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Abstract

In graph analysis, the Shortest Path problem identifies the optimal, most cost
effective, path between two nodes. This problem has been the object of many
studies and extensions in heterogeneous domains such as: speech recognition,
social network analysis, biological sequence alignment, path planning, or zero-
sum games among others. Although the shortest path focuses on the optimal
cost of reaching a destination node, it does not take into account other useful
information contained on the graph, such as the degree of connectivity of
two nodes. On the other hand, measures taking connectivity information into
account have their own drawbacks, specially when graphs become large. A new
family of distances which interpolates between both extremes is introduced by
the Randomized Shortest Path (RSP) framework. By spreading randomization
through a graph, the RSP leads to applications where some degree of
randomness would be desired. Through this work, we try to investigate whether
the RSP fr...
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Prof. Ludovic Denoyer, Université Pierre et Marie Curie, Paris
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The original contributions presented in this thesis are summarized as follows:

• Chapter 1 introduces an alternative, more intuitive, derivation of the

forward and backward variables in the context of the Sum-over-Paths

framework, and its relation to the main quantities of interest.

• Chapter 2 introduces four novel methods based on the Sum-over-Paths

framework for Approximate String Matching: (i) the Sum-over-Paths

edit distance, (ii) the Sum-over-Paths common subsequences, (iii) the

Normalized Sum-over-Paths edit distance, and (iv) the Normalized Sum-

over-Paths common subsequences. These measures provide a model-

independent technique for computing similarity by taking all alignments

into account. They also avoid noisy measures by favoring relevant sub-

sequences of nearly-optimal alignments. Furthermore, their normalized

versions overcome any normalization issue. These measures have been

proven to outperform other ASM techniques through empirical valida-

tion.

• Chapter 3 provides an optimal randomized policy based on the Sum-

over-Paths framework for solving continuous-state path planning prob-

lems with multiple sources and multiple goals. It introduces a diffusion

parameter for controlling the trade-off between exploration and exploita-

tion, and it shows some interesting links between biased random walks

on a graph (discrete RSP) and continuous-state Feynman-Kac diffusion

processes.

• Chapter 4 provides a novel global optimal strategy based on the Sum-

over-Paths framework given a level of entropy for simulating the AI in

two-player zero-sum games. Although the notion of entropy has been

widely used for controlling randomness in AI, this new method spreads

the entropy over full strategies, instead of single moves.

• Chapter 5 provides a similarity measure for songs based on the repetitive

harmonic features of songs. This similarity measure deals with large
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structural changes in chord progression which are extracted as cycles

from a graph and is computed by means of a kernel function. This

approach for harmonic comparison is new in the domain. It also exploits

a novel source of user-generated data that is readily available on the

Internet.

All the code and data sets used in this work are available at http://github.

com/silviagdiez/thesis.

Notations

x A vector
G A graph
s A string s = s1s2...sn of length n is a concatenation of n symbols, si.
ckk′ Local cost of going from state k to state k′.
skk′ Local similarity between states k and k′.
cins Local cost of inserting a symbol si into string s.
cdel Local cost of deleting a symbol si from string s.
crepl Local cost of replacing symbol si by symbol sj from string s.
℘ A path on a graph.
C(℘) Total cost of a path ℘, i.e., the sum of all individual costs ckk′ ∈ ℘.
S(℘) Total simlarity of a path ℘, i.e., the sum of all individual similarities skk′ ∈ ℘.
P (℘) Probability of a path ℘.
|s| Size of string s.
Pred(k) Predecessors of state k.
Succ(k) Successors of state k.
Z Partition function.
P Set of all possible paths between node 1 and node n.
H0 Entropy of paths on a graph.
θ Inverse temperature related to H0.
E[X] Expectation of the random variable X.
dSoP Sum-over-Paths edit distance.
sSoP Sum-over-Paths common subsequence.
z1k Forward variable for state k.
zkn Backward variable for state k.
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zfx,y Forward variable for state k = (x, y) in the continuous RSP.
zbx,y Backward variable for state k = (x, y) in the continuous RSP.

zfk Forward variable for state k.
zbk Backward variable for state k.
d(s1, s2) Distance between strings s1 and s2.
dn(s1, s2) Normalized distance between strings s1 and s2.
K Kernel matrix
V (x, y) Cost density at (x, y)
D Diffusion constant
s Total displacement along a trajectory
ε Net displacement along a trajectory
ρt(r) Particle density at time t and position r = (x, y)
j(r, t) Particle flow
∂Ω Region boundary
γ Mobility coefficient
f External force
EW Expectation according to the Wiener measure
δ(x− xf ) Delta of Dirac at position x = xf
δ(x, xf ) Delta of Kronecker at position x = xf
n(x, y) Expected number of visits at position (x, y)
C Expected cost
ρ∗t (x, y) Optimal probability density of finding the random walker in position

(x, y) at time t when starting from some position
ρ∗0(x, y) = δ(x− x0)δ(y − y0)

G Gram matrix
πi Player i
N Set of final statuses for a game
V Set of vertices of a graph
E Set of edges of a graph
C Simple cycle
vi Vertex i of a graph
ei Edge i of a graph
λi Label i of a transition in a simple cycle
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Chapter 1

Introduction

Contents

1.1 The discrete Randomized Shortest Path framework . . . . . . . . 12

1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3 Background and notations . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Computation of the partition function . . . . . . . . . . . . . . . 19

1.5 Computation of the main quantities . . . . . . . . . . . . . . . . 20

1.6 Computation of the important quantities . . . . . . . . . . . . . 23

1.7 Computation of the recurrence relations . . . . . . . . . . . . . . 27

In graph analysis, the Shortest Path problem identifies the optimal, most

cost effective, path between two nodes as shown in Figure 1.1. This problem

has been the object of many studies and extensions in heterogeneous domains

such as: speech recognition (Jelinek, 1997), social network analysis (Wasser-

man and Faust, 1994), biological sequence alignment (Durbin et al., 1998),

path planning (LaValle, 2006), or zero-sum games (Adelson-Velsky et al., 1988)

among others. Although the shortest path focuses on the optimal cost of reach-

ing a destination node, it does not take into account other useful information

contained on the graph, such as the degree of connectivity of two nodes.

New measures which also include the connectivity information were pro-

posed: (i) the resistance distance (Klein and Randic, 1993) based on electri-
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Figure 1.1: Shortest path with a cost of 3 units (marked in red) between an
initial and a destination node (marked in blue).

cal networks theory measures distance between nodes based on indirect links,

considering highly linked nodes as more similar; and (ii) the commute-time

distance (Gobel and Jagers, 1974) which is defined as the expected length of

paths that a random walker can follow between a pair of nodes and exploits,

therefore, all paths linking both nodes. However, the resistance distance and

the commute-time distance are not valid measures when the graph becomes

excessively large and contains a highly number of connections of all lengths

(see, e.g., Luxburg et al. (2010)).

How do we then overcome the limitations of the shortest path – which does

not exploit the full information on a graph–, and the resistance or commute-

time distance – which are not valid in large graphs–? A new family of distances

which “interpolates” between both extremes (i.e., either taking only the opti-

mal path, or just looking at the connectivity) is introduced by the Randomized

Shortest Path framework (RSP) from Saerens et al. (2009).

The RSP framework exploits sub-optimal paths that are not too far from

the shortest path, while taking into account the connectivity between two

nodes through multiple paths. By spreading randomization through a graph,

the RSP leads to applications where some degree of randomness could be

desired, e.g.:

• routing problems with changing environment where some degree of ex-

ploration is needed to identify better paths;
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• routing problems where some load balancing is needed (in Figure 1.2, e.g.,

two paths (in red) are used to pass messages between the blue nodes);

• game strategies where randomization is an asset to avoid an opponent

(in Fig 1.3, e.g., an opponent (in red) must be avoided by following

alternative paths (in blue));

• in dissimilarity measures where the use of multiple paths increases the

robustness of the measure.

Figure 1.2: Shortest path with a cost of 3 units (marked in red) between an
initial and a destination node (marked in blue).

Figure 1.3: Shortest path with a cost of 3 units (marked in red) between an
initial and a destination node (marked in blue).

As discussed in (Saerens et al., 2009), the idea of randomizing the policy

was introduced by (Achbany et al., 2006, 2008) in the context of reinforcement

learning and was inspired by the entropy rate of an ergodic Markov chain

defined in information theory (see, e.g., Cover and Thomas (1991)). This

previous work was focused on optimal routing of an agent through a network,

where some degree of exploration of the network is desired (controlled by the
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entropy). For this, the sum of the local entropies on all nodes was fixed and

the optimal policy for this fixed level of entropy was computed through a

value-iteration-like algorithm.

In (Saerens et al., 2009), instead of fixing the local entropy defined at each

node as in (Achbany et al., 2006, 2008), the global entropy spread over the

whole network is fixed. While this difference seems a priori insignificant, it

appears that constraining the global spread entropy of the network is more

natural. Clearly, the nodes that need a large spread are difficult to deter-

mine in advance, and the model has to distribute the entropy by optimizing

it globally all over the network. It was shown in (Saerens et al., 2009) that

the optimal randomized policies can be found by solving a simple system of

linear equations. In the same paper, the authors showed that when the graph

is acyclic, the expected cost as well as the policy can be computed efficiently

from two simple recurrence relations. This fact is exploited in Chapters 2, 3,

and 4, where applications needing a certain degree of randomness, yet optimal,

are presented.

Chapter 2 could be of application in Optical Character Recognition (OCR),

where specific device encodes the movements of a user’s writing, and identifies

the particular letters or symbols on the paper. This is useful for transforming

analog input into digital format for people who takes notes on paper in their

daily lives, but wish to keep an electronic record of it. Another possible ap-

plication for the technique presented in Chapter 2, is comparison of biological

sequences of proteins. Sequence alignment in bioinformatics provides a way

to identify similar regions in two proteins, which can be a sign of functional,

structural, or evolutionary relation between them. This is useful for a bet-

ter understanding of these sequences and creation of targeted treatments for

certain illnesses.

Chapter 3 presents an algorithm of path planning that allows an agent to

move following random smooth trajectories. Path planning is a well-known

problem in robotics, where an agent needs to travel from one point to another,

sometimes exploring its environment, and avoiding obstacles in a safe way.

Although an initial idea of the environment is needed, by following random
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paths, the agent can improve its knowledge of the environment, and readjust

if necessary.

Artificial intelligence is commonly used in games to mimic a rival that can

perform with a certain strength. Finding a method that simulate the human

behavior of a medium-strength player can be a tricky task. Chapter 4 presents

such a method, by allowing random strategies adapted to a certain strength.

The research question that we try to investigate through this work is

whether the RSP framework can be applied to different domains where ran-

domization is useful, and either solve an existing problem with a new approach,

or prove to outperform existing methods.

More specifically, the research questions of each chapter will be:

• Chapter 2: investigate whether a robust distance measure can be ob-

tained by extending the RSP framework, and its relative performance

regarding other state of the art distances.

• Chapter 3: investigate whether the continuous counterpart of the RSP

framework can provide smooth, sub-optimal trajectories in path plan-

ning.

• Chapter 4: investigate whether the RSP framework can be applied to

zero-sum two-player games, to simulate an Artificial Intelligent player

which has a more human-like behavior by spreading entropy through the

whole game tree, and its comparison with similar algorithms.

Additionally, Chapter 5, which is not an application of the RSP framework,

investigates how to build a robust Music Information Retrieval system based on

chord progressions and its relative performance regarding other distances. The

purpose here is to build a more intelligent music recommendation system that

focuses on the mood of songs, and how the tension is built through harmonic

sequences, regardless of genre or other parameters.

Data in form of graphs

The reader should note that the applications presented in this work take
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1.1. THE DISCRETE RANDOMIZED SHORTEST PATH FRAMEWORK

as input data which is naturally expressed in form of graphs. For instance,

the lattice that contains all editing paths from Chapter 2 is commonly used

for string similarity; path planning in 2D in Chapter 3 uses a representation

of space as a grid composed by connected nodes through which an agent can

move; the game tree from Chapter 4 is a well-known structure in game theory,

where an initial state of the game branches into different possibilities as the

players make their moves. Chapter 5, however, makes the assumption that

we can convert a sequential chord progression into a graph with transitions

between chords, as a means of extracting simple cycles, which are the basis

of a similarity measure. This hypothesis is validated by the fact that the

similarity measure performs well, and that this type of data is well suited for

the simple cycle extraction.

Main contributions

In this chapter we present an alternative, more intuitive, derivation of the

forward and backward variables in the context of the Sum-over-Paths frame-

work, and its relation to the main quantities of interest.

1.1 The discrete Randomized Shortest Path

framework

The Randomized Shortest Path (RSP) framework addresses the problem of

designing transitions probabilities (or policy) on a Markov chain so to mini-

mize the expected cost of reaching a destination, while keeping some level of

randomness (or entropy) spread in the graph. This framework exploits the idea

of path as a frequent motif on a graph, which is used as a basis for extracting

some quantities of interest, such as the expected mean number of passages on

a node, or a fundamental matrix. We show in future chapters, how to apply

these quantities based on paths to several domains, in order to compute more

robust dissimilarity measures, more human-like AI algorithms, or to generate

sub-optimal random movements on motion planning.
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1.1. THE DISCRETE RANDOMIZED SHORTEST PATH FRAMEWORK

1.1.1 A short reminder about Markov chains

This Section defines a random walk on a graph, and its link with the RSP

framework. Let us first recall some basics on Markov chains from Norris

(1997): a discrete Markov chain is a system composed by states and tran-

sitions, as shown in Figure 1.4. Each transition between two states i and j

has an associated probability pij (the transition probability) according to the

Markov stochastic process. The probability of being on a certain state depends

only on the previous state, but not on the earlier states, making this stochas-

tic process memoryless. We define an absorbing Markov chain, as a model in

which exists at least one absorbing node, i.e., {∃vi, ∀j 6= i ∈ V |pij = 0}.

Figure 1.4: Example of a first-order discrete Markov chain with one absorbing
node (in orange).

Doyle and Snell (1984) denote the matrix containing all transition proba-

bilities of an absorbing Markov chain with n states (of which r are transient,

i.e., non-absorbing) as:

P =

(
Q R

0 I

)
(1.1)

where the states have been re-ordered and:
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• Q is a r × r matrix containing the transition probabilities for transient

states.

• R is a r × (n − r) matrix containing the transition probabilities to ab-

sorbing states.

• I is the (n− r)× (n− r) identity matrix.

• 0 is a (n − r) × r matrix containing all zeros, as there is no outgoing

transition probability from an absorbing state.

The above notation is called the canonical form of an absorbing Markov

chain. If we define the probability transition matrix for the example of the

Markov chain from Figure 1.4 we would obtain:

P =


0 p12 p13 p14 0

p21 0 0 p24 p25

p31 0 0 p34 0

0 0 0 0 p45

0 0 0 0 1

 (1.2)

We define the fundamental matrix of an absorbing Markov chain P as the

matrix

N = (I−Q)−1 = I + Q + Q2 + · · · (1.3)

where each element nij corresponds to the expected number of times the chain

is in state sj after starting in state si.

We can use this fundamental matrix to compute the main quantities of

interest, such as the time to absorption which can be computed as t = Nc,

where c is a vector of all ones, and the ti element represents the expected

number of steps before absorption when starting in state si.

On the other hand, we say that a Markov chain is ergodic if we can reach

any state from any other state in a finite number of steps. The example of

Figure 1.4 is not ergodic, as it is not possible to reach any state from v5. The

fundamental matrix of ergodic Markov chains is computed differently, but the
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same principle applies, and we can easily obtain from it quantities such as the

mean passage rate or the average first-passage time.

The analogy between the fundamental matrix in Markov chains and the

partition function of the RSP, which is a component of that matrix, is studied

in Section 1.4.

1.2 Related work

Apart from the work from Achbany et al. (2006, 2008); Saerens et al. (2009),

and some others in game theory (see for instance (Osborne, 2004)) or Markov

games (Littman, 1994), very few optimal randomized strategies have been

exploited in the context of shortest-path problems. There is, however, one

exception: the model from Akamatsu (1996), who designed a randomized pol-

icy for routing traffic in transportation networks. In transportation science,

randomized strategies are called stochastic traffic assignments and, within this

context, Akamatsu’s model is the model of reference. This framework, as well

as (Saerens et al., 2009), are inspired by Akamatsu’s model.

Let us also mention some papers that are related to path randomization,

and therefore to the present work. The entropy of the paths (or trajecto-

ries) connecting an initial and an absorbing destination node of an absorbing

Markov chain was studied in Ekroot and Cover (1993). In this paper, the

authors provide formulas allowing to compute the entropy needed to reach the

destination node. In (Tahbaz and Jadbabaie, 2006) a one-parameter family of

algorithms that recover both the procedure for finding shortest paths as well

as the iterative algorithm for computing the average first-passage time in a

Markov chain is introduced. However, having a heuristic foundation, it is not

based on the optimization of a well-defined cost function.

In another context, Todorov (Todorov, 2006) studied a family of Markov

decision problems that are linearly solvable, that is, for which a solution can be

computed by solving a matrix eigenvector problem. In order to make this pos-

sible, Todorov assumes a special form of control for the transition probabilities,
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which recasts the problem of finding the policy into an eigenvector problem.

In (Boyd et al., 2004) a Markov chain that has the fastest mixing properties

is designed, while (Sun et al., 2006) discuss its continuous-time counterpart.

In a completely different framework, uninformed random walks, based on

maximizing the long-term entropy (Delvenne and Libert, 2011; Tomlin, 2003),

have recently been proposed as an alternative to the standard PageRank al-

gorithm. Finally, notice that some authors tackled the problem of designing

ergodic (non-absorbing) Markov or semi-Markov chains (see, e.g., Sahner et al.

(2012)) in a maximum-entropy framework (see for instance (Girardin, 2004;

Girardin and Limnios, 2004) and the references therein).

1.3 Background and notations

This section provides a short account of the discrete randomized shortest path

(RSP) framework (Saerens et al., 2009; Yen et al., 2008), in the context of

a single-source single-destination problem, which was initially inspired by a

stochastic traffic assignment model (Akamatsu, 1996). It will be shown that

this RSP framework allows solving minimal-cost problems in a graph by means

of simple linear algebra operations.

Let G be a directed graph containing a source node with index 1 and a

destination or goal node with index n (we assume n 6= 1). Moreover, the goal

node is absorbing: once node n is reached, the path stops, i.e., there is no

outgoing arc from n. A non-negative local cost ckk′ ≥ 0 is associated to each

of the arcs. We consider graphs with no self-loops, which implies that the cost

of remaining in the same state is infinite, ckk = ∞ for all k. Similarly, an

infinite cost is assumed when there is no arc between node k and k′. If there

are many destination nodes, the following trick can be used: a dummy node n

is created and a zero-cost arc between each destination node and the dummy

node n is added. Furthermore, the transition costs from the destination node

are all cnk =∞ ∀k, i.e., the random walker dissapears when reaching node n.

We now adopt a sum-over-paths formalism (see Mantrach et al. (2010)):
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let us further denote by P the set of all paths (including cycles) that go from

1 to n. Each path ℘ ∈ P is composed by a sequence of arcs k → k′ that ties

the source to the destination node. Moreover, let the total cost C(℘) of a path

℘ be the sum of these local costs along ℘. The path randomization will be

driven by global performance: a probability is assigned to each path, favoring

nearly-optimal paths having a low cost C(℘). Therefore, optimal or slightly

nearly-optimal paths are assigned a high probability, while paths leading to a

high cost are penalized.

The Shannon entropy defined as

H0 = −
∑
℘∈P

P(℘) ln P(℘) (1.4)

is used for controlling this penalization of expensive paths via the assigned

probability distribution. The parameter H0 controls the degree of randomness,

or exploration, in the graph and is related to the inverse temperature of the

graph, θ = 1/T > 0.

Let the initial, reference, policy be uniform (pure exploration – the costs

are not taken into account), p
(0)
kk′ = 1/nk (except for k = n for which p

(0)
kk′ = 0),

where nk is the out-degree of node k. Let us now seek the optimal proba-

bility distribution P∗(℘) on the set of paths P – assumed to be independent

– minimizing the expected cost for reaching the destination node from the

source node (exploitation) while maintaining a constant relative entropy H0

with respect to this reference policy (exploration). The problem to solve is

minimize
P(℘)

∑
℘∈P

P(℘)C(℘)

subject to
∑

℘∈P P(℘) ln(P(℘)/P(0)(℘)) = H0

(1.5)

where P(0)(℘) is the probability of following path ℘ when using the reference

policy, i.e., transition probabilities p
(0)
kk′ . The sum in (1.5) is defined on all paths

℘ ∈ P . It can be easily shown (Saerens et al., 2009; Mantrach et al., 2010)

that the optimal path probability distribution is a Boltzmann distribution
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on the set of paths P ,

P∗(℘) =
P(0)(℘) exp [−θC(℘)]∑

℘′∈P

P(0)(℘′) exp [−θC(℘′)]
(1.6)

where θ > 0 is the inverse temperature and is directly related to the relative

entropy H0.

This equation provides the optimal randomized policy expressed in

terms of path probabilities. As expected, shorter paths ℘, having small C(℘),

are favored. Indeed, when θ is large, the probability distribution defined by

Equation (1.6) is biased towards short (low cost) paths, i.e., when θ →∞, the

probability distribution peaks around the shortest paths. Let us further define

the partition function as

Z =
∑
℘∈P

P(0)(℘) exp [−θC(℘)] (1.7)

which is the denominator from Equation (1.6). Clearly, the expected number

of passages nkk′ through arc k → k′ is given by (see Jaynes (1957) or Section

1.6 for an alternative derivation in the sum-over-paths context)

nkk′ = −1

θ

∂(lnZ)

∂ckk′
(1.8)

and the expected number of passages per node nk′ are given by

nk′ =
∑

k∈Pred(k′)

nkk′ (1.9)

where Pred(k′) is the set of predecessors of node k′ 6= 1 (the initial node).

For the single-source single-destination problem with independent paths,

the optimal policy expressed in terms of path probabilities in Equation (1.6),

providing the minimum-cost policy for a constant H0, can be re-expressed in

terms of local, optimal, transition probabilities, i.e., a local first-order

18
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Markov policy (see Saerens et al. (2009))

p∗kk′ =
nkk′∑

l∈Succ(k)

nkl
, for k 6= n (1.10)

which provides the transition probabilities from every node of interest of the

graph. Here, Succ(k) is the set of successors of node k. Other useful measures,

such as the expected cost, can also be calculated through the partition function

as well-known in statistical physics and as shown, e.g., by Jaynes (1957)

C = −1

θ

∂(lnZ)

∂θ
(1.11)

Let us now show how this partition function, Z, can be computed from the

cost matrix and the reference transition probabilities.

1.4 Computation of the partition function

As in Markov chains, there exists a “fundamental matrix” from which all main

quantities of interest can be easily computed. In the RSP framework, this

fundamental matrix is related to the partition function Z, which as shown by

Saerens et al. (2009) and Mantrach et al. (2010), can be computed from the

immediate cost matrix, C, and the reference transition matrix, P(0), containing

the p
(0)
kk′ . We first define W as

W = P(0) ◦ exp[−θC] = exp[−θC + ln P(0)] (1.12)

where the logarithm/exponential functions are taken element-wise (◦ is the

Hadamard matrix product). Further developments (Saerens et al., 2009) show

that the partition function (Equation (1.7)) can be computed as

Z = [(I−W)−1]1n = [Z]1n = z1n (1.13)
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and by analogy with Markov chains, Z = (I −W)−1 = I + W + W2 + · · · ,
will be called the fundamental matrix of the RSP. Its elements (k, l) are

denoted as zkl. The matrix Z cumulates the contributions of paths of length 0,

length 1, etc. A zero-length path is thus allowed, with zero cost by convention.

Furthermore, Z is always well-defined since W is sub-stochastic.

1.5 Computation of the main quantities

Let us now show how we can compute the main quantities of interest from the

partition function. Our next step aims at computing the expected number

of passages through arc k → k′. The partial derivative from Equation (1.8)

can be readily computed (Saerens et al., 2009; Mantrach et al., 2010) as

nkk′ =
z1kwkk′zk′n

z1n

(1.14)

where wkk′ is element (k, k′) of matrix W. From Equation (1.9), the expected

number of visits to node k′ is given by

nk′ =
z1k′zk′n
z1n

, for k′ 6= 1 (1.15)

where we used the identity z1k′ = δ1k′ +
∑

k∈Pred(k′) z1kwkk′ that can easily be

deducted from Z = I + WZ. Moreover, from Equations (1.10) and (1.14), the

optimal transition probabilities are

p∗kk′ =
wkk′zk′n∑

l∈Succ(k)

wklzln
=
wkk′zk′n
zkn

=
zk′n
zkn

p
(0)
kk′ exp[−θckk′ ], for k 6= n (1.16)

where we used zkn = δkn +
∑

l∈Succ(k) wklzln coming from Z = I + WZ. On

the other hand, when k = n, p∗kk′ = 0, since node n is absorbing. Therefore,

Equation (1.16) is still valid for k = n as cnk′ =∞, thus wnk′ = 0, and znn = 1.

When θ → ∞, the p∗kk′ encode the minimum-cost policy, while for in-

termediate values of θ, following Equation (1.5), they define a Markov chain
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minimizing the expected cost to the destination for a given relative entropy

spread in the graph. It can be observed that these optimal transition proba-

bilities (the optimal policy) do not depend on the initial, source, node (node

1) – they only depend on the destination node n. Equation (1.16) therefore

defines the optimal randomized policy from any source node – it is actually

the local policy counterpart of Equation (1.6) when paths are considered as

independent (Saerens et al., 2009).

Therefore, the one-step ahead probability distribution of finding the ran-

dom walker in state k′ at time step t + 1 when following the optimal policy

(1.16), ρ∗t+1(k′), given its distribution ρ∗t (k) at time t, is

ρ∗t+1(k′) =
n∑
k=1

p∗kk′ρ
∗
t (k) =

n∑
k=1

wkk′zk′n
zkn

ρ∗t (k) (1.17)

Let us now come back to the computation of the elements of the funda-

mental matrix, zkl. Since the Equations (1.14-1.17) only involve the first row

and the last column of matrix Z, they can be easily computed by solving two

systems of linear equations. For the last column, we solve (I −W)zb = en,

where zb is the column vector of so-called backward variables ([zb]k = zkn).

Symmetrically, the column vector of forward variables, zf (with [zf ]k = z1k),

containing the first row of matrix Z, is provided by (I −W)Tzf = e1. Thus,

zfk = z1k and zbk = zkn. Written element-wise, this reads
z11 = 1 +

∑
k∈Pred(1)

p
(0)
k1 exp[−θck1] z1k

z1k′ =
∑

k∈Pred(k′)

p
(0)
kk′ exp[−θckk′ ] z1k, for k′ 6= 1

(1.18)
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and for the backward variables,
znn = 1 +

∑
k′∈Succ(n)

p
(0)
nk′ exp[−θcnk′ ] zk′n(= 1 if node n is absorbing)

zkn =
∑

k′∈Succ(k)

p
(0)
kk′ exp[−θckk′ ] zk′n, for k 6= n

(1.19)

Now, these backward variables zkn given by Equation (1.19) have an in-

teresting, intuitive, interpretation (Mantrach et al., 2010). Consider a new

random walk defined by the transition probabilities (with a tilde)

p̃kk′ = p
(0)
kk′ exp [−θckk′ ] (1.20)

without any normalization. Since θ > 0, the transition matrix P̃, containing

the p̃kk′ , is sub-stochastic. This means that, at each time step of the random

walk and for each node k, the random walker has a non-zero probability of

abandoning the walk equal to p̃eva,k = (1 −
∑

k′∈S(k) p̃kk′). We will say that

Equation (1.20) defines an evaporating (or killed) random walk (ERW)

since the probability of seeing the random walker pursuing its quest decreases

at each time step. In that case, the backward variable zkn from Equation (1.19)

can be interpreted as the expected number of passages through node n (Kemeny

and Snell, 1976; Taylor and Karlin, 1998) for a random walker starting in node

k at t = 0 and ending in n. The quantity ln zkn will act as a potential (see

Equation (3.50)).

In the same manner, one can show that the expected cost from Equation

(1.11), when starting from the source node and following the optimal policy,

is provided by

C =
n∑
k=1

∑
k′∈Succ(k)

ckk′nkk′ =
1

z1n

n∑
k=1

∑
k′∈Succ(k)

z1kckk′wkk′zk′n (1.21)

where ∞. exp[−∞] = 0 by convention and we used Equation (1.14).
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1.6 Computation of the important quantities

Let us now present an alternative, more intuitive, derivation of the forward and

backward variables in the context of the sum-over-paths formalism (Saerens

et al., 2009), and how this relates to the main quantities of interest. For

simplification purposes, let us rewrite the probability distribution (Equation

(1.6)) on the paths as

P(℘) =
exp

[
−θC̃(℘)

]
∑
℘′∈P

exp
[
−θC̃(℘′)

] (1.22)

where C̃(℘) = −θC(℘) + lnP (0)(℘).

Let us redefine the expected number of passages through node k as (see

Equation (1.15))

nk =
∑
℘∈P1n

δ(℘; k)
exp[−θC̃(℘)]

Z
=
∑
℘∈P1n

δ(℘; k)P(℘) (1.23)

where δ(℘; k) is an indicator function that counts the number of times that

node k is traversed by path ℘. Similarly, the expected number of passages

through link k → k′ (see Equation (1.14)) can be expressed as

nkk′ =
∑
℘∈P1n

δ(℘; k, k′)
exp[−θC̃(℘)]

Z
=
∑
℘∈P1n

δ(℘; k, k′)P(℘) (1.24)

where δ(℘; k, k′) counts the number of times link k → k′ is traversed by path

℘. If the graph is acyclic, which we assume for now (e.g., an acyclic lattice),

so that a path can only visit a link once, it returns 1 if, respectively, the node

k or the link k → k′ is part of path ℘, and 0 otherwise. Thus, the total cost
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1.6. COMPUTATION OF THE IMPORTANT QUANTITIES

Figure 1.5: The paths P1n from 1 to n traversing node k can be decomposed
into two sub-paths in P1k and in Pkn.

occurred along the path ℘ can be computed from the individual costs ckk′ by

C(℘) =
n∑
k=1

n∑
k′=1

δ(℘; k, k′) ckk′ (1.25)

Please refer to Equations (2.6) and (2.10) for the computation of the E[C].

By generalizing with the same argument, the expectation of any quantity

vkk′ (instead of the costs ckk′) defined on the links is

E[V ] =
∑
℘∈P1n

P(℘)V (℘) =
n∑
k=1

n∑
k′=1

vkk′nkk′ (1.26)

where V (℘) is the sum of the vkk′ along the path ℘.

Let us now show that, as in hidden Markov models, the average number of

passages through each node can easily be expressed in terms of forward and

backward variables. Notice first that, since only the paths passing through

node k contribute to the sum in Equation (1.23), they can be split into two

sub-paths (see Figure 1.5): ℘1k ∈ P1k and ℘kn ∈ Pkn. These two sub-paths

can be chosen independently since their composition is a valid path, where

℘1k℘kn ∈ P1n is the concatenation of the two paths.

