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Abstract

BACKGROUND: To assess the performance of a predictive model of non-
response to neoadjuvant chemotherapy (NAC) in patients with breast cancer
based on texture, kinetic, and BI-RADS parameters measured from dynamic
MRI. METHODS: Sixty-nine patients with invasive ductal carcinoma of the breast
who underwent pre-treatment MRI were studied. Morphological parameters
and biological markers were measured. Pathological complete response was
defined as the absence of invasive and in situ cancer in breast and nodes.
Pathological non-responders, partial and complete responders were identified.
Dynamic imaging was performed at 1.5 T with a 3D axial T1W GRE fat-
suppressed sequence. Visual texture, kinetic and BI-RADS parameters were
measured in each lesion. ROC analysis and leave-one-out cross-validation were
used to assess the performance of individual parameters, then the performance of
multi-parametric models in predicting non-response to NAC. RESULTS: A model
based on four pre-NAC parameters (...
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Texture analysis on MR images helps
predicting non-response to NAC in breast cancer
N. Michoux1*, S. Van den Broeck2, L. Lacoste2, L. Fellah2, C. Galant3, M. Berlière4 and I. Leconte2

Abstract

Background: To assess the performance of a predictive model of non-response to neoadjuvant chemotherapy
(NAC) in patients with breast cancer based on texture, kinetic, and BI-RADS parameters measured from
dynamic MRI.

Methods: Sixty-nine patients with invasive ductal carcinoma of the breast who underwent pre-treatment MRI
were studied. Morphological parameters and biological markers were measured. Pathological complete
response was defined as the absence of invasive and in situ cancer in breast and nodes. Pathological non-responders,
partial and complete responders were identified. Dynamic imaging was performed at 1.5 T with a 3D axial T1W GRE
fat-suppressed sequence. Visual texture, kinetic and BI-RADS parameters were measured in each lesion. ROC analysis
and leave-one-out cross-validation were used to assess the performance of individual parameters, then the
performance of multi-parametric models in predicting non-response to NAC.

Results: A model based on four pre-NAC parameters (inverse difference moment, GLN, LRHGE, wash-in) and k-means
clustering as statistical classifier identified non-responders with 84 % sensitivity. BI-RADS mass/non-mass enhancement,
biological markers and histological grade did not contribute significantly to the prediction.

Conclusion: Pre-NAC texture and kinetic parameters help predicting non-benefit to NAC. Further testing including
larger groups of patients with different tumor subtypes is needed to improve the generalization properties and validate
the performance of the predictive model.
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Background
Neoadjuvant chemotherapy (NAC) has a major role in
the treatment of breast cancer [1, 2]. Several trials com-
paring adjuvant chemotherapy and NAC demonstrated
that long-term relapse-free and overall survival out-
comes were the same [3]. However, NAC has advantages
compared with adjuvant chemotherapy. NAC can safely
downstage tumor so that conservative surgery can be
performed instead of mastectomy [4, 5]. Importantly,
NAC is the only way to study the effect of systemic
chemotherapy in vivo and to identify prognostic factors.
However, the rate of response to NAC is limited and
dependent on the subtypes of cancer [6–12]. It has been
recently reported that pathological complete response

(pCR) obtained after NAC is a suitable surrogate endpoint
for disease-free survival in patients with luminal B/Human
Epidermal growth factor Receptor 2 (HER2) -negative,
HER2-positive (non-luminal) and triple negative tumors
but not for those with luminal B/HER2-positive or luminal
A tumors. However, the rate of pCR in these different
breast cancer subtypes varies from 6 to 33 % [13]. There-
fore, the identification of non-responding patients is im-
portant, especially as it may allow considering alternative
therapeutic options.
The predictive value of Magnetic Resonance Imaging

(MRI) and in particular of diffusion-weighted MRI [14–16],
MR spectroscopy [17–19] or Dynamic Contrast-Enhanced
MRI (DCE-MRI) [20–23] has been investigated. However,
most of these studies were performed after the first courses
of NAC. Some studies reported that certain pre-NAC
semi-quantitative DCE parameters were significantly differ-
ent in chemosensitive and chemoresistant breast lesions
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and may contribute to the prediction of disease-free sur-
vival and overall survival [24–26].
Alternative quantitative approaches such as visual

texture analysis have been considered [27, 28]. Texture
analysis allows for the description of the MR appearance
of the tissues and of their changes in terms of fineness,
coarseness, smoothness, granularity, homogeneity or
periodicity [29]. These attributes are related to the local
spatial distribution of the grey levels in the image matrix
and can be captured by using metrics, called texture pa-
rameters. In texture analysis of MR images, it is assumed
that the distribution of the grey levels results from the
underlying ultrastructural properties of tissues affected
by the disease processes-an assumption that has been
validated by finding correlation between MRI texture
patterns and tissue changes on histological analysis [30].
Numerically, texture can be described by using nth-order
statistics, spatial frequency or structural primitives, the
first two approaches being the most commonly used. A
practical description of the concepts and methodologies
for texture analysis of MR images has been proposed
by Hajek et al. [31]. First studies in breast MRI, while
remaining to be validated, showed that certain pre-
treatment texture parameters (based on high order sta-
tistics) may help evaluate breast tumor response to
NAC [32–34].
The aim of the study is to assess the value of pre-

