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Abstract

In this paper, we review some advances made recently in the study of mobile
phone datasets. This area of research has emerged a decade ago, with the
increasing availability of large-scale anonymized datasets, and has grown into a
stand-alone topic. We will survey the contributions made so far on the social
networks that can be constructed with such data, the study of personal
mobility, geographical partitioning, urban planning, and help towards
development as well as security and privacy issues.
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1 Introduction
As the Internet has been the technological breakthrough of the ’90s, mobile phones

have changed our communication habits in the first decade of the twenty-first cen-

tury. In a few years, the world coverage of mobile phone subscriptions has raised

from 12% of the world population in 2000 up to 96% in 2014 – 6.8 billion subscribers

– corresponding to a penetration of 128% in the developed world and 90% in de-

veloping countries [1]. Mobile communication has initiated the decline of landline

use – decreasing both in developing and developed world since 2005 – and allows

people to be connected even in the most remote places of the world.

In short, mobile phones are ubiquitous. In most countries of the developed world, the

coverage reaches 100% of the population, and even in remote villages of developing

countries, it is not unusual to cross paths with someone in the street talking on a

mobile phone. Due to their ubiquity, mobile phones have stimulated the creativity

of scientists to use them as millions of potential sensors of their environment. Mobile

phones have been used, as distributed seismographs, as motorway traffic sensors,

as transmitters of medical imagery or as communication hubs for high-level data

such as the reporting of invading species [2] to only cite a few of their many side-uses.

Besides these applications of voluntary reporting, where users install applications

on their mobile phones in the aim to serve as sensor, the essence of mobile phones

have revealed them to be a source of even much richer data. The call data records

(CDRs), needed by the mobile phone operators for billing purposes, contain an

enormous amount of information on how, when, and with whom we communicate.

In the past, research on social interactions between individuals were mostly done

by surveys, for which the number of participants ranges typically around 1000 peo-

ple, and for which the results were biased by the subjectivity of the participants’

answers. Mobile phone CDRs, instead, contain the information on communications
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between millions of people at a time, and contain real observations of communica-

tions between them rather than self-reported information.

In addition, CDRs also contain location data and may be coupled to external data

on customers such as age or gender. Such a combination of personal data makes of

mobile phone CDRs a extremely rich and informative source of data for scientists.

The past few years have seen the rise of research based on the analysis of CDRs.

First presented as a side-topic in network theory, it has now become a whole field

of research in itself, and has been for a few years the leading topic of NetMob,

an international conference on the analysis of mobile phone datasets, of which the

fourth edition is in preparation for 2015. Closely related to this conference, a side-

topic has now risen, namely the analysis of mobile phone datasets for the purpose of

development. The telecom company Orange has, to this end, proposed a challenge

named D4D, which concept is to give access to a large number of research teams

throughout the world to the same dataset from an African country. Their purpose

is to make suggestions for development, on the basis of the observations extracted

from the mobile phone dataset. The first challenge, conducted in 2013 was such

a success that the results of a second challenge will be presented at the NetMob

conference in April 2015.

Of course, there are restrictions on the availability of some types of data and on

the projected applications. First, the content of communications (SMS or phone

discussions) is not recorded by the operator, and thus inaccessible to any third

party – exception made of cases of phone tapping, which are not part of this sub-

ject. Secondly, while mobile phone operators have access to all the information filed

by their customers and the CDRs, they may not give the same access to all the

information to a third party (such as researchers), depending on their own privacy

policies and the laws on protection of privacy that apply in the country of appli-

cation. For example, names and phone numbers are never transmitted to external

parties. In some countries, location data, i.e., the base stations at which each call

is made, have to remain confidential – some operators are even not allowed to use

their own data for private research.

Finally, when a company transmits data to a third party, it goes along with non-

disclosure agreements (NDA’s) and contracts that strongly regulate the authorised

research directions, in order to protect the users’ privacy.

Yet, even the smallest bit of information is enough for triggering bursts of new

applications, and day after day researchers discover new purposes one can get from

CDRs. The first application of a study of phone logs (not mobile, though) appeared

in 1949, with the seminal paper by George Zipf modeling the influence of distance

on communication [3]. Since then, phone logs have been studied in order to infer

relationships between the volume of communication and other parameters (see e.g.

[4]), but the apparition of mobile phone data in massive quantities, and of comput-

ers and methods that are able to handle those data efficiently, has definitely made

a breakthrough in that domain. Being personal objects, mobile phones enabled to

infer real social networks from their CDRs, while fixed phones are shared by users of
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one same geographical space (a house, an office). The communications recorded on

a mobile phone are thus representative of a part of the social network of one single

person, where the records of a fixed phone show a superposition of several social

actors. By being mobile, a mobile phone has two additional advantages: first, its

owner has almost always the possibility to pick up a call, thus the communications

are reflecting the temporal patterns of communications in great detail, and second,

the positioning data of a mobile phone allows to track the displacements of its owner.

Given the large amount of research related to mobile phones, we will focus in this

paper on contributions related to the analysis of massive CDR datasets. A chap-

ter of the (unpublished) PhD thesis of Gautier Krings [5] gives an overview of the

litterature on mobile phone datasets analysis. This research area is growing fast

and this survey is a significantly expanded version of that chapter, with additional

sections and figures and an updated list of references. The paper is organized fol-

lowing the different types of data that may be used in related research. In Section

2 we will survey the contributions studying the topological properties of the static

social network constructed from the calls between users. When information on the

position of each node is available, such a network becomes a geographical network,

and the relationship between distance and the structure of the network can be ana-

lyzed. This will be addressed in Section 3. Phone calls are always localized in time,

and some of them might represent transient relationships while others rather long-

lasting interactions. This has led researchers to study these networks as temporal

networks, which will be presented in Section 4. In Section 5, we will focus on the

abundant literature that has been produced on human mobility, made possible by

the spatio-temporal information contained in CDR data. As mobile phone networks

represent in their essence the transmission of information or more recently data be-

tween users, we will cover this topic in Section 6, with contributions on information

diffusion and the spread of mobile phone viruses. Some contributions combine many

of these different approaches to use mobile phone data towards many different appli-

cations, which will be the object of Section 7. Finally, in Section 8 we will consider

privacy issues raised by the availability and use of personal data.

2 Social networks
In its simplest representation, a dataset of people making phone calls to each other

is represented by a network where nodes are people and links are drawn between

two nodes who call each other. In the first publications related to telecommunica-

tions datasets, the datasets were rather used as an example for demonstration of the

potential applications of an algorithm [6] or model [7] rather than for a purpose of

analysis. However, it quickly appeared that the so-called mobile call graphs (MCG)

were structurally different from other complex networks, such as the web and in-

ternet, and deserved a particular attention, see Figure 1 for an example of snowball

sampling of a mobile phone network. We will review here the different contributions

on network analysis. We will address the construction of a social network from CDR

data, which is not a trivial exercise, simple statistical properties of such networks

and models that manage to reproduce them, more complex organizing principles,

and community structure, and finally we will discuss the relevance of the analysis

of mobile phone networks.
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Figure 1 Sample of a mobile phone network, obtained with a snowball sampling. The source
node is represented by a square, bulk nodes by a + sign and surface nodes by an empty circle.
Figure reproduced from [8].

Construction

While the network construction scheme mentioned above seems relatively simple,

there exist many possible interpretations on how to define a link of the network,

given a dataset.

The primary aim of social network analysis is to observe social interactions, but

not every phone call is made with the same social purpose. Some calls might be for

business purposes, some might be accidental calls, some nodes may be call centers

that call a large number of people, and all such interactions are present in CDRs.

In short, CDRs are noisy datasets. “Cleaning” operations are usually needed to

eliminate some of the accidental edges. For example, Lambiotte et al. [9] imposed

as condition for a link that at least one call is made in both directions (reciprocity)

and that at least 6 calls are made in total over 6 months of the dataset. This fil-

tering operation appeared to remove a large fraction of the links of the network,

but at the same time, the total weight (the total number of calls passed in by all

users) was reduced by only a small fraction. The threshold of 6 calls in 6 months

may be questionable, but a stability analysis around this value can comfort that the

exact choice of the threshold is not crucial. Similarly, Onnela et al. [10] analyzed

the differences between the degree distribution of two versions of the same dataset,
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one containing all calls of the dataset, and the other containing only calls that

are reciprocated. Some nodes in the complete network have up to 30,000 different

neighbors, while in the reciprocated network, the maximal degree is close to 150.

Clearly, in the first case it is hard to imagine that node representing a single person,

while the latter is a much more realistic bound. However, even if calls have been

reciprocated, the question of setting a meaningful weight on each link is far from

easy. Li et al. suggest another more statistical approach in [11], and use multiple

hypothesis testing to filter out the links that appeared randomly in the network

and that are therefore not the mirror of a true social relationship. It is sometimes

convenient to represent a mobile call network by an undirected network, arguing

that communication during a single phone call goes both ways, and set the weight

of the link as the sum of the weights from both directions. However, who initiates

the call might be important in other contexts than the passing of information, de-

pending on the aim of the research, and Kovanen et al. have showed that reciprocal

calls are often strongly imbalanced [12]. In the interacting pair, one user is often

initiating most of the calls, so how can this be represented in an undirected network

by a representative link weight? In a closely related question, most CDRs contain

both information on voice calls and text messages, but so far it is not clear how

to incorporate both pieces of information into one simple measure. Moreover, there

seems to be a generational difference in the use of text messages or preference be-

tween texts and voice calls which may introduce a bias in measures that only take

one type of communication into account [13].

Besides these considerations on the treatment of noise, the way to represent social

ties may vary as well: they may be binary, weighted, symmetric or directed. Differ-

ent answers to such decisions lead to different network characteristics, and result in

diverse possible interpretations of the same dataset. For example, Nanavati et al.

[14] keep their network as a directed network, in order to obtain information on the

strongly connected component of the network, while Onnela et al. [10] rather fo-

cus on an undirected network, weighted by the sum of calls going in both directions.

Topological properties

The simplest information one can get out of CDRs is statistical information on the

number of acquaintances of a node, on the local density of the network or on its

connectivity. Like social networks, mobile call graphs differ from random networks

and lattices by their broad degree distribution [15], their small diameter and their

high clustering [16].

While all analyzed datasets present similar general shapes for those distributions,

their fine shape and their range differ due to differences between the datasets, the

construction scheme, the size, or the time span of the collection period.

In one of the first studies involving CDR data Aiello et al. [7] observed a power law

degree distribution, which was well explained by a massive random graph model

P (α, β) described by its power-law degree distribution p(d = x) = eαx−β .

Random graph models have often been used in order to model networks, and manage

to reproduce some observations from real-world networks, such as the small diam-

eter and the presence of a giant component, such as observed on mobile datasets.
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However, they fail to uncover more complex features, such as degree-degree correla-

tions. Nanavati et al. [14] observed in the study of 4 mobile datasets that besides the

power-law tail of the degree distribution, the degree of a node is strongly correlated

with the degree of its neighbors.

Characterizing the exact shape of the degree distribution is not an easy task, which

has been the focus of a study by Seshradi et al. [17]. They observed that the degree

distribution of their data can be fitted with a Double Pareto Log Normal (DPLN)

distribution, two power-laws joined by a hyperbolic segment – which can be related

to a model of social wealth acquisition ruled by a lognormal multiplicative process.

Those different degree distributions are depicted on Figure 2. Interestingly, let us

note that the time span of the three aforementioned datasets are different, Aiello et

al. have data over one day, Nanavati et al. over one week, and Seshadri et al. over

one month.

Krings et. al. dig a bit deeper into this topic, and investigated the effect of place-

ment and size of the aggregation time window [18]. They showed that the size of

the time window of aggregation can have a significant influence on the distributions

of degrees and weights in the network. The authors also observed that the degree

and weight distributions become stationary after a few days and a few weeks re-

spectively. The effect of the placement of the time window has most influence for

short time windows, and depends mostly on whether it contains holiday periods or

weekends, during which the behavioral patterns have been shown to be significantly

different than during normal weekdays.

What information do we get from these distributions? They mostly reflect the

heterogeneity of communication behaviors, a common feature for complex networks

[15]. The fat tail of the degree distribution is responsible for large statistical fluctu-

ations around the average, indication that there is no particular scale representative

of the system. The majority of users have a small number of contacts, while a tiny

fraction of nodes are hubs, or super-connectors. However, it is not clear whether

these hubs represent true popular users or are artefacts of noise in the data, as

was observed by Onnela et al. [8] in their comparison of the reciprocated and non-

reciprocated network.

The heterogeneity of degrees is also observed on node strengths and link weight,

which is also to be expected for social networks. All studies also mention high

clustering coefficient, which indicates that the nodes arrange themselves locally in

well-organized structures. We will address this topic in more detail further.