24



1.6. COMPUTATION OF THE IMPORTANT QUANTITIES

Now, since C̃(℘) = C̃(℘1k) + C̃(℘kn) for any ℘ = ℘1k℘kn, we easily obtain

nk =
∑
℘∈P1n

δ(℘; k)
exp[−θC̃(℘)]

Z
(1.27)

=
1

Z
∑

℘1k∈P1k
℘kn∈Pkn

exp[−θC̃(℘1k)] exp[−θC̃(℘kn)] (1.28)

=
1

Z
∑

℘1k∈P1k

∑
℘kn∈Pkn

exp[−θC̃(℘1k)] exp[−θC̃(℘kn)] (1.29)

=
1

Z

( ∑
℘1k∈P1k

exp[−θC̃(℘1k)]

)( ∑
℘kn∈Pkn

exp[−θC̃(℘kn)]

)
(1.30)

=
z1kzkn
Z

=
z1kzkn
z1n

(1.31)

where we defined the forward variable z1k and the backward variable zkn as

z1k =
∑
℘∈P1k

exp[−θC̃(℘)] (1.32)

zkn =
∑
℘∈Pkn

exp[−θC̃(℘)] (1.33)

and it is clear from Equation (1.31) that Z = z1n, which is equivalent to the

result in Equation (2.4).

Interesting enough, Equation (1.31) still holds in the case of arbitrary

weighted directed graphs, and not only for acyclic lattices. In that situation,

paths might contain cycles and the decomposition ℘ = ℘1k℘kn is no more

unique: a single path ℘ can be decomposed in ℘1k℘kn in as many ways as

the number of times ℘ passes through node k. Therefore, each path ℘ ∈ P1n

is counted several times in the sum of Equation (1.28): it appears as many

times as the path ℘ can be decomposed in ℘ = ℘1k℘kn. But this quantity

corresponds to the number of times node k appears in path ℘ which, in turn,

is exactly equal to δ(℘; k). Therefore, the passage from Equation (1.27) to

Equation (1.28) remains valid for general graphs containing cycles.

The same reasoning holds for the average number of passages through each
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Figure 1.6: The paths P1n from 1 to n traversing link k → k′ can be decom-
posed into three sub-paths respectively in P1k, in Pkk′ , and in Pk′n.

link. Indeed, only the paths passing through link k → k′ contribute to the

sum in Equation (1.24). They can therefore be split into three sub-paths (see

Figure 1.6): ℘1k ∈ P1k, ℘kk′ ∈ Pkk′ and ℘k′n ∈ Pk′n. As before, the three

sub-paths can be chosen independently since their composition is a valid path,

℘1k℘kk′℘k′n ∈ P1n.

Since C̃(℘) = C̃(℘1k) + C̃(℘kk′) + C̃(℘k′n), we obtain

nkk′ =
∑
℘∈P1n

δ(℘; k, k′)
exp[−θC̃(℘)]

Z

=
1

Z
∑

℘1k∈P1k
℘kk′∈Pkk′
℘k′n∈Pk′n

exp[−θC̃(℘1k)] exp[−θC̃(℘kk′)] exp[−θC̃(℘k′n)]

=
1

Z
∑

℘1k∈P1k

∑
℘kk′∈Pkk′

∑
℘k′n∈Pk′n

exp[−θC̃(℘1k)] exp[−θC̃(℘kk′)] exp[−θC̃(℘k′n)]

=
1

Z

( ∑
℘1k∈P1k

exp[−θC̃(℘1k)]

) ∑
℘kk′∈Pkk′

exp[−θC̃(℘kk′)]

 ∑
℘k′n∈Pk′n

exp[−θC̃(℘k′n)]


=
z1kzkk′zk′n
Z

=
z1k exp[−θckk′ ]pkk′zk′n

z1n

(1.34)

Once more, by the same argument, it can be shown that the Equation

(1.34) still holds for graphs containing cycles.
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Figure 1.7: Forward recurrence: first compute the paths from node 1 to node
k. Then, jump from node k to node k′. The nodes k are the predecessors of
node k′, k ∈ Pred(k′).

1.7 Computation of the recurrence relations

Let us now derive the recurrence relations for computing these forward/backward

variables efficiently. We first investigate the forward variables. For k′ 6= 1, so

that k′ has necessarily a predecesor, k ∈ Pred(k′) (see Figure 1.7), the path

P1k′ can be decomposed into P1k ∈ P1k′ and Pkk′ ∈ P1k′ :

z1k′ =
∑

℘1k′∈P1k′

exp[−θC̃(℘1k′)]

=
∑

k∈Pred(k′)

∑
℘1k∈P1k

exp[−θ(C̃(℘1k) + C̃(℘kk′))]

=
∑

k∈Pred(k′)

( ∑
℘1k∈P1k

exp[−θC̃(℘1k)]

)
exp[−θC̃(℘kk′)]

=
∑

k∈Pred(k′)

exp[−θC̃(℘kk′)] z1k

=
∑

k∈Pred(k′)

exp[−θckk′ + ln p
(0)
kk′ ] z1k (1.35)

For k′ = 1, i.e., z11, either P11 is the zero-length path and its contribution

is equal to 1, or its length is greater than 0 and it has a set of predecessors.
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Figure 1.8: Backward recurrence: first jump from node k to node k′. Then,
compute the paths from node k′ to node n. The nodes k′ are the successors of
node k, k′ ∈ Succ(k).

Thus, the same reasoning from Equation (1.35) applies here:

z11 =
∑

℘11∈P11

exp[−θC̃(℘11)]

=
∑

℘0
11 of zero length

exp[−θ(C̃(℘0
11)] +

∑
k∈Pred(1)

( ∑
℘1k∈P1k

exp[−θC̃(℘1k)]

)

= 1 +
∑

k∈Pred(1)

exp[−θck1 + ln p
(0)
k1 ]z1k (1.36)

Symmetrically, the same calculation can be performed for the backward

variable. The recurrence relations for the forward and backward variables are

thus 
z11 = 1 +

∑
k∈Pred(1)

exp[−θck1 + ln p
(0)
k1 ]zk1

z1k′ =
∑

k∈Pred(k′)

p
(0)
kk′ exp[−θckk′ ] z1k

(1.37)


znn = 1

zkn =
∑

k′∈Succ(k)

p
(0)
kk′ exp[−θckk′ ] zk′n

(1.38)
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These Equations (1.37 and 1.38) also hold for general graphs containing

cycles but, in this case, the problem is no more multi-level, as for an acyclic

lattice. Therefore, for general graphs with cycles, the Equations (1.37 and

1.38) define two systems of linear equations that have to be solved (as shown

by Saerens et al. (2009) by using a statistical physics framework). Although the

idea of calculating the partition function in terms of recurrence relations is not

new (see e.g., Zhang and Marr (1995)) and is already computed with dynamic

programming (see e.g., Newberg and Lawrence (2009)), the above recurrence

relations are valid not only for lattices, but also for any kind of graph. Notice

that if the destination node is not turned into an absorbing node, non-hitting

paths are considered and Equation (1.38) should be rewritten as

znn = 1 +
∑

k′∈Succ(n)

p
(0)
nk′ exp[−θcnk′ ] zk′n (1.39)

Interestingly, these recurrence formulae are quite similar to the well-known

forward-backward procedure appearing in hidden Markov models (HMM, see

Rabiner (1990); Rabiner and Juang (1993)). In fact, it can be shown that

by assuming θ = 1, defining ckk′ = 0 and extending the lattice with “emis-

sion” nodes (modeling emission probabilities), the Sum-over-Paths formalism

reduces to the forward/backward recurrences of the Baum-Welch algorithm for

training hidden Markov models.
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Determining the similarity of two sequences is a central subject in many

fields, such as pattern recognition (Theodoridis and Koutroumbas, 2006), com-

puter science (Cormen et al., 2000; Stephen, 1994), bioinformatics (Durbin

et al., 1998; Kruskal, 1983; Sankoff and Kruskal, 1983), and computational

linguistics (Jurafsky and Martin, 2000). By applying this similarity, one can

determine the class of a new observed sequence from the already known data,

e.g., in bioinformatics we can infer the type of protein encoded in a DNA

sequence by comparing it with the existing protein data.

Approximate String Matching (ASM) techniques compute this similarity

as the best, optimal, alignment between two sequences. By optimal, we mean
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Figure 2.1: Two nodes connected by one single shortest path, A and B, are con-
sidered less similar than two nodes connected by multiple sub-optimal paths,
C and D.

the alignment corresponding to the least total cost, which can be computed by

the well-known Viterbi algorithm (Fornay, 1973). The alignment can be seen

as a path in the editing graph which transforms one sequence into another.

The aim of this chapter is to extend, in a straightforward way, the basic

ASM algorithms in the following way: instead of only relying on the best

alignments or paths, we propose to average the total cost over all the possible

alignments, the sum over all paths (SoP).

The rationale behind this method, is that we consider that one single op-

timal path (see Figure 2.1, points A and B) may have been a result of a noisy

measure. On the other hand, by having many sub-optimal paths (see Figure

2.1, points C and D), there is a higher chance that that these links are relevant

and are not just caused by a noisy observation. By relying on multiple sub-

optimal paths, we increase the robustness of the measure, and remove possible

noise. We therefore consider randomness useful when some noise is present in

the data set.

This is indeed our research question for this chapter: to investigate

whether a robust distance measure can be obtained by extending the RSP

framework, and its relative performance regarding other state of the art dis-

tances.

The new measures exploit the paths on a graph, and empirically prove to

outperform the basic measures in terms of classification accuracy. We apply

the RSP framework by considering all editing paths (ties) between the start

node and end node of the editing graph. Strings having many sub-optimal
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editing paths that transform one into another will be considered, therefore,

more similar than strings having a single optimal editing path.

Main contributions

In this chapter we introduce four novel methods based on the Sum-over-

Paths framework for Approximate String Matching: (i) the Sum-over-Paths

edit distance, (ii) the Sum-over-Paths common subsequences, (iii) the Normal-

ized Sum-over-Paths edit distance, and (iv) the Normalized Sum-over-Paths

common subsequences. These measures provide a model-independent tech-

nique for computing similarities by taking all alignments into account. They

also avoid noisy measures by favoring relevant subsequences of nearly-optimal

alignments. Furthermore, their normalized versions overcome any normaliza-

tion issue.

2.1 Basic notions

Let us first introduce the basic notions upon which the rest of the chapter is

based. The notion of graph as a lattice and the editing path are presented in

this section. Eventually, we introduce the properties of distances.

2.1.1 Strings, editing operations, and graphs

A string s = s1s2...sn of length n is a concatenation of n symbols, si. A

substring of s is a string obtained by removing a series of adjacent symbols

(prefix or suffix) from the original string, e.g., “car” is a substring of the word

“carrot”. When the removed symbols are not adjacent we call it a subsequence,

e.g., “cot” is a subsequence of the word “carrot”.

One way of comparing two strings is to transform the first string into the

second one, and count the minimum number of operations needed. An example

from Sankoff and Kruskal (1983) of transforming string s = INDUSTRY into

string t = INTEREST, is shown in Figure 2.2. This figure shows the trace

from s to t which contains a series of lines (editing operations) that provide
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Operation Transformation Cost
Insert A new symbol si is added to s cins > 0
Delete A symbol si is removed from s cdel > 0

Substitution A symbol si is replaced by sj in s crepl =

{
> 0 if si 6= sj

0 if si = sj

Table 2.1: Editing operations and their cost.

a correspondence, often partial, between both strings. The editing operations

are namely: inserting, deleting, or replacing a symbol from s by a symbol from

t (see a summary in Table 2.1).

Each editing operation has a non-negative associated cost (cins, cdel, crepl),

which can vary depending on the application. Positive values are usually as-

signed to cins and cdel, while crepl takes a positive value for i 6= j and zero

otherwise. We call an editing path the sequence of editing operations that

transform a sequence into another.

Figure 2.2: Trace of the transformation of string “INDUSTRY” into string
“INTEREST”. Editing operations are marked in blue (matching substitution),
red (delete), orange (insert), and green (non-matching substitution).

This same alignment can be seen as an editing path composed of several

editing operations on an edit graph. An edit graph is a lattice of dimensions

|s| × |t|, where each transition corresponds to an editing operation between

two symbols (arrow) and no previous state can be reached (no backward ar-

rows). Figure 2.3 shows the same alignment as an editing path on an edit

graph. Please note that every state of the edit graph can only be reached from

three previous positions as shown in Figure 2.4. We therefore know the set

of predecessor states (Pred(i, j) = {(i − 1, j), (i, j − 1), (i − 1, j − 1)}), and
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Figure 2.3: Editing path of the transformation of string “INDUSTRY” into
string “INTEREST”. Editing operations are marked in blue (matching substi-
tution), red (delete), orange (insert), and green (non-matching substitution).

successor states (Succ(i, j) = {(i+ 1, j), (i, j + 1), (i+ 1, j + 1)}).

Figure 2.4: State (i, j) can be reached from previous states (i − 1, j), (i, j −
1), and (i − 1, j − 1) by a deletion, insertion, or substitution, respectively.
Therefore, the value of F (i, j) can be computed as a combination of the three
previous ones.

We can now define a basic distance between two strings as the sum of

the individual costs that compose the editing path. Obviously, the presented

editing path is not the only possible path. Figure 2.5 shows two alternative

editing paths to transform string “WATER” into string “WINE”. Let us now

assume that editing costs, cins, cdel, crepl, have a unit value. In this case, path

(a) has a cost of 4 (matching substitutions in blue have a 0 cost), while path (b)

has a cost of 5. The problem that arises is how to evaluate the different paths

(alignments), and which option is the most accurate one to define the similarity
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Figure 2.5: Two possible editing paths to transform string “WATER” into
string “WINE”. Editing operations are marked in blue (matching substitu-
tion), red (delete), orange (insert), and green (non-matching substitution).

or distance between any two strings. The following sections introduce two

standard methods: the edit distance and the longest common subsequence

similarity.

2.1.2 The standard edit distance

In the previous section we have seen how two sequences may be aligned by

different editing paths. However, for every two strings, there is an edit path

that involves a minimum number (or cost) of operations, therefore the minimal

distance, which is called the edit distance between two strings. Thus, the

edit distance is the cheapest sequence of edit operations that transform the

first sequence into the second one. When the costs for editing operations

are equal to the unity, the edit distance is called the Levenshtein edit distance

(LED)1. The edit distance can be computed thanks to a dynamic programming

framework (see for instance Durbin et al. (1998); Gusfield (1997); Navarro

(2001); Stephen (1994); Wagner and Fischer (1974)).

This dynamic programming algorithm occurs on a lattice of dimensions

(|s|+1)×(|t|+1) where each node k = (i, j) corresponds to a state of the editing

procedure (each cell from Figures 2.4 and 2.5 is a state). In the general case of

an acyclic directed graph, we have to consider that the states (or nodes) of the

1Note that unit costs are assumed for all editing operations, unlike the edit distance where
different costs can be used. We use both terms as synonyms throughout the document, but
unit costs are always assumed for the LED.
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editing graph have been reordered in such a way that node 1 is the starting

node and node n is the ending node. Moreover, a topological ordering has been

performed. The resulting directed graph contains n = (|s|+1)×(|t|+1) nodes

and is an acyclic lattice. It is assumed that this lattice has been pre-computed

and that, for each state k = (i, j), the sets Pred(k) of predecessor nodes and

successor nodes Succ(k) are available.

The dynamic programming algorithm computes the values of the edit dis-

tance, F (i, j), for each intermediate state, (i, j) with 1 ≤ i ≤ (|s| + 1) and

1 ≤ j ≤ (|t|+ 1), with the following equation:

F (i, j) =



0 for F (1, 1)

min


F (i− 1, j − 1) + crepl

F (i, j − 1) + cins

F (i− 1, j) + cdel

otherwise
(2.1)

This equation can be interpreted as the minimum number of operations up to

the current state. An example of the application of this procedure can be found

in Figure 2.6. The edit distance is, therefore, the value of F (|s|+ 1, |t|+ 1); in

the example this value is equal to three editing operations, F (5, 6) = 3. This

Figure 2.6: Dynamic programming algorithm for calculation of the edit dis-
tance between strings “WATER” and “WINE”. The shortest editing path is
marked in orange.

standard formulation only considers the optimal alignment between the two
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sequences, and can be viewed as a kind of Viterbi algorithm (Fornay, 1973;

Viterbi, 1967). Furthermore, the edit distance is a distance metric (Vitányi,

2011), as it complies with the properties from Table 2.2.

Non-negative property: d(s, t) ≥ 0 ∀s, t
Zero property: d(s, t) = 0 ⇐⇒ s = t

Symmetry property: d(s, t) = d(t, s) ∀s, t
Triangle inequality property: d(s, t) ≤ d(s, r) + d(r, t) ∀s, t, r

Table 2.2: Distance metric properties.

2.1.3 The standard longest common subsequence

Another frequently used measure between two strings is the longest common

subsequence similarity. The Longest Common Subsequence (LCS) algorithm

(Cormen et al., 2000; Stephen, 1994) computes this similarity (together with

the longest common subsequence itself, if desired) through a method similar to

edit distance computation. The dynamic programming method is computed

as follows:

F (i, j) =



0 for F (1, 1)

max


F (i− 1, j − 1) + si,j

F (i, j − 1)

F (i− 1, j)

otherwise
(2.2)

where si,j is the similarity between states i and j, and is equal, in the standard

case, to 1 when i = j and 0 otherwise. An example of the calculation of the

LCS for two sequences is shown in Figure 2.7. In this case, the value of the

longest common subsequence is 2, as only the subsequence “WE” is shared.

Because this measure is a similarity it only complies with the non-negative and

symmetric properties from Table 2.2.

Myers (1986) show that the longest common subsequence and the edit

distance are dual problems, where the first tries to find the editing path with
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Figure 2.7: Dynamic programming algorithm for calculation of the longest
common subsequence between strings “WATER” and “WINE”. The shortest
editing path is marked in orange.

maximum number of diagonal edges (matching substitutions), while the second

focuses on editing paths with minimum number non-diagonal edges (insertions

and deletions).

The relation between the LCS and the ED for two strings s and t is:

ED = |s| + |t| − 2 × LCS. Please note that in this case, we use the Edit

Distance, with weights for replacement of 2 (a replacement is the sum of an

insertion and a deletion). In this case, the ED for the strings “Wine” and

“Water” is 5. We can clearly see that the relation between the ED and the

LCS holds: 5 = 4 + 5− 2× 2.

2.2 Related work

In the previous sections we have introduced the standard methods for finding

the optimal, shortest, alignments between two sequences. However, as shown in

Figure 2.5, there may exist several possible alignments between two sequences.

Given that there are alternative alignments with nearly the same cost as the

optimal one, one may want to consider also these sub-optimal alignments. In-

deed, as noticed by (Durbin et al., 1998), relevant information is also contained

in these sub-optimal alignments. For some applications, two sequences sharing

many sub-optimal alignments should be considered as more similar than two
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sequences having only one single, optimal, alignment in common. To this end,

we adopt a Sum-over-Paths (SoP) formalism, considering that each alignment

corresponds to a path on the dynamic programming lattice.

Within the context of computing edit distances between sequences, there

have been successful attempts to account for all possible alignments (see, e.g.,

Bucher and Hofmann (1996); Durbin et al. (1998); Krogh et al. (1994); Leslie

et al. (2004); Lodhi et al. (2002); Rousu and Shawe-Taylor (2005); Shawe-

Taylor and Cristianini (2004); Watkins (1999), among others). The sequence

comparison model introduced by Durbin et al. (1998) is quite popular in bioin-

formatics. It is based on a hidden Markov model (HMM) of sequence pairs

generation, called the pair HMM. The model is trained by maximum likeli-

hood on a sequences sample and, once is trained, it provides the likelihood of

observing any two sequences, each alignment being weighted by its probability.

The SoP edit distance introduced in this chapter shares therefore some

similarities with the pair HMM, but is much simpler since it does not require

any transition-probability estimation – it is model-free, although by modifying

the edition costs or the similarity measure we could adapt it to any model or

specific task.

It is, however, also possible to fix a priori the transition probabilities of

the pair HMM. In that case, the SoP edit distance is equivalent to the pair

HMM with a suitable choice of the editing costs, and parameter θ equal to 1.

However, two important differences between the proposed SoP techniques and

pair HMMs is that the SoP edit distance

1. weights the contribution of the different alignments, according to their

respective total costs, and

2. depends on a parameter allowing to regulate the degree of exploration

and thus the contribution of sub-optimal paths.

It therefore encompasses both the Viterbi and the Baum-Welch algorithms as

special cases. It will be observed in the experimental section that the best

performance obtained by the SoP techniques is often achieved for θ parameter
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values greater than 1. Finally, notice that a valid kernel derived from a pair

HMM was proposed by Jaakkola et al. (2000) and Watkins (1999).

The string kernels introduced by Leslie et al. (2004); Liao and Noble (2002);

Lodhi et al. (2002); Rousu and Shawe-Taylor (2005); Saigo et al. (2004); Shawe-

Taylor and Cristianini (2004) compute a score depending on all the possible

common subsequences of the two compared sequences. The main idea behind

these sequence-comparison techniques is to reward common subsequences –

contiguous or not, depending on the technique. However, when the size of the

alphabet is very low, there is a huge quantity of such short common subse-

quences and very few long common subsequences, so that the obtained score

does not reflect accurately the proper similarity between the two sequences.

Indeed, a much larger weight should be put on long common subsequences;

this is exactly what the SoP edit distance does. We therefore expect string

kernels to perform well when the alphabet is quite large (for instance in the

context of text mining – in this case, there are very few long common sub-

sequences; see for example Cancedda et al. (2003)), and worse in the case of

reduced alphabets – this is indeed observed in our experiments.

Yet another approach computing an edit score along all possible alignments

is the stochastic edit distance, and related methods (Bahl and Jelinek, 1975).

The underlying model is based on a noisy channel. An input string s – the

reference string or code – is distorted by a noisy channel, therefore producing

an output string t that is a noisy transform of s. The noisy channel is often

modeled as a Markov model or a transducer (Bahl and Jelinek, 1975; Oncina

and Sebban, 2006). For these models, the probability of generating string t

from s, P(t|s), can be computed thanks to a forward recursion formula involv-

ing all possible ways of generating t, and therefore all possible paths through

the lattice. The scores − log P(t|s) or − log P(s|t) can be considered as dissim-

ilarity measures between s and t. This stochastic edit distance model is refined

in Ristad and Yianilos (1998b); Amengual and Vidal (2000); Oncina and Seb-

ban (2006), where the local distances between the symbols are estimated from

sample data. A paragraph explaining the relationships between stochastic edit

distances and the sum-over-paths approach appears at the end of Section 2.3.1.
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However, these stochastic edit distances do not have a parameter biasing the

measure towards minimum cost solutions.

Path randomization applications are also found within the bioinformatics

literature. A stochastic alignment procedure is presented by Thorne et al.

(1991), where the authors introduce an evolutionary model based on transi-

tion probabilities which allow not only to estimate the optimal alignment via

the maximum likelihood, but also to estimate the set of evolutionary param-

eters given two aligned sequences. This work is further extended by Thorne

et al. (1992) by adding the possibility of multiple-base insertion and deletion

as well as heterogeneous evolutionary rates. This evolutionary model is also

extended by Steel and Hein (2001) by generalizing the pairwise recursions to

an r-sequence star-shaped tree.

Zhang and Marr (1995) propose a method which extends the typical dy-

namic programming method by allowing uncertainty and, thus, weighting the

fluctuating sub-optimal alignments. This probability distribution has its basis

on the partition function, which is computed via a recurrence formula. The

average cost is also computed, though is not used as similarity measure be-

tween two sequences. Furthermore, this model is restricted to lattices and

there are no methodic experimental results, although simulation experiences

are suggested.

A formulation for the alignments with highest probability, according to

a Boltzmann distribution based on the partition function and a temperature

parameter, is provided by Miyazawa (1995). The author defines a pairwise

similarity measure consisting on a log-odds matrix of amino acid mutations,

which is then used to compute the statistical weight of an alignment. More-

over, a formulation of pairwise probabilities in terms of forward and backward

variables is presented.

Eventually, an alignment consisting of the most probable pairwise corre-

spondences is provided. Hwa and Lässig (1996) introduce a similarity de-

tection method based on statistical physics. The idea behind this paper is

that the large-scale statistics of the fluctuating paths can be derived from the

partition function in a path integral representation. Other similar probabil-
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ity alignments are also presented by Kschischo and Lässig (2000), where the

finite-temperature alignments are introduced. These stochastic alignments are

derived from a thermodynamic partition function and they can be used for

assessing the relevance of sub-optimal paths. The authors define the weight

of each alignment proportionally to the exponential of a defined similarity

measure which depends on the number of matches, mismatches and gaps.

Eventually, the probability of a pairwise element is computed as the sum of

the probabilities over all paths that contain the pair. This partition function

formalism is also computed by Newberg and Lawrence (2009) via a dynamic

programming algorithm, where the authors introduce a probabilistic approach

to calculate the alignment score based on a Boltzmann distribution.

However, and to the best of our knowledge, there is no work that uses

the average cost of the fluctuating sub-optimal paths as a similarity measure

between two sequences to avoid noisy measures, yet many of them agree that

the optimal alignment may not be the best one, and that other sub-optimal

paths are also relevant. The present work introduces a SoP formalism which

allows to compute relevant quantities on a graph, such as the expected cost or

the expected number of passages through a node. A probability distribution is

assigned on the set of paths and the quantities of interest are computed with

respect to this distribution. The derivation of these quantities differs from

the one proposed by Mantrach et al. (2010); Saerens et al. (2009); Yen et al.

(2008) in that it is more intuitive, in our opinion, as it directly derives the main

quantities without having to compute the derivatives of a partition function.

Within this formalism, extensions of the edit distance and the longest common

subsequence are developed, taking all the alignments into account.

It must also be stressed that these previous works focus only on acyclic lat-

tices, while the presented approach is generalized to arbitrary graphs (includ-

ing cycles). Furthermore, although the use of the partition function formalism

proves to be useful in this context, any of the previous work derives it from

an optimization problem (as is the case of the Sum-over-Paths edit distances).

Eventually, previous work is mostly focused on biologically relevant similarity

or cost functions, while generic edit distance costs are applied here, leading to
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an application-independent method which proves to be useful in OCR tasks.

Finally, let us also mention that some authors (Do et al., 2006; Oncina and

Sebban, 2006; Ricci et al., 2007; Ristad and Yianilos, 1998a) propose to tune

the edit costs from a training set, which results in better performances at the

cost of increasing computational complexity. Moreover, an edit graph (lattice)

for a pair of sequences can be thought of as a strong product graph of two chain

graphs each representing one of the two given sequences, the SoP approach is

also related to graph kernels working on product graphs (Vishwanathan et al.,

2010, 2007). For instance, Vishwanathan et al. (2010) framework of graph

kernels viewed as path counting in product graphs could probably be adapted

to strong product graphs and thus applied to sequence comparison.

2.3 The Sum-over-Paths edit distance and com-

mon subsequence

2.3.1 A Sum-over-Paths extension of the edit distance

Let us now turn to our Sum-over-Paths (SoP) formalism, computing the dis-

tance along all the alignments between the two sequences, which is a direct

application of the randomized shortest-path formalism introduced in Chapter

1.

The RSP framework provides a set of distances that lie between (i) the

Commute-Time distance (Gobel and Jagers, 1974), which is defined as the

expected length of paths that a random walker can follow between a pair of

nodes, and (ii) the Shortest Path distance, which is defined as the length of the

shortest path between a pair of nodes. The advantage of using multiple paths,

unlike the shortest path distance, has already been demonstrated by several

authors (Yen et al., 2008), as it provides more robust distance measures for

string comparison.

On the other hand, when the graph becomes large enough, the Commute-

Time distance is affected by the stationary distribution of the natural random
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walk on the graph (Brand, 2005). The reason is that when the number of edges

connecting a node increases significantly, the random walker has too many

paths to follow, and the probability of reaching the destination node becomes

dependent on the number of edges. This motivates the RSP distances, which

favor sub-optimal paths and provide a robust, yet accurate, distance measure.

As introduced in Section 2.1.2, the edit distance only considers the optimal

alignment between two sequences. In order to apply the SoP framework to the

edit distance to build a more robust measure, a probability is assigned to each

path depending on its optimality or cost.

2.3.2 The SoP edit distance

Let us suppose a 40×40 lattice as the one from Figure 2.8, where each state is

represented by a pixel, and the probability of a certain state is given by a color

scale, i.e., red for probability equal to one and blue for zero probability. Figure

2.8 (a) shows the probabilities of the edit distance, where the optimal path is

marked in red (probability equal to one for each state of the optimal path),

while probabilities in Figure 2.8 (b) are distributed among all sub-optimal

paths. This kind of distribution is the one that we are interested in, as it

favors the optimal path, while still taking into account the sub-optimal ones.

In a more formal way, we can consider the set of all possible paths P1n

between the starting node 1 (top left node in Figure 2.8) and the ending node

n (bottom right node in Figure 2.8) on the dynamic programming lattice. Each

of these paths ℘ ∈ P1n corresponds to a possible alignment between sequence

s and sequence t. The probability of occurrence of each alignment is assumed

to follow a Boltzmann distribution (see Equation (1.6)) as shown in Figure

2.8. Note that here we consider the initial policy P(0) equally distributed,

therefore the Boltzmann distribution can be rewritten as

P(℘) =
exp[−θC(℘)]

Z
(2.3)

where C(℘) is the total cost associated to the path or alignment ℘, that is,
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Figure 2.8: Probability of passing through a state on a 40 × 40 lattice. Each
state (pixel) has a probability indicated by the color scale on the right. Figure
(a) shows the optimal alignment of the edit distance, and (b) the SoP edit
distance with θ = 1.

the sum of the individual costs ckk′ occurring on that path ℘. Please note the

normalization factor, or partition function, Z is given in Equation (2.4). Notice

that this partition function has already been used for sequence alignment with

uncertainty (see i.e., Kschischo and Lässig (2000); Miyazawa (1995); Zhang

and Marr (1995)), for similarity detection as by Hwa and Lässig (1996), or in

alignment scoring as by Newberg and Lawrence (2009).

Z =
∑
℘∈P1n

exp[−θC(℘)] (2.4)

In fact, the probability distribution defined in Equation (2.3) minimizes

the expected cost subject to a Shannon entropy constraint,

minimize
P(℘)

∑
℘∈P1n

P(℘)C(℘)

subject to −
∑

℘∈P1n
P(℘) ln P(℘) = H0

(2.5)

where H0 is the predefined entropy and is inversely related to θ (the lower θ,

the larger the entropy), the inverse temperature parameter. In other words, it

guarantees a minimum expected cost for reaching node n from node 1 while
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fixing the level of entropy (exploration) spread in the lattice. Thus, the entropy

is used instead of relative entropy in Equation (1.5).

It is clear that this definition of the probability distribution on the set of

paths favors good alignments (with a low cost C(℘)) over bad ones (with a large

cost C(℘)). The parameter θ regulates the sharpness of the distribution: when

θ → ∞, only the best alignments matter while when θ → 0, all alignments

have almost the same probability mass. In other words, the larger the value

of parameter θ, the less the impact of sub-optimal paths.

SoPED with theta = 0.1
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Figure 2.9: Effect of θ on the probabilities of paths with the SoP edit distance.
Big values of θ provide a more peaked probability distribution on the optimal
alignment (the diagonal path in this case), while for smaller values the distri-
bution is more spread over the lattice. The logarithm of the probabilities is
represented here.