NAC imaging parameters to predict non-responders to
NAC. To this purpose, texture, kinetic and BI-RADS
(Breast Imaging-Reporting and Data System) parame-
ters were studied from baseline MRI. Thence, a three-step
assessment was undertaken. First, texture parameters
were compared in healthy breast tissues and in tumor
lesions. Secondly, the performance of individual param-
eters in predicting pathological non-response to NAC
was assessed. Thirdly, parameters were combined into
multi-parametric models. The predictive performance of
these multi-parametric models was then assessed after
cross-validation.

Methods
Patients
This two-years retrospective study was approved by
our institutional ethical committee (Comité d’Ethique
hospitalo-facultaire, Cliniques Universitaires Saint-Luc,
http://www.comite-ethique-ucl-saintluc.be/). Written in-
formed consent from the patients was not required. All
patients had an invasive breast carcinoma diagnosed on
core-biopsy specimen. To obtain a homogeneous histo-
logical sample for texture analysis, only invasive ductal
carcinomas (IDC) with and without ductal carcinoma in
situ (DCIS) were included in this pilot study. The mean
number of cancers-newly diagnosed in our institution
was 296 per year. Seventeen percent of patients with

invasive cancers received NAC. The percentage of in situ
(DCIS and LCIS) was comprised between 17 to 21 %.
A baseline MRI as well as a pre-operative MRI to

evaluate response to NAC was performed in all patients.
After multidisciplinary breast cancer tumor board deci-
sion, all patients underwent NAC, consisting of 4 cycles
of cyclophosphamide/anthracyclines followed by 4 cycles
of taxanes [2, 3] and trastuzumab in case of HER2+
tumor. Cycles were administrated every 3 weeks. All
patients had surgery three to four weeks after completing
NAC. As a result, the delay between diagnosis and surgery
was approximately 6 months.
Patients with incomplete pathological and radiological

data (n = 6) and severe artifacts on MRI images (e.g.
respiratory motion and body movement) (n = 3) were
excluded. Overall, this retrospective study included 69
patients with IDC (median age 54 years, range 22–72
years). Estrogen receptor (ER), progesterone receptor
(PgR) and, HER2 status as well as the mitotic factor
Ki67 were available on percutaneous biopsies. Patients’
characteristics are listed in Table 1.

Pathological and biological analysis
Breast tissues sampled for histopathological analysis
were sectioned at the macroscopic level transversally in

Table 1 Patients characteristics (n = 69). Number and
proportions within the whole population are given

Characteristics Values

Median age (range) 54 (22–72)

BI-RADS feature

Mass 39 (57 %)

non mass 30 (43 %)

Histological grade

IDC 1 0

IDC 2 25 (36 %)

IDC 3 44 (64 %)

Subtypes

Luminal A 13 (19 %)

Luminal B/HER2- 25 (36 %)

Luminal B/HER2+ 15 (22 %)

Non luminal/HER2+ 10 (14 %)

Triple-negative 6 (9 %)

Receptor status

ER positivity 52 (75 %)

PgR positivity 42 (61 %)

Ki67 > 14 % 52 (75 %)

HER2 positivity 26 (38 %)

Triple-negative cancer rate 6 (9 %)

IDC invasive ductal carcinoma, ER estrogen receptor, PgR progesterone
receptor, HER2 epidermal growth factor receptor 2
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order to produce 10 mm slices. A dedicated breast path-
ologist analyzed each lesion at the microscopic level, de-
scribing first the size of every residual cancerous foci
and then classifying these into three categories according
to the NSABP 18 criteria [35]: pathological complete
(CR), partial (PR) and non-response (NR). In case of a
single mass lesion with a concentric response, the size of
the residual tumor was measured. In case of a single
masse lesion with a fragmented response, i) the overall
dimension of the foci is given when foci are adjacent, ii)
each foci is measured when foci are distant and the overall
sum is given. In case of a non-mass lesion with fragmented
response, the overall size is given.
The density of tumor cells, compared to the previous

biopsy, was also analyzed, allowing the classification of
the tumor following the grading system of Miller-Payne
(5 grades). The tumor grade was evaluated with the
Nottingham score.
A pathological complete response was defined as the

absence of invasive and in situ cancer in breast and
nodes. A partial response was defined as a decrease of
invasive cancer exceeding 30 %. A non-response was de-
fined as a decrease of invasive cancer lower than 30 %.
At histological analysis, 14 patients were thus classified
as CR, 36 as PR and 19 as NR.