Advanced network characteristics

Beyond statistical distributions, more complex analyses provide a better under-

standing of the structure of our communication networks. The heterogeneity of link

weights deserves particular attention. Strong links represent intense relationships,

hence the correlation between weight and topology is of primary interest. Recalling

that mobile call graphs show high clustering coefficient, and thus are locally dense,

one can differentiate links based on their position in the network.

The overlap of a link, introduced in [10] (and illustrated on Figure 3), is an appro-

priate measure which characterizes the position of a link as the ratio of observed
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Figure 2 Degree distributions in mobile phone networks. The degree distributions of several
datasets have comparable features, but differences in the construction, the time range of the
dataset and the size of the system lead to different shapes. Note the bump in (d), when
non-reciprocal links are taken into account. (a) Aiello, W. et al., “A random graph model for
massive graphs”, in Proceedings of the thirty-second annual ACM symposium on Theory of
computing, pages 171–180 [7] c©2000 Association for Computing Machinery, Inc. Reprinted by
permission. http://doi.acm.org/10.1145/335305.335326 (b) Nanavati, A.A. et al., “On the
structural properties of massive telecom call graphs: findings and implications.”, in Proceedings of
the 15th ACM international conference on Information and knowledge management, pages
435–444 [14] c©2006 Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1183614.1183678 (c) Seshadri, M. et al., “Mobile call graphs:
beyond power-law and lognormal distributions.” in Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, pages 596–604 [17] c©2008
Association for Computing Machinery, Inc. Reprinted by permission.
http://doi.acm.org/10.1145/1401890.1401963 (d) Figure reproduced from [8].

common neighbors nij over the maximal possible, depending on the degrees ki and

kj of the nodes and defined as:

Oij =
nij

(di − 1) + (dj − 1)− nij
(1)

The authors show that link weight and topology are strongly correlated, the

strongest links lying inside dense structures of the network, while weaker links act

as connectors between these densely organized groups. This finding has an impor-

tant consequence on processes such as link percolation or the spread of information

on networks, since the weak ties act as bridges between disconnected dense parts of

http://doi.acm.org/10.1145/335305.335326
http://doi.acm.org/10.1145/1183614.1183678
http://doi.acm.org/10.1145/1401890.1401963
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Figure 3 Overlap of a link in a network. (Left) The overlap of a link is defined as the ratio
between the common neighbors of both nodes and the maximum possible common neighbors.
Here, the overlap is given for the green link. (Right) The average overlap increases with the
cumulative weight in the real network (blue circles) and is constant in the random reference where
link weights are shuffled (red squares). The overlap also decreases with the cumulative
betweenness centrality Pcum(b) (black diamonds). Figure reproduced from [10].

the network, illustrating Granovetter’s hypothesis on the strength of weak ties [19].

The structure of the dense subparts of the network provides essential informa-

tion on the self-organizing principles lying behind communication behaviors. Before

moving to the analysis of communities, we will focus on properties of cliques. The

structure of cliques is reflected by how weights are distributed among their links.

In a group where everyone talks to everyone, is communication balanced? Or are

small subgroups observable? A simple measure to analyze the balance of weights

is the measure of coherence q(g). This measure was introduced in [20] before its

application to mobile phone data in [8], and is calculated as the ratio between the

geometric mean of the link weights and the arithmetic mean,

q(g) =

(∏
ij∈lg wij

)1/|lg|
∑

ij∈lg
wij

|lg|

(2)

where g is a subgraph of the network and lg is its set of links. This measure takes

values in the range ]0, 1], 1 corresponding to equilibrium. On average, cliques appear

to be more coherent than what would be expected in the random case, in particular

for triangles, which show high coherence values.

On a related topic, Du et al. [21] focused instead on the propensity of nodes to

participate to cliques, and in particular on the balance of link weights inside trian-

gles. Their observations differ slightly from Onnela et al. : on average, the weights of

links in triangles can be expressed as powers of one another. The authors managed

to reproduce this singular situation with a utility-driven model, where users try to

maximize their return from contacts.
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Communities

The previous analysis of cliques and triangles opens the way for an analysis of more

complex structures, such as communities in mobile phone networks. The analysis

of communities provides information on how communication networks are orga-

nized at large scale. In conjunction with external data, such as age, gender or

cultural differences, it provides sociological information on how acquaintances are

distributed over the population. From a corporate point of view, the knowledge

of well-connected structures is of primary importance for marketing purposes. In

this paragraph, we will only address simple results on community analysis, but this

topic will be addressed again further in the document, when it relates to geographic

dispersal of networks or dynamical networks.

At small scale, traditional clustering techniques may be applied, see [22] and [23]

for examples of applications on small datasets. However, on large mobile call graphs

involving millions of users, such clustering techniques are outplayed by community

detection algorithms.

Uncovering the community structure in a mobile phone network is highly depen-

dent on the used definition of communities and detection method. One could argue

that there exist as many plausible analyses as there are community detection meth-

ods. Moreover, the particular structure of mobile call graphs induces some issues for

traditional community detection methods. Tibely et al. [24] show that even though

some community detection methods perform well on benchmark networks, they do

not produce clear community structures on mobile call graphs. Mobile call graphs

contain many small tree-like structures, which are badly handled by most commu-

nity detection methods. The comparison of three well-known methods: the Louvain

method [25], Infomap [26] and the Clique Percolation method [27] produce differ-

ent results on mobile call graphs. The Louvain method and Infomap both build a

partition of the nodes of the network, so that every node belongs to exactly one

community. In contrast Clique Percolation only keeps as community dense subparts

of the network (see Figure 4).

As observed in Tibely et al. the small tree-like structures are often considered as

communities, although their structure is sparse. Such a result is counter-intuitive

given the intrinsic meaning of communities and raises the question: is community

detection hence unusable on mobile call graphs? The results have probably to be

considered with caution, but as this is always the case for community detection

methods, whatever network is used, this special character of communities in mo-

bile call graphs appears rather as a particularity than a problem. Although they

might have singular shapes, communities can provide significant information, when

usefully combined with external information. Proof is made by the study of the

linguistic distribution of communities in a Belgian mobile call graph [25], where the

communities returned by the Louvain method strikingly show a well-known linguis-

tic split, as illustrated on Figure 5.

The notion of communities in social networks, such as rendered by mobile phone

networks, has raised a debate on the exact vision one has of what a community is

and what it is not. In particular, several authors have favored the idea of overlapping
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Figure 4 Examples of communities detected with different methods. The different methods are
the InfoMap method (IM, red), Louvain method (LV, blue) and Clique percolation method (CP,
green). For each method, four examples are shown, with 5, 10, 20 and 30 nodes. The coloured
links are part of the community, the grey nodes are the neighbors of the represented community.
While IM and LV find almost tree-like structures, CP finds dense communities [24]. Reproduced
figure with permission from Tibély, G. et al., Physical Review E. 83(5):056125, 2011. Copyright
(2011) by the American Physical Society. http://dx.doi.org/10.1103/PhysRevE.83.056125

communities, such that one node may belong to several communities, in opposition

with the classical vision that communities are a partition of the nodes of a network.

An argument in favor of this vision is that one is most often part of several groups of

acquaintances who do not share common interests, such as family, work and sports

activities. In [28], Ahn et al. show how overlapping communities can be detected by

partitioning edges rather than nodes, and illustrated their methods with a mobile

phone dataset. For each node, they had additional information about its center of

activities, with which they showed that communities were geographically consistent.

Social analysis

The use of mobile call data in the purpose of analysis of social relationships raises

two questions. First, how faithful is such a dataset of real interactions? Second, can

we extract information on the users themselves from their calling behavior?

It has often been claimed that mobile phone data analysis is a significant advance

for social sciences, since it allowed scientists to use massive datasets containing

the activity of entire populations. The study of mobile phone datasets is part of an

emerging field known as computational social science [29]. These massive datasets, it

is said, are free from the bias of self-reporting, which is that the answers to a survey

are usually biased by the own perception of the subject, who is not objective. Still,

http://dx.doi.org/10.1103/PhysRevE.83.056125


Blondel et al. Page 11 of 57

Figure 5 Community detection in Belgium (top) The communities of the Belgian network are
colored based on their linguistic composition: green for Flemish, red for French. Communities
having a mixed composition are colored with a mixed color, based on the proportion of each
language. (bottom) Most communities are almost monolingual. Figures reproduced from [25].

the question remains: how much does self-reporting differ from our real behavior,

what is the exact added value of having location data? This has been studied by

Eagle et al. [30] in the well-known Reality Mining project. By studying the behavior

of about 100 persons both by recording their movements and encounters using GSM

and Bluetooth technology and with the use of surveys, they managed to quantify the
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difference between self-reported behavior and what could be observed. It appears

that observed behavior strongly differs from what has been self-reported, confirming

that the subjectivity of the subjects’ own perception produces a significant bias in

surveys. In contrast, collected data allows to reduce this bias significantly. However,

mobile phone data introduce a different bias, namely, that they only contain social

contacts that were expressed through phone calls, thus missing all other types of

social interactions out [31].

While most studies use external data as validation tool to confirm the validity of

results, Blumenstock et al. shortly addressed a different question, namely if it was

possible to infer information on people’s social class based on their communication

behavior. Apparently, this task is hard to perform, even if significant differences

appear in calling behavior between different classes of the population [32]. While

inferring information about users from their calling activity still seems difficult,

many studies show strong correlations between calling behavior and other infor-

mation included in some datasets, such as gender or age. In a study on landline

use, Smoreda et al. highlight the differences in the use of the domestic telephone

based on the genders of both the caller and the callee [33], and show not only that

women call more often than men but also that the gender of the callee has more

influence than the gender of the caller on the duration of the call. Those same

trends have also been observed in later studies of mobile phone datasets [34]. Fur-

ther than just observing the gender differences in mobile phone use, Frias-Martinez

et al. propose a method to infer the gender of a user based on several variables

extracted from mobile phone activity [35], and achieve a success rate of prediction

between 70% and 80% on a dataset of a developing economy. In a later study on

data from Rwanda, Blumenstock et al. show that differences of social class induce

more striking differences in mobile phone use than differences of gender [36].

Further than analyzing the nodes of a network, Chawla et. al. take a closer look

at the links of the network, and introduce a measure of reciprocity to quantify how

balanced the relationship between two users is [37]:

Rij = |ln(pij)− ln(pji)| (3)

where pij is the probability that if i makes a communication, it will be directed

towards j. They also test this measure on a mobile communications dataset, and

show that there are very large degrees of non-reciprocity, far above what could be

expected if only balanced relationships were kept.

Going one step further, instead of inferring information on the nodes of the mobile

calling graph, Motahari et al. study the difference in calling behavior depending on

the relationship between two subscribers, characterizing different types of links.

They show that the links within a family generate the highest number of calls, and

that the network topology around those links looks significantly different from the

topology of a network of utility communications [38].

3 Adding space – Geographical networks
Besides basic CDR data, it happens that geographic information is available about

the nodes, such as the home location (available for billing purposes) or the most
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Figure 6 Population density estimates. (left) population density estimates from the Afripop
project [42]. (right) Population density estimates from mobile phone data. Figure reproduced from
[41].

often used antenna. This allows then to assign each node to one geographic point,

and to study the interplay between geography and mobile phone usage. Studies on

geographical networks have already been performed on a range of different types

of networks [39]. One of the very basic applications is to use mobile phone data to

estimate the density of population in the different regions covered by the dataset.

Deville et al. explored this idea [40], using the number of people who are calling from

each antenna, they are able to produce timely estimates of the population density

in France and Portugal. In the developing world, census data is often very costly or

even impossible to obtain, and existing data is often very old and outdated. Using

CDRs can then provide very useful and updated information on the actual density

of population in remote parts of the world. Another example is given by Sterly et

al. who mapped an estimate of the density of population of Ivory Coast using a

mobile phone dataset [41], as illustrated on Figure 6.

Relationship space-communication

Lambiotte et al. [9], investigated the interplay between geography and communi-

cations, and assigned each of the 2.5 million users from a Belgian mobile phone

operator to the ZIP code location where they were billed. By approximating the

position of the users to the center of each ZIP code area, they showed that the

probability of two users to be connected decreases with the distance r separating

them, following a power law of exponent −2. The probability of a link to be part of

a triangle decreases with distance, until a threshold distance of 40 km, after which

the probability is constant. Interestingly, this threshold of 40 km is also a satura-

tion point for the average duration of a call (see Figure 7). A different study on the

same dataset also showed that total communication duration between communes

in Belgium was well fitted by a gravity law, showing positive linear contribution of

the number of users in each commune and negative quadratic influence of distance

[43, 44]:

lab =
cacb
r2ab

(4)
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Figure 7 Average duration of a call depending on the distance between the callers. A
saturation point is observed at 40 km. Figure reproduced from [9].

where lab represents the total communication between communes a and b, ca and

cb the number of customers in each commune and rab the distance that separates

them.