Now, the total expected cost for reaching node n from node 1, defining the

SoP edit distance dSoP between the two sequences, is given by

dSoP = E[C] =
∑
℘∈P1n

P(℘)C(℘) =
∑
℘∈P1n

C(℘)
exp[−θC(℘)]

Z
(2.6)

By taking into account the definition of the total cost from Equation (1.25),
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we can rewrite Equation (2.6) as

dSoP =
∑
℘∈P1n

C(℘)
exp[−θC(℘)]

Z
(2.7)

=
∑
℘∈P1n

(
n∑
k=1

n∑
k′=1

δ(℘; k, k′) ckk′

)
exp[−θC(℘)]

Z
(2.8)

=
n∑
k=1

n∑
k′=1

ckk′

( ∑
℘∈P1n

δ(℘; k, k′)
exp[−θC(℘)]

Z

)
(2.9)

=
n∑
k=1

n∑
k′=1

ckk′nkk′ (2.10)

where we used the definition provided by Equation (1.24). Thus, the SoP edit

distance is just the sum of the individual costs multiplied by the expected

number of passages through the corresponding links.

Finally, by integrating the definition of the expected number of passages in

terms of the forward and backward variables (see Equation (1.34)), Equation

(2.10) can be rewritten as

dSoP =
1

z1n

n∑
k=1

n∑
k′=1

z1kckk′ exp[−θckk′ ]zk′n (2.11)

=
1

z1n

n∑
k=1

∑
k′∈Succ(k)

z1kckk′ exp[−θckk′ ]zk′n (2.12)

This will allow us computing the SoP edit distance in terms of the immediate

costs and the forward/backward variables.

2.3.3 Link with the stochastic edit distance

As noted by a reviewer of Garćıa-Dı́ez et al. (2011), the SoP model is also

closely related to the stochastic edit distance (SED) by Bahl and Jelinek

(1975). Indeed, the path probability proposed is approximately the same as the

conventional likelihood of an alignment path P(y|x) between a given string,

x, and its “distorted version”, y, under the assumption that the (insertion,
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deletion, substitution) error probabilities are uniform.

More precisely, let pe be the probability of each of the (insertion, deletion,

non-matching substitution) errors and pm the probability for a matching sub-

stitution. The likelihood of y along path ℘ is the product of the probabilities

of all the edit operations along ℘, i.e.,

P(y, ℘|x) = (pe)
ne (pm)nm (2.13)

where ne is the number of errors and nm is the number of matches along ℘. If

we define the related costs

ce = − log pe (2.14)

and

cm = − log pm (2.15)

the P(y, ℘|x) can be rewritten as

P(y, ℘|x) = exp

[
−
∑

k→k′∈℘

ckk′

]
= exp[−C(℘)] (2.16)

which turns out to be the same form as the SoP path probability with θ = 1.

In that case,

P(y|x) =
∑
℘∈P1n

P(y, ℘|x) =
∑
℘∈P1n

exp[−C(℘)] (2.17)

which corresponds to the partition function, Z. Therefore, in this context, the

partition function can be considered as a likelihood function, and − logZ a

dissimilarity measure between string x and string y. This SED dissimilarity

measure is investigated in the experimental section.
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2.3.4 A Sum-over-Paths extension of the

longest common subsequence

Let us now turn to the randomized version of the longest common subsequence

(LCS). The dynamic programming lattice used by the LCS algorithm is in fact

identical to that of the Levenshtein edit distance, and exactly the same SoP-

based development can be applied, with only one (but important) difference:

since LCS is a similarity measure, it involves immediate rewards or similar-

ities skk′ instead of costs. Therefore, the probability distribution on the set

of alignments is redefined as P(℘) = exp[θS(℘)]/Z where S(℘) is the total

similarity associated to path ℘ (the sum of the individual similarities along

the path) and Z =
∑

℘∈P1n
exp[θS(℘)]. Thus, good alignments (having a large

similarity) are favored over bad ones (having a low similarity).

The SoP common subsequence similarity, denoted as sSoP, is defined

as the average of S(℘) over the previous probability distribution. By proceed-

ing exactly as in the previous section, we obtain

sSoP =
1

z1n

n∑
k=1

n∑
k′=1

z1kskk′ exp[θskk′ ]zk′n (2.18)

Notice that in the SoP CS case, as opposed to the SoP ED, cycles are not

allowed, since the similarity could become arbitrarily high by looping.

2.3.5 Gap handling with SoP edit distances

It must be noticed that our model already handles gaps, i.e., contiguous non-

matching subsequences, by allowing insertions and deletions, yet one may like

to handle affine gaps (Durbin et al., 1998). Let us imagine that we have a

lattice as the one in Figure 2.10, where each node is represented twice to

model the possibilities of continuing a gap, or starting a gap.

The new graph has an increased number of edges in order to allow different

costs depending whether we have already started the gap, or we start a new

one (as we prefer fewer long gaps over many short ones). The number of
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Figure 2.10: Graph that allows affine gaps: the white nodes represent the
continuation of a gap while grey nodes represent the start of a gap. DO/IO
edges start a new gap, while DC/IC edges continue a gap.

possible paths remains the same as the possible editing operations are the

same from any node, although with different costs. Furthermore, the expected

cost remains the same when a linear gap model cost is assumed. For different

affine gap models, from the linear model, the local costs would change letting

the probability distribution vary and, therefore, the expected cost as well. It

would be thus possible to integrate affine gaps in our solution and still use the

same recurrence relations for computing the expected cost.

2.3.6 The SoP edit distance algorithm

The SoP edit distance can thus be computed as follows (see Algorithm 1):

1. Compute the forward and backward variables using Equations (1.37) and

(1.38).

2. Compute the SoP edit distance thanks to Equation (2.12).

The code of the SoP edit distance algorithm is available at http://github.com/

silviagdiez/thesis. This algorithm depends on the parameter θ and assumes

constant insertion and deletion costs, cins and cdel.
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The states of the dynamic programming lattice are indexed by k := (i, j).

The insertion of a symbol corresponds to a transition (i, j) → (i, j + 1) while

the deletion of a symbol corresponds to (i, j) → (i + 1, j). A substitution

is (i, j) → (i + 1, j + 1) with cost csub(s1(i), s2(j)). The first line (j = 1)

and column (i = 1) correspond to a dummy, empty, symbol in the dynamic

programming table. The forward and backward variables are denoted by zf

(for the z1k) and zb (for the zkn), respectively.

Algorithm 1 SumOverPathsED: Computation of the SoP Edit Distance.

Input:
• θ > 0: the parameter controlling the degree of randomness.
• s1, s2: sequences of symbols of length n1, n2 respectively.
• cins, cdel, csub(x, y): edit costs (insertion, deletion, substitution).

Output:
• dSoP: the Sum-over-Paths edit distance.

1. Call ForwardRecurrenceED (Algorithm 2)
2. Call BackwardRecurrenceED (Algorithm 3)
3. Z = zf(n1 + 1, n2 + 1)
4. Initialization of the expected cost d from the transitions on the first row

and the first column of the lattice:

d =

n1∑
i=1

zf(i, 1)cdel exp[−θcdel]zb(i+ 1, 1)

+

n2∑
j=1

zf(1, j)cins exp[−θcins]zb(1, j + 1)

5. for i = 1 to n1 do
6. for j = 1 to n2 do
7. d = d+ zf(i, j)csub(s1(i), s2(j)) exp[−θcsub(s1(i), s2(j))]zb(i+ 1, j + 1)

+zf(i+ 1, j)cins exp[−θcins]zb(i+ 1, j + 1)
+zf(i, j + 1)cdel exp[−θcdel]zb(i+ 1, j + 1)

8. end for
9. end for

10. return dSoP = d/Z

2.3.7 The SoP common subsequence algorithm

The SoP common subsequences can be computed as follows (see Algorithm 4):
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Algorithm 2 ForwardRecurrenceED: Computation of the forward vari-
ables for the SoP edit distance.
Input:
• θ > 0: the parameter controlling the degree of randomness.
• s1, s2: sequences of symbols of length n1, n2 respectively.
• cins, cdel, csub(x, y): edit costs (insertion, deletion, substitution).

Output:
• zf: the forward recurrence table.

1. Initialization of the forward variables zf(i, j):

zf(i, 1) = (exp[−θcdel])
(i−1), for i = 1 to (n1 + 1)

zf(1, j) = (exp[−θcins])
(j−1), for j = 1 to (n2 + 1)

2. for i = 1 to n1 do
3. for j = 1 to n2 do
4. zf(i+ 1, j + 1) = zf(i, j) exp[−θcsub(s1(i), s2(j))]

+zf(i+ 1, j) exp[−θcins] + zf(i, j + 1) exp[−θcdel]
5. end for
6. end for
7. return zf

Algorithm 3 BackwardRecurrenceED: Computation of the backward
variables for the SoP edit distance.
Input:
• θ > 0: the parameter controlling the degree of randomness.
• s1, s2: sequences of symbols of length n1, n2 respectively.
• cins, cdel, csub(x, y): edit costs (insertion, deletion, substitution).

Output:
• zb: the backward recurrence table.

1. Initialization of the backward variables zb(i, j):

zb(i, 1) = (exp[−θcdel])
(n1+1−i), for i = (n1 + 1) to 1

zb(1, j) = (exp[−θcins])
(n2+1−j), for j = (n2 + 1) to 1

2. for i = n1 downto 1 do
3. for j = n2 downto 1 do
4. zb(i, j) = zb(i+ 1, j + 1) exp[−θcsub(s1(i), s2(j))]

+zb(i, j + 1) exp[−θcins] + zb(i+ 1, j) exp[−θcdel]
5. end for
6. end for
7. return zb
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1. Compute the forward and backward variables using Equations (1.37)

and (1.38). Please note that here we use the similarities, instead of

costs, therefore the initialization and computation of the forward and

backward variables is slightly different.

2. Compute the SoP common subsequence thanks to Equation (2.18).

The code of the SoP common subsequence algorithm is available at http:

//github.com/silviagdiez/thesis.

Algorithm 4 SumOverPathsCS: Sum-over-Paths Common Subsequence.

Input:
• θ > 0: the parameter controlling the degree of randomness.
• s1, s2: sequences of symbols of length n1, n2 respectively.
• s(x, y): symbol similarities.

Output:
• sSoP: the Sum-over-Paths common subsequence similarity.

1. Call ForwardRecurrenceCS (Algorithm 5)
2. Call BackwardRecurrenceCS (Algorithm 6)
3. Z = zf(n1 + 1, n2 + 1)
4. Initialization of the expected reward s: s = 0
5. for i = 1 to n1 do
6. for j = 1 to n2 do
7. s = s+ zf(i, j) sim(s1(i), s2(j))zb(i+ 1, j + 1),

where sim(x, y) =

{
exp[θ s(x, y)] if x = y

0 otherwise

8. end for
9. end for

10. return sSoP = s/Z

The time and space complexity of both Algorithms 1 and 4 is O(n1n2),

where n1 and n2 are the length of the two input sequences; i.e., they have the

same time complexity as the standard, non-optimized, edit distance compu-

tation. However, the space complexity of the edit distance is O(min(n1, n2))

(by divide and conquer). It must be noticed that the spatial complexity could

be improved by applying the Four Russians method (Arlazarov et al., 1970),

although there is a trade-off between the spatial and time complexity of the

algorithm.
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Algorithm 5 ForwardRecurrenceCS: Computation of the forward vari-
ables for the SoP Common Subsequence.

Input:
• θ > 0: the parameter controlling the degree of randomness.
• s1, s2: sequences of symbols of length n1, n2 respectively.
• s(x, y): symbol similarities.

Output:
• zf: the forward recurrence table.

1. Initialization of the forward variables zf(i, j):
zf(i, 1) = 1, for i = 1 to (n1 + 1)
zf(1, j) = 1, for j = 1 to (n2 + 1)

2. for i = 1 to n1 do
3. for j = 1 to n2 do
4. zf(i + 1, j + 1) = zf(i, j) sim(s1(i), s2(j)) + zf(i + 1, j) + zf(i, j + 1),

where sim(x, y) =

{
exp[θ s(x, y)] if x = y

1 otherwise

5. end for
6. end for
7. return zf

Algorithm 6 BackwardRecurrenceCS: Computation of the backward vari-
ables for the SoP Common Subsequence.

Input:
• θ > 0: the parameter controlling the degree of randomness.
• s1, s2: sequences of symbols of length n1, n2 respectively.
• s(x, y): symbol similarities.

Output:
• zb: the backward recurrence table.

1. Initialization of the backward variables zb(i, j):
zb(i, 1) = 1, for i = (n1 + 1) to 1
zb(1, j) = 1, for j = (n2 + 1) to 1

2. for i = n1 downto 1 do
3. for j = n2 downto 1 do
4. zb(i, j) = zb(i + 1, j + 1) sim(s1(i), s2(j)) + zb(i, j + 1) + zb(i + 1, j)

where sim(x, y) =

{
exp[θ s(x, y)] if x = y

1 otherwise

5. end for
6. end for
7. return zb
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2.4 Experiments

In this experimental section we aim at:

1. Evaluating the relative performance of the two proposed methods in a

classification and clustering task: the SoP ED (KSoP
ED

2) and the SoP CS

(KSoP
CS ). We present the classification and clustering rates for both tasks.

2. Comparing their performance with their respective standard, non-randomized,

versions: the LED (KLED) and the LCS (KLCS). Classification and clus-

tering rates will be compared for all methods.

3. Comparing their performance with state-of-the-art kernels used for se-

quence similarity computation (Shawe-Taylor and Cristianini, 2004) such

as the ASK (KAS) (Vishwanathan and Smola, 2003), the GASK (KGAS)

(Lodhi et al., 2002), the FLK (KFL) (Watkins, 1999), the PSPECK

(KPSPEC) (Leslie et al., 2002), as well as the SED (KSED) (Bahl and

Jelinek, 1975; Oncina and Sebban, 2006) and a method for biological

sequence comparison, KD (KKD) (Waterman and Eggert, 1987). Notice

that only four of these methods do not depend on a parameter (see Table

2.3). Classification and clustering rates will be compared for all methods.

Please notice that the normalization and centering of the kernel matrices are

also considered as meta-parameters (see Section 2.4.2 for more details). The

local costs (or similarities) are set as follows: for edit distances cins = cdel =

crepl = 1 (for non-matching substitutions) and crepl = 0 for matching substi-

tutions; for common subsequences sins = sdel = ssubs = 0 (for non-matching

substitutions) and ssubs = 1 for matching substitutions. Classification tasks

on five real-world data sets have been performed as presented in the following

sections. Notice also that in order to avoid overflow or underflow problems,

we applied the standard formula for the logarithm of a sum (see, e.g., Huang

et al. (1990)) in computing z1k and zkn.

2Note that the two proposed methods are not valid kernels but similarity measures.
However, for simplicity, the letter K will be used indifferently throughout the document.
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Algorithm and their abbreviations Parameter and tested values

KSoP
ED SoP ED Sum-over-Paths Inverse temperature

edit distance θ = {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}
KSoP

CS SoP CS Sum-over-Paths Inverse temperature

common subsequence θ = {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}
KSED SED Stochastic edit distance Error probability

pe = {0.05, 0.1, 0.15, 0.2, 0.25}
KLED LED Levenshtein

edit distance

KLCS LCS Longest common

subsequence

KKD KD K-best distinct

alignments

KAS ASK All Subsequences

Kernel

KGAS GASK Gap-weighted Weight of gaps

All Subsequences Kernel λ = {0.2, 0.4, 0.5, 0.6, 0.8}
KFL FLK Fixed Length Kernel Length of substring

l = {5, 10, 15, 20}
KPSPEC PSPECK p-Spectrum Kernel Length of subsequence

p = {5, 10, 15, 20}

Table 2.3: List of compared methods and parameter values tested in the in-
ternal cross-validation.

2.4.1 Data sets

This section introduces the different data sets used for the experiments and

provide some examples (see Table 2.4) in order to give a more detailed in-

sight of the performed experiments. Please note that all the described data

sets are made available in http://github.com/silviagdiez/thesis. The data

sets presented in this section have been chosen as they represent two of the

most common applications of ASM: Optical Character Recognition (OCR),

and comparison of biological sequences of proteins, in this case. The reason

that we chose these particular subsets, was the availability of the data, either

by collaboration within the same laboratory, or by publication on the Web.
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Data set Data example Example sequence representation

Digits 1 224445455454555445466671001101011101011

Letters b 821111111111111111111226999999999963333332221111111144777778999

Figures O 11111111111223333333333366999999999999999988777777777771111111111

Arrows ← 1414444111144777777777111111111111111448

Proteins Acetyltransferase PAFYKKHGYKVIGVSEITPKGHNRYYLKKG

Table 2.4: Examples of samples of the tested data sets.

Digits data set. This data set was introduced by Oncina and Sebban

(2006) and is originally based on the NIST Special Database 3 of the National

Institute of Standards and Technology. A subset of 100 sequences of each

digit (from 0 to 9), thus 1,000 sequences in total from 10 different writers,

was extracted for our experiments. Each sequence was obtained by mapping

its shape from the bitmap digit to a sequence of numbers that expresses the

direction of the perimeter. An example of these data can be seen in Table 2.4.

Letters, figures, and arrows data sets. These three data sets were

collected by Beuvens and T.Dullier (2009) from 30 different people who wrote

ten times each letter from the English alphabet as well as a series of geometric

shapes, such as arrows or other figures, on a digital tablet. Each of these three

data sets is composed of sequences of numbers that represent the geographical

directions of their perimeter, as described by Beuvens and T.Dullier (2009).

An example of these data can be seen in Table 2.4. For the letters data set,

we selected the sequences corresponding to the subset of the first 13 letters of

the alphabet {a, b, c, d, e, f, g, h, i, j, k, l,m}. This is a balanced dataset with

class priors of 7.7% each. The arrows data set corresponds to the set {←, ↑,→
, ↓} with a total number of sequences of 1,010 where the class distribution is

{256, 252, 245, 257}. Sequences are extracted in the same way as for the letters

data set. The last data set tested correspond to the geometric figures set. For

this data set, 500 sequences comprising the following classes were collected:

{circle,triangle,rectangle,square,pentagon}. This is a balanced set with class

priors of 20% each. An example of these data can be seen in Table 2.4.
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Proteins data set. This data set was collected from the UniProtKB

and consists on five groups of similar proteins extracted via a BLAST query

with default parameters on a seed sequence. The list of seed sequences as

well as the proteins that integrate each of the groups are available on http:

//github.com/silviagdiez/thesis. Each class contains 50 similar sequences,

and there are five classes in total, therefore providing a 250 balanced sequences

data set.

2.4.2 Supervised classification methodology

Three types of supervised tasks have been performed over the whole data sets

with the following classifiers:

1. A 1-NN based on random prototypes.

2. A 1-NN based on within-class centroids.

3. A SVM.

In each case, a 10-fold nested cross-validation has been applied. Estimated

classification rates as well as their 95% confidence interval are reported.

The 1-NN based on random prototypes (1-NNP) assigns each observation

to the class to which belongs his nearest prototype. A class prototype is a ran-

domly chosen observation among all observations from a given class, repeating

this procedure with 10 different prototypes, therefore reporting an average of

the estimated classification rates.

In the case of the 1-NN based on within-class centroids (1-NNC), the ob-

servations are assigned to the class of its nearest centroid. A centroid is the

most central observation among all observations from a given class.

In both cases, a grid cross-validation was performed in order to tune pa-

rameters (see Table 2.3) and kernel normalization choice, as explained below.

This methodology also holds for the SVM3, where the additional parameter C

3The chosen implementation was the LIBLINEAR package (Fan et al., 2008) with default
parameters. The package can be downloaded from http://www.csie.ntu.edu.tw/~cjlin/

58

http://github.com/silviagdiez/thesis
http://github.com/silviagdiez/thesis
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://www.csie.ntu.edu.tw/~cjlin/liblinear


2.4. EXPERIMENTS

had to be tuned. The tested values were C = {0.1, 0.5, 1, 5, 10, 50, 100, 500,

1000}.

As explained, the normalization and/or centering of a kernel are considered

as another parameter to be tuned during internal cross-validation (four kernels

were computed for each value of the parameters, and the C value: no centering

nor normalization, centering only, normalization only, and centering and then

normalization of the kernel). In this way, normalized (and/or centered) kernels

are only used when their performance proves better than the one of the original

kernel. Please refer to Annex B for more details. These transformed kernels

(centered and/or normalized) are referred to as normalized kernels for the sake

of simplicity.

For this supervised classification task, simple nearest neighbor rules are

used because the aim of the experiments, and more generally the work, is not

to design a state-of-the-art sequence classifier; they rather aim at comparing

different similarity measures between sequences. A good similarity measure

should lead to compact, well-separated, classes in the embedding space. This is

also the reason why we tested both the within-class centroids, and the random

prototypes as class representative. A crude classifier, like the 1-NN we are

using, will probably be more sensitive to the compactness/separability of the

different classes in the embedding space while a more sophisticated classifier,

like a SVM, could achieve good performance, even if the different classes are

not well-separated and compact.

2.4.3 Results and test of hypothesis

Results obtained by nested cross-validation for all methods on all data sets

are reported in Table 2.6. In order to verify that the proposed methods, SoP

ED and SoP CS, perform better than their non-randomized versions, LED

and LCS, a non-parametric one-sided paired sign test has been performed.

The classification rates from the classification experiments for all data folds

have been used as sample for this test (10-folds × 5 data sets = 50 samples

liblinear.
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per classification method and algorithm). Results showed that, with a 95%

confidence level (p-values), the proposed methods perform better in all cases,

except in the case of the SVM for the SoP ED, where the confidence is 94%.

Moreover, the SoP CS appears to perform slightly better that the SoP ED

(with about 100% confidence level for the 1-NN and 84% for the SVM). The

obtained p-values are shown in Table 2.5. While significant, the magnitude

of the improvement is, however, not always spectacular on these investigated

datasets (see Table 2.6).

Classification Method SoP ED vs. LED SoP CS vs. LCS SoP CS vs. SoP ED

1-NN based on within-class centroids 0.0000 0.0147 0.0000

1-NN based on prototypes 0.0000 0.0000 0.0000

SVM 0.0551 0.0266 0.1537

Table 2.5: p-values for paired sign test for each classification method and
algorithm.

2.4.4 Discussion of the results

The conclusions following this experimental study are rather clear; let us indeed

return to our research questions. First, we can conclude that, in general, the

SoP CS similarity measure and the SoP ED similarity measure based on the

edit-distance usually perform significantly better than the original standard

measures (standard LED and LCS), as shown by the test of hypothesis. It can

be observed that when LCS performs better than LED, it is the randomized

version, SoP CS, which will perform best (respectively for the LED and SoP

ED).

Second, it has been observed that the SoP methods show an improvement

over the remaining methods, be it on the OCR classification tasks or on the

protein task.

Third, the string kernels tested in this work (the all subsequences ker-

nel, the gap-weighted all subsequences kernel, the fixed length kernel, and the

p-spectrum kernel) performed poorly in comparison with, for instance, a stan-
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Classification results (1-NN using random class prototypes)

Arrows Data Set Digits Data Set Figures Data Set Letters Data Set Proteins Data Set

KSoP
ED 73.59 ± 0.34% 66.37 ± 0.37% 35.10 ± 0.39% 40.18 ± 0.22% 39.28 ± 0.53%

KLED 68.68 ± 0.88% 61.46 ± 0.36% 35.08 ± 0.22% 34.20 ± 0.21% 39.72 ± 0.83%

KSED 68.76 ± 0.52% 63.35 ± 0.43% 34.38 ± 0.31% 36.05 ± 0.12% 37.88 ± 0.68%

KSoP
CS 81.26 ± 0.44% 72.59 ± 0.42% 37.28 ± 0.32% 45.26 ± 0.24% 37.28 ± 0.45%

KLCS 79.61 ± 0.71% 67.10 ± 0.34% 37.00 ± 0.29% 39.61 ± 0.22% 34.96 ± 0.55%

KAS 76.63 ± 0.83% 31.00 ± 0.36% 25.88 ± 0.47% 18.39 ± 0.63% 27.72 ± 0.47%

KFL 72.79 ± 0.86% 32.34 ± 0.52% 28.58 ± 0.37% 22.79 ± 0.27% 26.60 ± 0.25%

KPSPEC 68.32 ± 0.62% 33.57 ± 0.31% 34.86 ± 0.51% 16.54 ± 0.14% 36.56 ± 0.54%

KKD 43.71 ± 0.42% 17.69 ± 0.35% 35.98 ± 0.64% 20.95 ± 0.33% 32.56 ± 0.59%

KGAS 78.81 ± 0.53% 58.31 ± 0.30% (*) 32.08 ± 0.33% 39.48 ± 0.54%

Classification results (1-NN using within-class centroids)

Arrows Data Set Digits Data Set Figures Data Set Letters Data Set Proteins Data Set

KSoP
ED 96.34 ± 1.53% 91.60 ± 1.61% 56.80 ± 2.63% 70.96 ± 2.56% 71.20 ± 4.93%

KLED 96.34 ± 1.64% 89.40 ± 1.90% 53.60 ± 1.92% 67.31 ± 2.69% 68.00 ± 4.53%

KSED 96.04 ± 1.69% 90.60 ± 2.23% 53.00 ± 2.13% 68.94 ± 2.70% 66.00 ± 4.71%

KSoP
CS 96.73 ± 1.78% 95.00 ± 1.20% 63.60 ± 1.52% 77.69 ± 2.21% 71.20 ± 5.07%

KLCS 97.13 ± 1.70% 94.20 ± 1.20% 59.80 ± 2.22% 77.12 ± 1.45% 70.00 ± 4.41%

KAS 25.64 ± 0.79% 10.00 ± 0.00% 20.00 ± 0.00% 7.69 ± 0.00% 20.80 ± 1.05%

KFL 74.26 ± 1.83% 46.40 ± 2.25% 29.60 ± 1.52% 20.58 ± 1.87% 28.80 ± 3.05%

KPSPEC 80.59 ± 4.10% 54.70 ± 1.92% 43.00 ± 3.21% 24.52 ± 1.60% 58.40 ± 6.10%

KKD 50.20 ± 2.15% 23.90 ± 2.05% 53.20 ± 2.81% 38.08 ± 2.52% 66.80 ± 5.49%

KGAS 26.63 ± 0.94% 11.70 ± 0.59% (*) 7.69 ± 0.00% 23.20 ± 2.28%

Classification results (SVM)

Arrows Data Set Digits Data Set Figures Data Set Letters Data Set Proteins Data Set

KSoP
ED 98.51 ± 1.05% 97.90 ± 1.07% 84.80 ± 1.46% 94.04 ± 0.78% 73.20 ± 4.68%

KLED 98.61 ± 0.88% 97.90 ± 1.03% 83.80 ± 1.23% 92.12 ± 1.75% 68.00 ± 6.61%

KSED 98.32 ± 1.16% 97.40 ± 0.98% 87.80 ± 1.98% 94.42 ± 0.92% 73.60 ± 4.85%

KSoP
CS 98.71 ± 1.00% 98.00 ± 1.05% 83.00 ± 2.76% 93.56 ± 0.93% 74.80 ± 5.23%

KLCS 98.22 ± 1.03% 98.30 ± 1.01% 83.80 ± 2.44% 91.83 ± 1.23% 70.40 ± 4.56%

KAS 92.28 ± 1.07% 66.20 ± 4.83% 20.00 ± 0.00% 26.92 ± 4.68% 23.60 ± 4.44%

KFL 96.24 ± 1.35% 80.30 ± 5.45% 76.20 ± 2.06% 72.31 ± 3.09% 36.00 ± 6.51%

KPSPEC 97.52 ± 1.45% 77.80 ± 3.16% 59.80 ± 6.44% 59.33 ± 1.97% 68.40 ± 5.90%

KKD 95.45 ± 1.20% 82.10 ± 1.86% 81.40 ± 3.51% 84.62 ± 2.37% 67.20 ± 5.82%

KGAS 95.84 ± 1.19% 83.60 ± 8.54% (*) 54.04 ± 3.83% 41.20 ± 4.68%

Table 2.6: Estimated classification rates with a 95% confidence interval ob-
tained with the three classification methods. Best performing results are high-
lighted in grey, and second-best methods are marked in bold. The results
marked with (*) have been omitted due to excessive computation time.
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dard longest common subsequence measure. Here is a tentative explanation

of this fact. As discussed in the related work from Section 2.2, we expect

string kernels to perform well when the alphabet is very large (for instance

in the context of text mining – in this case, there are very few long common

subsequences), and worse for reduced alphabets.

It must also be noted the good performance of the stochastic edit distance

(SED) in the case of the SVM for the letters and figures data sets. These two

data sets contain the longest sequences among all tested data. This may indi-

cate that the SED is a more performing measure for long sequence comparison

combined with an SVM classifier. Yet another important property of the SED

is that it is based on a log-likelihood instead of a expected cost (or similarity)

for the SoP ED and CS (see Section 2.3.1 for more details). Finally, there is

no clear winning string kernel for all the tested data sets.

In conclusion, these experiments show that the best method overall are

the Sum-over-Paths distances. They consistently provide good results, they

are almost always among the best method and, when is not the case, their

performance is always very close to the winning method. Moreover, their

computation complexity is similar to that of the standard edit distance and

longest common subsequence algorithms, although at the price of a parameter,

θ. Finally, the SoP common subsequence seems to provide slightly better

results than the SoP edit distance.

Visualization of the effect of θ with a Kernel Principal-Component

Analysis

Let us now turn to an example that visually shows the effect of θ on the sep-

aration between three subsets from the Digits data set (see Section 2.4.1 for

more details on this data set). This experiment performs a Kernel Principal-

Component Analysis (KPCA) on the similarity matrix obtained with the SoP

CS with different θ values. The obtained projection is represented in a 3-

dimensional space where each axis is one of the three main eigenvectors (or

principal components) of the decomposition, and where each subset is repre-
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Figure 2.11: Kernel Principal-Component analysis based on the SoP CS with
θ values of {0.1, 0.5, 1.0, 2.0, 4.0} as well as the longest common subsequence.
The three shown classes correspond to the handwritten digits: 0 (red), 1 (blue),
and 4 (green) from the digits data set.

sented with a different color: the digit 0 observations are in red, the obser-

vations for digit 1 are in blue, and those for digit 4 are in green. We can

observe from Figure 2.11 the evolution of the distribution of the three obser-

vation “clouds” as θ increases. Two conclusions can be extracted here: (i) the

longest common subsequence (equivalent to the SoP CS with θ →∞) does not

provide the best separation between “clouds”, and (ii) an intermediate value

of θ gives a better separation, although this value depends on the data set.

2.5 The normalized Sum-over-Paths distances

As shown in the previous section, the SoP ED and the SoP CS are good per-

forming measures in string classification and string clustering tasks. However,
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these measures suffer from normalization issues. A normalized measure is a

measure that weights the similarity (or distance) of two strings with respect

to their lengths. As stated by Marzal and Vidal (1993): “two (edit) errors in a

comparison between strings of length 3, are more important than three errors

in a comparison of strings of length 9” (see Table 2.7 for an example).

Strings Length Distance Normalized distance
s1 = abcbadebc 9 d(s1, s2) = 2 dn(s1, s2) = 2/9 = 0.22
s2 = eecbadebc 9
s3 = abc 3 d(s3, s4) = 2 dn(s3, s4) = 2/3 = 0.66
s4 = ddc 3

Table 2.7: Example of normalized Levenshtein edit distance for comparison of
two pairs of strings of different lengths. Differences between strings are marked
in red, and shared sub-strings are marked in blue.