All biological markers were evaluated on percutaneous
biopsies. As regards immunohistochemical assessments,
IDCs were classified according to their receptor status. ER
and PgR were considered as negative when <10 % nuclei
stained positive [36]. For all lesions, the results for HER 2
expression by immunohistochemical analysis were scored
as 0, 1+, 2+ and 3+. Only 3+ specimens were immediately
considered as HER2-positive. A hybridization technique
was performed when analysis score was 2+. Both negative
and 1+ were considered as negative. The mitotic activity
marker Ki67 was considered as positive when expressed
by more than 14 % of tumor cells [13]. Correlation be-
tween sensitivity of breast cancer to NAC and receptor
status is given in Table 2.

MRI sequence
MRI examinations were performed using a 1.5 T whole
body imaging system (Gyroscan Intera, Philips Medical
System, The Netherlands) and a breast coil. Patients
were imaged in the prone position with T2-weighted and
diffusion-weighted imaging (DWI) (b0, b600) sequences,
and a 3D gradient echo axial T1-weighted sequence with fat
suppression (SPAIR). Scan parameters were TR/TE = 4.8/
2.4 ms, flip angle = 10°, FOV= 355 × 355 mm, matrix 320 ×
320, slice thickness 2.5 mm, voxel size 0.65 × 0.65 × 1.25 mm

Table 2 Association between pathologic responsiveness of breast cancer to NAC and receptor status

Pathologic response NR CR PR PR + CR p-valuea

BI-RADS

Mass 12 (31 %) 27 (69 %) 0.51

non Mass 7 (23 %) 23 (77 %) 0.51

Biological markers

ER positivity 15 (29 %) 9 (17 %) 28 (54 %) 37 (71 %) 0.70

PgR positivity 14 (33 %) 4 (10 %) 24 (57 %) 28 (67 %) 0.19

Ki67 > 14 % 11 (21 %) 11 (21 %) 30 (58 %) 41 (79 %) 0.05

HER2 positivity 4 (15 %) 8 (31 %) 14 (54 %) 22 (85 %) 0.09

Subtypes

Luminal A 8 (62 %) 0 5 (38 %) 5 (38 %) 0.005

Luminal B/ HER2 – 4 (16 %) 5 (20 %) 16 (64 %) 21 (84 %) 0.11

Luminal B/HER2 + 3 (20 %) 4 (27 %) 8 (53 %) 12 (80 %) 0.49

Non-luminal/HER2 + 1 (10 %) 4 (40 %) 5 (50 %) 9 (90 %) 0.20

Triple-negative cancer rate 3 (50 %) 1 (17 %) 2 (33 %) 3 (50 %) 0.25

Histological grade

IDC 2 5 (20 %) 3 (12 %) 17 (68 %) 20 (80 %) 0.31

IDC 3 14 (32 %) 11 (25 %) 19 (43 %) 30 (68 %) 0.31

The number and proportions of NR, CR, PR and PR + CR patients with a given feature within all patients having this feature are given. The statistical significance of
the relationship between response (NR or PR + CR) and features is then assessed (p-valuea). If a p-value < 0.05 is observed for a given feature, then we can
conclude that patients’ response is associated to that feature. If a p-value > 0.05 is observed, then the null hypothesis that there is no association, cannot be
rejected. Subtype Luminal A is the only feature showing a significant association with response
BI-RADS breast imaging-reporting and data system, NR non response, CR complete response, PR partial response, ER estrogen receptor, PgR progesterone receptor,
Ki67 cellular marker for proliferation based on monoclonal antibody Ki-67, HER2 human epidermal growth factor receptor 2, HR hormone receptor, IDC invasive
ductal carcinoma
aSignificance of the association between response (NR or PR + CR) and features (Fisher’s exact test)
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after reconstruction. The anatomic study was followed by
a dynamic study. Patients received 0.1 mmol/kg of
gadobenate dimeglumine (Multihance, Bracco Imaging,
Germany) followed by 30 mL saline flush injected at a rate
of 2 mL/s with an automated injector. One pre- and five
post-injection images were acquired with a temporal reso-
lution of approximately 60 s. The total acquisition time
for the protocol was about 6 min. Analyses were per-
formed on subtracted images, i.e. the residual difference
image obtained after the second post-contrast image has
been subtracted from the pre-contrast image.