While it seems sure that distance has a negative impact on communication, its

exact influence is not unique. Onnela et al. [45] observed in a different dataset a

probability of connection decreasing as r−1.5 rather than the gravity model ob-

served by Lambiotte et al, and a later study on Ivory Coast by Bucicovschi et al.

[46] observe that the total duration of communication between two cities decays

with r−1/3. However, these differences might be explained by the differences that

exist between the studied countries, such as the distribution of the population den-

sity. A different study on mobility data from the location-based service Foursquare

[47] levelled those variations using a rank-based distance [48], which could also be

helpful in this case. Another comparison is presented by Carolan et al. [49] who

compare two different types of distance, namely the spatial travel distance and

the travel time taken to link two cities. Interestingly, it appears that the use of

the spatial distance rather than the time taken gives a better fit of the number of

communications between two cities with the gravity model. Their observations also

show that the gravity model fits the data better when data is collected during the

daytime on weekdays than during evenings and weekends.

Instead of studying the communication between cities, Schläpfer et al. looked at the

relationship between city size and the structure of local networks of people living

in those cities [50]. They show that the number of contacts and communication
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activity both grow with city size, but that the probability of being friends with a

friend’s friend remains the same independently of the city size. Jo et al. propose

another approach and study the evolution with age of the distance between a person

and the person with whom they have the most contacts [51]. They thus show that

young couples tend to live within longer distances than old couples.

Instead of only taking into account the distance between two places to predict the

number links between them, Herrera-Yagüe et al. make another hypothesis, namely

that the probability of someone living in a location i has contacts with a person

living in another location j is inversely proportional to the total population within

an ellipse [52]. The ellipse is defined as the one whose foci are i and j, and whose

surface is the smallest such that both circles of radius rij centred around i and j

are contained in the ellipse. If we name eij the total population within the ellipse,

the number of contacts between locations i and j is thus described by:

Tij = K
ninj
eij

(5)

where K is a normalisation parameter depending on the total number of relation-

ships to predict, and ni and nj are the populations of locations i and j respectively.

Further, Onnela et al. also studied the geographic structure of communities, and

showed on the one hand that nodes that are topologically central inside a community

may not be central from a geographical point of view, and on the other hand that

the geographical shape of communities varies with their size. Communities smaller

than 30 individuals show a smooth increase of geographical span with size, but

bounces suddenly at the size of 30, which could not be clearly explained by the

authors, see Figure 8.

Geographic partitioning

The availability to place customers in higher level entities, such as communes or

counties, gave researchers the idea of drawing the “social borders” inside a country

based on the interactions between those entities [53]. Individual call patterns of

users are aggregated at a higher level to a network of entities, which can in turn be

partitioned into a set of communities based on the intensities of calls between the

nodes of this macroscopic network. It is important to notice that, in contrast with

the microscopic network (the network of users), the macroscopic network is not a

sparse network at all. Since the nodes represent the aggregated behavior of many

users, there is a high chance of having a link between most pairs of communes or

counties. Hence, the weights on the links of the macroscopic network are of crucial

importance, since they define the complete structure of the network. Such a parti-

tion exercise using CDR datasets has been applied, among others, on Belgium, or

Ivory Coast [54] [46]. An initial study of the communities in Belgium [55] used the

Louvain method optimizing modularity for weighted directed networks to partition

the Belgian communes based on two link weights: the frequency of calls between

two communes and the average duration of a call. The obtained partitions were
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Figure 8 Average geographic span (red) for communities and average geographic span for the
null model (blue). A bump is observed for communities of size 30 and more, which could not be
reproduced by the different null models. Figure reproduced from [45].

geographically connected, with the influence of distance, of influential cities, and

the cultural barrier of language being observable in the optimal partitions.

Given that the intensity of communication between two cities can be well-modeled

by a gravity law, Expert et al. [56] proposed to replace Newman’s modularity by

a more appropriate null model, given that geographic information was available.

The spatial modularity (SPA) compares the intensity between communes to a null

model influenced both by the sizes ca and cb of the communes and the distance that

separates them

pSpaab = cacbf(rab). (6)

The influence of distance is estimated from the data by a function f , which is

calculated for distance bins [r − ε, r + ε] as

f(r) =

∑
a,b|rab∈[r−ε,r+ε]

Aab∑
a,b|rab∈[r−ε,r+ε]

cacb
. (7)

Using their null model, the authors obtained an almost perfect bipartition of the

Belgian communes which renders the Belgian linguistic border. Moreover, they
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Figure 9 Geographic partitioning of countries (top) Communities in Belgium, obtained through
modularity optimization. Communities are geographically well-balanced and are centred around
important cities (gray dots). Figure reproduced from [55]. (bottom) Communication network in
Great Britain (80% of strongest links). The colors correspond to the communities found by
spectral modularity optimization. Figure reproduced from [57].

showed with a simple example that such a null model allows to remove the influ-

ence of geography and obtain communities showing geography-independent features.

On an identical topic, Ratti et al. used an algorithm of spectral modularity opti-

mization, to partition the map of Great Britain [57] based on phone calls between

geographic locations. Similarly to results obtained on Belgium, they obtained spa-

tially connected communities after a fine-grain tuning of their algorithm, which

correspond to meaningful areas, such as Scotland or Greater London, see Figure

9. A stability analysis of the obtained partition showed that while some variation

appears on the boundary of communities, the obtained communities are geograph-

ically centered at the same place. The intersections between several results of the

same algorithm showed 11 spatially well-defined “cores” corresponding to densely

populated areas of Great Britain. Interestingly, the map of the cores loosely corre-

sponds to the historical British regions.

A later study using the data of antenna to antenna volumes of communications

in Ivory Coast confirmed the very strong influence of language on the formation of

communities in a large country. Using the same method as was used by Blondel et

al. for the Belgian dataset, they show that the borders of the communities formed

in Ivory Coast strongly correlate with the language borders, even in the presence
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of much more than two language groups [46].

Going a bit further, Blumenstock et al. introduce a measure of the social and spa-

tial segregation that can be observed through mobile phone communication records

[58]. They define the spatial segregation as the proportion of people from ethnicity

t in a region r as :

wtr =
Ntr
Nr

(8)

where Nr is the total population of region r. They also define social segregation of

ethnicity t as the fraction of contacts that individuals of ethnicity t form with the

same type of people:

Htr =
st

st + dt
(9)

where st is the number of contacts that a person of type t has with people from the

same ethnicity, and dt is the number of contacts that people of type t have with

people from other ethnicities. With these measures, it is then possible to map the

more or less segregated parts of a city, see which ethnicities occupy which regions,

and show how strong or weak the links between these ethnicities are.

Communications reveal regional economy

Lately, with the growth of mobile phone coverage even in the most remote regions

of the developing world, a new question has risen, namely: is it possible to use CDR

data to evaluate the socio-economic state of the different regions of a country? Be-

ing able to estimate and update poverty rates in different regions of a country could

help governments make informed political decisions knowing how their country is

developing economically.

A first step in that direction was explored by Eagle et al. in a study using data from

the UK [59]. The authors investigated if some relationship could be found between

the structure of a user’s social network and the type of environment in which they

live. Using both CDRs of fixed landline (99% coverage) and mobile phones (90%

coverage), they showed that the social and geographical diversity of nodes’ contacts,

measured using the entropy of contact frequencies, correlates positively with a socio-

economic factor of the neighborhood. Given a node i, calling each of his di neighbors

j at frequency pij , and calling each of the A locations a at frequency pia, his social

and spatial diversity are given by

Dsocial(i) =

−
∑
j

pij log pij

log d
Dspatial(i) =

−
∑
a
pia log pia

logA
, (10)

which is 1 if the node has diversified contacts. On Figure 10, the authors compare a

composite measure of both diversities with the socio-economic factor of the neigh-

borhood.
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Figure 10 Average social wealth as a function of social and geographic diversity. From Eagle et
al., Network diversity and economic development, Science 328(5981):1029 (2010) [59]. Reprinted
with permission from AAAS.

In a recent study, this time with data from Africa, Mao et al. tried to determine

which characteristics of the mobile phone network could best describe the socio-

economic status of a developing region [60]. They introduce an indicator named

CallRank, obtained by running the weighted PageRank algorithm on an aggregated

mobile calling graph of Ivory Coast, where nodes are the antennas and the weight

of the links are the number of calls between each pair of antenna. They observe

that a high CallRank index seems to correspond well to a region that is important

for the national economy. However, lacking accurate data to validate the results,

they only conclude that this measure is probably a good indicator, without being

able to evaluate its accuracy quantitatively. Another analysis of the same dataset

was proposed by Smith-Clarke et al. who extracted a series of features to see which

ones showed the best correlation with poverty levels [61]. The authors show that

besides the total volume of calls, poverty levels are also linked to deviations from

the expected flow of communications: if the amount of communications is signifi-

cantly lower than expected from and to a certain area, then higher poverty levels

are to be expected in that area. Another indicator of poverty was also explored

by Frias-Martinez et al. who analyzed the link between the mobility of people and

socio-economic levels of a city in Latin-America [62]. The authors propose several

measures to quantify the mobility of users, and show that socio-economic levels

present a linear correspondence with three indicators of mobility, namely the num-

ber of different antennas used, the radius of gyration and diameter of the area of

often visited locations, indicating that the more mobile people are, the less poor

http://dx.doi.org/10.1126/science.1186605
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Figure 11 Average purchases of airtime credit in Ivory Coast. (a) Abidjan, (b) Liberian border,
(c ) Roads to Mali and Burkina Faso, (d) Road to Ghana. Figure reproduced from [64].

the area in which they live seems to be. In a further study by the same research

group, Frias-Martinez et al. go one step further, and propose a method not only to

estimate, but also to forecast future socio-economic levels, based on time series of

different variables gathered from mobile phone data [63]. They show preliminary

evidence that the socio-economic levels could follow a pattern, allowing for predic-

tion with mobile phone data.

Another valuable, and rather new, source of data extracted from mobile phone ac-

tivity is the history of airtime purchases of each user. Using this data on the network

of Ivory Coast, Gutierrez et al. propose another approach to infer the socio-economic

state of the different regions of a developing country [64]. The authors make the

hypothesis that people who make many small purchases are probably less wealthy

than those who make fewer larger purchases, supposing that the poorer will not

have enough cash flow to buy large amounts at the same time. Figure 11 shows the

map of average purchases throughout the country. Here again, lacking external reli-

able data to validate those results and compare them with socio-economic data, the

authors provide an interpretation of the differences observed between the different

regions, and show that the hypothesis they make seems plausible.

4 Adding time – Dynamical networks
A particularity of a mobile call graph is that the links are very precisely located

in time. Although each call has a precise time stamp and duration, the previously

presented studies consider mobile call graphs as static networks, where edges are
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aggregated over time. This aggregation leads to a loss of information on the one

hand about the dynamics of the links (some may appear or disappear during the

collection period) but on the other hand about the dynamics on the links. Recently,

some authors have attempted to avoid this issue by taking the dynamical compo-

nent of links into account in the definition of such networks. The topic of dynamical

– or temporal– networks has been studied broadly regarding several types of net-

works [65], but the study of mobile phone graphs as evolving ones is rather recent,

and given their inherent dynamical nature, mobile call graphs are excellent sources

of information for such studies.

Dynamics of structural properties

One such question regards the persistence of links in a mobile phone network. How

long does a link last in a network? By analyzing slices of 2 weeks of a mobile phone

network, Hidalgo and Rodriguez-Sickert observed that the frequency of presence of

links in the different slices, the persistence, followed a bimodal distribution [66], as

illustrated on Figure 12. The persistence of link (i, j) is defined as:

pij =

∑
T

Aij(T )

M
, (11)

where Aij(T ) is 1 if the link (i, j) is in slice T and 0 otherwise, M being the

number of slices. Most links in the network are only present in one window, and the

probability of a link to be observed in several windows decreases with the number of

windows, but there is an unexpectedly large number of links that are present in all

windows. These highly recurrent links represent thus strong temporally consistent

relationships, in contrast with the large number of volatile connections appearing

in only one of the slices. A deeper analysis of correlations between the persistence

and static measures further shows that clustering, reciprocity and high topological

overlap are usually associated with a strong persistence.

Raeder et al. [67] dig a bit deeper into that last topic, by attempting to predict

which link will decay and which will persist, based on several local indicators. They

quantify the information provided by each indicator with the decrease of entropy

on the probability of an edge to persist, and obtain that the most informative in-

dicators are the number of calls passed between both nodes as well as its scaled

version. By trying both a decision-tree classifier and a logistic regression classifier,

they manage to predict correctly about 70% of the persistent edges and decays.

