 107/patient, 
twice

Alcoholic cirrhosis 12 12 wk Efficacy Histological improvements
Improvement of Child-Pugh 

score
Decrease of TGF-β1, collagen 

type 1 and α-SMA

[152]

MELD: Model for end-stage liver disease; Alb: Albumin; TBIL: Total bilirubin; PT: Prothrombin time; TGF-β: Transforming growth factor beta; α-SMA: 
Alpha-smooth muscle actin; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; INR: International normalised ratio.
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rapy and the potential tumorigenic risk. Several lines 
of  evidence have suggested that MSCs might promote 
tumour growth in vivo[154-156]. On the other hand, because 
of  their immunomodulatory properties, MSCs may have 
an antitumour effect, in relation with the modulation of  
the inflammatory environment that characterizes many 
tumors[157-159]. MSCs can also interact with cancer cells 
and inhibit signalling pathways associated with tumour 
growth and cell division[160,161].

Moreover, there is a lack of  standardised protocols 
for MSC transplantation. The optimal MSC doses, 
timing and frequency of  injection and administration 
route differ considerably among the different studies.

For all of  these reasons, we believe that further studies, 
particularly randomised controlled trials, are needed to 
evaluate the long-term safety and efficacy of  MSC-based 
treatment. Moreover, potency tests performed on MSCs 
before injection in patients could be useful.

CONCLUSION
Although considerable advances have been made in 
the past decade to better understand the cellular and 
molecular mechanisms underlying liver fibrogenesis, no 
efficient therapy is available so far to treat this serious 
condition.

Further investigations and efforts are currently being 
conducted to efficiently reverse liver fibrosis. MSC-based 
therapy has been shown to have a significant potential 
to decrease mortality and improve the quality of  life of  
patients with liver fibrosis. However, a standardisation 
is needed before proposing this strategy routinely in 
clinical practice.
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