Image analysis
Magnetic resonance images in 69 patients were reviewed
consensually by a trainee and two experienced radiolo-
gists (10 and 15 years of breast MRI experience respect-
ively) without knowledge of the pathological findings or
mammographic and sonographic data, by using the

American College of Radiology BI-RADS MR lexicon
[37]. Lesions were categorized into mass enhancement
and non-mass enhancement (Fig. 1 and Table 2). The
uni- or multifocal character of the lesion was reported.
In case of multifocal lesion, only the findings of the lar-
gest lesion were recorded. The slice exhibiting the lar-
gest dimension of the lesion on the second post-contrast
image (enhancement peak) was chosen for analysis. This
criterion was applied in case of mass enhancement or
non-mass enhancement.
For kinetic analysis, a small region of interest (ROI)

corresponding to the most enhancing area of the lesion
was drawn (Fig. 2). The size of the ROI always included
more than nine pixels [38]. According to the BI-RADS
guidelines, characteristics of the signal intensity vs time
curve (i.e. the maximal amplitude, the wash-in and the
delayed phase pattern via the wash-out parameter) were
assessed.

Fig. 1 Axial subtracted images. According to the BI-RADS MR lexicon, the tumor is described as, a ovalar mass with spiculated margins and a
homogenous enhancement in the upper external quadrant, or b retro-areolar non mass lesion, showing a cobblestone-like pattern with nipple
invasion and skin thickening
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For texture analysis, a first ROI delimiting healthy tis-
sues was drawn. Healthy tissues were delimited in a re-
mote area of the lesion in the same breast, or in the
contralateral breast in case of very large lesions. Based on
texture differences observed between fat and healthy tis-
sues (data not shown), healthy tissues were defined as
fibroglandular tissues excluding fatty tissues. This distinc-
tion was always feasible as none of the patients studied
had exclusively fat breast. A second ROI delimiting the le-
sion was drawn. The lesion was defined as the largest area
with a high enhancement, excluding macro vessels. As this
definition may be operator dependent, an automated
segmentation was also implemented (Fig. 3). In brief, a
rectangular ROI was defined in order to cover the whole
breast. For each pixel within this ROI, parameters ampli-
tude and wash-in were calculated. A k-means clustering
algorithm was used to partition the pixels into 2 clusters
(lesion and non-lesion) [39]. Then, a morphological open-
ing was applied to remove isolated groups of pixels. The
result of the segmentation was the largest region of con-
tiguous pixels with the same behavior in amplitude and

wash-in. This result was validated by comparison with the
ROI drawn manually.
The visual texture of breast tissues was assessed from

the grey level co-occurrence matrix (GLCM) and the run
length matrix (RLM) [29, 40]. From the GLCM, nine tex-
tural features describing the grey levels interdependence in
the image were estimated (Fig. 4). Computation parameters
were: distance of one pixel between two neighbouring
pixels, average of the angular relationships on the four
main directions, five bits of grey levels. From the RLM,
eleven textural features describing the distribution of runs
of grey levels in the image were estimated with the same
computation parameters. The mean value (over all pixels
in the ROI studied) of the textural features was estimated.
The list of studied parameters is given in Table 3.

Statistical analysis
Numerical variables are expressed as median and range
(95 % CI on the median). The three-step comparative
approach was conducted as follows. First, texture
parameters were compared in healthy breast tissues vs

Fig. 2 Top, axial fat-suppressed T1 weighted imaging (time corresponding to the second post-contrast image). Two large ROIs, one encompassing
the lesion (in red) and one encompassing normal breast tissues (in green), were defined for visual texture analysis. A small ROI (in yellow) in the brightest
part of the lesion was also defined to study the kinetics of the contrast agent. Bottom, the signal intensity vs time curve (temporal sampling 60 s)
corresponding to the small ROI (from which kinetic parameters are derived) is displayed. Amplitude was calculated from the maximum enhancement
peak, the wash-in parameter from the up-slope measurement (between the maximum enhancement peak and the preceding time point) and the
wash-out parameter from linear regression performed on the last three time points of the signal intensity versus time curve
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tissues showing characteristics of a malignant lesion. A
Wilcoxon rank-sum test was performed. This non-
parametric test was chosen as the normality of the data
distribution was not verified (on the basis of the
D’Agostino-Pearson test).
Secondly, texture, kinetic, BI-RADS and biological pa-

rameters were compared in NR vs PR + CR individually.
A mid-P approach of Fisher’s exact test was performed
for assessing the relationship between response (NR or
PR + CR) and features [41]. The performance of each
parameter in predicting non-response to NAC was
assessed by using receiver operating characteristic
(ROC) curves and by comparing Area Under the ROC
Curves (AUC) [42].
Thirdly, texture, kinetic, BI-RADS and biological pa-

rameters were combined. Two multi-parametric classi-
fiers, each belonging to one of the two classes of
algorithms in machine learning (supervised and un-
supervised), were tested: a logistic regression model
[43] and a k-means clustering algorithm based on a
nearest-cluster approach [39]. The k-means algorithm
was parameterized with a number of final clusters equal
to 2, 2 random observations to choose the initial cluster