On a very close topic, Karsai et al. studied how the weights of the links in a

network vary with time, how strong ties form, and how this process is related to

the formation of new ties [68]. They start by measuring the probability pk(n) that

the next communication of an individual that has degree n will occur with the

formation of a new (n+ 1)th tie. This probability depends on the parameter k that

corresponds to the final degree of the individual at the end of the observation period.
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Figure 12 Measures of the strength of links over time. (left) Distribution of the persistence of
links. (right) The fraction of surviving links as a function of time follows a power-law like decrease
[66]. Figures reprinted from Physica A: Statistical Mechanics and its Applications, 387(12),
Hidalgo, C.A. and Rodriguez-Sickert, C. The dynamics of a mobile phone network, 3017-3024,
Copyright (2008), with permission from Elsevier.

They find that the process of the formation of new ties follows a very consistent

pattern, namely

pk(n) =
c(k)

n+ c(k)
(12)

where c(k) is an offset constant that depends on the degree k considered. Using

the measured c for each degree class, the authors then show that rescaling the

distributions pk(n) allows to collapse all curves into one (see Figure 13), suggesting

that the evolution of the ego-network of each individual is governed by roughly the

same mechanism.

The reasons for the decay and persistence of links remain various and unknown.

However, Miritello et al. addressed a related question, namely how many links can a

person maintain active in time [69]? By looking at a large time-window (around 19

months of data), they evaluate how many contacts are new acquaintances, and how

many ties are de-activated during a smaller time-window. It appears that individu-

als show a finite communication capacity, limiting the number of ties that they are

able to maintain active in time: in the network of a single user, the number of active

ties remains approximately constant on the long term. From a social point of view,

apart from the balanced social strategy between a user’s communication capacity

and activity, the authors discern between two kinds of rather extreme behavior that

they name social explorer and social keeper. While the social explorer shows a very

high turnover in his social contacts and has a very high activity compared to his ca-

pacity, keeping only a very little stable network, the social keeper has a very stable

social circle, and only has a very small pace of activating and deactivating ties. The

authors further show that the social strategy of an individual can be linked to the

topology of its local network. In a related paper, Miritello et al. [70] further show

that even though people who have a large network tend to spend more time on

the phone than those who have few contacts, the total communication time seems
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Figure 13 Probability of a new communication to form a new tie. Probability functions pk(n)
calculated for different degree groups. In the inset, symbols show the averaged pk(n) values for
groups of nodes with degrees between the corresponding kmin values. Figure reprinted by
permission from Macmillan Publishers Ltd: Scientific Reports [68], copyright (2014).

to reach a maximum, and the strength of ties starts decaying for people who have

more than 40 contacts.

Despite this turnover in links and the fact that links appear and disappear, there

seems to be some consistency in a person’s network of contacts. In a related study,

Saramäki et al. showed how a turnover in contacts did not imply a change in the

structure of the local network around a person[71]. They study a network of stu-

dents who, during the time window covered by the dataset, move from high school

to college. Despite the very high turnover in a user’s contacts, the distribution of

the weights on the links around the user, that the authors call the social signature

of this user, stays very similar through time.

From an evolving network perspective, the question of stability and survival of

communities is closely linked to the previous questions. Palla et al. studied the

temporal stability of a mobile phone network [27], analyzing communities detected

on slices of two weeks. They observed that communities have different conditions

to survive, depending on their size; small communities require to be stable, while

large groups require to be highly dynamic and often change their composition.

On a shorter time scale, Kovanen et al. identified temporal motifs of sequences of

adjacent events involving a small number of nodes (typically 3 or 4) [72]. Events are

said to be ∆t-adjacent if they have at least one node in common, and the timing

between the two events is less than ∆t (typically of the order of minutes). The

authors analyze the most common motifs present in a mobile phone database and

http://www.nature.com/srep/index.html
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find that the most common temporal motifs of three events involve only two nodes,

and motifs that allow a causal hypothesis are more frequent than those that do not.

The availability of timestamps in datasets allows to segment the calls between

office hours and home hours. By supposing that calls made during office hours are

for a purpose of business, while private calls are made early morning, in the evening

or over the weekend, Cebrian et al. managed to build two separate networks based

on a mobile and landline dataset from the UK [73]. The degree and clustering co-

efficient distributions of both networks are mostly similar, but a deeper analysis of

the network structure shows that some important differences exist between them.

By decomposing the network into k-cores and monitoring the speed of information

diffusion, they observe that the work network is much more connected than the

leisure network, and that information diffuses almost twice as fast.

Burstiness

The dynamics of many random systems are modeled by a Poisson process, where the

average interval between two events is distributed following an exponential, well-

characterized by its average. However, it has appeared that human interactions

show a different temporal pattern, with many interactions happening in very short

times, separated by less frequent long waiting times [74].

The same holds for mobile phone calls. Karsai et al. studied the implications of the

bursty patterns on the links of a mobile call graph [75]. They observed that indeed,

the inter-event time ranges over a multiple orders of magnitude, and in particular,

the burstiness of human communication induce long waiting times, which slows

down the spreading of information over the network (see Section 6 for more results

on spreading processes). In a further paper [76], Karsai et al. also analyzed the

distribution of numbers of events in bursty cascades, thus better explaining the

correlations and heterogeneities in temporal sequences that arise from the effects of

memory in the timing of events. In another study, Wu et al. find that the distribution

of times between two consecutive events is neither a power-law nor exponential, but

rather a bimodal distribution represented by a power-law with an exponential tail

[77].

It is interesting to note that in the previous papers, the authors observed the inter-

event time on links, by sorting links by weight. In [78], Candia et al. perform a similar

task but for nodes, and measure the inter-event time for nodes, by grouping them

based on the number of calls they made. Similarly to Karsai et al.’s observations,

the inter-event times range over several orders of magnitude, and the distribution is

shifted to higher inter-event times for nodes of lower activity. By rescaling with the

average of each distribution, the inter-event time distributions collapse into a single

curve fitted by a power law with exponent 0.9 followed by an exponential cutoff at

48 days.

p(∆T ) = (∆T )−αexp(∆T/τc). (13)

The origin of this burstiness in human behavior has been discussed in several

papers in the last few years. It is expected, for example, that people will have more
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activity during the daytime than at night, and that some times of the day will

represent peaks of activity. Therefore, could the burstiness of phone calls only be

due to the daily patterns present in our lives? Jo et al. studied this question and

looked at how much of the burstiness of events still remained if they removed the

circadian and weekly patterns that appear in a mobile phone dataset[79]. They

dilated (contracted) the time of their dataset at times of high (low) activity. They

observed that much of the burstiness remained after removing the circadian and

weekly patterns, indicating that there is probably another cause of burstiness com-

ing from the mechanisms of correlated patterns of human behavior.

Mobile phone networks are composed of complex patterns and interactions, but

still only little work has been done yet in order to characterize these interactions.

The temporal arrival and disappearance of more complex structures than simple

edges and the timescales of human communication are only two examples of the

wide possible research that still needs to be explored in this matter.

5 Combining space and time – Mobility
Given their portability, mobile phones are trusty devices to record mobility traces

of users. The availability of spatio-temporal information of mobile phone users has

already led to a tremendous number of research projects, and potential applications

(see Section 7) which would be too large to review exhaustively here. The increasing

number of smartphone applications that offer services based on the geolocation of

the user are a proof that this information still has a lot of potential uses that are yet

to be discovered. In this section, we concentrate on the contributions that present

new observations or methods for analyzing and modeling human mobility, while the

contributions that propose new applications or uses of these methods are presented

in Section 7.

Individual mobility is far from random

A mobility trace is represented as a sequence of cell phone towers at which a specific

user has been recorded while making a phone call. By studying the traces of 100,000

mobile phone users over 6 months, González et al. found that human trajectories

show a high degree of temporal and spatial regularity [80], as illustrated on Figure

14. This result contrasts with usual approximations of human motions by random

walks or Lévy flights. Their main results showed that all users show very similar

patterns of motion, up to a parameter defining their radius of gyration. The regular-

ity is mainly due to the fact that users spend most of their time in a small number

of locations. If rescaled and oriented following its principal axis, the mobility of all

users can then be described by a single function. These findings are supported by

an additional work produced by Song et al. [81], who identify significant differences

between observational data and two typical models of human displacement: the

continuous time random walk and the Lévy flight. Instead, the authors show that a

model mixing the propensity of users to return to previously visited locations and a

drift for exploration manages to reproduce characteristics present in their data but

absent from traditional models. In their model, each time a user decides to change
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Figure 14 Probability of finding a mobile phone user in a specific location. Probability density
function Φ(x, y) of finding a mobile phone user in location (x, y). The plots, from left to right,
were generated for users having a different radius of gyration. After rescaling based on the
variance of each distribution, the resulting distribution show approximately the same shape. Figure
reprinted by permission from Macmillan Publishers Ltd: Nature [80], copyright (2008)

location, they can either choose a new location with a probability that decreases

with the number of already visited locations (pnew ∝ S−γ , where S is the number

of visited locations, and γ a constant), or they can return to a previously visited

location. Despite the simplicity of this model they manage to explain the temporal

growth of the number of distinct locations, the shape of the probability distribution

of presence in each location, and the slowness of diffusion.

In another approach, Csáji et al. show how small the number of frequently vis-

ited locations is [82]. They define a frequently visited location of a user as a place

where more than 5% of phone calls were initiated. Using a sample of 100,000 users

randomly chosen in a dataset of communications of Portugal, the authors find that

the average number of frequently visited locations is only 2.14, and that 95% of the

users visit frequently less than 4 locations. Instead of making a list of frequently

visited locations, Bagrow et al. propose another method to group frequently vis-

ited locations representing recurrent mobility into one “habitat” [83]. The primary

“habitats” will therefore capture the typical daily mobility, and subsidiary “habi-

tats” will represent occasional travel. Interestingly, they show that the mobility

within each habitat presents universal scaling patterns and that the radius of gyra-

tion of motion within a habitat is usually an order of magnitude smaller than that

of the total mobility.

However synchronized and predictable the mobility of most countries presented

here seem to be, most of these studies are based on data from developed countries,

where the cultural and lingual diversity do not play as big a role as in the developing

http://www.nature.com
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Figure 15 Entropy and predictability of the location of users. (left) Entropy rate of the location
of users, for the real, uncorrelated and random data. (right) Maximal predictability of the location
of users, for the real, uncorrelated and random data. From Song et al., Limits of predictability in
human mobility, Science 327(5968):1018 (2010) [85]. Reprinted with permission from AAAS.

world. Amini et. al. analyze and quantify the differences between mobility patterns

in Portugal and Ivory Coast, and show that models that perform well for developed

countries can be challenged by the cultural and lingual diversity of Ivory Coast,

that counts 60 distinct tribes [84]. They show, for example, that commuters in Ivory

Coast tend to travel much longer distances than their counterparts in Portugal, and

that mobility patterns vary much more across the country in Ivory Coast than in

Portugal.

If mobility traces are not random, and if users often return to their previous

visited locations, could one state that human mobility could be predicted? Song et

al. [85] addressed this question and investigated to what extent one could predict

the subsequent location of a user based on the sequence of his previous visited

locations. This predictability is given by the entropy rate of the sequence of locations

at which the user is observed. Importantly, one has to point out that not only the

frequency of visits at each location is taken into account, but also the temporal

correlations between those visits. Their results show that the temporal correlations

of the users’ displacements reduces drastically the uncertainty on the presence of

a mobile phone user, see Figure 15. Using Fano’s inequality, they deduce that an

appropriate algorithm could predict up to 93% of a user’s location on average. The

most surprising finding is that not only users are highly predictable on average, but

this predictability remains constant across the whole population, whatever distance

users are used to travel. While one would expect that people traveling often and far

would be less predictable than those who stay in their neighborhood, Song’s results

seem to point out that there is no variation in predictability in the population.

While the aim of the previous work was to show how predictable human motion

could be, the authors did not provide any prediction algorithm, keeping their con-

tribution on the theoretical side. Calabrese et al. went a step further and proposed

in [86] a predictive model for the location of people. Their algorithm is both based

on the past trajectory of the targeted user and on a general drift of the collectivity,

http://dx.doi.org/10.1126/science.1177170
http://dx.doi.org/10.1126/science.1177170
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imposed by geographical features and points of interest. The prediction is then a

weighted average between an individual behavior and a collective behavior. The

individual behavior is modeled as a first-order approximation of the concept pro-

posed by Song [85], building a Markov chain where states are locations visited by

the user and the probability of moving from state i to state j is proportional to the

number of times it has been observed in the data. The collective behavior is then

modeled as a weighted average between the influence of distance, points of interest

and land use. The predictions of their model on a sample of a dataset containing

the records of 1 million people on 4 months shows that in 60% of their predictions,

they manage to predict correctly the next location of a user.

The Markov chain approach used by Calabrese et al. for modeling the individual

behavior is also at the base of a study proposed by Park et al. [87]. They showed

how the temporal evolution of the radius of gyration of a user can be explained

by the eigenmode analysis of the transition matrix of the Markov chain. More pre-

cisely, the eigenvectors of the transition matrix provide fine-grain information on

the traces of individuals.