It is obvious from Table 2.7, that the distance d between s1 and s2 should be

less important than the distance between s3 and s4. The normalized distance,

dn provides a more accurate measure of the difference between both strings.

This principle also holds in the case of two strings with different lengths.

In order to overcome this problem, two straightforwardly normalized ver-

sions are introduced: the Sum-over-Paths Normalized Edit Distance (SoP

NED), and the Sum-over-Paths Normalized Common Subsequence (SoP NCS).

2.5.1 Related work

Marzal and Vidal (1993) proposed a Normalized Edit Distance (NED) which

represents the minimum ratio between the weight and the size of the alignment.

They define γ as the edit function γ(a → b) that assigns to each editing

operation transforming a into b a nonnegative real number. The NED is then

defined as

Ŵ (℘) =
W (℘)

L(℘)
(2.19)

where W (℘) is the weight of the path ℘ and L(℘) represents its length. They

also show that, in order to Ŵ (℘) be optimal, it is not sufficient to take
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the path with smallest W (℘) and divide it by its length (also called post-

normalization); both parameters, W (℘) and L(℘) must be optimized at the

same time. Furthermore, in order to keep the triangle inequality (see Table

2.2), post-normalization must be avoided and the choice of γ is restricted.

An optimization of the computation of the NED is provided by Vidal et al.

(1995) by applying fractional programming techniques which are an optimiza-

tion technique for problems involving fractional or ratio functions.

Other computation methods are also proposed by Oommen and Zhang

(1996) and Yujian and Bo (2007) by using related measures such as the string-

constrained edit distance in the former, or the generalized Levenshtein distance

(GLD) in the latter. However, the choice of γ may prevent the distance from

being a metric or may increase the complexity of the algorithm. Further-

more, as suggested by Weigel and Fein (1994), the NED would favor longer

alignments with cheaper operations than shorter ones with more expensive

operations.

However, any of these measures takes into account the full space of possible

editing paths between two sequences. For this reason, we will introduce in the

next section the normalized version of the Sum-over-Paths distances and its

computation.

2.5.2 Computation of the normalized

Sum-over-Paths distances

Two ASM methods based on a post-normalization of the Sum-over-Paths edit

distance (SoP ED) and the Sum-over-Paths common subsequence (SoP CS)

are presented in this section. The main contribution of these new measures

is to overcome the normalization issues that suffer both the SoP ED and the

SoP CS without increasing the complexity of the algorithm. As a result we

obtain two measures which:

1. Provide a model-independent measure of similarity taking all alignments

into account.
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2. Avoid noisy measures by favoring relevant subsequences of nearly-optimal

alignments.

3. Overcome the normalization issues.

In order to normalize the SoP distances, a simple post-normalization of the

expectation of the cost E[C] by the expectation of the length of the paths E[L]

is applied. A fractional programming technique is of no use in our case, as this

method focuses on a single path, over which it iterates until convergence to the

path with minimum Ŵ (℘). As the SoP distances rely on expectations of length

and cost (using all possible paths in order to compute these quantities) it is

not feasible to apply a pre-normalization which would consider the only path

that minimizes this ratio. We therefore define the new SoP NED as follows

dNSoP =
E[C]

E[L]
(2.20)

where we recall from Equations (2.6) and (2.10) that

E[C] =
n∑
k=1

n∑
k′=1

ckk′nkk′ (2.21)

and we recall from Equation (1.26) (where vkk′ = 1 for all (k, k′))

E[L] =
n∑
k=1

n∑
k′=1

nkk′ (2.22)

We therefore obtain

dNSoP =
E[C]

E[L]
=

∑n
k=1

∑
k′∈Succ(k) ckk′nkk′∑n

k=1

∑
k′∈Succ(k) nkk′

(2.23)
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Now, by substituting with Equation (1.34), we obtain the final formula

dNSoP =

∑n
k=1

∑
k′∈Succ(k) z1kckk′ exp[−θckk′ ]zk′n∑n

k=1

∑
k′∈Succ(k) z1k exp[−θckk′ ]zk′n

z1n

z1n

(2.24)

=

∑n
k=1

∑
k′∈Succ(k) z1kckk′ exp[−θckk′ ]zk′n∑n

k=1

∑
k′∈Succ(k) z1k exp[−θckk′ ]zk′n

(2.25)

where ckk′ = 1 for all (k, k′) in E[L]. We can similarly compute the SoP NCS

as

sNSoP =
E[S]

E[L]
=

∑n
k=1

∑
k′∈Succ(k) skk′nkk′∑n

k=1

∑
k′∈Succ(k) nkk′

(2.26)

=

∑n
k=1

∑
k′∈Succ(k) z1kskk′ exp[θskk′ ]zk′n∑n

k=1

∑
k′∈Succ(k) z1k exp[θskk′ ]zk′n

(2.27)

2.5.3 Experiments

This section aims at performing empirical experiments to:

1. Test the relative performance of the proposed methods.

2. Compare with the performance with their non-normalized versions.

3. Assess their goodness with respect to state-of-the-art kernels (Shawe-

Taylor and Cristianini, 2004).

Several clustering and classification experiments on OCR data sets were per-

formed. The Letters, Arrows, and Digits data sets are already introduced in

Section 2.4.1. The fourth data set, Images, contains 417 horse images encoded

by the k-nearest segment principle showing a horse (25%) or not (75%).

Compared methods include the LED, LCS, SoP ED, SoP CS, fixed-length

subsequences kernel (FLK; see, e.g., Shawe-Taylor and Cristianini (2004)), p-

spectrum kernel (PSPECK; see, e.g., Shawe-Taylor and Cristianini (2004)),

all-subsequences kernel (ASK; see, e.g., Shawe-Taylor and Cristianini (2004)),

gap-weighted all-subsequences kernel (GASK; see, e.g., Shawe-Taylor and Cris-

67



2.5. THE NORMALIZED SUM-OVER-PATHS DISTANCES

tianini (2004)), as well as our two normalized methods: the SoP NED, and

SoP NCS. Table 2.8 shows a summary of tested methods and parameters.

Clustering experiments with a kernel k-means were performed on three

data sets. Parameter tuning is performed on an independent data set for those

methods which need it (i.e., θ for the SoP methods). The clustering rate which

measures the percentage of observations that were assigned to the right cluster

or class after an optimal assignment is reported with 95% confidence. The rand

index, and the obtained parameters are also reported in Table 2.9. Note that

only the five best performing methods are shown in each case. Classification

experiments with a SVM and a 1-NN were also performed. In this case, a

nested cross-validation or an independent data set were used for tuning the

parameters. Results are shown in Table 2.10, together with a 95% confidence

interval. Please note that all kernel matrices were centered and normalized.

Algorithms and their abbreviations Parameter and tested values

KSoP
ED SoP ED Sum-over-Paths Inverse temperature

edit distance θ = {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}

KSoP
CS SoP CS Sum-over-Paths Inverse temperature

common subsequence θ = {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}

KSoP
NED SoP NED Normalized Sum-over-Paths Inverse temperature

edit distance θ = {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}

KSoP
NCS SoP NCS Normalized Sum-over-Paths Inverse temperature

common subsequence θ = {0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4}

KLED LED Levenshtein edit distance

KLCS LCS Longest common subsequence

KAS ASK All Subsequences Kernel

KGAS GASK Gap-weighted All Subsequences Kernel Weight of gaps

λ = {0.2, 0.4, 0.5, 0.6, 0.8}

KFL FLK Fixed Length Kernel Length of substring

l = {5, 10, 15, 20}

KPSPEC PSPECK p-Spectrum Kernel Length of subsequence

p = {5, 10, 15, 20}

Table 2.8: List of compared methods and parameter values tested.
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Digits data set

Classes = {2,8} Classes = {3,7} Classes = {2,5,7} Classes = {6,7,8} θ∗

Clustering rates with 95% confidence interval

KSoP
NED 100.00 ± 0.00% 100.00 ± 0.00% 99.33 ± 0.00% 98.67 ± 0.00% 2.0

KSoP
ED 99.50 ± 0.00% 98.00 ± 0.00% 99.00 ± 0.00% 98.67 ± 0.00% 2.0

KSoP
NCS 100.00 ± 0.00% 100.00 ± 0.00% 99.33 ± 0.00% 98.67 ± 0.00% 2.0

KSoP
CS 100.00 ± 0.00% 99.50 ± 0.00% 99.00 ± 0.00% 98.67 ± 0.00% 1.5

KLCS 84.60 ± 0.13% 88.00 ± 0.00% 77.73 ± 0.09% 71.47 ± 0.14%

Adjusted rand index

KSoP
NED 100.00 ± 0.00% 100.00 ± 0.00% 98.01 ± 0.00% 96.05 ± 0.00% 2.0

KSoP
ED 98.00 ± 0.00% 92.12 ± 0.00% 97.02 ± 0.00% 96.05 ± 0.00% 2.0

KSoP
NCS 100.00 ± 0.00% 100.00 ± 0.00% 98.01 ± 0.00% 96.05 ± 0.00% 2.0

KSoP
CS 100.00 ± 0.00% 98.00 ± 0.00% 97.02 ± 0.00% 96.05 ± 0.00% 1.5

KLCS 47.63 ± 0.37% 57.56 ± 0.00% 44.46 ± 0.17% 49.85 ± 0.12%

Letters data set Arrows data set

Classes = {b,m,o,z} θ∗ Classes = {←, ↑,→, ↓} θ∗

Clustering rates and adjusted rand index with 95% confidence interval

KSoP
NED 83.23 ± 0.00% 73.32 ± 0.00% 3 86.98 ± 0.46% 69.97 ± 0.87% 3.5

KSoP
ED 82.90 ± 0.00% 72.48 ± 0.00% 1 86.70 ± 0.53% 69.46 ± 1.01% 2.5

KSoP
NCS 83.55 ± 0.00% 74.17 ± 0.00% 2 88.86 ± 0.17% 73.66 ± 0.35% 3.5

KSoP
CS 83.55 ± 0.00% 74.17 ± 0.00% 4 89.16 ± 0.09% 74.25 ± 0.19% 3.5

KLCS 81.88 ± 0.06% 64.15 ± 0.11% 89.51 ± 0.13% 75.10 ± 0.28%

Table 2.9: Clustering results (clustering rates and adjusted rand index) ob-
tained on three data sets for the five best-performing methods.

2.5.4 Discussion of the results

We can conclude from the results in Tables 2.9 and 2.10 that the SoP methods

(SoP ED, SoP CS, SoP NED, SoP NCS) significantly outperform (1) their non-

randomized version, i.e. LED and LCS, and (2) the tested string kernels, i.e.

FLK, PSPECK, ASK, GASK. Moreover, the introduced normalized versions

(SoP NED, SoP NCS) generally improve the existing results obtained by their

non-randomized versions (SoP ED, SoP CS) while never being significantly

worse.
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Digits data set

Classes = {2,8} Classes = {3,7} Classes = {2,5,7} Classes = {6,7,8} θ∗

1-NN 1-NN 1-NN 1-NN

Classification rates with 95% confidence interval

KSoP
NED 94.29 ± 0.87% 97.09 ± 0.56% 91.87 ± 1.12% 92.98 ± 0.80% 2.0

KSoP
ED 92.63 ± 0.89% 96.19 ± 0.53% 88.56 ± 1.52% 91.62 ± 0.90% 2.0

KSoP
NCS 95.24 ± 0.86% 97.59 ± 0.48% 92.71 ± 1.11% 93.65 ± 0.80% 2.0

KSoP
CS 94.00 ± 0.99% 97.13 ± 0.46% 91.83 ± 1.26% 93.10 ± 0.77% 1.5

KLCS 87.13 ± 0.99% 91.47 ± 0.94% 77.67 ± 1.80% 81.19 ± 1.81%

Images data set Letters data set Arrows data set

Classes = {yes,no} Classes = {b,m,o,z} Classes = { ←, ↑,→, ↓ }

SVM SVM 1-NN SVM 1-NN

Classification rates with 95% confidence interval

KSoP
NED 84.89 ± 0.02% 98.24 ± 0.01% 76.67 ± 0.07% 98.51 ± 0.01% 77.82 ± 0.05%

KSoP
ED 84.66 ± 0.03% 98.43 ± 0.01% 74.31 ± 0.08% 98.12 ± 0.01% 71.09 ± 0.06%

LED 83.71 ± 0.05% – – – –
KSoP

NCS 85.37 ± 0.03% 97.25 ± 0.02% 76.47 ± 0.07% 98.42 ± 0.01% 78.81 ± 0.04%

KSoP
CS 85.38 ± 0.03% 97.65 ± 0.02% 75.88 ± 0.06% 98.42 ± 0.01% 78.32 ± 0.04%

KLCS – – 72.16 ± 0.07% 98.32 ± 0.01% 78.51 ± 0.07%

KFLK – 94.31 ± 0.02% – – –

Table 2.10: Classification rates obtained on the four data sets for the five
best-performing methods.

2.6 Conclusion

In this chapter we have introduced four Approximate String Matching meth-

ods based on the Sum-over-Paths formalism, the SoP ED, the SoP CS, and

their normalized versions, the SoP NED and the SoP NCS. All these methods

are based on a procedure for randomizing a dynamic programming algorithm

defined on a lattice. It first defines a Boltzmann probability distribution on the

set of paths through the lattice in such a way that good paths have a high prob-

ability of occurrence while bad paths have a low probability of being followed.

Then, instead of computing the dynamic programming score on the optimal

paths only, it averages the scores along all the possible paths, each individual

score along a path being weighted by the probability of following it. This

allows to account for the contributions of good, although sub-optimal, paths
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as well. Forward/backward recurrence relations allowing efficiently computa-

tion of the score are developed along the same line as the forward/backward

algorithm in hidden Markov models.

Experimental results obtained on sequence classification tasks for the SoP

ED and SoP CS indicate that, in some cases, taking the suboptimal alignments

into account in the expected cost, improves significantly the results. In the

remaining situations, it is the standard versions that perform best (the LED

and the LCS). It must be noticed that in that case, its randomized version is

the second winning method, and if we had extended the range for θ values, the

performance would have been the same (as the standard measure is a specific

case of the randomized one when θ →∞).

This work also presented a normalized version of the SoP ED and SoP CS,

the SoP NED and SoP NCS. The normalization of the SoP distances by the

expected length of the alignments overcomes the issues due to the variation in

length of the sequences being compared. Experimental results have shown the

improvement in accuracy over the SoP ED and SoP CS techniques.

Future work will be devoted to the development of a valid positive semi-

definite edit distance kernel based on the same ideas. We also plan to inves-

tigate the recently introduced free energy distance (Francoisse et al., 2013) in

the context of sequence comparisons.
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Minimum-cost problems on a graph are of capital importance in a variety of

problems, from robot path planning, to maze solving. Path planning (LaValle,

2006) is a well-known problem in the robotics community, described by (Steels,

1990) as “checking the consequences of an action in an internal model before

performing such actions”. However, it may be possible to have several initial

and/or destination points.

In previous chapters, we have exploited the discrete RSP, where the state

space is discrete and although there exists a notion of node ordering (some
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nodes can only be accessed from certain nodes), there is no notion of time. We

present here the continuous-state counterpart of the discrete RSP, in which we

assume a continuum of stages that fill densely the space, and where the notion

of time is introduced.

The research question of this chapter is to investigate whether the con-

tinuous counterpart of the RSP framework can provide smooth, sub-optimal

trajectories in path planning on multiple-source multiple-destination problems.

Path planning is the problem in which an agent needs to find a trajectory

on a, possibly unkown space, respecting certain constraints such as optimality,

avoidance of obstacles, smoothness of the trajectory, etc. Figure 3.1 presents

an example of path planning where obstacles are avoided through (a) the

shortest path, and (b) the safest path. The type of trajectory we usually want

to achieve is the safest path, which allows the agent to move easily between

obstacles and walls, while keeping a nearly optimal trajectory in terms of cost.

Figure 3.1: Path planning example: shortest path and safest path.
Image extracted from http://www.cvip.uofl.edu/wwwcvip/research/vision/

mPathPlanning/

We show the usefulness of the randomization framework of the RSP to

achieve trajectories that are safe and sub-optimal at the same time. A Boltz-

mann probability distribution will be applied on the (usually infinite) set of

paths connecting the source node(s) and the destination node(s), depending

on an inverse temperature parameter θ. It is shown that the continuous-state

counterpart requires the solution of two partial differential equations from

73

http://www.cvip.uofl.edu/wwwcvip/research/vision/mPathPlanning/
http://www.cvip.uofl.edu/wwwcvip/research/vision/mPathPlanning/


3.1. INTRODUCTION

which all the quantities of interest can be computed, e.g., the best local move

is obtained by taking the gradient of the logarithm of one of these solutions.

This will produce an optimal path, for a given θ, from source(s) to destina-

tion(s) avoiding obstacles. Examples are investigated for multiple-destination

problems by computing the policy of an agent and verifying that the obtained

trajectories met the initial requirements.

Main contributions

This chapter provides an optimal randomized policy based on the Sum-

over-Paths framework for solving continuous-state path planning problems

with multiple sources and multiple goals. It introduces a diffusion parame-

ter for controlling the trade-off between exploration and exploitation, and it

shows some interesting links between biased random walks on a graph (discrete

RSP) and continuous-state Feynman-Kac diffusion processes.

3.1 Introduction

As seen in Chapter 1, the RSP framework defines a biased random walk on the

graph that gradually favors low-cost paths as θ increases. This RSP approach

is a discrete method that tackles the problem of finding the minimum-cost path

on a graph while keeping a constant level of spread entropy (Saerens et al.,

2009). The introduced path randomization allows balancing the load (number

of packages) per path in the case of multiple goals, while exploiting those goals

in parallel.

In order to compute the continuous-state counterpart of the RSP, we define

a grid where each node has four neighbors (north, south, east, west) situated

at a distance ε, and taking the limit ε→ 0, a system of two independent partial

differential equations computing forward and backward variables is obtained

(Laplacian-based diffusion equations where the initial nodes are considered as

sources and the destination nodes as sinks, and vice-versa). Once these vari-

ables are known, all the quantities of interest – such as the optimal randomized

policy – can be easily computed. For instance, the best local move is obtained
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by taking the gradient of the logarithm of one of these solutions, namely the

backward variable.

This chapter is organized as follows: in Section 3.2 we introduce the basic

concepts of motion planning; Section 3.3 presents some of the related work; the

continuous-state RSP extension is developed in Section 3.4; further details as

well as as a physical interpretation and boundary conditions are here specified;

the dynamic continuous-time continuous-state optimal policy is developed in

Section 3.4.4; two practical, simulation examples, cases involving path planning

are presented in Section 3.5; and Section 3.6 discusses the obtained conclusions

and possible extensions.

3.2 Motion planning

Planning is a frequent task in the robotics domain, where a complex task

needs to be decomposed into smaller moves that can be handled by a machine

(Russell and Norvig, 2003). Let us consider, e.g., the problem of solving a

maze where a starting point is fixed, and a path to the destination must be

found through a series of obstacles. An example of this situation can is shown

in Figure 3.2, where the shortest path between the initial and goal states (in

yellow) is shown (in light blue) while avoiding the obstacles (in red). However,

it is often desired to find a path that safely avoids these obstacles (see Figure

3.3 for an example) while complying with the optimality criterion, or that is

able to handle multiple initial states and multiple source ones.

In the following sections we introduce the basic notions upon which is

based the rest of this chapter, and the continuous-state version for the RSP is

presented. This novel method provides us with a stochastic optimal policy for

multiple-source multiple-destination problems.

3.2.1 Basic notions

Motion planning specifies how to move an object from an initial to a goal
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Figure 3.2: Shortest path in sample maze.

Figure 3.3: Safest path in sample maze.
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state, while respecting the constraints of the object and the environment, e.g.,

the obstacles (Russell and Norvig, 2003). In robotics, motion planning focuses

mainly on translations and rotations, taking into account the mechanical re-

strictions of the robot. In control theory, planning is achieved by designing

the inputs to physical systems described by differential equations. In this do-

main, feedback policies and stability are of capital importance. Recently, the

construction of inputs to non-linear dynamic systems have been used to bring

an object from an initial to a goal state. On the other hand, planning in the

Artificial Intelligence (AI) domain has a more discrete flavor.

Every produced plan, or policy, is then used by an agent that moves from

an initial position, or state, to a goal state. Each state encodes the information

of a position. The set of all possible states is called the state space, it is usually

large, and cannot be completely explored. An agent takes actions according

to this plan, and updates its state. These actions may be expressed in terms

of a state-value function in a discrete space, or as differential equations in a

continuous space or time. In planning, time can appear explicitly represented

by fixing, e.g., a time constraint, although it is often expressed implicitly,

e.g.,with the notion of sequential movements.

A plan must also comply with one of the following criterion:

• Feasibility: the plan brings the agent from the initial to the goal node

with no optimization.

• Optimality: the plan must be feasible and optimal according to a cer-

tain criterion. In probabilistic uncertain domains, probabilities are often

used as optimization criterion in terms of expected costs. This criterion

applies to the approach presented in this chapter.

3.2.2 Planning in continuous spaces

Motion planning provides a plan that guides a robot from an initial to a goal

state avoiding collisions in a continuous space. A problem that arises in this

context is how to transform this continuous model into a discrete one. We can
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classify the different approaches among the following types (LaValle, 2006):

1. Combinatorial motion planning: this approach uses a discrete represen-

tation to exactly model the problem. However, this kind of method

suffers from very large running times, as the state space is large, and its

implementation is non-trivial.

2. Sampling-based motion planning: this approach uses collision-detection

methods to sample the state space with further refinement through dis-

crete searches. In this case, completeness1 is not guaranteed.

3. Application of numerical methods: this method implicitly transforms a

continuous space into a discrete one by applying, e.g, a finite difference

approximation. By dividing the continuous space into a grid of homoge-

neous granularity, discrete actions can be produced for a certain state.

This technique will be used for the continuous-state version of the RSP.

3.3 Related work

As presented in Sections 3.1 and 3.4.1, the continuous-state version of the

RSP can be interpreted as a diffusion process. However, the use of physical

analogies in path planning methods is not new. We can find three main types

of physical analogies in the literature:

1. Wave propagation methods.

2. Potential field methods.

3. Diffusion strategies.

Wave propagation methods represent the first of the three main kinds of

physical analogy in optimal path planning (Dautenhahn and Cruse, 1994; Ram-

bidi and Yakovenchuck, 1999). Rambidi and Yakovenchuck (1999) introduce

1“An algorithm is complete if for any input it correctly reports whether there is a solution
in a finite amount of time.” (LaValle, 2006).
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an analogue method for labyrinth solving based on parallel wave propagation

through all possible paths in a reaction-diffusion media.

The second popular technique borrowed from physics are potential field

methods (Connolly et al., 1990; Hwang and Ahuja, 1992; Khatib, 1986). Khatib

(1986) proposes a real-time path planner based on an artificial potential field

where the goal is represented as an attractive pole and the obstacles as repulsive

faces. Similarly, the work from Connolly et al. (1990) proposes a smoothed

version with two major advantages, i.e., it is based on a Laplace equation

(which avoids local minima), and it benefits from the use of massively parallel

architectures to solve this equation (efficient computation).

Eventually, diffusion strategies appeared as the third type of widely studied

physical analogy in many path planning algorithms (Dautenhahn and Cruse,

1994; Li and Bui, 1998; Louste and Liegeois, 2000; Schmidt and Neubauer,

1992; Schmidt and Azarm, 1992; Steels, 1990; Tarassenko and Blake, 1991). A

reaction-diffusion mechanism is presented by (Steels, 1990) in order to complete

the behavior of a multi-agent model based on analogical representations. The

propagation of an agent’s information through his network of neighbors leads to

the computation of a gradient field that will guide a robot on an obstacle grid.

The DIP (Diffusion in Potential Fields) method, from Dautenhahn and Cruse

(1994), computes a gradient field on a grid where each cell has an activation

function which is computed by diffusion in a similar fashion to an automata’s

activation function.

The Laplace’s equation is also used in diffusion strategies, e.g., the work

by Schmidt and Neubauer (1992) and Schmidt and Azarm (1992) introduce

the theoretical basis for a dynamic path planning approach using an unsteady

diffusion equation with Dirichlet boundary conditions. This method enjoys

the nice properties of Laplacian methods (high-speed, high efficiency), but

also adapts to changing environments. A similar approach based on a fluid

model represented by a Poisson equation with Newmann boundary conditions

is presented by Li and Bui (1998).

Analogue systems have also adopted this strategy, as for instance the

method from Tarassenko and Blake (1991), which represents obstacles as non-
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conducting solids in a conducting medium. More sophisticated methods, such

as the one proposed by Louste and Liegeois (2000), cope with uneven natural

terrain path planning. In this case, a viscous fluid formalism where external

forces and friction are taken into account is used for multiple-source multiple-

destination problems.

Kappen et al. (2012) introduced a class of stochastic optimal control prob-

lems in which the control is expressed as a probability function over future

trajectories, where the control cost can be expressed as a Kullback-Leibler di-

vergence and some interaction terms. In their work, they show how this KL

control theory contains the path integral control method as a special case.

The continuous-state RSP version presented here belongs to the diffusion

methods involving Laplacian differential operators with Dirichlet boundary

conditions for multiple-source multiple-destination problems. Its main draw-

back is that paths are considered as independent and its most interesting prop-

erties are the fact that:

• it depends on a diffusion parameter controlling the trade-off between

exploration and exploitation,

• the resulting policy is optimal since it ensures minimal expected cost

for a constant exploration,

• it provides the minimum-cost policy when the diffusion parameter is

low, and

• it shows some interesting links between biased random walks on a graph

(discrete RSP) and continuous-state Feynman-Kac diffusion pro-

cesses.
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3.4 The continuous state-space equivalent to

RSP

In this section we show how to adapt the discrete RSP framework from Section

1.1 to the continuous-state domain. In order to answer this question, let us

consider a two-dimensional undirected lattice, with ckk′ = ck′k, on which we

apply the RSP framework. Each node has four neighbors as displayed in Figure

(3.4) at a distance ε from each other.

The idea is to let the grid become dense by taking the limit ε→ 0. The first

step is to study the behavior of the forward/backward variables when taking

this limit.

!

zi , j zi+1 , jzi-1 , j

zi , j-1

zi , j+1

Figure 3.4: Forward/backward variable in a grid configuration with 4 neigh-
bors. The arrows do not imply direction (this is an undirected lattice).

Let us recall that forward/backward variables are provided by Equations

(1.18–1.19). Choosing uniform reference probabilities, p
(0)
kk′ = 1/4 for all k, the

new forward variable is obtained as follows
zf1 = 1 +

∑
k∈N(1)

1

4
exp[−θck1] zfk

zfk′ =
∑

k∈N(k′)

1

4
exp[−θckk′ ] zfk , for k′ 6= 1

(3.1)
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and the new backward variable reads
zbn = 1 +

∑
k′∈N(n)

1

4
exp[−θcnk′ ] zbk′

zbk =
∑

k′∈N(k)

1

4
exp[−θckk′ ] zbk′ , for k 6= n

(3.2)

where N(k) is the set of neighbors of node k, i.e., if k = zi,j, then N(zi,j) =

{zi+1,j, zi,j+1, zi−1,j, zi,j−1}.

3.4.1 Computation of the forward/backward variables

As we have seen in the previous section, these forward/backward variables

from which we can extract the quantities of interest from Chapter 1, depend

on the local costs, ckk′ , and on themselves. In this section we will present the

method for computing the new, continuous-state, variables.

We first consider the forward equation, Equation (3.1), and assume that

each node on the grid is separated from its neighbors by a distance ε > 0

(see Figure (3.4)). The forward variable zfk will be indexed by its position

(xk, yk) and written as zf (xk, yk). In that case, the total cost along the path

r(s) = (x(s), y(s)) connecting node k to node k′ is

ckk′ =

∫ (xk′ ,yk′ )

(xk,yk)

V (x(s), y(s))ds (3.3)

where V (x, y) ≥ 0 is the cost density at (x, y) and s is the total displacement

along the trajectory (its length)2. In other words, it is assumed that the cost

is only related to the position of the walker and not his direction. We will,

therefore, consider for simplicity that the cost ckk′ is no more associated to

the transition k → k′, but only to the state k, ckk′ = ck. Taking directions

into account would require the use of tensors, which is not investigated in the

present work.

2Note that, for the sake of readability, we also denote V (x, y), as well as the other
variables, as Vx,y or V (r).
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As for any continuous-state stochastic process (Berg, 1993; Chaichian and

Demichev, 2001; Gardiner, 2002; Holmes, 2002; Jacobs, 2010; Rudnick and

Gaspari, 2004), let us now assume that ε→ 0 while maintaining the ratio

ε2/δs = c (3.4)

constant and finite, which means that in order to achieve a net displacement of

ε, the random walker needs to make a total travel length of the order δs ∝ ε2.

This implies that the total length of the path followed by the random walker

is of considerably larger magnitude than the final net displacement, ε (Berg,

1993). When ε→ 0,

ckk′ ' V (xk, yk)δs (3.5)

and Equation (3.1) can be rewritten for the grid of Figure (3.4) as

zfx,y =
exp[−θVx,yδs]

4
zfx+ε,y+

exp[−θVx,yδs]
4

zfx−ε,y

+
exp[−θVx,yδs]

4
zfx,y+ε+

exp[−θVx,yδs]
4

zfx,y−ε

=
exp[−θVx,yδs]

4
[zfx+ε,y+z

f
x−ε,y + zfx,y+ε + zfx,y−ε] (3.6)

Expanding each term up to the second order of ε, e.g.,

zfx−ε,y = zfx,y −
∂zfx,y
∂y

ε+
1

2

∂2zfx,y
∂y2

ε2 + o(ε3) (3.7)

provides

zfx,y =
exp[−θVx,yδs]

4

(
4 zfx,y +

∂2zfx,y
∂x2

ε2 +
∂2zfx,y
∂y2

ε2 + o(ε3)

)
(3.8)

Keeping in mind that δs = ε2/c and further expanding

exp[−θVx,yδs] = (1− θ

c
Vx,yε

2) + o(ε3), (3.9)
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we obtain

zfx,y =
1

4
(1− θ

c
Vx,yε

2 + o(ε3)) ×

(
4 zfx,y +

∂2zfx,y
∂x2

ε2 +
∂2zfx,y
∂y2

ε2 + o(ε3)

)
(3.10)

Without loss of generality, the constant c can be absorbed by θ: we now choose

the units of θ in such a way that c = 1. Then, by defining the diffusion constant

as D = 1/(4θ) and keeping only the terms in ε2,

∂2zfx,y
∂x2

+
∂2zfx,y
∂y2

=
1

D
Vx,yz

f
x,y (3.11)

or

D∆zfx,y = Vx,y z
f
x,y (3.12)

This is exactly the stationary solution of a Schrodinger-like diffusion equation

without the imaginary term:

µ
∂zf (r, t)

∂t
= D∆zf (r, t)− V (r)zf (r, t) (3.13)

where V (r) plays the role of a potential and r(τ) = (x(τ), y(τ)). Equation

(3.13) is also sometimes called the Bloch equation (Chaichian and Demichev,

2001) in physics. It corresponds to a simple diffusion process for which the

particle can disappear with a probability density V (r) per unit of time at

position r, up to a normalization factor.