centroid positions, 30 replicates and with the L1 distance
to calculate the distance between centroid clusters. As one
cannot know a priori how many and which parameters
are important to the classification, all possible combina-
tions of 2 to 26 parameters among 26 parameters (20 tex-
ture parameters, 3 kinetic parameters, the mass/non-mass
enhancement, Ki67 > 14 %, HR/HER2) were submitted to
the classifiers successively.
To estimate how accurately the predictive models

would perform in practice, a leave-one-out cross valid-
ation was applied [44]. The cross validation works by
leaving one observation (i.e. one patient data) out each
time the classifier is trained. Thus, the observation can
be used to test the classifier accuracy. The operation is
then carried out for all observations. Hence, the percent-
age of NR patients classified correctly (i.e. the classifier
sensitivity, Se) and the percentage of PR + CR patients
classified correctly (i.e. the classifier specificity, Sp) were
estimated. Se and Sp were finally used to identify the set
of features that yielded best predictive models.
All calculations (texture computation and statistics) were

done with Matlab (Matlab R2011b, MathWorks, Natick,
MA, USA). Open source codes “KeyRes-Technologies”

Fig. 3 Automated segmentation of the tumor lesion. A rectangular area covering the breast is placed (a). Pixel-level calculation of parameters
wash-in (b) and amplitude (c) is performed. Pixels are partitioned into k = 2 clusters (d). Morphological opening is applied to preserve the largest
region of contiguous pixels with the same behavior in amplitude and wash-in only (e). Comparison with the manual delineation of the lesion
shows an overall good agreement (f)
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and “grayrlmatrix” under Matlab were used for computing
texture parameters. The software Image J (http://rsbweb.-
nih.gov/ij/) was used for the segmentation of the ROIs. A
p-value < 0.05 was considered as statistically significant for
all tests cited above, as the universal null hypothesis was of
no interest in this study [45].

Results
Biological and imaging parameters
Morphological, biological and histological findings are
reported in Table 2. Neither the mass enhancement nor
the non-mass enhancement were statistically different
between NR and PR +CR. NR were significantly more
represented in Luminal-A subtype compared to PR + CR.
NR were significantly less represented in Ki67 > 14 % and
HR-/HER2+ compared to PR +CR (non-significant trend).
No statistical difference on histological grade between NR
and PR + CR was observed.

Texture and kinetic parameters are reported in Table 4.
Significant differences between healthy tissues and ma-
lignant tissues were observed for all texture parameters
(all p-value < 0.05).

Mono-parametric prediction
AUC values, sensitivity and specificity of selected cut-offs
are given for all parameters in Table 5. Parameters energy,
entropy, homogeneity inverse difference moment, RP,
HGRE and wash-in were found to have an AUC signifi-
cantly different from 0.5 (penergy = 0.002, pentropy = 0.003,
phomogeneity = 0.001, pinv. diff. mom. = 0.001, pdiff. var. = 0.023,
pRP = 0.045, pHGRE = 0.038, pwash-in = 0.008). The perform-
ance associated with these parameters ranged from fair
(0.5 < AUC ≤ 0.7) to good (0.7 < AUC ≤ 0.9). The pairwise
comparison of AUCs did not allow ranking strictly
these parameters according to their individual perform-
ance (p > 0.05 whatever the comparison).

Fig. 4 Pixel-level analysis of breast MRI texture in a CR patient with a mass enhancement. Are respectively displayed, a the axial subtracted image
and the maps based on b contrast, c correlation, d difference variance, e energy, f entropy, g inverse differential moment (which is correlated
with the homogeneity parameter), h sum average and i sum variance from the GLCM, with mean value estimated on a 3x3 neighbourhood
around the pixel of interest then normalized on the 0–255 range. Individual texture parameters reveal different local and regional statistical
properties of the grey level intensity between (and respectively within) breast lesions and normal parenchyma. Combination of all or parts of the
texture parameters helps classifying patients according to their response to NAC
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Multi-parametric prediction
Using k-means clustering as classifier, a predictive model
relying on four parameters (inverse difference moment,
GLN, LRHGE, wash-in) was found to perform with a
predictive accuracy of 68 %: Se = 84 % (16/19 NR) and
Sp = 62 % (31/50 PR + CR). Using log-transformed pa-
rameters (energy, homogeneity, wash-in, LRHGE), it was
possible to increase the percentage of NR classified cor-
rectly up to 95 % (18/19), but with a lower specificity of
32 % (16/50 PR + CR) and a lower predictive accuracy of
64 %. Using logistic regression as classifier, a more parsi-
monious predictive model was found. It was based on
two texture parameters only (homogeneity, LGRE) and

exhibited a predictive accuracy of 74 %: Se = 74 % (14/19
NR) and Sp = 74 % (37/50 PR + CR). Models using other
combinations and/or a larger number of parameters
did not improve the predictive accuracy (regardless of
the type of classifier).