Instead of looking at the general mobility of people, Simini et al. focused on the

modeling the commuting fluxes between cities, and introduced the radiation model

[88], overcoming some of the limitations of the gravity model (recall Section 3).

The radiation model is a stochastic model, assigning a person from a county i to

a job of another county j with a probability depending on the estimated number

of job opportunities close to the county of origin i. The estimated number of job

opportunities in a given county is also a stochastic variable proportional to the

total population of the county. If we name dij the distance between counties i

and j, the average number of commuters between the two counties depends on the

population of both counties (mi and nj , respectively), and of sij , representing the

total population in a circle of radius dij :

〈Tij〉 = Ti
minj

(mi + sij)(mi + nj + sij)
(14)

where Ti is the total number of commuters from county i. The radiation model,

however efficient, still relies on the knowledge of the distribution of the population,

which may be difficult to get in some areas such as the developing world. Overcoming

this limitation, Palchykov et al. suggest a new model using only communication

patterns [89]. The communication model supposes that the mobility between two

places i and j is a function of the distance dij separating the two locations, and of

the intensity of communication between these two locations, cij :

Tij = k
cij

dβij
, (15)

where k is a normalization constant. The authors find fitting values for the parame-

ter β around 0.98 or 1.08 depending on whether they consider the mobility at intra-

or inter-city level, respectively.
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As it appears, the massive amount of mobility data, which would on first view

be considered as random motion, respects a strict routine. Mathematical models,

prediction algorithms and visualization tools (see for example Martino’s work [90])

have recently shed light on this routine, allowing to construct better human dis-

placement models which can be used to predict epidemics outbreaks. At individual

level, this routine appears to be strictly ruling our daily behavior, as Eagle and Pent-

land [91] show that six eigenvectors of the mobility patterns of users are sufficient

to reconstruct 90% of the variance observed. They also observed that individuals

tend to have synchronized behaviors, which will be described in the next paragraph.

Aggregate mobility reveal synchronized behavior of populations

At a higher level, those datasets allow to consider whole populations from a God-

eye point of view. More practically, the availability of such massive data allows us

first to observe and quantify the interaction of people with their environment, and

second to quantify the synchronicity of those interactions.

Initial projects, such as the Mobile Landscapes [92] project and Real Time Rome

[93] have shed light on the potential of such an approach, contributions being essen-

tially visual. However, the next step has been made by Reades et al. [94], who used

tower signals as a digital signature of the neighborhood. They showed how similar

locations presented similar signatures, which implies that a clustering of the urban

space is possible, based on the phone usage recorded by its antennas. In particular,

the obtained clusters reveal known segmentations of the town, such as residential

areas, commercial areas, bars or parks. In short, such a technique may be used as a

cheap census method on area usage, which could be of great interest to local author-

ities. Going a bit further, the same team showed how using an eigendecomposition

[95] of the signatures of different locations in town it is possible to extract signif-

icant information on differences and similarities in space usage, see Figure 16 for

the four principal eigenvectors of the signature of a weekday. With the same goal in

mind, Csáji et al. [82] used a k-means clustering algorithm on the activity patterns

of different areas to detect which places show the same weekly calling patterns, and

thus identify which places typically correspond to work or home calling patterns

(see Figure 17).

Beyond the analysis of a single city, Isaacman et al. explored behavioral differences

between inhabitants of different cities [96]. By analyzing the mobility of hundreds

of thousands of inhabitants of Los Angeles and New York City, they showed that

Angelenos travel on average twice as far as New Yorkers. Finding an explanation

for such a significant difference seems possible, if the inhomogeneities of population

density and city surfaces are taken into account. See, for example the work of

Noulas et al. [47], who show using Foursquare location data that using a rank-based

distance, the differences between cities are leveled. A rank-based distance measures

the distance between two places i and j as the number of potential opportunities

(people, places of interest) being closer to i than j. Given the geographic distance
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Figure 16 Eigenvectors of the Erlang signature of a weekday. Four principal eigenvectors of the
Erlang signature for a weekday of 7 places in Rome. While most of the variance is dominated by
the principal eigenvector, representing the normal daily activity, the differences between other
eigenvectors indicate differences in space usage. Figure reproduced from [95].

Figure 17 Weekly pattern of clusters. We observe clear differences between calling behavior of
work and home locations. Figure reproduced from [82].

rij and the density of opportunities expressed in radial coordinates and centered in

i, pi(r, θ), such a distance reads

rank(i, j) =

∫ 2π

0

∫ rij

0

pi(r, θ)rdrdθ. (16)

In a city of large population density, there will be more opportunities at short geo-

graphical distance than in a city with low population density. Hence, users are likely

to travel over shorter distances in city of large population density. These distortions

of the use of geographical distance are here leveled by the rank-based distance. In

a recent study, Louail et al. suggest another way to formalize these differences and
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analyze the spatial structure of cities by detecting hot-spots or points of interest

in 31 spanish metropolitan areas [97]. The authors show that the average distance

between individuals evolves during the day, highlighting the spatial structure of

the hot spots and the differences and similarities between different types of cities.

They distinguish between cities that are monocentric where the spatial distribu-

tion is dependent on land use, and polycentric cities where spatial mixing between

land uses is more important. In a similar approach, Trasarti et al. also analyze the

correlations that arise in terms of co-variations of the local density of people, and

uncover highly correlated temporal variations of population, at the city level but

also at the country level [98].

If the detection of the hot-spots and places of interest in a city is possible, then is

it possible to go one step further and infer the type of activity that people engage

in, from looking at their mobility patterns ? Jiang et. al. present a first approach

to achieve this in [99], by first extracting and characterizing areas where people

will stay or only pass-by, and then infer the type of activity that they engage in

depending on the timing of their visit to certain specific locations. In many cases,

modeling the mobility of users starts by creating an Origin-Destination matrix that

represents how many people will travel between a specific pair of (origin, destina-

tion) locations within a given time frame [100, 101, 102]. After extracting which

places and times of the day correspond to which activities, Alexander et al. propose

a method to estimate OD-matrices depending on the time of the day and on the

purpose of the trip. The authors’ results extracted from data in the area of Boston,

are surprisingly consistent with several travel survey sources.

Extreme situation monitoring

If the availability of data containing the time-stamped activity of a large population

allows to perform monitoring of routine in population activities, it also enables to

observe the population’s collective response to emergencies. Many recent papers

addressed this interesting question. Candia et al., for first, focused on the temporal

activity of users at antennas [78]. They propose a method that is based on the

study of the statistical fluctuations of individual users behaviors with respect to

their average behavior. As shown on Figure 18, in an anomalous case, users show

many high fluctuations from their average, while the overall average is close to that

of a normal activity. The variance

σ(a, t, T ) =

√√√√ 1

N − 1

N∑
i=1

(ni(a, t, T )− 〈n(a, t, T )〉)2 (17)

is computed for each place a, for the time interval [t, t + T ] between the different

individual behaviors ni(a, t, T ) and the average expected behavior. Comparing this

variance with the normally expected variance allows to identify locations where

users are acting abnormally, and that such locations are, in case of emergencies,

spatially clustered. In cases of extreme emergencies, the response of populations
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Figure 18 Activity and fluctuations during anomalous events. Activity (top) and fluctuations
(bottom) for a normal day (left) and an anomalous event (right). Note that even if no difference
is observed on activity, fluctuations are significantly different. Figure reproduced from [78]. c©IOP
Publishing. Reproduced by permission of IOP Publishing. All rights reserved.

can even be monitored as geographically and temporally located spikes of activity.

In a related paper, Bagrow et al. [103] analyzed the reaction of populations to

different emergency situations, such as a bombing, a plane crash or an earthquake

(Figure 19). They observed such spikes of information when eye witnesses and their

neighbors reacted almost directly after the event. The reaction was mostly driven

by calls made by nodes who don’t usually call at that time, rather than an increase

of call rate of usually active nodes. A detailed study of the paths followed by the

information during its propagation shows the efficiency of the collective response,

with 3 to 4 degrees from eye witnesses being contacted within minutes after the

situation. Gao et al. further analyzed these dynamics in [104], and observed that the

reciprocity of calls, i.e., “call-back” actions, showed a sharp increase in emergency

cases, such as a bombing or plane crash. The same kind of spikes of behavior, though

with different characteristics, are also known to appear at large-scale events, such

as concerts or demonstrations [105, 104].

Altshuler et al. have recently also introduced another method they call the social

amplifier to detect anomalous behavior and thus detect emergencies [106]. Hubs
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Figure 19 Spikes of activity during emergency situations. The activity has been recorded for
users close to the center of activity of several emergency situations, relatively to the normal
activity. Figure reproduced from [103].

of the network are nodes that have a very high degree, and are thus very well

connected to the rest of the network, enabling them to amplify the diffusion of

information through the social graph. Using those particular nodes as social am-

plifiers, the authors show that only analyzing the local behavior of nodes that are

close to the hubs of the network can be efficient to detect anomalies of the whole

network, and thus detect emergencies. This approach has the advantage that only

keeping an eye on a limited fraction of the network is computationally much easier

than monitoring and keeping updates on the whole network activity.

Further than detecting emergencies, Lu et al. studied whether the mobility of pop-

ulations after a disaster could be predicted, analyzing as case study the mobility

of populations before and after the 2010 Haiti earthquake [107]. Interestingly, the

predictability of people’s trajectories remained high and even increased in the three

months following the earthquake. The authors also show that the destinations of

people who left the capital were highly correlated with their previous mobility pat-
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terns, and thus that, with further research, mobile phone data could be used in

the future to monitor extreme situations and predict the movements of populations

after natural disasters. These results are very encouraging for many humanitarian

organizations who are now trying to use Big Data to save lives. After the earth-

quake and the following tsunami that struck Japan in 2011, several research teams

started a project together combining several big data sources, such as GPS devices,

mobile phones, twitter or Facebook to analyze how the analysis of this data could

help save lives in the future, if natural disasters were to strike these regions again.

This area of research still needs to be explored, especially as so many data sources

are now becoming available, combining datasets could prove very useful, and even

life-saving for some people.

Mobility and social ties

The common availability of mobility traces and social interactions in the same

dataset allows to address causality questions on the creation of social links. From

the work of Calabrese et al. it appears that users who call each other have almost

always physically met at least once over a one year interval [108]. Users call each

other mostly right before or after physical co-location, and interestingly, the fre-

quency of meetings between users is highly correlated with their frequency of calls

as well as with the distance separating them.

Going a step further, one may wonder if social ties could be predicted using mo-

bility data. Wang et al. [109] showed that indeed, nodes that are not connected in

the network, but topologically close, and who show similar mobility patterns are

likely to create a link. By combining the mobility similarity and the topological

distances in a decision-tree classifier, they manage to improve significantly classical

link prediction algorithms, yielding in an average precision of 75% and a recall of

66%. Closely related, Eagle et al. showed on 4 years of data how the social network

of people changes drastically when moving from one geographical environment to

another [110].

6 Dynamics on mobile phone networks
Many networks represent a transport between nodes via their links. In mobile

phone networks, the links transport either information (exchanged during phone

calls or contained in messages) or non-voice exchanges (SMS, MMS). Information

diffusion has opened questions on the speed of the diffusion or on the presence of

super-spreaders, with applications in viral marketing or crowd management. The

transmission of data has been at the centre of attention only recently, with the rise

of new types of computer viruses running on smartphones.

Information diffusion

A phone call is associated to the transfer of information between caller and callee.

However, as paradoxical as it may sound, mobile phone datasets are not appro-

priate to observe real propagations of information. The content of phone calls or
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text messages is, for evident privacy reasons, unknown. Yet, without having access

to the content, it is impossible to decide for sure if an observed pattern of calls

reflects the transmission of information or if it happens by chance. One can imagine

a network with a number of indistinguishable balls circulating between the nodes.

Each time a node receives a ball from one of its neighbors, it decides to keep it for a

random time interval and after that to transmit it to one of its neighbors. Suppose

now that one decides to track the movement of one specific ball. If the number of

balls is small compared to the number of nodes, this can still be doable, as long as

each node has maximum one ball in its possession. However, if the number of balls

increases to become equivalent to the number of nodes, there is a high probability

to confuse the paths of several balls. Add to this that balls might be added, removed

or duplicated during the process, and one gets a similar situation as trying to track

a piece of information in a mobile phone network.

This artificial example reflects well the issue of tracking information. Peruani and

Tabourier addressed this issue and showed that cascades of information, such as

observed in mobile call graphs are statistically irrelevant, and correspond thus prob-

ably not to real propagations [111]. Tabourier et al. show in a further paper [112]

that even though large cascades of information spreading don’t seem to happen in

mobile call graphs, local short chain-like patterns and closed loops seem to be the

effects of some causality and could very well be related to information spreading.