A diffusion process interpretation

There exists, indeed, an intuition related to general diffusion processes behind

this equation (Berg, 1993; Chaichian and Demichev, 2001; Holmes, 2002). The

well-known first Fick’s law states that particle flow, j, of a diffusing material in

any part of the system is proportional to the local density of particle gradient

(see, e.g., Berg (1993); Chaichian and Demichev (2001); Holmes (2002)). In

84



3.4. THE CONTINUOUS STATE-SPACE EQUIVALENT TO RSP

other words,

j(r, t) = −D∇ρt(r) (3.14)

where ρt(r) is the particle density at time t and position r = (x, y), D is the

diffusion constant, and j denotes the particle flow, i.e., j · n, with ‖n‖ = 1, is

the net number of diffusing particles per unit of time passing through position

r in the direction of n. This principle is illustrated in Figure 3.5, where the

flow of particles, j, moves from the zone of highest particle concentration to

the area with lowest one (the gradient of particle density).

Figure 3.5: Example of diffusion of particles where j denotes the particle flow.

Furthermore, if particles are neither created nor destroyed, the basic con-

tinuity relations (Chaichian and Demichev, 2001; Holmes, 2002; Rudnick and

Gaspari, 2004) in two dimensions are verified (see Arfken and Weber (2005)

for standard notations)

∂

∂t

∫∫
Ω

ρt(r) dxdy = −
∮
∂Ω

j(r, t) · dσ (3.15)

where ∂Ω is the region boundary and dσ is the infinitesimal contour vector

directed to the outside of ∂Ω. Or, equivalently, from the divergence theorem,

∂ρt(r)

∂t
= −div j(r, t) (3.16)

Combining Fick’s law with the continuity Equation (3.16) yields

∂ρt(r)

∂t
= D∆ρt(r) (3.17)
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Assume now that, instead of Equation (3.16), the density of particles is gov-

erned by
∂ρt(r)

∂t
= −div j(r, t)− V (r)ρt(r) (3.18)

which considers that particles are disappearing with a density V (r) per unit of

time (Chaichian and Demichev, 2001). This mimics the “evaporating” random

walk behavior of the discrete RSP described in Section 1.5. The resulting

equation is
∂ρt(r)

∂t
= D∆ρt(r)− V (r)ρt(r) (3.19)

which is exactly Equation (3.13). In addition, when an external force f is

present – implying a drift (velocity) in the direction of f – this results in an

additional flow of the form

jf (r, t) = −γρt(r) f (3.20)

with γ being a mobility coefficient, the inverse of the friction coefficient (Berg,

1993; Chaichian and Demichev, 2001). The flow j of Equation (3.14) therefore

becomes j(r, t) = −D∇ρt(r)− γρt(r) f , yielding

∂ρt(r)

∂t
= D∆ρt(r)− γ div(ρt(r) f)− V (r)ρt(r) (3.21)

instead of (3.19). This equation will be encountered later, when the optimal

policy is derived (see Equation (3.50)). Interestingly, it can be shown that the

solution to Equation (3.19) is provided by (Chaichian and Demichev, 2001;

Del Moral, 2004; Mazo, 2002)

EW
[
exp[−

∫ t

0

V (x(τ), y(τ))dτ ]

]
(3.22)

where EW represents the expectation according to the Wiener measure. This

corresponds to the celebrated Feynman-Kac formula which states that the

solution to (3.19) can be interpreted as the expectation on all possible paths,

each path being weighted by the exponential of minus the total cost cumulated

along the path. Therefore, low-cost paths are favored with respect to high-
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cost paths. The stochasticity of the process (the exploration) is regulated by

the diffusion constant D. The discrete RSP can therefore be considered as a

discrete-state discrete-time counterpart of the Feynman-Kac diffusion process

as well as the Bloch equation.

Initial and boundary conditions

We still have to precise the initial conditions and the boundary conditions. By

looking at Equation (3.1), it can be seen that there is a unit source at node 1.

Denoting the position of this source node 1 as (xf , yf ) (the subscript f is for

forward), the source becomes a delta of Dirac centered at this location. The

coefficient multiplying this delta of Dirac is computed in the Appendix, and is

equal to −4D. The forward stationary equation (3.12) becomes

∆zf (x, y) =
1

D
V (x, y)zf (x, y)− 4δ(x− xf )δ(y − yf ) (3.23)

with D = 1/(4θ). It can be observed that D plays the same role as a temper-

ature (inverse of θ).

Exactly the same reasoning applies to the backward variable, and the partial

differential equation easily follows

∆zb(x, y) =
1

D
V (x, y)zb(x, y)− 4δ(x− xb)δ(y − yb) (3.24)

Concerning the boundary conditions, a barrier is produced by defining an

infinite cost on the boundaries, preventing the random walkers from reaching

them. This allows to mimic the discrete situation of the RSP on a graph (see

Saerens et al. (2009) or Section 1.1). Dirichlet boundary conditions stating

that both zf and zb are equal to zero on the boundary are therefore used.

Thus, both in the continuous and the discrete case, an internal boundary layer

∂Ω is added with V (x, y) = ∞ for (x, y) ∈ ∂Ω in the continuous case, and

ckk′ =∞ for k′ ∈ ∂Ω for the discrete one.

Notice that if we want to solve Equations (3.23-3.24) numerically by using

a simple finite difference approximation with a central difference method, we
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exactly obtain Equations (1.18–1.19) with θ = f(D), some function of the

diffusion constant. Let us for instance examine Equation (3.24). At the interior

of the domain, Ω\∂Ω, the difference equation corresponding to (3.24) is

D(zbx+ε,y + zbx−ε,y + zbx,y+ε + zbx,y−ε − 4zbx,y) = ε2Vx,yz
b
x,y (3.25)

Isolating zbx,y in this last equation provides(
4 +

ε2Vx,y
D

)
zbx,y = zbx+ε,y + zbx−ε,y + zbx,y+ε + zbx,y−ε (3.26)

Assuming a small ε2 in comparison with the value of D, this last equation

is similar (up to the order o(ε4)) to

4 exp

[
ε2Vx,y
4D

]
zbx,y = zbx+ε,y + zbx−ε,y + zbx,y+ε + zbx,y−ε (3.27)

which, in turn, is equivalent to the discrete counterpart (1.19) as shown now.

Indeed, considering a sufficient dense grid with a small ε, ckk′ ' V (xk, yk)δs,

let us rewrite Equation (1.19) as

4 exp[θV (xk, yk) δs] z
b
k =

∑
k′∈N(k)

zbk′ (3.28)

Evaluating the zbk on the grid yields

4 exp[θVx,y δs] z
b
x,y = zbx+ε,y + zbx−ε,y + zbx,y+ε + zbx,y−ε (3.29)

which, by using δs = ε2, corresponds exactly to Equations (3.27, 1.19).

Therefore, the RSP framework can be considered as the discrete-state coun-

terpart of the continuous-state Feynman-Kac process. The expected number

of visits at any position of the grid, as well as the expected cost, are derived

in the next subsection.
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3.4.2 Computation of some of the basic quantities

We are ready now to compute the quantities of interest for the continuous-state

framework. The continuous-state equivalent of the discrete partition function

Z = z1n is zf (xb, yb) = zb(xf , yf ). From Equation (1.15), the expected number

of visits to position (x, y) when following the optimal policy is

n(x, y) =
zf (x, y) zb(x, y)

zf (xb, yb)
, for (x, y) 6= (xf , yf ) (3.30)

The expected cost, initially computed with Equation (1.21), for reaching

(xb, yb) from (xf , yf ) is provided by

C =

∫∫
Ω

zf (x, y)zb(x, y)V (x, y) dx dy

zf (xb, yb)
(3.31)

3.4.3 Derivation of the source term coefficient

Let us now derive the source term coefficient of Equations (3.23-3.24). By

rewriting the discrete equation for the forward variable on the grid (Equation

(3.6)) including the source term, we obtain

zfx,y =
exp[−θVx,yδs]

4
[zfx+ε,y + zfx−ε,y + zfx,y+ε + zfx,y−ε] + δ(x, xf )δ(y, yf ) (3.32)

where δ(x, xf ), δ(y, yf ) are Kronecker deltas. Expanding the different terms

up to the second order as in Section 3.4.1, Equation (3.10), yields

zfx,y =
(1− θVx,yε2 + o(ε3))

4

[
4 zfx,y + ∆zfx,yε

2 + o(ε3)
]
+δ(x, xf )δ(y, yf ) (3.33)

Thus, by rearranging this last equation, we obtain

δ(x, xf )δ(y, yf ) = (θVx,yz
f
x,y −

1

4
∆zfx,y)ε

2 + o(ε3) (3.34)
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Now, by summing this last equation over the entire grid and taking the limit

ε→ 0 with dx = dy = ε provides

1 =
∑
x,y

δ(x, xf )δ(y, yf ) (3.35)

=
∑
x,y

[(θVx,yz
f
x,y −

1

4
∆zfx,y)ε

2 + o(ε3)] (3.36)

' 1

ε2

∫
x,y

dxdy [(θVx,yz
f
x,y −

1

4
∆zfx,y)ε

2 + o(ε3)] (3.37)

=

∫
x,y

dxdy (θVx,yz
f
x,y −

1

4
∆zfx,y) + o(ε) (3.38)

Therefore,

θVx,yz
f
x,y −

1

4
∆zfx,y = δ(x− xf )δ(y − yf ) (3.39)

with δ(x− xf ), δ(y − yf ) being Dirac deltas, and since D = 1/(4θ), we finally

obtain Equation (3.23)

D∆zfx,y = Vx,yz
f
x,y − 4Dδ(x− xf )δ(y − yf ) (3.40)

3.4.4 The dynamic, global, optimal, policy

In the previous sections we have introduced the motivation for planning al-

gorithms, and how physical analogies can be applied to solve this problem.

Furthermore, we have explained how to adapt the RSP discrete framework

to the continuous-state version, and how to compute some of the quantities

of interest. In this section we explain how to compute the policy or plan,

which allows the agent to know which is the optimal action to take in a given

state. Please recall that this is a stochastic policy, so it is optimal in terms of

expected cost.

For deriving the optimal policy, let us consider the continuous-time, continuous-

state, dynamics of a random walker following the optimal policy provided by

Equation (1.16), or Equation (1.17) for the one-step ahead policy, in the dis-

crete case. It is assumed that zb(x, y) is known (computed through Equation
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(3.24)) and that the time is provided by the total displacement along the tra-

jectory, i.e. δt = δs (a unit velocity). The objective is to derive the probability

density, ρ∗t (x, y), of finding the random walker in position (x, y) at time t when

starting from some position ρ∗0(x, y) = δ(x − x0)δ(y − y0) and following the

optimal randomized policy given by Equation (1.16), i.e., the continuous-state

continuous-time counterpart of Equation (1.17).

It takes to the random walker a time δt = δs = ε2 to make a net dis-

placement of ε so that taking a time step of δt and evaluating Equation (1.17)

at t + δt on position (x, y) of the two-dimensional grid (see Figure (3.4)), as

well as assuming that (x, y) is in the interior of Ω so that the term δkn in the

denominator of Equation (1.17) cancels, yields

ρ∗t+δt(x, y) =
exp[−θVx+ε,yδs]

4

zbx,y

zbx+ε,y

ρ∗t (x+ ε, y)

+
exp[−θVx−ε,yδs]

4

zbx,y

zbx−ε,y
ρ∗t (x− ε, y)

+
exp[−θVx,y+εδs]

4

zbx,y

zbx,y+ε

ρ∗t (x, y + ε)

+
exp[−θVx,y−εδs]

4

zbx,y

zbx,y−ε
ρ∗t (x, y − ε) (3.41)

Remembering that δs = δt = ε2, and expanding ρ∗t+δt(x, y) as well as the

exponentials up to ε2 gives

ρ∗t (x, y) +
∂ρ∗t (x, y)

∂t
ε2 + o(ε3) =

zbx,y (1− θVx,yε2 + o(ε3))

4

×

ρ
∗
t (x+ ε, y)

zbx+ε,y︸ ︷︷ ︸
(i)

+
ρ∗t (x− ε, y)

zbx−ε,y︸ ︷︷ ︸
(ii)

+
ρ∗t (x, y + ε)

zbx,y+ε︸ ︷︷ ︸
(iii)

+
ρ∗t (x, y − ε)
zbx,y−ε︸ ︷︷ ︸

(iv)


︸ ︷︷ ︸

[(i)+(ii)+(iii)+(iv)]

(3.42)

We now develop the terms (i)-(iv) appearing in the second line of the

91



3.4. THE CONTINUOUS STATE-SPACE EQUIVALENT TO RSP

previous equation (3.42). For instance, the first term (i) is

ρ∗t (x+ ε, y)

zbx+ε,y

=
ρ∗t (x, y)

zbx,y
+

∂

∂x

(
ρ∗t (x, y)

zbx,y

)
ε+

1

2

∂2

∂x2

(
ρ∗t (x, y)

zbx,y

)
ε2 + o(ε3)

(3.43)

We immediately observe that terms (i)-(iv) of order ε in Equation (3.42)

cancel out because they are evaluated both at +ε and −ε. Therefore, dropping

the dependency on (x, y) and referring ∂z(x, y)/∂x as ∂xz for convenience,

[(i) + ...+ (iv)] = 4
ρ∗t
zb

+

[
∂2
x

(
ρ∗t
zb

)
+ ∂2

y

(
ρ∗t
zb

)]
ε2 + o(ε3) (3.44)

For the second derivative term in the previous equation (3.44), we obtain

∂2
x

(
ρ∗t
zb

)
=

(∂2
xρ
∗
t )(z

b)2 + 2ρ∗t (∂xz
b)2

(zb)3
− 2(∂xρ

∗
t )(∂xz

b) + ρ∗t (∂
2
xz

b)

(zb)2
(3.45)

and the corresponding formula for ∂2
y(ρ
∗
t/z

b) is obtained by substituting y

for x in Equation (3.45). Replacing the values of these second derivatives in

Equation (3.44) yields

[(i)+(ii)+(iii)+(iv)] = o(ε3)+4
ρ∗t
zb

+

[
∆ρ∗t
zb

+ 2ρ∗t
‖∇zb‖2

(zb)3
− 2

∇ρ∗t .∇zb

(zb)2
− ρ∗t

∆zb

(zb)2

]
ε2

(3.46)

so that Equation (3.42) becomes

ρ∗t (x, y) +
∂ρ∗t (x, y)

∂t
ε2 + o(ε3) =(

1− θVx,yε2 + o(ε3)
)
×
[
ρ∗t +

(
∆ρ∗t

4
+ ρ∗t
‖∇zb‖2

2(zb)2
− ∇ρ∗t .∇zb

2zb
− ρ∗t

∆zb

4zb

)
ε2 + o(ε3)

]
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Keeping the terms up to the second order in ε provides

∂ρ∗t
∂t

= −θV ρ∗t +
∆ρ∗t

4
+ ρ∗t
‖∇zb‖2

2(zb)2
− ∇ρ∗t .∇zb

2zb
− ρ∗t

∆zb

4zb︸ ︷︷ ︸
ρ∗t

∆zb

4zb
−ρ∗t

∆zb

2zb

=
∆ρ∗t

4
+ ρ∗t

(
∆zb

4zb
− θV

)
− 1

2

(
−ρ∗t
‖∇zb‖2

(zb)2
+

∇ρ∗t .∇zb

zb
+ ρ∗t

∆zb

zb

)
(3.47)

Noticing that D = 1/(4θ) and rewriting Equation (3.24) as

∆zb

4zb
− θV = −δ(x− xb)δ(y − yb)

zb
(3.48)

then combining this last result with

−ρ∗t
‖∇zb‖2

(zb)2
+

∇ρ∗t .∇zb

zb
+ ρ∗t

∆zb

zb
= div(ρ∗t∇ ln zb), (3.49)

we finally obtain for the optimal policy (3.47):

∂ρ∗t (x, y)

∂t
=

∆ρ∗t (x, y)

4
− 1

2
div(ρ∗t (x, y)∇ ln zb(x, y))

− ρ∗t (xb, yb)δ(x− xb)δ(y − yb)
zb(xb, yb)

(3.50)

which corresponds to a Bloch diffusion equation with a drift (diffusion process

subject to an external force) (Chaichian and Demichev, 2001) as in Equation

(3.21). The initial condition at t = 0 is centered on the point of interest

ρ∗0(x, y) = δ(x− x0)δ(y − y0) (3.51)

Let us now look at the physical interpretation of the policy from Equation

(3.50). The first term on the right-hand side of this equation, is a diffusion

term with θ = 1 or D = 1/4. The second term corresponds to a drift driven

by the force f = ∇ ln zb(x, y) (see Equation (3.21)) with γ = 1/2 and where

ln zb(x, y) plays the role of a potential known in advance (it is provided by
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the solution of Equation (3.24)). It must be noticed that this drift takes the

direction of the shortest paths.

Eventually, the last term corresponds to an absorption (sink) of the proba-

bility density in the goal state. The role and interpretation of each component

is summarized in the Table below.

Role Equation (3.50) components

Diffusion term
∆ρ∗t (x, y)

4

Drift
1

2
div(ρ∗t (x, y)∇ ln zb(x, y))

Absorption sink
ρ∗t (xb, yb)δ(x− xb)δ(y − yb)

zb(xb, yb)

3.4.5 Planning algorithm

This section summarizes the planning algorithm with the continuous-state ver-

sion of the RSP framework. The algorithm is formally stated in Algorithm 7).

This algorithm computes the optimal randomized policy at a point of interest

(x0, y0) and a time t as follows:

1. Compute the backward variable zb(x, y) by solving Equation (3.24) with

respect to zb(x, y) where ln zb(x, y) is the associated potential.

2. Compute the optimal randomized policy ρ∗t (x, y), providing the prob-

ability of jumping to position (x, y) from position (x0, y0) during time

step t, by solving Equation (3.50) with respect to ρ∗t (x, y) at the point

of interest (x0, y0) and for the predefined length/time t.

Although this technique is stochastic, the best direction to follow corre-

sponds to the orientation of the steepest ascent of ln zb, for which the gradient

is maximum. Thus, the deterministic optimal policy tells us that we have to

move in the direction of ∇ ln zb(x, y) at any point (x, y). This very simple rule
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Algorithm 7 Planning with the continuous-state version of the RSP:
Computation of the optimal policy at state (x, y).

Input:
• D > 0: diffusion coefficient (or equivalently, θ).
• n: granularity of the squared grid (for solving with the finite difference
method.
• Boundary conditions.

Output:
• ρ∗t (x, y): the optimal policy at state (x, y).

1. Compute the backward variable zb(x, y) by solving Equation (3.24) with
respect to zb(x, y).

2. Compute the optimal randomized policy ρ∗t (x, y), by solving Equation
(3.50) with respect to ρ∗t (x, y) at the point of interest (x0, y0) and for the
predefined length/time t.

3. return ρ∗t (x, y)

provides the minimal cost direction when θ is sufficiently large, and thus D is

low – in which case the paths probability distribution is peaked on the shortest

paths.

Interestingly, this policy is similar to an existing technique for mobile robot

path planning (Schmidt and Neubauer, 1992; Schmidt and Azarm, 1992). The

authors use a diffusion equation akin to Equation (3.24) (however, they assume

a constant V (x, y)) and propose to follow the steepest ascent of the solution.

They claim that this technique provides the shortest path to the goal state,

but no proof is provided.

The complexity of this algorithm is O(n3) where n is the number of interior

nodes in the grid. This is valid when applying the finite difference method, as

a matrix inversion is needed.

The code of the planning algorithm is available at http://github.com/

silviagdiez/thesis.

95

http://github.com/silviagdiez/thesis
http://github.com/silviagdiez/thesis


3.5. SIMULATIONS

3.5 Simulations

In this section we present a series of simulations that have been performed in

order to investigate the behavior of our method. The first series of simulations

(see Figures (3.6–3.8)) illustrates the influence of the diffusion coefficient on

a diffusion media with a simple Gaussian obstacle, and a single source and

destination states. The second series of simulations (see Figures (3.9–3.11))

focus on solving a single-source multiple-destination maze for a fixed value of

the diffusion coefficient.

These specific configurations for the simulation have been chosen as they

have already been used in previous studies, and seemed like a good example for

demonstration purposes. Any other configuration may have been possible as

well. Although no numerical measures will be taken, the graphic representation

of the results allow the reader to visually understand the results.

3.5.1 Methodology

For the first simulation, we assume a two-dimensional square plane with

a source node (top-left corner) and a goal node (bottom-right corner). The

agent has to move from the source to the destination while avoiding a Gaussian

obstacle (situated in the middle of the plane, where red marks the top of the

“mountain”, and blue is the “valley”).

In this case, several values of the diffusion coefficient have been investigated.

In order to show the distribution of the paths, the average number of visits

per node from Equation (3.30) has been plotted. Furthermore, to compute the

forward and backward variables, a finite difference method has been used3.

For each value of D = {1, 0.1, 0.01}, four results (graphics) are reported in a

40× 40 grid of nodes, red being the highest probability of passing through the

node, blue being the lowest:

1. The Gaussian obstacle.

3The granularity of the chosen grid was 40× 40.
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2. The logarithm of the forward variable computed from Equation (3.23).

3. The logarithm of the backward variable computed from Equation (3.24).

4. The average number of visits per node from Equation (3.30).

The second simulation takes place on a simple 36 × 36 maze (inspired

from the one used by Dautenhahn and Cruse (1994)) with two obstacles of

varying length. The objective, here, is to provide the agent with a plan, or

policy, that will guide him through a maze with two walls (obstacles) from one

source state to two possible goals. In this case, a constant value is chosen for

the diffusion parameter, D = 0.1.

Similarly to the previous simulation, a finite difference approximation4 has

been used to compute the forward and backward variables. Once we have

obtained these two variables we compute the average number of visits per

node with Equation (3.30). Three different mazes have been used, where the

obstacles change their length. The main difference among the first maze and

the others, is that the second wall has no hole in it, leaving one single possible

option of planning.

On the remaining two mazes, there is always the possibility of passing over

the wall, or under it. For each maze, four results (graphics) are reported in a

36× 36 grid of nodes, red being the highest probability of passing through the

node, blue being the lowest:

1. The maze (in red), the source node (in yellow, on the left), and the two

goal nodes (in yellow, on the right).

2. The logarithm of the forward variable computed from Equation (3.23).

3. The logarithm of the backward variable computed from Equation (3.24).

4. The average number of visits per node from Equation (3.30).

4The granularity of the chosen grid was 36× 36.
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3.5.2 Discussion of the results

Results of the first simulation are displayed in Figures (3.6–3.8), which show,

as expected, an evident impact of D on the path chosen by the agent. Indeed,

when D is high (low θ), the diffusion over the plane is important, and the

Gaussian obstacle is thus explored. On the other hand, for low values of D

(high θ), the shortest paths are favored, and the obstacle is completely avoided.

Results for the second simulation are shown in Figures (3.9–3.11). In this

second case, the influence of the length of the obstacle determines the shortest

path and, thus, the chosen goal node. It must be noted that when both goals

are equidistant from the source node (see Figure (3.10)) both solution paths

will be almost equally explored. On the remaining two cases (see Figures (3.9)

and (3.11)), the shortest goal will be favored over the farthest one. It must

be noted that, although this is a single-source multiple-destination problem,

our method extends to the case of multiple-source multiple-destination prob-

lems. In order to add multiple sources and destinations, we will modify the

Dirichlet boundary conditions, where a zero cost will be set for each source and

destination, while the remaining boundary points will have an infinite cost.

3.6 Conclusion

In this chapter we have investigated the continuous-state counterpart of the

discrete randomized shortest-path on a graph. It has allowed us to set some

bridges between biased random walks on a discrete graph and the continuous-

state Feynman-Kac diffusion process.

Furthermore, from an application point of view, it has provided an optimal

randomized policy for solving continuous-state path planning problems with

multiple sources and multiple goals. However, the main drawback of this

model is that it assumes that paths are uncorrelated, which is hardly the case

in practice. Further work will study the possibility of introducing a mass

parameter (inertia) for smoothing the trajectories, therefore avoiding abrupt

changes in direction. Indeed, the Wiener measure naturally accounts for a

kinetic energy term cumulated along the trajectory (Chaichian and Demichev,
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Figure 3.6: Continuous RSP with Gaussian obstacle and D = 1.
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Figure 3.7: Continuous RSP with Gaussian obstacle and D = 0.1.
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Figure 3.8: Continuous RSP with Gaussian obstacle and D = 0.01.
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Figure 3.9: First maze with one source (on the left hand side) and two goal
nodes (on the right hand side), with D = 0.1.
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Figure 3.10: Second maze with the same source and goal nodes, with D = 0.1.
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Figure 3.11: Third maze with the same source and goal nodes, with D = 0.1.
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2001; Mazo, 2002). This would also enhance the physical interpretation of the

model.

Finally, by discretizing the problem (see Section 3.5.1) and using a finite

difference method, we are able to solve the planning problem by solving a

system of linear equations instead of a more complex system involving partial

derivatives. The finite difference method allows us to fix the granularity of the

grid, being able to adapt it to the available computing resources. This could

be useful when defining trajectories, e.g., on on-line video games, where there

is a need for high-speed computation.
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The Rminimax
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Artificial intelligence (AI) techniques (Luger, 2009; Nilsson, 1998; Russell

and Norvig, 2003) are widely used in realistic-behavior video games (Milling-

ton, 2006; Smed, 2006). These methods aim, e.g., at finding paths for motion

planning, collaborating between computer entities, learning from past experi-

ence, proposing game strategies, etc.

The main focus of this chapter is on finding strategies for two-player perfect

information zero-sum games (Morris, 1994; Osborne, 2004; Rasmusen, 1989),

such as chess and draughts. These games can be seen as a succession of plays

which alternate from one player to another, and where the profit is maximized

for the current player – therefore, minimized for the opponent. They are

often solved thanks to the well-known MINIMAX algorithm (Luger, 2009;

Millington, 2006; Nilsson, 1998; Russell and Norvig, 2003; Smed, 2006) which
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is straightforwardly or indirectly used in most board games (see Section 4.1

for a more detailed introduction to MINIMAX).

From its inception, MINIMAX assumes perfect rationality for both play-

ers and, therefore, it is completely deterministic – the player will adopt the

same deterministic strategy when encountering the same situation. This fact

is illustrated by Figure 4.1 where we observe that player π1 (X) follows the

optimal strategy (marked in red) and reaches one of the winning states.

Figure 4.1: Optimal strategies for tic-tac-toe for π1 (X) marked in red.
Figure obtained from http://mindfulintegrations.com/books/Technology/

computer_science/algo/books/book9.

Since the behavior of the AI player is completely predictable, the game

might become annoying for the rival. Such problem is tackled in this chapter by

proposing a simple way to randomize the strategy while still remaining optimal.

The main idea is to control the spread randomness in the game tree, quantified
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through its Shannon entropy, and to select the optimal minimum expected-cost

strategy for this entropy. In this way, good (low-cost) randomized strategies

are favored, while bad ones (high-cost) are discarded.

The main difference between spreading the entropy at node level, i.e., tak-

ing a random decision using only the information of the current state, and

spreading the entropy through all the game tree, i.e., taking a random deci-

sion using the information of the whole branch, is that the second case is more

human-like. Indeed, people usually anticipate two or three moves (or more

depending on the expertise of the player) before making a decision on their

next move. This is what we try to mimic in this chapter.

This fact is illustrated in Figure 4.2 where a player of medium strength,

π1 (X), follows a sub-optimal strategy (marked in orange). Any of the sub-

optimal strategies will lead him to a tie status (neither of the two players wins

the game). On the other hand, by simulating a poor player, all strategies will

lead him to losing statuses.

In order to adjust the strength of the player, i.e., the trade-off between

exploitation and exploration of the game tree, we vary the entropy. In other

words, our model aims at introducing/implementing bounded rationality (see

Rubinstein (1998); Wolpert (2006) for a survey) to the MINIMAX algorithm.

The proposed method, called Rminimax, is the application of the randomized

shortest-path (RSP) framework by Saerens et al. (2009) (see also Section 1.1)

to game trees.

The research question of this chapter is to investigate whether the

RSP framework can be applied to zero-sum two-player games, to simulate an

Artificial Intelligent player which has a more human-like behavior by spread-

ing entropy through the whole game tree, and its comparison with similar

algorithms. We present simulations run with our algorithm under different

configurations for illustration purposes, and compare it with a similar algo-

rithm to demonstrate its optimality.

Main contributions

This chapter provides a novel global optimal strategy based on the Sum-
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Figure 4.2: Sub-optimal strategies in tic-tac-toe for π1 (X) marked in orange.
Figure obtained from http://mindfulintegrations.com/books/Technology/

computer_science/algo/books/book9.

over-Paths framework given a level of entropy for simulating the AI in two-

player zero-sum games. Although the notion of entropy has been widely used

for controlling randomness in AI, this new method spreads the entropy over

full strategies, instead of single moves.

4.1 The MINIMAX algorithm

The MINIMAX algorithm (Luger, 2009; Millington, 2006; Nilsson, 1998; Rus-

sell and Norvig, 2003; Smed, 2006) computes the optimal strategy for two-

player zero-sum games, provided that the opponent is fully rational, i.e., it

will also play according to its optimal strategy.
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4.2. RELATED WORK

In order to illustrate the MINIMAX principle, let us assume a game tree

such as the one from Figure 4.3, a MAX player (π1) and a MIN player (π2)

that want to maximize and minimize, respectively, their utility value (cost or

reward). The utility value is initially defined for the leaf states of the game

tree (winning states) as a low value for winning states of π2 and higher values

for winning states of π1. Intermediate utility values indicate the advantage of

one of the players over its opponent.

Once the leaf utility values are defined, the MINIMAX algorithm operates

recursively on the game tree, iterating between the π1 player which takes the

maximum of its children’s utility values (on odd-depth states) and the π2 player

which takes the minimum of its children’s utility values (on even-depth states).

The first step of our example in Figure 4.3 shows the utility values for

π2 marked in blue – please note that we will always consider that π1 is the

player who moves first–. A utility value of 1 represents a winning state for

π1, -1 is a winning state for π2, and 0 is a tie between both players. In the

second step shown in Figure 4.4 we have propagated those values one level up

(marked in red). The values remain the same, as the maximum of one value

is the same value. On the third step in Figure 4.5, we propagate the values

one level up, taking the minimum of all branches, as π2 who plays min. For

instance, the middle state is min{0,−1} = −1. The final step in Figure 4.6

takes the maximum of all branches max{1,−1, 0} = 1, as π1 plays max. The

two optimal trajectories for π1 are marked in red in Figure 4.7.

4.2 Related work

As it is the nature of MINIMAX to search the whole game tree, much attention

has been paid to reducing the search space. The simplest technique consists

on bounding the depth of the tree with a n-ply look-ahead strategy (Luger,

2009), where n is the number of explored levels of the tree.

Also very common are the alpha-beta (AB) pruning techniques (Newell

et al., 1958). The AB algorithm prunes irrelevant subtrees which will never
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Figure 4.3: Example of the 1st step of a MINIMAX algorithm for a game tree
of depth 4 and players π1 (which plays max) and π2 (which plays min). Utility
values are shown below the status of the game.

be part of the MINIMAX strategy by using a window of two plies. An AB

multi-player version is proposed by Sturtevant and Korf (2000). The Negas-

cout algorithm introduced by Reinefeld et al. (1985) reduces even further this

window size which allows to perform a faster pruning than AB. Nonetheless,

the tree may be massively pruned leading to the elimination of good strate-

gies. Similarly, the Memory-enhanced Test Driver (MTD(f)) (Plaat et al.,

1995) limits the AB window size to zero. Although this pruning is faster, an

initial “guess”, f , of the minimax position is required.