Discussion
The first observation of this study is that texture ana-
lysis discriminates healthy breast tissues from tumor
lesion. Texture is more heterogeneous and coarse in
the enhancing part of the lesion compared to healthy
tissue. This observation agrees with previously published
results on the ability of visual texture parameters to

Table 3 List of parameters used for breast lesion characterization

Parameter type Parameter description

Kinetic

1 Wash-in rate Rate of contrast material uptake

2 Maximal amplitude Maximal contrast enhancement

3 Wash-out rate Rate of contrast enhancement washout

Geometric (according to BI-RADS lexicon)

4 Mass 3D space-occupying lesion that comprises one process,

usually round, oval, lobular or irregular in shape

5 non Mass Enhancement of an area that is not a mass

Texture

6a Energy Measure of local uniformity of grey levels

7a Entropy Measure of randomness of grey levels

8a Contrast Measure of the amount of grey levels variations

9a Homogeneity Measure of local homogeneity. It increases with less contrast

10a Correlation Measure of linear dependency of grey levels of neighbouring pixels

11a Inverse difference moment Measure of local homogeneity of the grey levels

12a Sum average Measure of overall image brightness

13a Sum variance Measure of how spread out the sum of the grey levels of voxel pair is

14a Difference in variance Measure of variation in the difference in gray levels between voxel pairs

15b SRE Short Run Emphasis (first property of run-length distribution)

16b LRE Long Run Emphasis

17b GLN Gray-Level Nonuniformity

18b RLN Run-Length Nonuniformity

19b RP Run percentage

20b LGRE Low Gray-Level Run Emphasis

21b HGRE High Gray-Level Run Emphasis

22b SRLGE Short Run Low Gray-Level Emphasis

23b SRHGE Short Run High Gray-Level Emphasis

24b LRLGE Long Run Low Gray-Level Emphasis

25b LRHGE Long Run High Gray-Level Emphasis
aParameters derived from the co-occurrence matrix [29]
bParameters derived from the run length matrix [40]
3D three-dimensional, BI-RADS breast imaging reports and data system
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differentiate normal from malignant tissue with breast
DCE-MRI [27].
The second observation is that the predictive perform-

ance of individual texture and kinetic parameters did not
exceed the level fair, except for parameters homogeneity
and inverse difference moment whose performance level
is evaluated as good.
The third observation is that a multi-parametric model

based on texture and kinetic parameters was able to pre-
dict non-response to NAC with a good performance
level. This observation needs to be discussed according
to the study design.
The usefulness of pre-NAC DCE parameters in pre-

dicting response to NAC was proven in several studies,
however on the basis of different assumptions. While
Uematsu et al. [24] suggest that a washout enhancement
pattern is related to a more effective cycle of NAC,
Pickles et al. [25] conclude that high values of perfusion
and capillary permeability indicate a high level of angio-
genesis and, are therefore indicative of treatment failure.
In our study, a faster contrast agent uptake by the tumor
as well as a (non-significant) trend towards a higher

washout value were observed in PR + CR. The increased
pre-NAC vascularity and permeability characteristics
may be interpretable in terms of better delivery of che-
motherapeutic agents to the tumor and better treatment
efficacy. However, we think that the assumption of vas-
cular characteristics associated with NAC efficacy must
be considered with caution. First, drug resistance is a
multifactorial phenomenon where cellular mechanisms
have a predominant role [46]. Secondly, standard protocol
in dynamic breast MRI based on a high spatial resolution
such as the one we used in this study does not meet all re-
quirements for an accurate analysis of transport mecha-
nisms in lesions [47]. Such analysis requires a sampling
rate less than the mean transit time of the contrast agent,
the measurement of an individual arterial input function,
the knowledge of the relationship between signal intensity
and contrast agent concentration in the tissues and a per-
tinent mass transport model [48–50].
The usefulness of pre-NAC texture parameters in pre-

dicting response to NAC was confirmed in this study, but
based on a partially different set of parameters compared
to previously published studies. In [33], an increased