In a small number of cases, however, the actual observation of large diffusion of

information might be possible. Studying the case of emergencies, such as a plane

crash or a bombing, Bagrow et al. [103] observed an unusual activity in the geo-

graphical neighborhood of the catastrophe. In this case, the knowledge of both the

temporal and spatial localization of an unexpected event that is likely to generate

a cascade of information allows to assume that the observed sequences of calls are

correlated for a specific reason.

If, in most cases, the observation of real propagations seems an unreachable ob-

jective, a more complete research has been driven in the simulation of propagation

of information on complex networks, which results have been extended to questions

related to mobile phone networks. There are several ways of modeling information

diffusion on networks. A simple way is used in [10] with an SI or SIR model where

at each time step, infectious nodes try to infect their neighbors with a probabil-

ity proportional to the link weight, which corresponds to a sequence of percola-

tion processes on the network. However, mobile phone networks are known to have

very particular dynamics (recall Section 4), which are not taken into account here.

Miritello et al. [113] used a formalism similar to the one presented by Newman [114]

for epidemics, to characterize the dynamical strength of a link, which can be used

as link weight to map the dynamical process onto a static percolation problem.

The dynamical strength, given an SIR model of recovery time T and probability of

transmission λ, is given by

Tij [λ, T ] =

∞∑
n=0

P (wij = n;T )[1− (1− λ)n], (18)
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Figure 20 Comparison of the speed of spreading processes using different randomization
schemes. (left) Fraction of infected nodes as a function of time for the real (red) data and
different randomization schemes. (right) Average prevalence time distribution for nodes. Reprinted
figure with permission from Karsai et al., Physical Review E, 83(2):025102, 2011 [75]. Copyright
(2011) by the American Physical Society. http://dx.doi.org/10.1103/PhysRevE.83.025102

which is the expected probability of having n calls between i and j in a time range

of T multiplied by the probability of propagation given these n calls, summed over

all possible values for n. Using an approximation of this expression, they manage

to link the observed outbreaks to classical percolation theory tools.

However, such a formalism still neglects the impact of temporal correlations be-

tween calls, which significantly slows down the transmission of information over a

network. Social networks often exhibit small-world topologies, characterized by av-

erage shortest paths between pairs of nodes being very short compared to the size of

the network [115]. However, Karsai et al. [75] used different randomization schemes

to show that even though social networks have a typical small-world topology, the

temporal sequence of events significantly slows down the spreading of information,

as illustrated on Figure 20. Kivelä et al. [116] analyze this topic further, and intro-

duce a measure they call the relay time, specific to each link, that represents the

time it takes for a newly infected node to spread the information through that link.

By analyzing several computations of this relay time, in randomized and empirical

networks, they show that the bursty behavior of links and the timings of event

sequences are the components that slow down the most the spreading dynamics in

mobile phone networks. In another study, Karsai et al. [68] confirm this influence

and show that neglecting the time-varying dynamics by aggregating temporal net-

works into their static counterparts introduces serious biases of several orders of

magnitude in the time-scale and size of a spreading process unfolding on the net-

work.

http://dx.doi.org/10.1103/PhysRevE.83.025102
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From a more theoretical point of view, diffusion processes can be seen as par-

ticular cases of dynamical systems. Liu et al. [117] questioned in this framework

the controllability of complex networks. The problem was stated as follows; given a

linear dynamical system with time-invariant dynamics

dx(t)

dt
= Ax(t) +Bu(t), (19)

where x(t) = (x1(t), . . . , xN (t))T defines the state of the nodes of the network at

time t, A is the (possibly weighted) adjacency matrix of the network, and B an

input matrix, what is the minimal number of nodes needed for the input such that

the state of each node is controllable, i.e., the system is entirely controllable? From

control theory, one knows that a sufficient and necessary condition is that the reach-

ability matrix C = (B,AB,A2B, . . . , AN−1B) is of full rank. From previous work,

it is known that the minimal number of nodes required is related to the maximal

matching in the network, which can be computed with a reasonable complexity.

For example, the authors show that in a mobile phone network, one needs to con-

trol about 20% of the nodes in order to achieve full controllability of the system.

Surprisingly, most nodes needed for controlling the network are low-degree nodes,

while hubs, that are commonly used as efficient spreaders, are under-represented in

the set of input nodes. While the practical interest of this research still needs to be

defined, this first result on controllability of networks might open new ideas in the

field of information spreading.

Finally, one may wonder if the patterns of phone usage are efficient in a collabo-

rative scheme. Cebrian et al. [118] studied this with a small model, where each node

of a mobile phone graph is represented as an agent assorted with a state represented

by a binary string. The agents are all given the same function f , that takes their

binary string as input and which is hard to optimize, and which computes their

personal score. After each communication, the two communicating agents can mod-

ify their state in order to increase their personal score. This modification is done

with a simple genetic algorithm, which simulates a cross-over of the states of both

agents.

Practically, suppose that two agents i and j are respectively in state x
(t)
i and x

(t)
j

at time t. These states are both binary strings of length T . The agents choose a

random integer c in the interval [1, T ] and both update their state as

x
(t+1)
i = arg max

x∈{x(t)
i ,y1,y2}

f(x) (20)

x
(t+1)
j = arg max

x∈{x(t)
j ,y1,y2}

f(x) (21)

where y1 is the vector with the c first entries of x
(t)
i and the T − c last entries of

x
(t)
j and y2 is the vector with the c first entries of x

(t)
j and the T − c last entries of

x
(t)
i .

The authors observe with this model that the average score on all agents obtained in

the real dataset is smaller than for a random topology, which is in line with similar
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known results from population genetics. Also, perturbation of the time sequence of

calls produces a small enhancing of the global fitness.

Mobile viruses

The study of virus propagations has a long history, may it be biological viruses or

more recently computer viruses. Wang et al. [119] studied a new kind of virus, which

spreads over mobile phone networks. Their work is motivated by the increasing num-

ber of smartphones, which have high-level operating systems like computers, which

leads to a higher risk of an outbreak. So far, despite the large number of known

mobile viruses, no real outbreak has been noticed. The reason for this is that mobile

viruses function only on the operating system for which they are designed for. An

infected phone can hence only transfer the virus to its contacts running on the same

operating system. As exposed by Wang et al. this situation corresponds to a site

percolation procedure on the network of possible contacts. Given the actual market

shares of the main operating systems, the authors showed that those were below

the percolation transition of the contact network. The study concerns two types of

spread available for viruses: the diffusion via Bluetooth and via Multimedia Messag-

ing System (MMS). Both diffusions show major differences in spreading patterns;

Bluetooth viruses spread relatively slow and depend on user mobility. In contrast,

MMS epidemics spread extremely fast and can potentially reach the whole network

in a short time, see Figure 21. However, currently they are contained in small parts

of the network, due to the different operating systems. In conclusion, the authors

deduce thus that if no outbreak has taken place so far, it is not due to the lack of

efficient viruses, but it is rooted in the fragmentation of the call graph. However, the

current evolution of the market leads to a situation where some operating systems

are gaining a large market share, which could lead to a more risky situation.

In a subsequent study, Wang et al. [120] show how the scanning technique, where

MMS malware generate random phone numbers to which they try to propagate

instead of using the address book of their host, increases the probability of a major

outbreak, even when the market share of operating systems are too low for having

a giant component. Operators can detect such outbreaks by monitoring the MMS

traffic of their network and observe suspicious increases of volume. However, given

enough time, viruses can infect a large fraction of the network without being de-

tected by operators. Smart anomaly detection schemes may prevent such outbreaks,

as well as a reduction of market shares of operating systems. Wang et al. also com-

pare the last two strategies in a further paper [121]. They study the effectiveness of

topological viruses versus viruses that also use a scanning technique. The authors

show that topological viruses, i.e., those that spread through the contact network

of infected phones, are the most effective for an operating system that has a large

market share, whereas the scanning technique will generate a bigger outbreak in

the case of a low market share operating system.

7 Applications in urban sensing, epidemics, development.
The last few years have seen the rise of Big Data and of its uses, and in many regards,

this is rapidly changing our lives and way of thinking. Further than observing those
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Figure 21 Propagation of a mobile virus, either via MMS or Bluetooth service, over the
observed area. From Wang et al., Understanding the spreading patterns of mobile phone viruses,
Science 324(5930):1071 (2009) [119]. Reprinted with permission from AAAS.

networks of mobile phone calls, or modeling social behavior, many researchers now

engage in finding new ways of using mobile phone data in everyday life.

Urban sensing

As showed in the previous sections, mobile phone data allows to observe and quan-

tify human behavior as never before. Besides purely sociological questions, this data

also opens a number of potential applications, which gives to this data an intrinsic

economical value, thinking of geo-localized advertising applications [122]. Recall-

ing that an increasing fraction of the available smartphone applications record the

user’s geolocation – whether it is necessary for the app to work or not – it is easy

to understand that this information is valuable to target the right users when mak-

ing advertising campaigns, or simply to understand the profile of the application’s

users. Mobile phones are more and more becoming a way of taking the pulse of

a population, or the pulse of a city, and we expect that in the future, more and

more cities will make development plans based on information gathered from mo-

bile phone data. In this framework, recent research has shown that mobile phone

data could detect where people are [40] and where people travel to [82] including

the purpose of their trips [99]. If these findings are applied to a whole city and

points of interest are uncovered via mobile phone data (recall Section 5), then the

whole organization of urban places can be influenced by the knowledge gained from

this data. Urban sensing is only shortly addressed here, but has been a popular

topic in the last few years, and we refer the interested reader to a recent survey of

http://dx.doi.org/10.1126/science.1167053
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Figure 22 Traffic model for 24 hour period for Ivory Coast (left) and Abidjan Area (right).
Figure reproduced from [101].

contributions in this specific field [123].

We have previously addressed the possibility of using mobile phone signatures

as a cheap census technique, Isaacman et al. take this analysis a step further and

show how one can derive the carbon footprint emissions [124] based on the mobility

observed from mobile phone activity.

Many applications of modeling mobility aim towards transport planning and mon-

itoring traffic with evident applications in accident management and traffic jam

prevention. Over the last (almost) 20 years, a large number of attempts have been

made to enhance prediction using mobile phone data. This topic is only shortly

addressed here with a few recent contributions, but for more information on the

research in this field, we will refer the interested reader to a review published in

2011 [125]. One example of such an application was proposed by Nanni et al., who

create the OD-matrix of Ivory Coast and then assign this matrix to the road net-

work [101] to produce a map (see Figure 22) modeling the traffic of the main roads

of the country, showing estimated traffic flows. In a similar approach, Toole et al.

estimate the flow of residents between each pair of intersections of a city’s road map

[126]. They show that these estimations, coupled with traffic assignment methods

can help estimate congestion and detect local bottlenecks in the city. In a related

study, Wang et al. examine in more details the usage patterns of road segments, and

show that a road’s usage depends on its topological properties in the road network,

and that roads are usually used only by people living a small number of different

locations [127]. The authors further show that taking advantage of this observation

helps create better strategies for reducing travel time and congestion in the road

network of a city.

Going one step further, Berlingerio et. al. designed an algorithm to detect which

means of transport people would chose, including public transportation or private

means, to infer how many people used which public transportation routes [100]
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throughout the day. The authors then proposed a model of the network of local

transportation of Abidjan highlighting the routes that are taken most often. Then,

they are able to show how specific little changes to the network could improve the

average travel time of commuters by 10%. Among other possible uses of informa-

tion on commuting flows, McInerney et. al. suggested using the regular mobility of

people for physical packages delivery to the most rural areas [128], showing on the

one hand, the feasibility of this method, and on the other hand reducing by 83%

the total delivery time for rural areas. Other applications of prediction algorithms

for the next journey of users include, for example, a recommender system for bush

taxis such as suggested by Gambs et. al. [129], using the predicted next location

of users to recommend to pedestrians adapted means of transport that are in their

neighborhood.

By monitoring the movements of people towards special planned events, Calabrese

et al. [130] show that the type of events highly correlates to the neighborhood of

origin of the users. Such a cartography of taste can be used by authorities when

planning the congestion effects of large events, or for targeted advertising of events

(see Quercia et al. [131]). In a closely related approach, Cloquet and Blondel use the

analysis of anomalous behavior in mobile phone activity to predict the attendance

to large-scale events such as demonstrations or concerts. The authors propose, as a

first step in that direction, a method to determine the time when no more people

will arrive to a certain event [132]. To do this, they propose two methods. The

first method uses the mobility of people that are traveling towards the event to

model the flux of the arriving or leaving crowd. The second method is based on the

recorded interactions between people that are already at the event and other users

that are within 20km. The authors show that using these methods, they are able

to predict the time when no more people will join the event up to 43 minutes in

advance. Another related application was explored by Xavier et al. who analyzed

the workload dynamics of a telecommunication operator before and after an event

such as a soccer match [133] in order to help the management of mobile phone

networks during such events.