This method is also based on transposition tables which are used in games

with a vast search space where recurrent states appear. In this case, it is

more efficient to “remember” the decision taken the first time the state was

observed than redoing the entire search. Despite that MTD outperforms the

Negascout in the number of searched nodes, it suffers from stability issues, it

depends on the transposition tables, and is also very sensitive to the initial

guess. Eventually, a pruning technique which computes the expected value

of the continued search is proposed by Russell and Wefald (1991). It has
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Figure 4.4: Example of the 2nd step of a MINIMAX algorithm for a game tree
of depth 4 and players π1 (which plays max) and π2 (which plays min). Utility
values are shown below the status of the game.

been shown by Russell and Wefald (1991) that this method suffers also from

numerical instabilities.

Opening books (Buro, 1997) are another improvement technique applied

to huge search space games. Efficient “opening” as well as “ending” game

strategies that are often used by expert players are stored in these books. It is

proved that initial strategies are critic for reducing the search space, as well as

guiding the game towards the winning states. However, even when the search

space is reduced, interaction time remains a key feature that must also be taken

into consideration. Iterative deepening techniques may be useful in cases where

the calculation time is unknown a priori. In this way, a strategy is available

to interact at any time, but its quality will depend on the depth of the last

explored tree. Often, this technique is used to choose a few good strategies

obtained with a small depth and validated by extending them further. Quies-

cence pruning (Harris, 1975) avoids searching the branches of the tree whose

heuristic function values are stable and, therefore, with no leadership changes.

MINIMAX has also been extended for chance games such as Backgammon.
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Figure 4.5: Example of the 3rd step of a MINIMAX algorithm for a game tree
of depth 4 and players π1 (which plays max) and π2 (which plays min). Utility
values are shown below the status of the game.

A version of the game tree with a new type of “chance” nodes representing the

probabilistic states of the game (i.e., where a dice is thrown) is proposed by

Michie (1966). Eventually, a stochastic approach which computes the prob-

abilities of correctly scoring the following moves, via a heuristic function, is

presented by Adelson-Velsky et al. (1988).

A different approach, involving randomized strategies, can be found in

the Game Theory literature (Morris, 1994; Osborne, 2004; Rasmusen, 1989).

Mixed strategies are an alternative to pure strategies in games where several de-

cision makers interact in order to maximize their payoffs. Players must choose

among a set of possible actions where each action has an associated cost or

reward. In contrast to pure strategies where a player takes a deterministic

action, paction = {0, 1}, mixed strategies allow players taking an action with

a given probability paction ∈ [0, 1]. These probabilities are usually computed

via the Nash equilibrium of the game, which corresponds to the best strat-

egy (expected payoff) that player A can adopt while taking into consideration

player B’s decision. Although the exact play remains unknown for the oppo-
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Figure 4.6: Example of the 4th step of a MINIMAX algorithm for a game tree
of depth 4 and players π1 (which plays max) and π2 (which plays min). Utility
values are shown below the status of the game.

nent, the probabilities of his actions are known in advance, letting the game

be pseudo-random. An extension of these strategies for two-player turn-based

random games are stochastic games (Shapley, 1953). This technique tries to

maximize the expected payoff for a player by choosing an optimal strategy and

its computation has been the subject of several studies such as the ones by

Patek and Bertsekas (1997); Somla (2005).

Nevertheless, little attention has been paid to modeling the strength of an

adversary in two-player zero-sum games in the artificial intelligence (AI) com-

munity. A basic approach consists in using the n-ply look-ahead algorithm was

presented by Luger (2009) in order to vary the capacity of a rival. Unfortu-

nately, n may be tough to tune as it depends on the game and the branching

factor. I.e., for low values of n (i.e., in chess a small n < 6), the AI-based

opponent can easily be outperformed by the user (who normally plans 6 or

8 plies ahead), while for very high values (n > 8) it may become extremely

difficult to win. Other frequently used techniques are ε-greedy (Sutton and

Barto, 1998), where the optimal branch is taken with probability 1 − ε and
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Figure 4.7: Optimal strategies for π1 marked in red.

a random branch with uniformly distributed probability ε
number branches

, Boltz-

mann exploration (Sutton and Barto, 1998), where the probability of taking

a branch follows a Boltzmann distribution with an inverse temperature which

depends on the state-specific exploration coefficient, and techniques based on

the addition of noise to the evaluation function. However, such techniques

focus on the current state, limiting their strategy to local decisions and failing

to find an optimal global strategy over the whole game tree for a given entropy

(Achbany et al., 2008).

This idea of bounded rationality (see the work, e.g., Gigerenzer and Sel-

ten (2002); Rubinstein (1998); Wolpert (2006)) has already been applied in a

large number of fields from Psychology (Simon, 1991) to Artificial Intelligence

(Lee and Wolpert, 2004). In this last category, we find the work from Wolpert

(2006), where the link between game theory and statistical physics is analysed.

In this context, he shows how Shannon’s information theory provides a frame-

work for bounded rational game theory. In particular, when we know both

players’ mixed strategy and their expected cost, the probability distribution

of possible actions should follow a Boltzmann distribution. However, the au-

thor does not provide a precise algorithm implementation for his ideas. This
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chapter can be considered as a concrete instantiation of these ideas for two-

player zero-sum games. Nested Monte-Carlo search (Cazenave, 2009) provides

another bounded rational algorithm over a game tree, which combines nested

calls with randomness and memorization of the best sequence of moves.

The proposed approach of this chapter does not only focus on modeling the

strength of an adversary, but also on ameliorating the AI of the MINIMAX by

adding probabilistic, more human-like, while still optimal, strategies.

4.3 A randomized MINIMAX

As already mentioned, MINIMAX has been widely applied for emulating an

opponent in two-player zero-sum games. While being very useful in most sit-

uations, it, however, suffers from some drawbacks. Firstly, the assumption

of perfect rationality for both players is unrealistic, as human players often

incur into error. Secondly, it does not address the issue of vast search space

for certain games, and therefore, the use of a heuristic function is often nec-

essary, which is usually hard to define. Thirdly, the behavior of the player is

deterministic and thus predictable. Fourthly, in its basic form, controlling the

strength of the player is not feasible. The developed approach of this section

overcomes some of these shortcomings.

It can be observed from the game tree that a deterministic strategy leads to

a path from the root node (initial state) to a leaf node (end game – win-

ning/losing state). MINIMAX chooses the path which maximizes the gain of

the current player, while minimizing the gain of the adversary. A variant of

MINIMAX which will randomize the choice among all possible paths of the

game tree is introduced. The advantage of this technique is fourfold

1. deterministic strategies are avoided, therefore eliminating the predictabil-

ity of the game;

2. perfect rationality of the player is not assumed;

3. control over the strength of the player is allowed;
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4. the method is still optimal in a certain sense.

Although the issue of the search space is not tackled in this chapter, as for

MINIMAX, any of the existing techniques could be applied in order to reduce

the size of the explored tree.

4.4 The Rminimax algorithm

The application of the RSP framework (see Section 1.1 for more details) to

the game tree will allow to bias the transition probabilities towards better or

worse solutions as θ increases or decreases. In that case, the graph G is a tree

and it is therefore acyclic. Equation (1.19) defines therefore the recurrence

relation allowing to compute the backward variables zbk from the destination

node n to each intermediary node k.

Assume that π1 is our AI player, and π2 is the opponent. We will ran-

domize π1’s strategy while still assuming that π2 plays rationally. The set of

winning/losing states indicating the end of the game will be denoted by N
and the set of paths is now P1N . By applying the RSP framework to this sit-

uation, the backward variables (Equation (1.19)) are redefined in terms of the

following recurrence relations (please note that each final state is an absorbing

node): 
zbk = 1, for k ∈ N

zbk =


∑

k′∈Succ(k)

exp[−θckk′ ] zbk′ , if k is in π1’s turn

min
k′∈Succ(k)

exp[−θckk′ ] zbk′ , if k is in π2’s turn

(4.1)

where k /∈ N is assumed. It can be observed that when π1 (the AI player)

plays, it takes into account the costs of all successors of state k for randomizing

its future strategy, while π2 plays the best strategy (most profitable to him)

by considering only one branch of the tree – the most promising one.

Indeed, since the transition probabilities (the policy followed by player π1)
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are proportional to exp[−θckk′ ] zbk′ (see Equation (1.16))1 , according to Equa-

tion (4.1), π2 chooses the action corresponding to the lowest (min) transition

probability, i.e. the move that is least favorable to his opponent π1, all the

other moves being dismissed – the game tree is pruned accordingly.

As π1 and π2 play in turn, the value of the backward variables is computed

by alternating both equations. It must also be noticed that in order to avoid

overflow or underflow problems, the standard formula for the logarithm of a

sum (see, e.g., Huang et al. (1990)) can be applied when computing zbk.

Although it is not immediately obvious from Equation (4.1), player π1

minimizes the expected cost to the end-game by following the optimal policy

provided by Equation (1.16) (subject to entropy constraints – this directly

follows from the RSP framework, see Equation (1.19)) while player π2 tries

to maximize it. Indeed, let us take −1
θ

log of each member of the recurrence

relation for player π2 in Equation (4.1),

−1

θ
log(zbk) = −1

θ
log

(
min

k′∈Succ(k)

[
exp[−θckk′ ]zbk′

])
(4.2)

By using

− log(min(x, y)) = max(− log(x),− log(y)) (4.3)

and defining

vk = −1

θ
log(zbk) (4.4)

where vk can be interpreted as a potential (see Section 3.4.1), we obtain for

player π2

vk =

0 for k ∈ N

max
k′∈Succ(k)

(ckk′ + vk′) if k occurs during π2’s turn
(4.5)

Now, this is exactly the recurrence equation, akin to the Bellman equation

(see, e.g., Bertsekas (2000)), allowing to compute the maximal-cost path to

1Here, as in the “Sum-over-paths edit distance” chapter, we omit p0kk′ which is constant
in a given state of the game, each decision or move being equiprobable when playing at
random.
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the end-game states2. Therefore, player π2 consistently tries to maximize the

cost. If player π1 would only consider the best move, as does player π2, we

recover the standard minimax.

Notice that the strategy of player π1 in Equation (4.1) is also closely re-

lated to the Bellman-Ford algorithm (see Francoisse et al. (2013)). Indeed, by

defining vk as in Equation (4.4), we obtain from Equation (4.1),

vk = −1

θ
log

∑
k′∈Succ(k)

exp[−θckk′ ] zbk′

= −1

θ
log

∑
k′∈Succ(k)

exp[−θckk′ ] exp[−θvk′ ]

= −1

θ
log

∑
k′∈Succ(k)

exp[−θ(ckk′ + vk′)] (4.6)

The function f(x1, x2, . . . ; θ) = −(1/θ) log
∑

k exp[−θxk] is called the soft min-

imum (Cook, 2011). It is a kind of smoothed minimum between the different

xk, hence its name of soft minimum. When θ →∞, it converges to the mini-

mum of the xk so that the Equation (4.6) reduces to the Bellman-Ford formula

(taking the minimum over k′ of the (ckk′ + vk′)). When θ < ∞, it defines an

extension of Bellman-Ford taking all paths into account and favoring shorter

paths.

During the game, once the backward variables have been computed, the AI

player π1 chooses his next move according to Equation (1.16), that is, in state

k, he selects k′ with probability zbk′ exp[−θckk′ ]/
∑

l∈Succ(k) z
b
l exp[−θckl].

The Rminimax algorithm is summarized in Algorithm 8 and the code is

available at http://github.com/silviagdiez/thesis. Note that, when θ takes

a high value, near-optimal strategies are chosen by the AI player π1, while for

small values, he will model a weak rival with a poor strategy. As an example

of the effect of the different θ on the transition probabilities, let us consider

the following case: assume a trivial binary game tree with only three levels

where the current node is the root node, and the aim is to reach a winning

2For a study of the relationships between the randomized shortest-path policy and the
Bellman-Ford algorithm, see (Francoisse et al., 2013).
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node – associated to a reward (see the simulation methodology in Section 4.5

for more details) – while playing with a strength θ. The cost of each play is

+1. Once all quantities have been computed, the results shown in Table 4.1

are obtained.

Algorithm 8 Rminimax: computation of the transition probabilities.

Input:
• G: The generated game tree obtained with the MINIMAX algorithm.
The root of the game is k ∈ π1.
• θ > 0: The degree of randomization of the tree (∞ for a perfect rational
player, ' 0 for an almost completely random player).
• ckk′ ≥ 0: The cost of each arc of the tree.

Output:
• pkk′ : transition probabilities for the next play.

1. Assign zbn = 1 for each n ∈ N .
2. Compute recursively the zbk according to Equation (4.1).
3. Compute the corresponding pkk′ according to Equation (1.16).
4. return pkk′ : the transition probabilities for the next play.

The complexity of the algorithm is O(bd) where b is the average branching

factor, and d is the depth of the tree.

It must be noticed that, when θ is large, the optimal strategy given by the

MINIMAX algorithm is recovered. As θ decreases, the transition probabilities

are less biased towards the optimal solution. In the case of θ → 0, the assigned

costs become irrelevant, and therefore the strategy is utterly random (the

transition probabilities p12 and p13 are almost uniformly distributed).

θ = 3 θ = 0.5 θ = 0.001

p12 0.998 0.728 0.5001
p13 0.002 0.268 0.4999

Table 4.1: Example of transition probabilities pij (transition probability from
node i to child j) for a simple binary game tree of depth 2, when varying θ.

Link with Reinforcement learning techniques

Reinforcement learning, according to Sutton and Barto (1998) is “learning
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what to do – how to map situations to actions – so as to maximize a numerical

reward signal. The learner is not told which actions to take [...] but instead

must discover which actions yield the most reward by trying them”. As the

effects of actions cannot be fully predicted, the agent must keep exploring his

environment. Therefore, the balance between exploration and exploitation is

one of the major challenges of reinforcement learning.

The main elements that are involved in reinforcement learning are:

1. a policy that indicates how the agent behaves in a certain state and time,

and which is usually stochastic;

2. a reward function that maps a state into a value that indicates the interest

of that state, and which can be stochastic;

3. a value function which accumulates the individual rewards that an agent

can obtain when starting in a given state, and indicates a measure of the

long-term interest of a state;

4. a model of the environment which predicts what will happen if an action

is taken on a given state.

Reinforcement learning techniques are of interest when the rewards of an

agent are stochastic rather than deterministic, where supervised learning tech-

niques are usually applied. The main difference between both methods is that

reinforcement learning evaluates actions, while supervised learning searches

the parameter space of a given model.

These techniques specify how an agent must modify its policy as a result

of previous experience of taking actions in given states. Two well-known tech-

niques are the ε-greedy which chooses actions with equal probability, and the

Softmax (also called Boltzmann exploration) which varies the action probabil-

ities as a graded function of their estimated value. As stated by Thrun (1998),

Boltzmann distributions provide a way to combine random exploration with

exploitation, and the likelihood of picking an action is exponentially weighted

by its utility.
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Although similar approaches (but not optimal) can be found in reinforce-

ment learning (Carmel and Markovitch, 1999; John, 1994; Singh et al., 2000;

Sutton and Barto, 1998), to the better of our knowledge, no technique spreads

the probability over full branches of a tree. The main difference between re-

inforcement learning techniques and the RSP is that the exploration carried

out by the latter is monitored optimally, while is not the case of the first.

However, in reinforcement learning the next state is randomly chosen, while it

is deterministic with the RSP, i.e., the entropy is spread over a set of known

states.

Link with Monte-Carlo tree search techniques

The RSP frameworks is also related to Monte-Carlo tree search techniques

(MCTS) (Chaslot, 2010). MCTS are a best-first search method which is guided

by consecutive Monte-Carlo simulations. The advantage of MCTS regarding

alpha-beta (AB) techniques is that it does not rely on an evaluation function

on a given position. Instead, it uses the knowledge obtained by Monte-Carlo

simulations, e.g., in the game of Go where no such reliable evaluation func-

tion is available. MCTS simulations consists on progressively refined random

moves. Each node contains its current value, which is an average of the results

of all simulations, and its visit count. With this information we can control

the balance between the exploration and exploitation of the game tree.

The objective of the MCTS is to find the best strategy possible by following

these four steps:

1. Selection step: the game tree is traversed from root to one of its leaf

nodes. During this step we can control the balance between exploration

and exploitation by deciding to explore a node with low current value,

and which has not been very visited.

2. Expansion step: a new node is added to the game tree.

3. Simulation step: all moves are played until the end of the game from

that new node.

4. Back-propagation step: the results from the simulation are propagated
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until the added node.

This trade-off between exploration and exploitation has proven to be use-

ful in Multi-Armed Bandit problems (Robbins, 1952), where a player wants to

maximize his reward by choosing one of the multiple arms of a gambling device.

Boltzmann exploration is also used as bandit strategy in order to avoid the

lookahead-pathology, and shows competitive results (Kocsis and Szepesvári,

2006). Furthermore, the bandit based method from Coquelin and Munos

(2007) performs efficient “cuts” of sub-optimal branches with high confidence,

by allowing to control this trade-off.

Chatriot et al. (2008) propose the application to the game of Go of a bandit

technique which biases the exploration of the tree in order to find the most

suitable strategy to be explored according to previous information (such as the

number of times a state has been explored, or the number of times that it led

to a victory). Yet, most of these techniques eventually find an optimal policy

and stop exploring the graph, therefore loosing their stochastic behavior. On

the other hand, John (1994) proposes a reinforcement learning technique which

continually explores the graph. However, the convergence to the optimal policy

can no longer be proved.

In summary, the Rminimax contributions are:

1. to model non-rational players,

2. to control the strength of a player,

3. to avoid the total predictability of a player.

4.5 Simulations

In order to illustrate the proposed method, systematic simulations on two-

player zero-sum games have been performed. Two common well-known games

such as Tic-Tac-Toe and Connect-4 are tested.
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The Tic-Tac-Toe is a popular game that takes place on an horizontal 3× 3

grid where two players position a token (circle or cross) alternatively. The aim

of the game is to be the first to place 3 consecutive tokens in a row, column or

diagonal. The aim of the Connect-4 game is similar, although the grid is 4×4,

and it is placed in a vertical position where the players drop their colored discs

alternatively, letting the bottom rows be filled first. We have chosen these two

games, as they are well-known but represent a different degree of difficulty

and search space. We did not want to tackle chess, as this is a highly complex

game – whose simulation would have taken longer – for illustration purposes,

but it could have been possible.

Game trees for both games have been generated with both the MINIMAX

as well as the alpha-beta (AB) algorithm. Two AI opponents have been simu-

lated, each with a different strength, θi, for testing the behavior of our method

when confronting different heterogeneous players. The simulation methodol-

ogy is as follows:

1. The game tree for the current node, k, is computed with the MINIMAX

algorithm:

1.1. the tree can be either fully generated, or limited to a 5-ply lookahead

(depth = 5)3.

1.2. the tree can be be pruned with the alpha-beta algorithm.

2. A reward is assigned to each transition to a winning node. Cost are

computed as follows:

2.1. in the case of a full game tree, lower costs are assigned to winning

nodes and higher ones to losing nodes. Tie nodes are assigned a

value between those of winning and losing nodes.

2.2. in the case of a 5-ply lookahead, the heuristic described in Section

4.5.2 is used.

3It must be noted that, at this stage, any of the previously explained techniques for
reducing the search space could be applied (transposition tables, pruning techniques, etc.).
However, only the case of pruning is showed here, as our purpose is merely illustrative.
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2.3. all other internal arcs are assigned a cost of ckk′ = 1 so that short-

winning paths will be preferred to long-winning paths. It is the

length of the path and the final transitions’ costs that matter when

choosing a certain strategy.

3. For both players, apply the Rminimax algorithm as described in Algo-

rithm 8 with strength θi for player i. This allows to compute the biased

transition probabilities.

4. Choose the next state k′ among all successor of k with probability pkk′ .

5. If k′ is a winning/losing end-game state, the result is increased/decreased

by one unit according to the winner and a new game is started. Otherwise

it is the next player’s turn and return to step 1.

This whole procedure is repeated 100 times (different runs) and returns a

result r which takes its values in r ∈ [−100, 100], which indicates the number

of victories of both players. If r > 0, player π1 has |r| out of 100 victories

over π2. Otherwise, the winner will be π2 with |r| victories out of 100, and

r = 0 represents result parity. We report numbers of victories, as it is easy to

correlate them with the strength of the player, i.e., θ.

Please note that the values of θ have been chosen in a logarithmic scale

so to investigate the influence of the parameter in the performance of players

(similar values of θ were not representative enough).

4.5.1 Rminimax with full game tree

For getting a better insight about Rminimax’s behavior, it is first applied to

Tic-Tac-Toe on the full game tree generated by the MINIMAX algorithm. In

order to visualize the performance of our method when two players of different

strengths interact, 100 runs have been performed between two players of vary-

ing strength θ. According to our simulation methodology stated above, the

performance of both players is recorded when applying the Rminimax. Tested
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values of θ are θ1 = θ2 = {0.1, 0.5, 1, 5, 10}. The resulting curves are shown in

Figure 4.8.

As it can be observed, all curves have a similar shape but start at different

levels. This can be translated into a high resemblance in the behavior of the AI

players: when θ1 >> θ2, player 1 wins, while for θ1 << θ2, it is player 2 who

leads the game. Such behavior fulfills what we expected as for θ → ∞, the

entropy is 0 and thus the player chooses an optimal strategy and vice versa.

In the case of θ =∞, the game reduces to the MINIMAX strategy. The level

at which a curve begins depends on the difference between both θ’s.

On the other hand, the slope of the curves reflect the effect of the relative

advantage of π1 over π2. Indeed, π1 always moves first, and it has an advantage

over π2. This can be observed in Figure 4.8 where a lower slope is shown for

low values of θ2 for π2.

4.5.2 Rminimax with 5-ply lookahead and heuristics

Another frequent tool used in AI are heuristics and evaluation functions (see,

e.g., Russell and Norvig (2003)). The performance of our method when using a

partial game tree combined with the use of heuristics is studied in this section.

In this experiment, the investigated game is Connect-4.

As generating the full game tree would be computationally expensive, a

5-ply lookahead method is here implemented and combined with the use of

a heuristic function for scoring the final transitions. The applied heuristic

is the one proposed by Stenmark (2005), and corresponds to the sum of two

quantities: the number of winning lines that may still be done for each following

move, plus a fixed quantity which corresponds to the goodness of the empty

positions which are left (some positions are more versatile than others). Tested

values of θ are θ1 = {0.01, 0.1, 0.7, 10} and θ2 = {0.01, 0.1, 0.5, 1, 2, 5, 10}.
Results are shown in Figure 4.9.

These resulting curves and the ones of the previous section are alike. Yet,

as the game tree is limited to a certain depth and Connect-4 has a wider set of

initial positions than Tic-Tac-Toe, the relative advantage of π1 is not as clear
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as in the former case. Indeed, for observing the same effect, significantly lower

values of θ are needed (than those of the Tic-Tac-Toe).

4.5.3 Rminimax with 5-ply lookahead and alpha-beta

pruning

For this simulation, a partial game tree of depth 5 has been generated for the

game of Connect-4. This time, a pruning algorithm reducing the search space

is applied. The objective is to observe the behavior of theRminimax algorithm

combined with a technique which reduces not only the depth of the tree, but

also the search space. Tested values of θ are θ1 = {0.01, 0.1, 0.3, 0.7, 10} and

θ2 = {0.1, 0.2, 0.5, 1, 2, 5, 10}. Results are shown in Figure 4.10.

These results are consistent with those of previous sections. However, in

this case, the relative advantage of π1 is even smaller. In contrast to the former

case, a smaller θ2 allows π2 winning as θ1 decreases. This is due to the pruning

of the alpha-beta, as it restrains the set of explored branches.

4.5.4 Comparison with ε-greedy

Although theRminimax is proved to be optimal for a fixed entropy, this section

illustrates its optimality when compared with other popular bounded-rational

algorithm: the ε-greedy (Sutton and Barto, 1998).

In order to illustrate the behavior of both algorithms, two game trees have

been used (see Figures 4.11 and 4.12). As the ε-greedy algorithm makes local

decisions (at a state level) and the Rminimax makes strategic decisions (at a

path level), a fixed entropy for both algorithms has been fixed on the tree, so

that the expectation of the cost can be compared under similar conditions.

In order to estimate both θ̂ and ε̂, a binary search algorithm has been used

as follows:

1. The value of the entropy over the tree H0 is fixed.
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2. Two initial values of θ (or ε) are used to compute the probabilities of the

different paths or strategies, ℘, of the tree (see Algorithm 8).

3. The obtained entropy of the tree Ht is computed thanks to Equation 1.4.

4. If the obtained Ht = H0 we consider the value of θ as θ̂ (or respectively

ε).

5. Otherwise we apply the binary search and continue searching on a sub-

interval of the initial values until Ht = H0.

Table 4.2 shows the result of this experiment for the tree from Figure

4.11 with utility values {1, 2, 98, 99, 100}. Each arc is supposed to have a

unit cost ckk′ = 1. For different levels of the entropy (the constraint of our

optimization problem), parameters are estimated (θ̂ and ε̂), letting us compute

the expected cost (the quantity to optimize) when following a Rminimax or

ε-greedy strategy.

The implemented Rminimax corresponds with Algorithm 8, and the im-

plementation of the ε-greedy combines the typical ε-greedy4 for π1 (odd levels)

with a standard MINIMAX for π2 (even-levels). The same experiment has

been repeated with the tree from Figure 4.12 with utility values {1, 2, 3, 4, 5}
in order to analyze the impact of the chosen utility values on the comparison

between both algorithms. Results are presented in Table 4.3.

Results show that the expected cost in the case of the Rminimax is always

below those values for the ε-greedy regardless of the utility values. This be-

havior was expected, as the Rminimax is indeed optimal for a given entropy.

It must also be noted that the more they differ the utility values, i.e., the qual-

ity of the goals, the bigger the difference between the expected cost of both

algorithms.

4Let us remind that ε-greedy takes the optimal action with probability (ε/n) and other
actions with probability (1-ε)/m, where n is the number of optimal actions, and m is the
number of non-optimal actions.
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H θ̂ E[C]Rminimax ε̂ E[C]ε−greedy

1.0 0.4469 1.9000 0.6679 12.5116
0.9 0.6397 1.7150 0.7187 10.7515
0.8 0.7984 1.5766 0.7665 9.0930
0.7 0.9474 1.4624 0.8080 7.6545
0.6 1.0987 1.3636 0.8456 6.3514
0.5 1.2574 1.2785 0.8798 5.1667
0.4 1.4356 1.2035 0.9106 4.1005
0.3 1.6456 1.1385 0.9384 3.1359
0.2 1.9239 1.0818 0.9628 2.2897
0.1 2.3634 1.0348 0.9838 1.5619

Table 4.2: Comparison of Rminimax and ε-greedy algorithms on the tree from
Figure 4.11 for different levels of entropy H. Parameter estimations (θ̂ and ε̂)
as well as the expected costs are reported.

4.6 Conclusion

In this chapter we have presented a randomized version of the MINIMAX

algorithm which turns a zero-sum perfect-information two-player game into a

non-deterministic game adapted to the player’s level. By using the randomized

shortest-path framework, it is not only able to compute the probabilities of

each play through dynamic programming techniques, but also to optimally

vary the strength of the AI by adjusting the entropy through the θ parameter.

There is a clear relation between theRminimax algorithm and mixed strategies

in game theory and the methods used in reinforcement learning. Yet these

methods provide either a stochastic behavior at a local level (mixed strategies,

reinforcement learning), or they provide a global stochastic behavior at a global

level (reinforcement learning with online learning ) but fail to produce an

optimal policy.

The presented method provides a global optimal strategy (for the depth

of the computed game tree) given a level of entropy, while still simulating a

stochastic behavior and following an optimal policy (for a degree of entropy

θ) at the same complexity than simpler techniques (such as ε-greedy, or local
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H θ̂ E[C]Rminimax ε̂ E[C]ε−greedy

1.0 0.6349 1.8311 0.6679 1.9962
0.9 0.7496 1.6877 0.7187 1.8439
0.8 0.8692 1.5628 0.7665 1.7004
0.7 0.9937 1.4550 0.8080 1.5759
0.6 1.1280 1.3601 0.8456 1.4631
0.5 1.2745 1.2773 0.8798 1.3606
0.4 1.4454 1.2031 0.9106 1.2683
0.3 1.6505 1.1385 0.9384 1.1848
0.2 1.9239 1.0821 0.9628 1.1116
0.1 2.3634 1.0348 0.9838 1.0486

Table 4.3: Comparison of Rminimax and ε-greedy algorithms on the tree from
Figure 4.12 for different levels of entropy H. Parameter estimations (θ̂ and ε̂)
as well as the expected costs are reported.

Boltzmann exploration). Furthermore, the computation time is equivalent to

the one of the MINIMAX algorithm.

The main drawback of this method is that paths are assumed to be uncor-

related and the opponent is assumed to be fully rational, both of which are

not realistic for some problems.

Simulation experiments have led to the conclusion that the Rminimax al-

gorithm behaves as expected. The compound of the Rminimax with pruning

techniques, as well as techniques for reducing the search space, has demon-

strated to be effective.

Future work will focus on four main areas: (i) investigating the extension

of the Rminimax to multi-player games as well as online or dynamic games,

(ii) to the estimation of a real player’s θ parameter in order to mimic users’

behavior and follow a similar learning curve, (iii) applying this framework to

nested Monte-Carlo search techniques, and (iv) applying the RSP framework

to Markov decision problems.
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Figure 4.8: Resulting curves for the Rminimax algorithm for Tic-Tac-Toe.
The algorithm is applied to the full game tree generated by the MINIMAX
algorithm. The horizontal axis represents the variation of θ1 for player π1

while the vertical axis shows the number of victories of π1 over π2, out of 100
games. Each curve corresponds to a value of θ2 for player π2 with its 95%
confidence intervals. The significant distance between curves is caused by the
relative advantage of π1 which always moves first. In a game with a limited
space state like Tic-Tac-Toe, this difference is more marked than in games with
broader space states, such as Connect-4.
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Figure 4.9: Resulting curves for the Rminimax algorithm applied to the game
Connect-4. The algorithm is applied to a game tree of depth 5 generated
by the MINIMAX algorithm, combined with heuristics. The horizontal axis
represents the variation of θ1 for player π1 while the vertical axis shows the
number of victories of π1 over π2, out of 100 games. Each curve corresponds
to a value of θ2 for player π2.
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Figure 4.10: Resulting curves for theRminimax algorithm applied to the game
Connect-4. The algorithm is applied to a game tree of depth 5 generated by the
alpha-beta algorithm combined with heuristics. The horizontal axis represents
the variation of θ1 for player π1 while the vertical axis shows the number of
victories of π1 over π2, out of 100 games. Each curve corresponds to a value
of θ2 for player π2.
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Figure 4.11: Game tree of depth 2 composed by eleven nodes for comparison
between theRminimax and the ε-greedy. Leaf nodes contain the utility values.
π1 plays MIN and π2 plays MAX.