Table 4 Median values (95 % CI) of the texture and kinetic parameters

Normal tissue CR + PR NR p-valuea

Energy 58 [44; 74] 36 [33; 41] 45 [42; 55] 7.9 10−5

Entropy 157 [141; 172] 187 [181; 193] 175 [165; 180] 6.4 10−5

Contrast 8 [6; 10] 14 [11; 16] 13 [10; 16] 8.6 10−5

Homogeneity 165 [150; 176] 140 [134; 146] 149 [144; 156] 5.1 10−5

Correlation 22 [18; 29] 47 [42; 52] 47 [44; 50] 1.8 10−14

Inv. Diff. Moment 174 [161; 185] 148 [141; 153] 158 [153; 165] 4.2 10−5

Sum average 69 [65; 76] 119 [114; 124] 120 [109; 127] 3.6 10−19

Sum variance 70 [60; 76] 92 [88; 99] 97 [86; 110] 2.2 10−15

Difference variance 74 [67; 81] 87 [82; 93] 80 [78; 83] 4.6 10−3

SRE 0.009 [0.008; 0.009] 0.004 [0.0039; 0.0044] 0.0038 [0.0035; 0.0047] 6.2 10−19

LRE 126 [114; 144] 266 [246; 279] 284 [229; 309] 7.6 10−20

GLN 158 [137; 229] 432 [338; 589] 416 [298; 817] 1.2 10−10

RLN 71 [58; 86] 111 [74; 120] 105 [89; 205] 6.2 10−4

RP 0.68 [0.62; 0.72] 0.72 [0.71; 0.75] 0.70 [0.66; 0.73] 9.3 10−4

LGRE 0.75 [0.71; 0.78] 0.79 [0.78; 0.81] 0.77 [0.74; 0.80] 9.8 10−4

HGRE 3.11 [2.54; 3.99] 2.55 [2.33; 2.76] 2.83 [2.49; 3.34] 8.8 10−3

SRLGE 0.0060 [0.0056; 0.0067] 0.0033 [0.0031; 0.0034] 0.0030 [0.0028; 0.0036] 2.6 10−17

SRHGE 0.028 [0.024; 0.034] 0.011 [0.010; 0.012] 0.011 [0.009; 0.014] 6.4 10−18

LRLGE 93 [84; 101] 204 [189; 215] 214 [177; 251] 6.0 10−20

LRHGE 412 [343; 509] 679 [615; 745] 799 [592; 925] 1.9 10−9

Amplitude _ 75 [70; 80] 68 [59; 79] _

Wash-out _ 0.04 [0.03; 0.06] 0.04 [0.008; 0.070] _

Wash-in _ 0.72 [0.64; 0.83] 0.63 [0.42; 0.70] _

Amplitude is given in arbitrary unit (AU), wash-in and wash-out in AU.s−1

NR Non response, CR Complete response, PR Partial response
aStatistical difference (Wilcoxon) between normal tissues and tumoral lesion
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heterogeneity of the texture indicated by the higher values
of two parameters (contrast, difference variance) was ob-
served in NR. However, texture was evaluated from the
whole lesion including central necrosis, thus increasing
the heterogeneity measurements. In the present study, a
reduced heterogeneity of the texture (as indicated by the
four significant GLCM parameters) in the enhancing part
of the lesion was found in NR compared to PR +CR. One
of these parameters (inverse difference moment) was
found to be predictive of a reduced chemotherapeutic re-
sponse, but jointly with two RLM parameters (GLN,

LRHGE) whose high values indicate a more heterogeneous
distribution of some grey level run lengths in NR. There is
no obvious explanation at the histological level for these
differences of behavior. Further investigations on how and
which texture parameters are associated with tumor biol-
ogy may help defining on the relationship between texture
heterogeneity and response to NAC.
Methodological differences in the assessment of tex-

ture limit the comparisons between studies. The most
common texture analysis techniques are derived either
from grey level histogram [51], gradient matrix [52],
GLCM [29], RLM [40], local binary patterns [52], auto-
regressive model [53], Riesz transform [54], multiple
frequency scales [55], S-transform [56] or from wavelet
[57]. None of these approaches is superior to the others
since their effectiveness basically relies on the visual
properties of images to which they are applied. Com-
bining various texture methods may improve the
characterization of breast lesions as demonstrated by
our data. However, increasing the number of texture
parameters has some drawbacks. Dimensionality reduc-
tion techniques prior to classification, sophisticated
machine learning classifiers as well as larger training
datasets become necessary. Our four-parameter pre-
dictive model may thus present a practical advantage
over those proposed in [33, 34] for further testing.
The usefulness of BI-RADS mass/non-mass enhance-

ment could not be validated possibly due to a high
prevalence of non-mass lesions in our cohort [8, 24].
Rates of complete responders are known to be different
within tumor subtypes [7]. We assumed that the low
statistical power induced by the small number of pa-
tients within each subtype prevents from observing such
difference. Ki67 > 14 % and HR-/HER2+ were the only
markers more often seen in responders. These parame-
ters, having a fair performance, were not retrieved in the
best predictive model.
The performance of our predictive model, albeit good,

appeared lower compared to the one reported in previ-
ous studies. In [26, 32, 34], predictive accuracy was 85,
83 and 88 % respectively. However, comparison is flawed
as cross-validation was not performed in either of these
studies, while it is necessary to get an unbiased estimate
of the predictive accuracy [58]. The use of techniques
such as cross-validation, bootstrapping or Bayesian con-
fidence interval should be generalized to get a reliable
assessment of classifier performance, useful to estimate
the relevance of the working hypothesis and mandatory
for clinical acceptance.
Clinical response definition and chemotherapy regimen

may influence the predictive accuracy. In [32], the differ-
ence between ‘good’ and ‘bad’ responders was arbitrarily
fixed at 50 % decrease in tumor volume between baseline
MRI and after 2 cycles of chemotherapy. We on the other