Finally, mobility traces can also be used to monitor temporal populations [134],

such as tourists. Kuusik et al. [135] studied the mobility of roaming numbers in

Estonia for 5 consecutive years, showing the potential for authorities to understand

and efficiently target visiting tourists.

Infectious Diseases

In recent years, a lot of research has been done in order to use Big Data to help

monitor and prevent epidemics of infectious diseases. If one can model information

spreading in mobile phone networks (recall Section 6), then the same theory could

also be used to model the spreading of real infectious diseases. As mobile phone

data can help follow the movements of people (recall Section 5), these movements

can also provide information about how a disease could travel and spread across a

country. The dynamics at hand usually depend on the type of disease and how it
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Figure 23 Epidemic invasion trees. Invasion trees observed using the census (left) and the mobile
phone network (right), the seed of the simulation is in Barcelonnette (black node). Figure
reproduced from [137].

can be transmitted, hence many articles, of which we will review a few here, propose

different models based on the mobility of people to predict the spread of an epidemic.

Using mobile phone traces, Wesolowski et al. measure the impact of human mo-

bility on malaria, comparing the mobility of mobile phone users to the prevalence

of malaria in different regions of Kenya, and identify the main importation routes

that contribute to the spreading of malaria [136]. In another study, Tizzoni et al.

[137] validate the use of mobile phone data as proxy for modeling epidemics. The

authors extract a network of commuters in three European countries by detecting

home and work locations for each mobile phone user, and compare this network with

the numbers of commuters obtained by census. On these networks of commuters,

they trace agent-based simulations of epidemics spreading across the country. They

show that the invasion trees and spatio-temporal evolution of epidemics are similar

in both census and mobile phone extracted networks of commuters (see Figure 23).

Most models assume, lacking additional information, homogenous mixing between

people that are physically within the same region or area. Frias-Martinez et al. pro-

pose another agent-based model of epidemic spreading, using individual mobility

and social networks of individuals to build a more realistic model [138]. Instead of

assuming homogeneous mixing within a given area, an individual will have more

probability of meeting an infected agent that is in the same area if they have com-

municated with each other before. The authors further divide the social network of

contacts and the mobility model of an individual between weekday and weekend to

achieve better accuracy.

Going a step further, a few contributions to the D4D challenge [139] investigated

which would be the best ways to monitor and influence an epidemic rather than

just predicting its spread. In this framework, Kafsi et al. [140] propose a series

of measures applicable at the individual level that could help limit the epidemic.

They investigate the effect of three different recommendations, namely (1) do not
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cross community boundaries; (2) stay with your social circle and (3) go/stay home.

Considering that either of these three recommendations could be sent via their

mobile phone to different users in the network, and that probably only a fraction

of the contacted users would participate, the authors evaluate the impact that im-

plementing this system could have on the spreading process. They show that these

measures can weaken the epidemic’s intensity, delay its peak, and in some regions,

even seriously limit the number of infected individuals. Using the same dataset,

Lima et al. proposed a different approach [141], namely using the connection be-

tween people to launch an information campaign about the epidemic, in the hope

to reduce the probability of infection if an individual is better informed about the

risks. The authors use an SIR model and the observed mobility of mobile phone

users to simulate epidemics unfolding on a population, and evaluate the impact of

geographic quarantine on the spreading of the disease, as well as the impact of an

information campaign reducing the risks of infection for “aware” individuals. They

show that the quarantine measures don’t seem to delay the endemic state, even

when almost half the population is limited to their own sub-prefecture, whereas the

information campaign, less invasive, seems to limit significantly the final fraction of

infected individuals, opening this topic for further research.

This field of research has shown again how valuable mobile phone data could be

to save lives, and potentially monitor and limit epidemics of infectious diseases.

However, most models and studies are limited by the lack of ground-truth data to

compare their results with. Indeed, how would you know who an individual got the

disease from, and what was its exact route towards each infected person? Another

shortcoming of this area of research comes from the current difficulty of gaining

access to those mobile phone datasets, especially to cross-border mobility. If mod-

eling mobility in Africa could be useful to containing the current Ebola outbreak,

cross-border mobility would be very valuable data, as discussed in [142]. However,

gaining access to these data is more difficult as it involves getting the approval from

more than one country for a single dataset. In [143], the authors suggest guidelines

to share data for humanitarian use, while preserving the privacy of users.

Viral marketing

In 1970, Katz and Lazarsfeld introduced the breakthrough idea that, more than

mass media, the neighborhood of an individual is influencing their decisions [144].

This idea has induced the concept of opinion leaders – persons who have a high

influence on their neighborhood –, although some debate exists on the exact role

played by opinion leaders [145], and introduced the concept of viral marketing. In

opposition to direct marketing, the principle of viral marketing is that consumers

respond better to information accessed from a friend than to information provided

through direct means of communication. Viral marketing searches thus for means

of making people communicate about a brand, in order to push friends of an early

adopter to adopt the product in their turn. In particular, mobile viral marketing

has proved to be an effective means of propagation of such marketing campaigns.

The influence of one’s neighbors can be observed using CDR data coupled to data
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on product adoption. In a study of the adoption of 4 mobile services, Szabó and

Barabási [146] showed that the adoption of a product by a user was highly correlated

to the adoption of their neighbors for some services only, while other services were

not showing any viral attribute. A similar study by Hill et al. [147] on the adoption

of an undisclosed technological service showed again that neighbors of nodes that

had adopted the service were 3 to 5 times more likely to adopt the service than the

best-practice selection of the company’s marketing service. A related result was also

obtained in the FunF project by Aharony et al. [148], who showed that the number

of common installed applications was significantly larger for pairs of users having

often physical encounters. Risselada et al. [149] further showed that the influence

of one’s neighbors on the adoption of a product evolved with time, depending on

the elapsed time since the introduction of the product on the market.

Even though one could use a simple SI or SIR model to characterize viral mar-

keting, it is more likely in this case, that a user will adopt a product if several of its

neighbors have already adopted it and the information comes from several different

sources. One of the possible ways to model these dynamics is to use a threshold

model: each user is assigned a threshold. A node will adopt a product if the propor-

tion of its neighbors that have adopted the product is above the node’s threshold.

The model can be either deterministic, and decide a priori a same threshold for all

nodes, or stochastic and draw thresholds from a probability distribution. To take

into account the timing of contacts between people, one can then add to this model

the condition that a node will adopt a product if it has enough contacts with differ-

ent neighbors that have adopted the product within a given time frame. Backlund

et al. have studied the effect of timings of call sequences on those models [150].

Here again, they observe that the burstiness of events tends to hinder propagation

of adoption of a product, increasing the waiting times between contacts compared

to a randomized sequence of contacts.

The identification of “good” spreaders for a viral marketing campaign is tough

work, especially given the usually very large size of the datasets, which makes it

hard to extract informational data in a small time frame. With this in mind, the

authors of [151] proposed a local definition of social leaders, nodes that are expected

to play an influential role on their neighborhood. They defined the social degree of a

node as the number of triangles in which the node participates, and social leaders as

nodes that have a higher social degree than their neighbors. This definition has its

use in marketing campaigns, to identify the customers who should be contacted to

start the campaign, which proved to be efficient [152]. Moreover, social leaders can

also be used to reduce the complexity of a network, by only analyzing the network

of social leaders instead of the whole network, with possible uses in visualization

and community detection.

Data for development

The last couple of years have seen a spectacular rise of interest for applications of

mobile data for the purpose of helping towards development. Many contributions
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to the “Data for Development” (or D4D) challenge launched by Orange [139] used

different bits of information from the data of mobile phone users to help the devel-

opment of Ivory Coast. Several of these contributions have already been reviewed

in the previous paragraphs, for the full set of research projects, see [153].

While in the developed world, much information of what can be inferred from

mobile phone data is already known (population density, some of the mobility

traces,...), this information can be very valuable in the developing world where cen-

sus data is often unavailable or several years old. Modeling the mobility of people

in developing countries can provide very useful information for local governments

when making decisions regarding changes in local transportation networks, or ur-

ban planning. Indeed, in rural areas of low income countries where the most recent

technologies are not always available, up to date information on how many people

commute from one place to another can be very useful and help policy makers to

decide on the next steps towards development. Sometimes, very basic information

such as drawing the road network can be difficult in remote places. Salnikov et al.

used the D4D challenge dataset to detect high traffic roads by selecting displace-

ments only within a certain range of velocities [154]. They were able to redraw

the main road structure of the country and even identified unknown roads, which

they validated a posteriori. Between techniques for cheap census, mobility planning

and fighting infectious diseases applications, we expect that in the next few years,

the developing world will profit from the availability of such rich databases, and

research will provide useful insights into how to better help towards development.

Data representativity

Finally, one may raise the question of the significance of the data: given that only

a fraction of a country’s population is reached by one operator, to which extent

may the results on a dataset be generalized to larger populations? Clearly, quan-

titative results obtained in these studies, such as the degrees of nodes, cannot be

taken for granted, but one may expect that as long as the population sample is not

biased, qualitative observations such as the broadness of degree distribution or the

organization of nodes in communities are significant information on the structure

of communication networks. However, the question of knowing whether the sample

is biased or not is almost impossible, especially given the lack of information about

the users in CDR databases.

Frias-Martinez et al. raised this question in [155], regarding e.g. the socio-economic

level that could be biased among mobile phone users compared to the whole pop-

ulation. They validate their results by performing a series of statistical tests to

compare the population in their sample to the overall population using census

data, and show that no significant difference was observed. However, in the general

case, data about users in CDR databases is often missing, and census data may not

always be available for comparison. Regarding mobility models, one could argue

that active mobile phone users are more likely to be on the move than the rest of

the population. A mobility model based on mobile phone users is therefore likely to

overestimate the number of people within a population that are traveling. Buckee
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et al. raised this question regarding those models, further arguing that bias in mod-

els of mobility could, in turn, influence the spreading of modeled epidemics [156].

Onnela et al. also address this problem studying how paths differ depending how

much of the network is observed [157]. They show that, counterintuitively, paths

in partially observed networks may appear shorter than they actually are in the

underlying full network.

Ranjan et. al. studied a related question regarding the mobility of users [158]:

given that one only sees data points where and when a user has made a phone call,

to which extent are these points representative of a user’s mobility?. They found

that sampling only voice calls of an individual will most of the time do well to

uncover locations such as home and work, but will also, in some cases, incur biases

in the spatio-temporal behavior of the user. In a recent study, Stopczyncki et al.

widen their coverage by coupling databases from many sources on the same set of

users [159]. While this approach clearly captures more than just studying mobile

phone records, its coverage is limited (1,000 subjects) as the users had to give their

explicit consent to share their data: facebook interactions, face-to-face encounters,

and answers to a survey. The authors are therefore able to analyze a bigger picture

than other studies based on only mobile phone data and show that only studying

mobile phone data may not be enough to capture a user’s comprehensive profile.

Learning from these studies, one should therefore be cautious when drawing conclu-

sions from such analyses, and keep in mind that observing the traces left by mobile

phones is only observing selected parts of the whole picture.

8 Privacy issues
The collection and availability of personal behavioral data such as phone calls or

mobility patterns raises evident questions on the security of users’privacy. The con-

tent of phone calls or text messages is not recorded, but even the simple knowledge

of communication patterns between individuals or their mobility traces contains

highly personal information that one typically does not want to be disclosed. Dur-

ing the past decade, a fairly high amount of personal data was made available to

researchers via, among others, CDR datasets. The companies sharing their data do

not always know how much personal information can be inferred from the analysis

of such large datasets, and this has led, so far in other cases than mobile phone

data, to a few scandals in the recent years [160, 161]. In turn, these incidents led, in

2012, to a procedure of adaptation of legal measures in Europe [162]: the previous

european law on the protection of privacy and data sharing dated back from 1995

[163], long before the era of what is now called “Big Data”.

The procedure often used when a company shares private data with a third party

such as a research group is the following: the company keeps on secured machines

the exact private information such as names, addresses or phone numbers on their

customers, as well as the CDRs, which contain the phone number of the caller, the

callee, the time stamp of the call, the tower at which the caller was connected, idem

for the callee, and additional information such as special service usage and so on.

The anonymization procedure consists then in replacing each phone number by a
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randomly generated number, such that each user has a unique random ID, from

which it is impossible to retrieve the original phone number by reverse engineering

procedures. The CDRs are then modified such that phone numbers are replaced by

the corresponding ID. After this procedure, the CDRs are anonymized, and can be

transferred to a third party. The standard procedure then implies that the third

party signs a non-disclosure agreement, stipulating that they cannot make the CDR

data available, and the agreement usually also restricts the range of potential re-

search questions to be explored with the data. The safety of users privacy is then

guaranteed both by the removal of information allowing to identify users and by

the assumption that the third party doesn’t make use of the data for any malicious

intent.