Figure 4.12: Game tree of depth 2 composed by eleven nodes for comparison
between theRminimax and the ε-greedy. Leaf nodes contain the utility values.
π1 plays MIN and π2 plays MAX.
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Chapter 5

A simple-cycles weighted kernel

for music retrieval
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The objective of this chapter is to exploit the cycles in a song’s chord

sequence. Indeed, we can consider the chord sequence of a song as a graph,

where the natural repetitions in popular music are represented as cyclic motifs.

These motifs are extracted and used in a novel Music Information Retrieval

(MIR) system, which finds the songs whose harmonic sequence is closest to

the queried song.
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Let us take as example the sequence of chords from “Paradise” of Coldplay,

as shown in Figure 5.1. The first thing we notice, is that there is a high level

of repetition of chords, e.g., “Gm, F, Dm, C”. If we build the graph made

of all chord transitions, we will obtain the graph from Figure 5.2, where the

sequence “Gm, F, Dm, C” is marked in orange, and the other two frequent

chord sequences are marked in green and pink.

The first advantage of representing the chord sequence as a graph, is to

offer a much more simplified and compressed representation of the song.

When transcribing a song in chord sequences, many people provide a partial

representation, by omitting repetitions of the same sequence. The second

advantage of using graphs, is to provide a common representation for versions

of the same song, even if some portions are missing (as long as the main

repeated sequences are presented once).

Furthermore, we know that many songs share similar chord subsequences,

and a number of methods for extracting them is available. These repeated

subsequences are also called simple cycles of a graph.

Motif extraction on graphs has attracted a lot of attention in the past years,

e.g.,in community detection (Arenas et al., 2008), or in graph comparison

(Horváth et al., 2004). A motif is formally defined in Arenas et al. (2008) as

a connected undirected sub-graph (or weakly connected directed sub-graph)

which appears frequently in a graph showing some kind of structure. Examples

of motifs are cliques, paths, cycles, or sub-trees. The method presented in this

chapter relies on the concept of cycle as a motif for similarity detection between

graphs (isomorphism). By transforming the chord sequences into graphs, and

comparing their simple cycles, we obtain a similarity measure based on the

musical motifs of a song (see Section 5.6.1 for a more precise description).

The fourth advantage comes from music perception: since the beginning of

the 15th century, motivic elements have made part of Western music, becoming

common practice during the 18th century. We can find numerous examples of

this phenomenon nowadays in modern pop/rock music which contain repetitive

sub-structures, e.g., the chorus, verse, etc. According to Deliège et al. (1996),
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Figure 5.1: Extract of chord sequence of “Paradise” from Coldplay (http:
//tabs.ultimate-guitar.com/c/coldplay/paradise_crd.htm).

such repetitive structures, or motifs, act as cues in music perception. “A cue

is a very restricted entity ... often shorter than the group itself, but always

embodying striking attributes”. This notion of cue, would let a listener encode
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Figure 5.2: Simple cycles extracted from “Paradise” of Coldplay (http://tabs.
ultimate-guitar.com/c/coldplay/paradise_crd.htm).

information in a more efficient way, allowing longer structures to be memorized

by means of smaller, more salient, features.

Although motifs can be found in a song’s harmony or melody, in this Chap-

ter we focus on harmonic motifs for three reasons:

1. many songs share a part of their harmonic structure, as the number of

chord progressions that are popular in a musical style (idioms) remain

limited, while the melodic structure can vary greatly from one song to

another;

2. studies in experimental psychology have shown the essential role of har-

mony in musical sequence perception (Drake, 1998);

3. although the amount of chord progression data is increasing thanks to

chord estimation algorithms (see e.g.,Papadopoulos and Peeters (2011))

and user-generated data (which is readily available from the web), few

efforts have been put on harmony-based similarity measures.

On the other hand, human listeners, due to their musical background, are

more susceptible to like songs with a familiar harmonic structure, but yet

different enough from the songs they already know (Paulus et al., 2010)1. We

believe, thus, that comparing songs thanks to their harmonic motifs would

1This is explained by Pachet (1999) as ‘the compromise between the repetition and the
surprise” in the expectation of a human listener.
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yield in a similarity measure that takes into account its repetitive harmonic

sub-structures.

The technique presented in this chapter, unlike the previous ones,

is not based on the RSP framework. Although Approximate String

Matching techniques, like the SoP distances from Chapter 2, have already

been extensively applied in melody comparison, we will not apply them in this

chapter. The reason behind this decision is that harmonic sequences have a

slightly different rationale than melodic ones. This makes sense, as melodic

sentences can be repeated, but slight variations are often introduced.

On the other hand, harmony is articulated into short fundamental sentences

which a high degree of repetition. This is the case, at least, of most of the

commercial pop and rock music studied here (please note that more complex

songs like the ones found in other styles like jazz, deserve further study as they

may present much more complex harmonic structure).

Keeping the structure of harmonic sequences in mind, it seemed more nat-

ural to try to gather these repeated short sequences, which rarely vary, and use

them for comparison. The technique presented in this chapter allows efficiently

retrieving these short sequences, by performing an initial transformation from

the harmonic sequence into a graph structure which serves as basis for the

extraction.

The research question of this chapter is to investigate how to build a

robust Music Information Retrieval system based on chord progressions and

its relative performance regarding other string distances.

Main contributions

The contributions of the method presented in this chapter are as follows:

1. It is based on the repetitive harmonic features of songs (which can

be easily extracted from web resources, as done in the present work).

2. The similarity measure deals with large structural changes in chord

progression (e.g., addition of repetitions, bridge, etc.).

3. The similarity matrix can be extracted by means of kernel functions.
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5.1. KERNELS IN DATA MINING AND MACHINE LEARNING

4. The similarity is transposition invariant (the intervals between chords

are used, instead of the chords themselves).

5. We provide a simple, general, methodology for computing similar-

ities from chord progressions (from the text mining step to acquire the

data, to the automatic classification step with an SVM).

6. We exploit a novel source of user-generated data that is readily

available on the Internet (in form of guitar chord progressions).

7. Empirical tests show that music similarity retrieval can be performed

solely on the basis of chords.

5.1 Kernels in data mining and machine learn-

ing

In this section we introduce the kernel methods, which are the basis for the

technique we present on this chapter. We show how to apply a kernel based on

cyclic motifs on a graph as a means to compute a similarity measure between

two graphs. The advantage of kernel methods is that they are efficient, ro-

bust, and statistically stable. The foundation of these methods is thoroughly

presented in the work of Gärtner (2009); Shawe-Taylor and Cristianini (2004);

Schölkopf and Smola (2002).

5.1.1 Basic notions of kernels

As explained by Shawe-Taylor and Cristianini (2004), the main idea behind

kernel methods is that the observations we use as input data may not be

linearly separable in their original input space. To overcome this issue, the

data is projected into a new feature space, normally of higher dimension than

the input space, where a linear separator, or hyper-plane, could be applied.

Let us illustrate this idea with a simple example: let us suppose we need to

separate the data from Figure 5.3 in a two-dimensional space (the input space);
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it is obvious from its representation that there is no linear separator in the

2-dimensional space that can solve this problem, i.e., separating observations

from class A (in pink) and class B (in blue). Let us now map these observations

into a higher dimensional space, the feature space, where there is an obvious

hyper-plane that can linearly separate both classes (see Figure 5.4). This shows

that increasing the dimensionality of the feature space could be a good way of

achieving linear separability. Furthermore, thanks to the extensive research on

the field of detecting linear relations, we have algorithms that are both efficient

and well understood.

There is, however, a shortcoming of working with this new feature space:

working with higher dimensional representations of linear patterns can be com-

putationally expensive. Moreover, the mapping from the input space to the

feature space could be difficult to compute in closed form. For this reason there

is a computational shortcut that is known as the kernel trick. This kernel trick

is a way of mapping the original observations into a higher dimensional space

(inner product space) without computing this mapping explicitly, by means of

a kernel function.

Shawe-Taylor and Cristianini (2004) summarize all kernel methods to the

following three components, although their purpose and individual components

may vary from one application to another:

1. A mapping φ of the data from the input space, x, into some meaningful,

application-dependent, feature space, F . The feature space allow us to

find linear relations of the input data:

φ : x→ φ(x) ∈ F (5.1)

2. An inner product defined in the feature space, φ(x), so that there is no

need for computing the coordinates of embedded points. The matrix

containing the inner product of all pairs of observation is the kernel

matrix, K, (a positive semidefinite matrix of similarities). We assume

that the kernel matrix can be computed efficiently thanks to the kernel
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Figure 5.3: Example of a non-linear pattern in a 2-dimensional space. There
are two classes of observations marked in pink and blue.

function:

k(x,y) = 〈φ(x), φ(y)〉 (5.2)

3. A learning algorithm for discovering patterns in that space, e.g., support

vector machines, kernel principal component analysis, kernel k-means,

etc. All these methods are based on the kernel matrix.

One interesting property of kernel functions is that, although the feature

space may have infinite dimension (the number of possible cycles, in our case),

it is often possible to compute them in polynomial time thanks to the kernel

trick.
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Figure 5.4: The same non-linear pattern in the 2D space projected in a 3-
dimensional space. This example illustrates how the projection in a higher
dimensional space can help the finding of a linear separator. In this case it
would be the hyper-plane parallel to both sets of observations.

5.1.2 The Gram matrix

Shawe-Taylor and Cristianini (2004) present the example of linear regression

in an input space to illustrate the concept of Gram matrix and primal and

dual solutions. In linear regression we would like to find the real-valued linear

function that best approximates a set of training points:

g(x) = 〈w,x〉 =
n∑
i=1

wixi (5.3)
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where the training set contains l pairs of observations xi ∈ Rn and their output

yi ∈ R, S = {(x1, y1), ..., (xl, yl)} (where xi is a column vector). The form of

linear regression presented in Equation (5.3) is known as the primal solution,

where the weight vector, w, is explicitly computed. Let us now assume that

the weights are presented as a linear combination of the input vectors, where

w =
∑l

i=1 αixi = XTα. In this case, the regression equation becomes

g(x) = 〈w,x〉 =
l∑

i=1

αi〈xi,x〉 (5.4)

Equation (5.4) corresponds to the dual solution for regression, where α contains

the dual variables. The main difference between both solutions, is that in

the dual solution the information from the input data is given by their inner

products. The matrix containing these inner products is called Gram matrix or

Kernel matrix, K = XXT , which contains the evaluation of the kernel function

on all pairs of data points.

It must be noted that in order to solve the dual equation, we need to solve a

system of size l, as the dimension of K is l× l. This may be more efficient than

solving the system from Equation (5.3), as long as l, the number of training

examples is higher than n, the dimension of the space. The drawback of the

dual solution is that in order to evaluate the predictive function, the cost is

O(nl) compared to the O(n) cost of the primal function.

5.1.3 Properties of kernels

Apart from the above-mentioned properties of efficiency, and statistical sta-

bility, kernel methods enjoy some other properties presented in this section,

ranging from the mathematical basis to the construction of new kernels (Shawe-

Taylor and Cristianini (2004)).

Kernel matrices are positive semidefinite. In order for a matrix to

be a kernel it has to fill the condition of being positive semidefinite since it is

defined as an inner product, or Gram matrix. In other words, all its eigenvalues
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are non-negative. Formally, a matrix A is positive semidefinite if and only if

v′Av ≥ 0 ∀v (5.5)

This is the case for kernels as stated in the following proof from Shawe-Taylor

and Cristianini (2004) using the Gram matrix:

v′Kv =
l∑

ij=1

vivjKij (5.6)

=
l∑

ij=1

vivj〈φ(xi), φ(xj)〉 (5.7)

=

〈 l∑
i=1

viφ(xi),
l∑

j=1

vjφ(xj)

〉
(5.8)

=

∣∣∣∣∣∣∣∣ l∑
i=1

viφ(xi)

∣∣∣∣∣∣∣∣2 ≥ 0 (5.9)

(5.10)

Now that we know the intution of what is a kernel, we can create new com-

plex kernels by combining with basic operations simpler kernels. Let

us suppose that we want to improve an existing kernel, or add extra infor-

mation by combining two different kernels. For achieving this, we define the

operations that can be applied to kernels, without loss of the positive semidefi-

nite property. In other words, we can consider that the class of kernel functions

is closed under the following operations (Shawe-Taylor and Cristianini (2004)):

1. k(x, z) = k1(x, z)+k2(x, z) where k1 and k2 are kernel functions over Rn

2. k(x, z) = ak1(x, z) where a is a real value

3. k(x, z) = k1(x, z)k2(x, z)

4. k(x, z) = f(x)f(z) where f(·) is a real-valued function

5. k(x, z) = k3(φ(x), φ(z)) where k3 is a kernel function over Rm
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6. k(x, z) = x′Bz where B is a symmetric positive semidefinite n×n matrix

Chapter 5 shows how to produce a normalized weighted kernel for simple

cycles by using some of these basic operations.

5.2 Information Retrieval

This section is an introduction to the basic concepts of Information Retrieval

(IR) systems (Baeza-Yates and Ribeiro-Neto, 2011; Manning et al., 2008). We

have applied these principles to build a prototype IR system with the data

presented in this chapter. Although the IR system presented in this work is of

much smaller scale, the same principles can be applied.

5.2.1 Basic notions of Information Retrieval

As described by Baeza-Yates and Ribeiro-Neto (2011), an information retrieval

model is a quadruple [D,Q, F, R(qi, dj)] where:

• D is a set of representations of documents in a collection. Please note

that a document in this context is any piece of information that we want

to retrieve. In our case, a document is the chord sequence of a song.

• Q is a set of representations of user queries. The queries represent the

information that users wish to retrieve. In our case, the query retrieves

all similar songs to a given one.

• F is a framework that models both document representations, and query

representations. Furthermore, it establishes the relationship between

both, e.g., vectors, linear algebra operations, probability distributions,

etc.

• R(qi, dj) represents the ranking function that assigns a value to each

resulting document dj ∈ D when performing query qi ∈ Q. This value is

used for sorting the result set of documents by relevance.
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Figure 5.5: Information Retrieval process example with one query and three
documents.

As shown, the main purpose of such systems is to retrieve the most relevant

collection of documents to a given user query. Figure 5.5 summarizes the steps

of an Information Retrieval system. We briefly explain in the next section the

different kinds of IR systems, their advantages, and drawbacks.

5.2.2 Types of IR systems

As mentioned by Moens (2006) we can classify IR systems depending on the

way users search for information, i.e., (i) key term search, (ii) question answer-

ing, and (iii) query by example. Key term search is a very popular paradigm

of querying, where the user provides some input keywords which are matched

against the document collection. These systems can be further extended by
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adding word disambiguation (e.g., “windows” can both refer to the window in

a building, or to the OS Windows) and concept search (a more refined method

which takes into account the semantics of the queried keywords and phrases).

Question answering, on the other hand, tries to provide an answer to a

natural language question, e.g.,“What is the procedure to obtain a resident

card in Belgium?”. The objective here is to find this information from the

document collection, or at least to extract the paragraphs that are useful and

rank them by relevance. These complex systems are based on Information

Extraction (IE) techniques and reasoning.

A different search paradigm is given by the query by example, very popular

in multimedia IR systems, where users cannot describe accurately the query

they want to make. Instead, they will provide an example, e.g., a musical piece

or an image, and let the system retrieve the most similar cases.

Another approach is presented by Baeza-Yates and Ribeiro-Neto (2011),

who classify IR systems according to the type of document they try to re-

trieve, i.e., multimedia, web sites, and text documents. Multimedia retrieval,

as mentioned before, focuses on searching images, audio and video over a cor-

pus of documents. These retrieval techniques comprise a series of steps to

transform the signal into an intermediate representation which can be easily

queried. In the case of web retrieval, text only is not enough to be able to

classify a website. For this reason, the use of link information between docu-

ments is frequently used as part of the model. The most well-known models

are Page-Rank from Page et al. (1999), Hubs & Authorities by Ding and He

(2004), and the work from Kleinberg (1999).

On the other hand, text document retrieval searches documents whose text

matches a given query, which is usually encoded as a set of keywords, a sen-

tence, or a combination of both. This subject has been the objective of exten-

sive research, and it is the field where we find the largest number of IR models.

These models can refer to either semi-structured text or unstructured text. In

the first category, specific parts of the document such as the title and sections

are used. These parts contain unstructured text, but they are organized par-

tially. These models include the XML-based indexing methods, and proximal
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nodes (see, e.g., Baeza-Yates and Ribeiro-Neto (2011) for more details).

In the second category of text-based models, text is represented as a se-

quence of words, a series of keywords, or a combination of both. There are

three basic types of models for unstructured text retrieval:

1. The Boolean model, where documents and queries are expressed as in-

dexed terms or words. These models are based on set theory.

2. The Probabilistic model, where documents and queries are represented

by probability distributions. We say that these models are probabilistic.

3. The Vector model, where documents and queries are represented by vec-

tors in a high dimensional space. These models are algebraic.

Let us now present further these three models, their main characteristics,

and advantages.

5.2.3 The Boolean model

The Boolean model (Baeza-Yates and Ribeiro-Neto, 2011) is based on set the-

ory and Boolean algebra. This model is very simple, intuitive, but also very

limited. Let us illustrate this model with an example, but first some concepts

need to be defined:

• Index terms: these are the words that appear in a document, although

it can also be a group of words. The set of all terms is our vocabulary

V = {k1, k2, ..., kt}.

• Document representation: once our vocabulary is defined, we can define

a document or a query as a vector with 1 in the position of a contained

term, and 0 in the remaining positions. E.g., di = [0, 1, 1, 0] means that

only the second and third terms of our vocabulary of size four occur in

the document i.
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• The term-document matrix: this matrix contains one row per word in the

vocabulary, and one column per document in the collection. Its entries

fij represents the frequency of term ki in document dj.

The above definitions apply to all models. However, there are other ele-

ments which are specific to the Boolean model. In this case, the query rep-

resentation is a Boolean expression on index terms, e.g., q = [k3 ∧ (k1 ∨ k2)].

Furthermore, the similarity function is defined as

sim(dj, q) =

1 if dj satisfies query q

0 otherwise
(5.11)

Table 5.1 presents an example of the Boolean model with its main elements.

Vocabulary V = {cat, dog, animal}.
Documents d1 = [1, 0, 1],d2 = [0, 1, 1],d3 = [0, 0, 0],d4 = [1, 1, 1]
Query q = [k3 ∧ (k1 ∨ k2)] = [animal ∧ (cat ∨ dog)]

Term-document matrix

1 0 0 1
0 1 0 1
1 1 0 1


Similarities sim(d1, q) = 1, sim(d2, q) = 1,

sim(d3, q) = 0, sim(d4, q) = 1

Table 5.1: Boolean model example with a vocabulary of size 3, a collection of
4 documents, and a query. The query tries to identify the documents which
contain term k3 and at least one of the k1 or k2 terms.

The reader may remark that there is no notion of partial match in this

similarity function. Indeed, in the Boolean model, a document can be either

relevant or non-relevant, being no intermediate classification in between. This

way of ranking documents is quite poor, as it retrieves a very large number of

documents or too few of them. For this reason, term weighting was introduced

by Jones (1972) and Salton and Yang (1973) as a clear improvement to this

basic model, as explained below.
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We associate to each term ki in a document dj a weighting element, wij,

that allows defining the relevance of the term. Words appearing in a restricted

number of documents are more meaningful, and therefore more relevant, than

words appearing in every document; the first having a higher weight than the

latter.

Other main improvements to this model are:

• The term-term correlations: it may happen that the appearance of a term

in a document increases the probability of appearance of related terms,

e.g., in a set of documents about computing, the terms “computer” and

“science” should be correlated and appear together. The association of

two terms ku and kv is computed as

cuv =
∑
dj∈D

wujwvj (5.12)

Although this improvement increases the relevance of the obtained rank-

ing, many IR systems prefer to simplify their computational cost by

assuming term independence.

• The TF-IDF weighting: this weighting method is the most popular

among IR systems and was introduced by Salton and Yang (1973). It

combines two elements: (i) the frequency of a term in the collection of

documents (TF), and (ii) the inverse document frequency (IDF). The

first element measures the frequency of a term in a document; thus, the

more frequent is a term in a document, the more relevant. The second

element measures the “rareness” of the term in the whole document col-

lection; thus, the rarer the term in the collection, the more relevant. The

TF-IDF for a term ki and a document dj can be computed as:

wij =

(1 + log fij)log
N

ni
if fij > 0

0 otherwise
(5.13)

where N is the number of documents in the collection, and ni is the
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number of documents where ki appears. This method works fine for

general collections, where no other information about term weights is

available.

• The document length normalization: because longer documents contain

more terms, they are also more likely to be retrieved by an IR system.

To avoid favoring long documents, some normalization is usually applied

(the document length is divided by its norm). The most common ap-

proach is to take the vector norm which considers a document to be a

vector of weighted terms:

|dj| =

√√√√ t∑
i=1

w2
ij (5.14)

where t is the total number of terms.

5.2.4 The Probabilistic model

The Probabilistic model (Manning et al., 2008) assumes that, given a certain

query, there exists a set of documents which are relevant to the query. It also

assumes that there is an underlying probability model based on the terms,

that could generate that set of documents. As the exact set of documents

is unknown, the probabilistic model estimates the probability distribution of

those terms based on an initial set of documents. The system includes all

feedback from users to improve its model, which becomes more and more

accurate.

This model, which was introduced by Robertson (1977), states that given a

query q and a document d, the probabilistic model estimates to which extent a

user will find the document relevant to the query. The similarity of a document

is defined as:

sim(d,q) =
P(d ∈ R|d,q)

P(d ∈ R|d,q)
(5.15)

where R represents our random variable of relevant documents, and R is its
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complement (the non-relevant ones). By applying Bayes’ rule we obtain:

sim(d,q) =
P(d ∈ R,q)P(d|d ∈ R,q)

P(d ∈ R,q)P(d|d ∈ R,q)
(5.16)

=
P(d ∈ R|q)P(d|d ∈ R,q)

P(d ∈ R|q)P(d|d ∈ R,q)
(5.17)

Since P(d ∈ R|q) and P(d ∈ R|q) are scaling factor common to the whole

document collection, we obtain:

sim(d,q) ∼ P(d|d ∈ R,q)

P(d|d ∈ R,q)
(5.18)

We can now express these equations in function of the terms ki in the

documents, and after some calculations and assuming independence between

terms (see, e.g., Baeza-Yates and Ribeiro-Neto (2011) for more details), we

obtain:

sim(dj,q) ∼
∑

ki∈q∧ki∈dj

log

(
P(ki|R,q)

1− P(ki|R,q)

)
+ log

(
1− P(ki|R,q)

P(ki|R,q)

)
(5.19)

Please note that although we are taking the log of the previous similarity,

this will not affect the ranking as the logarithm is a monotonic increasing

function.

However, there is a main issue for this method, as we do not have R initially.

In order to be able to compute the probabilities P(ki|R,q) and P(ki|R,q), let

us first introduce the Term Incidence Contingency Table from Robertson and

Jones (1976):

Relevant Non-relevant Total
Documents that contain ki ri ni − ri ni
Documents that do not contain ki R− ri N − ni − (R− ri) N − ni
All documents R N −R N

Table 5.2: Term Incidence Contingency Table.
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By using the information from the Contingency Table we can express the

probabilities as:

P(ki|R,q) =
ri
R

(5.20)

P(ki|R,q) =
ni − ri
N −R

(5.21)

We can assume, for now, that we do not have any estimations for ri, nor

R. The similarity measure then yields (for R = ri = 0):

sim(dj,q) ∼
∑

ki∈q∧ki∈dj

log

(
N − ni + 0.5

ni + 0.5

)
(5.22)

Let us illustrate this model with an example (see Table 5.3). It can be

observed that d2 is ranked higher, as the term it contains appears in only

one document, and is considered as more relevant than the common term in

d1 and d3. This can be considered as an IDF component, although no term

frequencies are taken into account.

Vocabulary V = {cat, dog, animal}.
Documents d1 = [0, 1, 1],d2 = [1, 0, 0],d3 = [0, 0, 1]
Query q = [1, 0, 1]

Term-document matrix

0 1 0
1 0 0
1 0 1


Similarities sim(d1,q) = log

(
3−2+0.5

2+0.5

)
= −0.5108

sim(d2,q) = log
(

3−1+0.5
1+0.5

)
= 0.5108

sim(d3,q) = log
(

3−2+0.5
2+0.5

)
= −0.5108

Table 5.3: Probabilistic model example with a vocabulary of size 3, a collection
of 3 documents, and a query. The query tries to identify the documents which
contain term k1 and k3.

This model assumes term independence, which is unrealistic, and it also

lacks document length normalization nor term frequencies. Several extensions

to this model exist to overcome the length normalization and term frequencies.

It is, however, a method that ranks documents according to their optimal
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probability of being relevant to the user query.

5.2.5 The Vector Space model

The last category of models is the Vector model, introduced by Salton et al.

(1975), and which takes advantage of the before mentioned improvements,

i.e., term weighting, document length normalization, etc. It proposes a model

with partial matching by considering a document as a vector, di, of weighted

terms in a t-dimensional space, and further defining the similarity between a

document and a query as the cosine of the angle between them. Usually, the

cosine similarity or inner product is used:

sim(dj,q) =
dj · q
‖dj‖‖q‖

=

∑t
i=1wijwiq√∑t

i=1w
2
ij

√∑t
i=1w

2
iq

(5.23)

By applying the vector norm, we already perform document length normaliza-

tion. Obviously, all improvements presented in the previous section, e.g., the

TF-IDF weighting scheme can be applied. As a last step, all documents are

sorted by their similarity with the query, providing a ranking of the document

collection.

Let us illustrate this model with an example. In Table 5.4 we use a simple

weighting which corresponds to the term frequencies.

The main advantages of this model are the improved ranking thanks to the

weighting of the terms, the possibility of partial matching, and the document

length normalization, at the cost of assuming term independence. It is agreed

that, for general collections, this is the best basic retrieval model. For this rea-

son, we apply this model category in the IR system from Chapter 5. However,

it makes the assumption that the terms on a document are uncorrelated, and

the term vectors are pair-wise orthogonal.
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Vocabulary V = {cat, dog, animal}.
Documents d1 = [2, 0, 1],d2 = [0, 2, 1],d3 = [0, 0, 1],d4 = [3, 1, 1]
Query q = [2, 1, 3]

Term-document matrix

2 0 0 3
0 2 0 1
1 1 1 1


Similarities sim(d1,q) = 0.8367, sim(d2,q) = 0.5976,

sim(d3,q) = 0.8018, sim(d4,q) = 0.8058

Table 5.4: Vector model example with a vocabulary of size 3, a collection of
4 documents, and a query. The query tries to identify the documents which
contain twice term k1, once term k2, and three times term k3.

5.3 Basic notions on tonality

This Section presents a brief introduction to tonality and harmony definitions

used in the remaining of the chapter for non-musician readers. Tonality is a

highly structured musical system in which pitches or chords are arranged by a

hierarchy of perceived relations, stabilities, and attractions.

A pitch in music refers to the frequency of a sound, determining whether

a sound is perceived as high or low. Although the pitch or frequency may

be equal in two songs, the perception of the pitch may differ, as studied by

psychoacoustics. We define a chord as multiple harmonic pitches that sound

simultaneously. The notion of harmonic pitches is defined by the differences

between frequencies, i.e., some frequency intervals are “harmonic” while others

are not. These intervals are quantified by the notion of tones or half-tones.

The pitch or chord with the greatest stability is called the tonic. If we

think about the scale of C major, “C, D, E, F, G, A, B, C”, we can observe

that:

• Each scale contains 8 notes, where the first note is repeated at the end.

A new scale can be constructed, e.g., by shifting one position.

• The first note is called tonic, as it is the note that resolves musical

tensions. In our example, that would be “C”. Another important note in
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the scale would be the dominant which corresponds to the 5th note of

the scale, i.e., “G”. We can build a triad chord by combining the tonic,

the dominant and the mediant “E”: “C-E-G”.

• The distance that separates two notes, or interval, can be either one

full tone, or a semi-tone. In a major scale, all notes are separated by an

interval of one tone, except the intervals between the 3rd and 4th note,

and the 7th and 8th note. If we take the major scale of “D”, we will need

to introduce alterations, i.e., flat [ and sharp ] to decrease or increase

respectively a semi-tone, so to preserve the intervals between notes: “D,

E, F], G, A, B, C], D”.

• The musical key of a song is the tonic of the song. e.g., if we have a

song where the most repeated chords are “C”, “G”, and “F”, where the

remaining chords have no alteration, we can infer with high probability

that the song is in the “C” major key. This process needs to compare

with all existing scales, and identifying the most important notes.

• Two different notes can have the same sound if their interval is zero, it is

what we call enharmonics, e.g., “B]” and “C”. These two notes sound

the same, as the interval between “B” and “C” is a semi-tone, and by

increasing a semi-tone “B” we reach the “C” sound. Other example is

“A[[” and “G”, where we decrease of one tone “A” until reaching the

“G” sound.

• All major scales are equivalent among them (same applies to other

types of scales), as the intervals between notes in the same position are

equal. This means that the scale of “C major” sounds exactly as the

scale of “D major”. Some composers prefer to use one or another scale

for practical purposes when playing guitar (some chords are more difficult

to play, or the sound is too low for a singing voice). However, it takes

a trained ear to distinguish between major scales. A normal person will

only hear the intervals of the song, i.e., how the tension is built, how

the phrase is released, etc. This phenomenon can be compared to speed
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(when constant, even if it has different values, it is not perceived) and

acceleration (which is what we perceive) in mechanical physics.

• We define the transposition of a song as shifting all chords of a song

one or several tones up or down. This means that, two songs can sound

equal, but be represented with a different set of chords. This will be

taken into account when comparing chord sequences.

5.4 Related work

Harmonic similarity has recently attracted the attention of the MIR (Music

Information Retrieval) community thanks to the improvement in chord esti-

mation techniques (Papadopoulos and Peeters, 2011), as well as the increase of

the available data. One of the advantages of harmonic similarity is its ability

to infer similar songs whose melodies differ. In this context, de Haas et al.

(2008) proposes an approach based on the Tonal Pitch Space (TPS) which

compares the change of chordal distance to the tonic over time. This local

distance is then used to build a step function that computes the global dis-

tance between two chord progressions by minimizing the non-overlapping area

of the two step functions. However, this method requires information about

the key of the piece and does not support structural changes (e.g., introduction

of repetitions).

We can also find techniques based on approximate string matching, such

as the one proposed by Hanna et al. (2009). This technique extracts the most

similar regions of the two chord sequences, and computes a distance based

on the number of simple operations (insertion, deletion, substitution) that

are needed to transform the first region into the second. This algorithm has

complexity O(nm) where n and m are the length of the sequences to compare,

and edition costs must be provided.

Generative models are the third type of harmony similarity techniques.

Such models assume that harmony variations occur according to an underlying

model. Pickens and Crawford (2002) propose to model chord transitions of a
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song by means of a nth-order Markovian model, which serves as basis for a

Kullback-Leibler scoring function. A generative model based on linguistics has

also been applied by de Haas et al. (2009). This harmony similarity method

is based on the assumption of a generative grammar of tonal harmony. By

applying a weighted version of this grammar, a unique parse tree representing

the chord sequence is obtained for each song – note that context free grammars

produce multiple ambiguous parse trees, thus a weighting of the rules is needed

to choose among all possibilities. In order to measure the similarity of a pair

of parse trees, the largest embeddable tree is extracted. However, its time

complexity is O(min(n,m)nm) and this technique may reject a sequence which

is considered as ungrammatical.