Table 5 Performance of the individual parameters measured
from ROC curves (based on the Youden index for determining
cut-offs)

Se (%) Sp (%) AUC Cut-offs

Energya 64 79 0.702 41

Entropya 64 79 0.696 182

Contrast 30 95 0.576 17

Homogeneitya 58 84 0.701 144

Correlation 62 16 0.512 42

Inv. Diff. Momenta 60 84 0.711 152

Sum average 28 90 0.527 103

Sum variance 78 42 0.583 104

Difference variancea 60 79 0.649 86

SRE 80 42 0.569 0.004

LRE 86 37 0.569 301

GLN 74 42 0.555 621

RLN 38 90 0.579 75

RPa 42 90 0.640 0.740

LGRE 42 90 0.630 0.800

HGREa 42 90 0.644 2.40

SRLGE 70 53 0.582 0.003

SRHGE 16 100 0.510 0.007

LRLGE 80 37 0.536 233

LRHGE 72 58 0.620 781

Amplitude 67 58 0.567 69.1

Wash-out 27 95 0.594 0.09

Wash-ina 86 47 0.685 0.50

Massb 63 46 0.546 _

non Massb 63 46 0.546 _

Ki67 > 14 %b 42 82 0.621 _

HER2 +b 79 44 0.615 _

HR-/HER2 +b 100 20 0.600 _

An overall better performance of GLCM compared to RLM parameters, as well
as a better performance of texture and kinetic parameters compared to BI-RADS
and biological parameters was observed
aParameters performing significantly better than a random classifier
(p(AUC > 0.5) < 0.05)
bCategorial variables without cut-offs
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hand used the pathological response, which is the gold
standard in the assessment of response to NAC. In [34],
the predictive accuracy of the model depended on the type
of chemotherapy regimen undergone by the patients. A
similar report was made by Richard et al. studying the
predictive value of pre-treatment apparent diffusion co-
efficients [59]. This raises the question of whether a
generalized predictive model of response to NAC inde-
pendent of chemotherapy regimen can be established.
There are several limitations to the study. First, this is

a retrospective study based on a limited number of pa-
tients. While our first dataset served for model learning,
a second and larger dataset is necessary to validate the
performance of the predictive model. This approach,
replicating the most interesting results of the pilot study,
will address significance problem that may arise when
dealing with a large set of parameters. Besides, various
types of machine learning classifier can be envisaged, in-
fluencing the performance as well [60]. Further tests
may be needed to compare the efficacy and practicality
of these classifiers. In this pilot study, a single subtracted
MR image was evaluated at a specific time-point corre-
sponding to the enhancement peak on intensity time
curves. Subtracted images were chosen because of the
attenuation of the normal parenchymal background en-
hancement. Tests on late time points (i.e. on the fifth
and sixth dynamics corresponding to imaging of tumor
permeability) did not allow for the identification of a
good predictive model. Due to its complexity, multi-slice
evaluation based on 3D segmentation of the lesion and
3D texture analysis was not envisaged in first instance.
However, 3D is one of the strategies to be considered for
improving the prediction of response to NAC. Only pa-
tients with invasive ductal carcinoma were included. The
choice of a single subtype of cancer, far from constitut-
ing a selection bias, is legitimate within a dichotomous
approach of the problem of predicting response to NAC.
Our outcome score depended on histopathological find-
ings and we wanted therefore to obtain a histologically
homogeneous group to test texture analysis. Furthermore,
it has been demonstrated that invasive lobular carcinoma
is less sensitive to NAC [61]. Other studies emphasized
that in ILC, immediate treatment with endocrine therapy
might be more beneficial [62]. Finally, though combining
texture and kinetic parameters with BI-RADS and bio-
logical markers did not presently improve the predictive
accuracy, these latter parameters should not be discarded
in another framework where different (or several) subtypes
of breast cancer would be studied.

Conclusion
Pre-NAC texture and kinetic parameters measured from
dynamic breast MRI help predict non-response of inva-
sive ductal carcinoma to neoadjuvant chemotherapy.

Due to the numerous steps necessary to the processing
of DCE-MR images, further investigations are needed. It
is especially important to test other texture features and
statistical classifiers to improve the overall performance
of the model, and to include larger groups of tumor sub-
types in order to improve the generalization properties of
the predictive model. The rationale behind these investiga-
tions is the development of a computer-assisted prediction
solution dedicated to breast MRI. Such a solution would
be cost-effective in comparison to genetic/molecular as-
sessments and may contribute to an appropriate treatment
outcome for patients with breast cancer initially eligible
for NAC.
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