De-anonymization attacks

Some research has been produced on mobile phone datasets to challenge this appar-

ent feeling of security, however, recent results are opening new ways of considering

the privacy problem. Using CDR data containing mobility traces, Zang and Bolot

[164] show how it is possible to uniquely identify a large fraction of users with a

small number of preferred locations. Their methodology goes as follows: for each

user, it is possible to list the top N locations at which calls have been recorded.

The authors show then that depending on the granularity of the locations, a non-

negligible fraction of users may be uniquely identified by only 2 locations. For

example, if locations are taken at cell level, up to 35% of the users of a 25 million

communication network can be uniquely identified with 2 locations, which will be

likely to correspond to home and work. Thus, while the anonymization procedure

is intended to impeach any linkage between the dataset and individuals, using this

procedure allows to potentially retrieve the mobility and calling pattern of targeted

users given the access to as little information as home and work addresses. If addi-

tional data, such as year of birth or gender of users would be available – which is

common in most datasets – it would be possible to identify very large fractions of

the network. However, in this attack scheme, one has to know quite well the profile

of the user for them to be found in the database. Using a different approach, de

Montjoye et al. [165] show that knowing only four points in space and time where

a user was allows to uniquely re-identify the user with 95% probability. Using only

very little information that could be available easily to an attacker, the authors

thus show how unique each user’s trajectory is. They further show that blurring

the resolution of space or time does not reduce much the information needed to

re-identify a user in the database, thus keeping the database very vulnerable if faced

with this type of de-anonymization attack.

Other possible attacks have also been considered on anonymized online social

networks. Although those attacks are not likely to be applied in the case of mobile

phone data, we quickly mention some of them, as it is likely that breaches found

in different applications might be similar to potential breaches in mobile phone

datasets.

For example, Backstrom et al. [166] describe a family of local attacks, which enable
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to retrieve the position of some targets in the network, and hence to uncover the

connections between those patterns. The authors showed that on a network of 4.4

million nodes, by controlling the links of 7 dummy nodes they manage to uncover

the presence or absence of 2,400 links between 70 target nodes, without being de-

tected by the database manager. On a wider scale, Narayannan and Shmatikov

[167] show that it is possible to retrieve the identity of a large part of a social

network by combining it with an auxiliary network. Such a situation happens when

users are present in two separate datasets. The authors show then that even if this

overlap is available for only a fraction of the users, it is still possible to retrieve the

information for a large part of the network.

Against these possible threats of privacy breach, one may wonder if solutions are

proposed to counter such attacks. If research on mobile datasets only considers av-

erage behaviors, rather than exact patterns, a simple countermeasure is to perform

small modifications of the dataset, that would not alter the general aspect of it but

that would have dramatic consequences on the algorithms used by attackers, who

search for exact matchings between statistics on the network and a priori known

properties of the targets.

Another protection against such attacks, and particularly when mobility data is

involved, is to produce new random identifiers for each user at regular time inter-

vals. By regenerating random identifiers, it makes it impossible to use longitudinal

information in order to assess the preferred locations of a user. As shown by Zang

and Bolot [164], by changing every day the ID of each user, only 3% of the nodes

can still be identified using their top 2 locations. While this method seems efficient

to protect the privacy of users, it reduces substantially the possible information to

retrieve from such a dataset for research purposes. Using a similar approach also

proved useful against the attack scheme considered by de Montjoye et al., as Song

et al. show in [168] that changing the ID of each user every six hours reduces sub-

stantially the fraction of unique trajectories in the dataset. A compromise between

preserving the anonymity and keeping enough information in the dataset is difficult

to achieve. In collaboration with the Université catholique de Louvain, the provider

Orange tried to achieve this for their first D4D challenge before releasing a dataset

to a wide community of researchers (more than 150 research teams participated).

Through releasing four different datasets anonymized differently [139] and contain-

ing information of different spatio-temporal resolutions, they could guarantee the

preservation of the anonymity of users. Yet, the loss of information was not too

dramatic, as many studies showed very good results using the provided aggregated

information. The challenge was such a success that a second one is currently in

process, using a wider dataset from Senegal [169].

Another question that is closely linked to this research is how to quantify the

anonymity of a database. Latanya Sweeney proposed a measure that is k-anonymity

[170], defining that a database achieves k-anonymity if for any tuples of previously

defined entries of the database, there are at least k users corresponding to it, making

it impossible to re-identify a single user with only information on these entries of

the database. Of course, the larger k is, the most difficult it becomes to achieve this,

especially in a CDR database containing spatio-temporal information about each
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call. Moreover, when the attacker is looking for a particular person in the database,

enabling him to reduce the number of potential corresponding users to a small

number is sometimes already a lot of information, and too big a risk to release the

database publicly. Another potential solution to preserving privacy was suggested

by Isaacman et al. [171] who suggest using synthetic data to model the mobility

of people. They used mobile phone data from two american cities to validate their

model, showing that their model, based on only aggregated data and probability

distributions, could reproduce many of the features of mobility of users, without

any of them corresponding to a real person. Mir et al. further proposed an evolved

version called DP-WHERE [172] of the previous model, adding controlled noise to

the set of empirical probability distributions. This noise then guarantees that the

model achieves differential privacy, that is, that the analyses will not be significantly

different whether or not a single individual is in the database from which the model

is derived, even if this individual has an unusual behavior. However, on may wonder

if these synthetic data could be used to carry out analyses that were not previously

tested on the real database, as no guarantee exists on the outcome of analyses that

were not foreseen by the researchers that tested the model for compatibility with

empirical data.

Personal data: ownership, usage, privacy

Phone companies collect data about their users, about their habits, their mobil-

ity, their acquaintances. Still, the legislation up to 2013 was fuzzy [173], chilling

companies to share such data for research and making customers feel that George

Orwell’s predictions are coming true, especially after the scandal in 2013 revealing

how much personal information the NSA was collecting from many sources [174].

Such data represents an enormous added value, both to companies, for marketing

purposes and client screening, and to authorities for traffic management or epidemic

outbreak prevention. It is often forgotten, but the use of mobile phone datasets also

has a huge positive potential in the developing world, as many of the proposed

project to the Data for Development challenge showed [153], may it be for super-

vising the health status of populations, generating census data or optimizing public

transport.

Such opportunities, both for corporates and authorities need to develop standard-

ized procedures for the acquisition, conservation and usage of personal data, which

is not yet the case. The communication about these procedures to customers hasn’t

been clear, as are the possibilities for a user to “opt-out” if they don’t want to have

their personal data released.

With this intent, several voices have recently been raised in order to urge authorities

to develop a “New Deal” [175] on data ownership, in which users would own their

personal data as well as the decisions to provide it –in exchange of payment– to

companies interested in their usage. A transparent system armed with the necessary

protocols and regulation for a transparent use of personal data would also facilitate

the access to data for researchers [176], and could so benefit to the entire society.

9 Conclusion and research questions
The first analyses of mobile phone datasets appeared in the late 90’s, and the result

of this decade of research contains a large number of surprises and several promising
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directions for the future. In this paper, we have reviewed the most prominent results

obtained so far, in particular in the analysis of the structure of our social networks,

and human mobility. We decided not to cover some closely related questions, such

as churn prediction (see [177, 178, 179, 180]) or dynamic pricing [181, 182], which

are rather business-related topics, and for which a vast literature is available.

The recent availability of mobile phone datasets have led to many discoveries on

human behavior. We are not all similar in our ways of communicating, and dif-

ferences between users can range to several orders of magnitudes. Our networks

are clustered in well-structured groups, which are spatially well-located. With the

raise of communication technology, some have predicted that the barrier of distance

would fall, shrinking the world into a small village. However, mobile phone data

suggests instead that distance still plays a role, but that its impact is nuanced by

the varying population density. Regarding our mobility behavior, individuals ap-

pear to have highly predictable movements [183], while as populations we act and

react in a remarkable synchronized way. In this context, the availability of mobile

phone data has for the first time allowed to observe populations from a God-eye

point of view, monitoring the pace of daily life or the response to catastrophes.

The ubiquity of mobile phones – there are nowadays more mobile phones than per-

sonal computers in use – which allows us to obtain such precise results raises also

the thread of viral outbreaks, from which mobile phones have been safe until now.

Mobile viruses could be a potential risk for users’ privacy, as it is also the case that

the anonymized datasets provided by operators to third parties for research could

potentially be de-anonymized too.

The availability of such enormous datasets creates a huge potential that could

benefit to society, up to the point of saving lives. The research that has been con-

ducted so far only represents the tip of the iceberg of what could potentially be

done, when adequately exploited. However, it is the necessity of authorities to en-

sure that such datasets could not be misused.

Further research

The number of possible research questions on mobile phone datasets is gigantic. In

this last part, we will present one research direction that we believe to be highly

important and still not addressed in its most general form.

A large number of research has been conducted on the analysis of social networks,

based on CDRs. As it appears from the different publications on this topic, there

exist some common features but also many differences in the structure of the con-

structed network. Recall as simplest example the degree distributions, which show

different functional forms for most datasets.

These differences may, of course, be linked to cultural differences between the dif-

ferent countries of interest, but there are probably other, quantifiable, reasons. The

datasets differ greatly in the market shares of the operators, in the time span of the

data collection period, in the size of the network and in the geographical span of
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the considered country. The method of network construction is also always different

and has a tangible impact on the network structure. The use of directed or undi-

rected links, weights and thresholds for removing low-intensity or non-mutual links

all greatly impact the structure and hence the statistical features of the obtained

network.

Hence, we believe that a serious analysis, both on theoretical and on empirical side

of the influence of these factors on the general structure of mobile phone networks

may lead to a general framework, allowing to interpret differences between results

obtained on several datasets with the knowledge of potential side-effects.

This question is closely related to the even more general question of the significance

of information provided by CDR data. Recalling what was said in Section 2, CDR

datasets are noisy data, some links appear there by chance, while other have not

been captured in the dataset. It would thus be interesting to question the stability of

the obtained results, provided that the real network is different from what has been

observed in the data. This links with the work of Gourab [184], who analyzed the

stability of PageRank under random noise on the network structure. Again, in this

framework, no real theoretical result has yet been achieved, allowing to characterize

which results are significant, and which are not.
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González, Jukka-Pekka Onnela, Jari Saramäki and Zbigniew Smoreda for their valuable comments and advice in

finalizing this survey. AD is a research fellow with the Fonds de la Recherche Scientifique - FNRS.

Author details
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71. Saramäki, J., Leicht, E.A., López, E., Roberts, S.G.B., Reed-Tsochas, F., Dunbar, R.I.M.: The persistence of

social signatures in human communication. Proceedings of the National Academy of Sciences 111(3),

942–947 (2014)

72. Kovanen, L., Karsai, M., Kaski, K., Kertész, J., Saramäki, J.: Temporal motifs in time-dependent networks.
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82. Csáji, B., Browet, A., Traag, V.A., Delvenne, J.-C., Huens, E., Van Dooren, P., Smoreda, Z., Blondel, V.D.:

Exploring the mobility of mobile phone users. Physica A: Statistical Mechanics and its Applications 392(6),

1459–1473 (2013)

83. Bagrow, J.P., Lin, Y.-R.: Mesoscopic structure and social aspects of human mobility. PloS one 7(5), 37676

(2012)

84. Amini, A., Kung, K., Kang, C., Sobolevsky, S., Ratti, C.: The differing tribal and infrastructural influences on

mobility in developing and industrialized regions. In: Mobile Phone Data for Development - Analysis of Mobile

Phone Datasets for the Development of Ivory Coast, pp. 330–339. Orange D4D Challenge, ??? (2013)

85. Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968),

1018 (2010)

86. Calabrese, F., Di Lorenzo, G., Ratti, C.: Human mobility prediction based on individual and collective

geographical preferences. In: Intelligent Transportation Systems (ITSC), 2010 13th International IEEE

Conference On, pp. 312–317 (2010). IEEE
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124. Isaacman, S., Becker, R., Cáceres, R., Kobourov, S., Martonosi, M., Rowland, J., Varshavsky, A.: Identifying

important places in people’s lives from cellular network data. Pervasive Computing, 133–151 (2011)

125. Steenbruggen, J., Borzacchiello, M.T., Nijkamp, P., Scholten, H.: Mobile phone data from gsm networks for

traffic parameter and urban spatial pattern assessment: a review of applications and opportunities.

GeoJournal, 1–21 (2011)

126. Toole, J.L., Colak, S., Alhasoun, F., Evsukoff, A., Gonzalez, M.C.: The path most travelled: Mining road

usage patterns from massive call data. arXiv preprint arXiv:1403.0636 (2014)

127. Wang, P., Hunter, T., Bayen, A.M., Schechtner, K., González, M.C.: Understanding road usage patterns in
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