5.5 Cyclic patterns kernel

Cyclic patterns represent harmonic motifs in chord progressions. In order

to extract these motifs for music similarity, we rely upon the cyclic pattern

kernels from Horváth et al. (2004). This section presents the key concepts of

this technique which computes a kernel based on the set of cyclic and tree

patterns of a labelled graph.

5.5.1 Graphs and cycles

Let us first give some definitions concerning graphs and cycles. Let G =

(V,E, label) be a directed labelled graph defined as a finite set of vertices V ,

edges E ⊆ [V ]2, and their labels. The cardinalities of V and E are n and m,

respectively. We define a simple cycle on G as a sequence

C = {v0, v1}, {v1, v2}, ..., {vk−1, vk} (5.24)

where v0 = vk and all others vi 6= vj for every i, j (1 ≤ i ≤ j ≤ k). Although

a cycle may have several permutations, only one of them (and the same in all

cases) will be kept for our purposes. We can now define the set S(G) as the
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set of simple cycles of G, the set of unrestricted cyclic patterns (which are not

necessarily simple) as C(G), and its relation:

S(G) ⊂ C(G) (5.25)

Figure 5.6: Non-simple cycle.

In the example from Figure 5.6 we can see that node “F” is repeated in

the cycle marked in orange, and therefore it is not a simple cycle. The orange

cycle, however, is composed of two simple cycles: F-Dm-C-Gm and F-Bb.

Similarly, we can define the set of tree patterns, T (G), as:

T (G) = {T is a connected component of B(G)} (5.26)

where B is the set of bridges of G (see Horváth et al. (2004) for more details).

The method from Horváth et al. (2004) is based on these definitions, and finds

iteratively the simple cycles of a graph by adding a connected sub-component

at each step. These connected sub-components are connected thanks to the

bridges.

5.5.2 Cyclic patterns kernel function

A cyclic patterns kernel function is proposed by Horváth et al. (2004), which

takes two graphs as input, extracts their cyclic C(G) and tree patterns T (G)

and uses them to build a mapping ΦCP(G) into the feature space:

ΦCP(G) = f(C(G) ∪ T (G)) (5.27)
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The cyclic pattern kernel is defined as the set of all simple cycles and tree

patterns that appear in both graphs:

kCP(Gi, Gj) = |C(Gi) ∩ C(Gj)|+ |T (Gi) ∩ T (Gj)| (5.28)

However, the problem of computing cyclic pattern kernels is NP -hard. For

overcoming this issue, Horváth et al. (2004) restrict the set of cyclic patterns

to S(G), so that only simple cycles are computed (those cycles whose only

repeated nodes are the first and the last one). The advantage of simple cycles is

that they can be computed in polynomial time. The authors use the algorithm

from Read and Tarjan (1975), which extracts the simple cycles of a graph by

means of a depth-first search in time O(n+m(c+1)), where n is the number of

vertices, m is the number of edges, and c is the number of simple cycles. It is

important, thus, that there exists a bound (well-behaved data) on the number

of simple cycles for the sake of efficiency of the algorithm. As empirically

shown in Section 5.8.2 (see Figure 5.11), this is the case for our chord data.

Please note that, although the method from Horváth et al. (2004) computes

simple cycles and trees, we will use the simple cycles for our purpose.

Although this method relies on the technique proposed by Read and Tarjan

(1975) for finding these cycles, the method we have chosen because of simpler

implementation is the one of Ponstein (1966). This method computes the

self-avoiding paths based on the adjacency matrix of the graph, which are

equivalent to the simple cycles. The method of Ponstein (1966) is less efficient

than the one of Read and Tarjan (1975), but it has a simpler implementation.

5.6 Simple-cycles weighted kernel

In this section we present the proposed kernel, which is an extension of the

cyclic pattern kernels from Horváth et al. (2004) introduced in the previous

section. We propose to focus our kernel only on simple cycles which will

represent the repetitive harmonic sub-structure of a song. In order to favor

longer simple cycles, a weighted (normalized) version of the kernel will be
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computed.

5.6.1 Graph extraction

Chord sequences represent the harmonic progression of a song which may mod-

ulate over time, i.e., its key changes through time. This is an important issue

for the detection of harmonic similarities, as the transposed chords may not

coincide. In order to make our method transposition-invariant we will thus

convert the chord sequence into interval sequences, from which input graphs

will be extracted. As only structure matters for us, and not the “musical dis-

tance” between a pair of chords (in semi-tones), a label λi will be assigned to

each chord transition with the same “musical distance” (key invariant)23. For

example, the transition C → D#m will share the same label as F → G#m

and its enharmonic C → E[m, i.e.,

(C,D#m) = (C,E[m) = (F,G#m) = λk (5.29)

By sequentially reading the obtained interval sequence x = {λ1, λ2, ..., λ1, ..., λl},
we will extract a directed graph G (see Table 5.5) where each node represents

a chord transition or interval (n = |{λi}|), and each interval transition is rep-

resented by an edge (m = |{λi → λj}|).

5.6.2 Kernel function

Based on the algorithm from Horváth et al. (2004), we build a kernel which

takes any two interval graphs from the input space, extracts their simple cycles

to build a feature space, and computes a similarity as the weighted inner

product in the feature space. In our case, the mapping function Φ is defined

2For the sake of consistency we have not made the distinction between ascending or
descending intervals.

3Please note that the chord type (minor, major, diminished, etc.) is already incorporated
in the graph representation through the λ values, e.g., (Cdim,Am) = (Edim,C#m) = λk.
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Chords C,G,Am,F,C,G,F,C,G,Am,C,G,F,C,G,Am,...
Labels (C,G) = (F,C) = λ1 , (G,Am) = λ2

(Am,F ) = λ3 , (G,F ) = λ4 , (Am,C) = λ5

Intervals λ1, λ2, λ3, λ1, λ1, λ4, λ1, λ2, λ5, λ1, λ4, λ1, ...

Graph

Table 5.5: Transformation of an extract of the chord progression of “Let it be”
from The Beatles into an interval graph.

as a mapping to the set of all possible simple cycles of the graph

G→ ΦSC(G) = S(G) (5.30)

where the set S is represented in a vector space whose dimensions are indicating

the presence or absence of each element in the set. For a particular graph Gj,

its feature vector has entries [φ(Gj)]i which are equal to 1 if the simple cycle

with index i (denoted as cycle i in the sequel) is present in the graph and 0

otherwise. We then compute the kernel function as the weighted inner product

between the feature vectors (simple cycles vector) corresponding to the two

objects x and y:

k(x, y) = 〈φ(x), φ(y)〉W̃ = φ(x)TDφ(y) (5.31)
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Feature space

{(1,2,3),(1,4,5,3),(1,6,3),(4,5,7)}

Feature vectors

Φ(G1) =   { 1 , 1 , 0 , 0 }

Φ(G2) =   { 0 , 1 , 1 , 1 }

Simple cycles kernel

  k(G1,G2) = ⟨φ(G1), φ(G2)⟩ = 
(3·1·0 + 4·1·1 + 3·0·1 + 3·0·1)/13 

       =    4/13

Φ(Gi)

G1

G2

λ1

λ2 λ3

λ4

λ5

λ6

λ7λ1

λ3

λ4

λ5

Input space

⟨φ(G1), φ(G2)⟩

Figure 5.7: Computation of the simple-cycles weighted kernel on two initial
graphs, G1 and G2.

where D is the normalized diagonal weight matrix

[D]ii = dii =
wi∑

j∈S(Gk)∪S(Gl)
wj

(5.32)
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and wi is the length of the i-th cycle. The motivation for this weighting is to

favor longer cycles, so that two graphs sharing a long cycle are considered as

more similar as two graphs sharing one short cycle. Furthermore, the kernel

weights are normalized by dividing them by their sum. The complete procedure

is described in Algorithm 9 and an example on how to compute the weighted

kernel is given in Figure 5.7.

The complexity of this kernel is the same as for Horváth et al. (2004) when

using the approach from Read and Tarjan (1975), i.e., O(v + e(c + 1)) where

v is the number of vertices, e is the number of edges, and c is the number of

simple cycles.

The code of the simple-cycles weighted kernel is available at http://github.

com/silviagdiez/thesis.

Algorithm 9 Simple-cycles Weighted Kernel: computation of the kernel
matrix.
Input:
• maxL > 0: maximum length of extracted simple cycles.
• s1, ..., sr: list of chord sequences to be compared.

Output:
• K: the Simple-cycles Weighted Kernel matrix.

1. for k,l = 1 to r do
2. Transform chord sequences sk and sl into directed labeled graphs Gk

and Gl following the procedure from Table 5.5.
3. Extract all simple cycles of length < maxL, S(Gk) and S(Gl), from

Gk and Gl, with the algorithm described in Read and Tarjan (1975) or
Ponstein (1966).

4. Create the feature vectors, φ(Gk) and φ(Gl), of length |S(Gk) ∪ S(Gl)|,
whose entry [φ(Gk)]i = 1 if the i-th cycle is in S(Gk) and 0 otherwise.
Idem for φ(Gl).

5. For all the cycles of S(Gk)∪S(Gl), compute the corresponding elements
i of the diagonal matrix D from Equation (5.32).

6. Compute [K]kl = φ(Gk)
TDφ(Gl).

7. end for
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5.7. WEB MINING FOR CHORD DATA

5.7 Web mining for chord data

A complete Information Retrieval (IR) system (see Section 5.2 for more details)

has been developed and is presented in this section. In order to evaluate the

proposed method, we have built a web retrieval system which contains a web

crawler for mining chord data, as well as a model based on the Space Vector

model, as it applies the cyclic patterns kernel. This IR system belongs to the

query by example category, as users will provide a song, in order to find the

most similar ones.

For the empirical validation of the retrieval performance of our kernel, we

have gathered chord data from various sources, one of which is a web site

for guitar chord tabs www.ultimate-guitar.com. In order to retrieve this data

from the web, a Java web crawler designed to gather all chord data from

www.ultimate-guitar.com has been implemented. This crawler takes into ac-

count the politeness rules of normal web crawlers, in order to avoid overloading

the server.

The web crawler takes as seed the home page of www.ultimate-guitar.com

and an input parameter which is the number of pages of songs that we want

to crawl. It then starts visiting all links with song titles as shown in Figure

5.8.

Every link redirects us to another page where all the available versions of

that song are listed, e.g.,Figure 5.9.

For our testing purposes, the crawler will only visit the links of those ver-

sions that are 5 star-rated with at least 5 votes, e.g., in the example of Figure

5.9 only version 4 would be extracted. Each link of the selected version is then

crawled, and all chord content is parsed from the HTML file. Eventually, a file

with the chord sequence for all songs is created.

The code of the crawler is available at http://github.com/silviagdiez/

thesis.
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5.8. EMPIRICAL TESTING

Figure 5.8: Page with list of songs in www.ultimate-guitar.com.

Figure 5.9: Page with all available versions of a song in www.ultimate-
guitar.com.

5.8 Empirical testing

For our testing purpose, two different tasks are evaluated: (i) a cover song

retrieval task, and (ii) an idiom retrieval task. We first present the data used

in the experiments, as well as the chosen lexicon. Our simple-cycles weighted

kernel method is compared to several measures from string matching, as well

as graph comparison techniques.
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Figure 5.10: Page with all available versions of a song in www.ultimate-
guitar.com.

The cover song data set has been extracted from two different sources:

the Beatles chord annotations from the Isophonics4 database (Queen Mary,

University of London), and the user-generated chord files from the Ultimate-

Guitar5 database.

Although our first source of chord progressions has already been used in

Music Information Retrieval (MIR), we are the first to exploit, to the best

of our knowledge, a popular Internet guitar’s chord database for similarity

retrieval. The Ultimate-Guitar database contains more than 250,000 user-

generated sequences of guitar’s chords of popular pop/rock music. Although

several versions are available for each of the Beatles’ songs, only well-ranked

songs have been extracted (5 star rated songs with at least 5 votes), making a

total of 71 songs.

These same songs have been extracted afterwards from the Isophonics

database, forming 71 classes of two songs each (142 songs in total), where

the songs from the Isophonics database are used as query over the remaining

71 songs from the Ultimate-Guitar database (one relevant song per query).

Although there exists a well-known MIREX audio cover song task, this evalu-

ation task takes audio signals as input while our work is centered on chords,

so that it cannot be applied here.

The idiom data set has been fully extracted from the Ultimate-Guitar

database and contains 296 songs partitioned in two classes (101 songs for the

first class, sharing a common 4-chords idiom6, and 195 songs for the second

4isophonics.net
5www.ultimate-guitar.com
6The sequence “C,G,Am,F” is considered as an idiom in modern pop/rock composition.
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5.8. EMPIRICAL TESTING

class).

Both data sets are available at http://github.com/silviagdiez/thesis.

In both cases, a modest lexicon containing all major and minor root chords

(flat and sharp) has been used. We believe that this choice is representative

enough for our purpose, while avoiding bad transcription issues from users in

the Ultimate-Guitar database, e.g., the chord C5 appears instead of C.

We have chosen to use the Isophonics database as it was used in previ-

ous studies for harmonic similarity and was easily available. Although the

Ultimate-Guitar data had to be crawled, we wanted to exploit this vast source

of harmonic progressions and tackle the difficulties of working with real, noisy,

data. This data was only used in the context of our work, and all copyright

rights remain with Ultimate-Guitar.

Please note that the kernel from Horváth et al. (2004) has not been used

for comparison, as this kernel focuses on simple cycles and trees of a graph.

As we want to exploit simple cycles of a graph, we consider that including tree

motifs would only add noise to the final measure. For this reason, it does not

appear as one of the compared methods.

5.8.1 Cover song retrieval task

Cover song retrieval (see for instance Bello (2007)) is a popular task in MIR

which aims at identifying the versions of a given song. For this purpose, the

cover song data set described above has been used. We query the Ultimate-

Guitar database with each song from the Isophonics chord annotation (the“query

song”), providing a ranking of the Ultimate-Guitar songs in decreasing order

of similarity with the Isophonics query song (please see Section 5.8 for more

details).

This is particularly interesting for the case of Ultimate-Guitar, where we

have seen that some users deliberately omit repeating portions of a song for

practical reasons. We want to test our method with other more traditional

It appears in songs such as Let it be (The Beatles), and With or without you (U2).
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approaches which take the full length sequence into account, and where this

type of behavior can significantly affect the retrieval.

The average ranking position of all retrieved songs, as well as two popular

recall measures (de Haas et al., 2008) describing the accuracy of our method

have been chosen to describe the performance of our method in a retrieval

task, i.e., ranking of cover songs should be higher than non-cover songs.

These measures are reported in Table 5.6: the average first tier (the number

of correctly retrieved songs among the best (nc−1) matches divided by (nc−1)

with nc the class size, i.e., in our case nc = 2), and the average second tier

(number of correctly retrieved songs among the best (2nc−1) matches divided

by (nc − 1)).

In order to compare our method to other baseline methods, the same

methodology7 has been applied to three string matching techniques – the edit

distance and longest common subsequence widely used in sequence matching

(see, e.g., Gusfield (1997)) and the all-subsequences kernel (Shawe-Taylor and

Cristianini, 2004) which is an efficient method that compares all sub-sequences

of two strings –, and a graph comparison kernel – the fast sub-tree kernel, a

similarity measure between graphs that is fast to compute and that outper-

forms other graph kernels (Shervashidze and Borgwardt, 2009). For methods

needing a parameter, the fast sub-tree kernel and the simple-cycles kernel, we

have chosen a maximum cycle length (tree depth) of 7 – longer cycles or deeper

trees become too song-specific, and are not of interest for us.

Please note that the edit distance and the longest common subsequence

have been normalized and centered as explained in Annex B.

Although chosen baseline methods may appear simplistic, our aim is to

compare our algorithm with a variety of methods under the same conditions.

Purpose-built methods using different chord representations, or needing pa-

rameter tuning are not compared in the present work for obvious reasons of

adaptation, leaving this task for further work.

7Interval sequences have been provided as input for each baseline method, so that all
compared methods are transposition invariant and evaluated under similar conditions.
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Although results show no improvement for the first tier, and just a slight

improvement of the second tier (see average first and second tier in Table

5.6) from the baseline methods, there is a clear improvement in the average

general ranking of retrieved songs. These results are encouraging for using the

Ultimate-Guitar database as a future source for chord progression data.

5.8.2 Idiom retrieval task

Idioms have recently attracted the attention of MIR as a new object of musi-

cological interest. An idiom is defined by Mauch et al. (2007) as a “prominent

chord sequence in a particular style, genre or historical period”. Users have

also discovered this notion of idiom as shown in a youtube video8, where a

sequence of 4 chords is used to assemble the melody of several pop/rock songs.

Interestingly, people who liked a few of these songs tended to also appreciate

the others.

We have tried to recover the songs containing the idiom “C,G,Am,F” (or

“I-V-VI-IV”) in a supervised learning task, i.e., does the song contain the idiom

or not? Please note that the purpose is not merely to retrieve this particular

idiom, which is a trivial task, but in a wider sense we wish to group songs that

contain similar idioms, without knowing in advance which ones.

We have measured the error rates of all methods and compared them by

applying a 10-fold double cross validation with an RBF SVM on the idiom

data set from the Ultimate-guitar web site. Classification rates with a 95%

confidence interval are reported in Table 5.7. These results show an increase

of performance of our method of 7% from the closest base-line method.

Please note that the edit distance and the longest common subsequence

have been normalized and centered as explained in Annex B.

8http://www.youtube.com/watch?v=qHBVnMf2t7w
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Similarity First tier Second tier Average
average average ranking

Edit distance 78.87% ± 6.76 87.32% ± 5.51 4.169 ± 1.64
Longest common subs. 60.56% ± 8.10 69.01% ± 7.66 8.662 ± 2.59
All-subsequence kernel 28.17% ± 7.45 43.66% ± 8.22 15.929 ± 3.32

Fast sub-tree kernel 52.11% ± 8.27 61.97% ± 8.04 11.943 ± 2.78
Simple-cycles kernel 78.87% ± 6.76 88.73% ± 5.24 2.915 ± 1.09

Table 5.6: Average first tier, second tier, and average ranking for the cover
retrieval task with 95% confidence intervals.

Similarity Classification rate and
confidence interval

Edit distance 68.56% ± 1.53
Longest common subsequence 69.91% ± 2.41

All-subsequence kernel 68.56% ± 1.53
Fast sub-tree kernel 81.06% ± 4.22
Simple-cycles kernel 88.50% ± 2.02

Table 5.7: Classification rates with an SVM with a 95% confidence interval for
the idiom retrieval task.

5.9 Conclusion

In this chapter we have introduced a simple-cycle similarity method based on

the harmonic progression of a song. We have presented the notions of a the-

oretically well-founded method, and shown its applicability to our problem.

This approach has furthermore been validated on an idiom and a cover song

retrieval task. The obtained results suggest the usefulness of extracting repet-

itive sub-structures for music similarity purposes by means of a simple-cycles

weighted kernel. Further work will try to improve the presented algorithm by

performing an approximate cycle matching, and by replacing labels by musical

distances between chords.
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Figure 5.11: Error bar showing the average number of simple cycles per song
and per cycle length of our chord progressions data. 95% confidence intervals
are also shown.
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Chapter 6

General conclusion

This last chapter provides a summary of the presented work in the different

chapters. As already explained in Chapter 1, randomization can be of use in

multiple applications such as:

• computing robust similarity measures between two sequences by allowing

some path randomization on the editing paths,

• improving the artificial intelligence on two-player zero-sum games, by

allowing a more human-like way of randomizing strategies defined in the

game tree,

• defining smooth random trajectories for motion planning on a continuous

environment.

Some of the presented techniques outperform the existing ones, and some other

present a different approach for solving existing problems based on various

extensions of the RSP framework on sequence comparison, game theory, and

motion planning.

The last chapter, which is not based on the RSP framework, applies the

principles from information retrieval and graph kernels for information extrac-

tion based on cycles for music comparison. It computes a similarity measure
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for harmonic sequences of songs thanks to the extraction of cycles in a graph

representation of songs.

6.1 Contributions and limitations

In this section we present an overview of the contributions and limitations of

each of the techniques presented in this thesis.

Chapter 1 introduces an alternative, more intuitive, derivation of the for-

ward and backward variables in the context of the Sum-over-Paths framework,

and its relation to the main quantities of interest.

Chapter 2 introduces four novel methods based on the Sum-over-Paths

framework for Approximate String Matching (ASM): (i) the Sum-over-Paths

edit distance, (ii) the Sum-over-Paths common subsequences, (iii) the Normal-

ized Sum-over-Paths edit distance, and (iv) the Normalized Sum-over-Paths

common subsequences.

These measures provide a model-independent technique for computing sim-

ilarity by taking all alignments into account. They also avoid noisy measures

by favoring relevant subsequences of nearly-optimal alignments. Furthermore,

their normalized versions overcome normalization issues. These measures have

been proven to outperform other ASM techniques through empirical validation.

However, they are not valid kernels, as the derived similarity matrix is

not positive semi-definite. Another limitation is that the Sum-over-Paths Edit

Distance is not a distance but rather a dissimilarity measure (see Appendix A

for more details). Further work will focus on defining a valid kernel over the

same principles.

A final point that has to be tested over large graphs, is how the SoP

distances are affected by an increasing number of edges connecting the nodes.

This issue was introduced in Section 2.3.1, and makes the probabilities of

reaching a destination node dependent on the number of edges when the graph

becomes large enough. The SoP distances mitigate this issue by favoring sub-

optimal paths, but the relation between the spread entropy and the size of the
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graph has to be studied.

Chapter 3 provides an optimal randomized policy based on the Sum-over-

Paths framework for solving continuous-state path planning problems with

multiple sources and multiple goals. However, the main drawback of this

model is that it assumes that paths are uncorrelated, which is hardly the case

in practice.

On the other hand, it introduces a diffusion parameter for controlling the

trade-off between exploration and exploitation, and it shows some interesting

links between biased random walks on a graph (discrete RSP) and continuous-

state Feynman-Kac diffusion processes. Further work will study the possibility

of introducing a mass parameter (inertia) for smoothing the trajectories, and

therefore avoiding abrupt changes in direction.

Chapter 4 provides a novel global optimal strategy based on the Sum-

over-Paths framework given a level of entropy for simulating the AI in two-

player zero-sum games. Although the notion of entropy has been widely used

for controlling randomness in AI, this new method spreads the entropy over

full strategies or paths, instead of single moves. In this case as well, the

main drawback of this method is that paths are assumed to be uncorrelated.

Furthermore, the opponent is assumed to be fully rational, which is not realistic

for some problems.

Future work will investigate the extension of the Rminimax to multi-player

games as well as online or dynamic games. Indeed, we could adapt our equa-

tions to take into account more than one player for other n-player games. We

could achieve this by adding a dummy (n+1)-player who can only take one

action, and whose reward is such that the sum remains zero for the game at

any state.

Furthermore, we could create an adaptive version of the Rminimax, which

estimates the θ parameter of a real player, and adapts the strength of its game

accordingly. This would allow to mimic the users’ behavior by following a

similar learning curve, which would improve the playing experience.

Eventually, we would like to apply this framework to nested Monte-Carlo
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search techniques, which are well-known heuristic search algorithms very pop-

ular in game playing.

Chapter 5 provides a similarity measure for songs based on the repetitive

harmonic features of songs. This similarity measure deals with large structural

changes in chord progression which are extracted as cycles from a graph and

is computed by means of a kernel function. This approach for harmonic com-

parison is new in the domain. It also exploits a novel source of user-generated

data that is readily available on the Internet.

Further work will try to improve the presented algorithm by performing an

approximate cycle matching, which would allow retrieving songs which share

similar, but not identical, cycles. Furthermore, we could try to differentiate

between cycles and its connectors, e.g., cyclic patterns may be linked by linear

structures, which are equally important for harmony resolution. Indeed, we

have noticed that by creating the graph structure of the harmonic sequence,

some information is lost (such as those cycle connectors), while some new

cycles have been added. Both issues could be solved by identifying cycles and

connectors separately.

We would also like to try the replacement of labels denoting the intervals by

a more accurate musical notion, such as the Tonal Pitch distance from de Haas

et al. (2008). Having the real musical distance could allow for fuzzy search,

where instead of matching exact intervals, we can match intervals with similar

distances.

In the presented work, we have used a vector space model for Information

retrieval, but we could apply some of the probabilistic approaches, which have

already proven to be useful in text retrieval. A first model is the Inference

Network model (Turtle and Croft, 1992) which introduces the notion of “con-

cept” as semantic information built on top of the terms. In our case, we could

think that harmony contains as well a higher level of abstraction built on top of

simple cycles and connectors, and this would allow for a more accurate ranking

of songs. This method matches the songs and the query by means of those

underlying concepts. By fixing the prior knowledge on certain songs, we could

boost songs with higher scores, so that we improve the general quality of the
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matching.

But we could also test the Language Model (see, e.g., Moens (2006)) and

adapt it to music similarities. This paradigm assumes that each document,

or song in our case, has an underlying model from which the query can be

generated. By computing the probabilities that the query is generated by each

of the songs or models, we obtain a ranking of the different songs. Again,

we can choose to use the simple cycles as the terms on which to build the

probability distributions, or we can try to identify a better descriptor of a

song.

6.2 Global discussion

This thesis has aimed at proving the applicability of the Randomized Shortest

Path in several domains. Indeed, by allowing a certain degree of randomization

on the paths defined on a graph, we have seen how to build robust measures

for string comparison, smooth randomized trajectories for path planning, and

random strategies in Artificial Intelligence that mimic human behavior.

Although the RSP framework may be applied to many other fields, one

preliminary condition is needed: the data must be representable in form of

graph, and the paths defined on that graph must represent some information

that can benefit from randomization.

This is not the case of Chapter 5, where data was presented in form of

harmonic sequences and it was transformed into a graph structure. Unlike

previous chapters, we present here a technique which is not based on the RSP

framework, but rather on motif extraction from graphs. Indeed, randomization

was of little use in this case.

We are certain that the RSP can be the basis for many other techniques,

including music comparison, as the experimental results have already proven.

We remain confident to see an increasing number of approaches which take

advantage of randomized paths, or other graph structures.
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Appendix A

Proof that the SoPED is not a

distance

In order to proof that the SoP edit distance does not comply with the triangle

inequality, and is thus not a distance but a dissimilarity measure, let us take

the graph from Figure A.1 as example. We are going to prove that the triangle

inequality does not hold, first, for the cases where θ → 0, where probabilities

are uniformly distributed, and later for θ → ∞, where the probabilities are

peaked on the shortest path. Local costs ck,k′ are assumed to be unitary for

all edges.

Figure A.1: Example graph for proof of triangle inequality. Source node, x,
is tied to destination node, z, by two paths: an optimal shortest path ℘1 of
length two (blue) and a sub-optimal path ℘2 of length three (red).

Proof. Case where θ → 0:
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• Path probabilities are P(℘1) = P(℘2) = 1
2
.

d(x, z) =E[C] =
∑
℘1,℘2

P(℘)C(℘) =
1

2
[cx,y1 + cy1,z] +

1

2
[cx,y2 + cy2,y3 + cy3,z]

=
1

2
· 2 +

1

2
· 3 = 5/2

d(x, y2) + d(y2, z) =d(x, y3) + d(y3, z) = d(x, y2) + d(y2, y3) + d(y3, z)

=P(℘x,y2) · cx,y2 + P(℘y2,y3) · cy2,y3 + P(℘y3,z) · cy3,z

=1 · 1 + 1 · 1 + 1 · 1 = 6/2

d(x, y1) + d(y1, z) =P(℘x,y1) · cx,y1 + P(℘y1,z) · cy1,z

=1 · 1 + 1 · 1 = 4/2

⇒d(x, z) > d(x, y1) + d(y1, z)

Case where θ →∞:

• Path probabilities are P(℘1) = 1 and P(℘2) = 0.

d(x, z) =E[C] =
∑
℘1,℘2

P(℘)C(℘) = 1 · [cx,y1 + cy1,z] + 0 · [cx,y2 + cy2,y3 + cy3,z]

=1 · 2 = 2

d(x, y2) + d(y2, z) =d(x, y3) + d(y3, z) = d(x, y2) + d(y2, y3) + d(y3, z)

=P(℘x,y2) · cx,y2 + P(℘y2,y3) · cy2,y3 + P(℘y3,z)

=1 · 1 + 1 · 1 + 1 · 1 = 3

d(x, y1) + d(y1, z) =P(℘x,y1) · cx,y1 + P(℘y1,z) · cy1,z

=1 · 1 + 1 · 1 = 2

⇒d(x, z) ≤ d(x, y) + d(y, z) ∀x, y, z

It is clear from the proof that the triangle inequality does not hold for

small values of θ. However, when θ → ∞, the SoPED becomes a distance.
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The reason behind this behavior, is that we recover the typical edit distance

by taking only the shortest, optimal, paths.
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Appendix B

Normalization of kernel

matrices

B.1 Kernel centering

We applied the transformation Kc = HKH where K is the kernel or the

similarity matrix, H = (I − eeT/n) is the centering matrix, I is the identity

matrix, and e is a column vector full of ones.

Notice that for KSoP
ED , KLED and KSED, which are dissimilarity measures,

the conversion to a similarity measure – as well as centering – is achieved

through Kc = −1
2
H∆H where ∆ is the distance matrix containing the edit

distances. This is a classical multidimensional scaling procedure Borg and

Groenen (1997); Cox and Cox (2001).

B.2 Kernel normalization

After centering, the obtained similarity matrices may be further normalized

with Kn = D−1/2KcD
−1/2 where D is a diagonal matrix containing the ele-

ments of the diagonal of Kc, D = Diag(Kc).
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Catholique de Louvain, 2009.

I. Borg and P. Groenen. Modern multidimensional scaling: Theory and appli-

cations. Springer, 1997.

S. Boyd, P. Diaconis, and L. Xiao. Fastest mixing markov chain on a graph.

SIAM Review, 46(4):667–689, 2004.

M. Brand. A random walks perspective on maximizing satisfaction and profit.

In Proceedings of the 2005 SIAM International Conference on Data Mining,

pages 12–19, 2005.

P. Bucher and K. Hofmann. A sequence similarity search algorithm based on

a probabilistic interpretation of an alignment scoring system. In Proceedings

of the Fourth International Conference on Intelligent Systems for Molecular

Biology (ISMB), volume 4, pages 44–51, 1996.

M. Buro. Toward opening book learning. In Proceedings of the Workshop on

Computer Games, pages 1–5, 1997.

181



BIBLIOGRAPHY

N. Cancedda, E. Gaussier, C. Goutte, and J. M. Renders. Word sequence

kernels. Journal of Machine Learning Research, 3:1059–1082, 2003.

D. Carmel and S. Markovitch. Exploration strategies for model-based learning

in multi-agent systems: Exploration strategies. Autonomous Agents and

Multi-Agent Systems, 2(2):141–172, 1999.

T. Cazenave. Nested monte-carlo search. In Proceedings of the International

Joint Conferences on Artificial Intelligence, pages 456–461, 2009.

M. Chaichian and A Demichev. Path integrals in physics, vol 1: stochastic

processes and quantum mechanics. Institute of Physics Publishing, 2001.

G. Chaslot. Monte-carlo tree search. Master’s thesis, 2010.

L. Chatriot, S. Gelly, J.B. Hoock, J. Pérez, A. Rimmel, and O. Teytaud.
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