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Abstract

Light rays incident on a transparent object of uniform refractive index undergo deflections,
which uniquely characterize the surface geometry of the object. Associated with each point on
the surface is a deflection map (or spectrum) which describes the pattern of deflections in various
directions. This article presents a novel method to efficiently acquire and reconstruct sparse
deflection spectra induced by smooth object surfaces. To this end, we leverage the framework
of Compressed Sensing (CS) in a particular implementation of a schlieren deflectometer, i.e., an
optical system providing linear measurements of deflection spectra with programmable spatial
light modulation patterns. In particular, we design those modulation patterns on the principle
of spread spectrum CS for reducing the number of observations. Interestingly, the ability of our
device to simultaneously observe the deflection spectra on a dense discretization of the object
surface is related to a particular Multiple Measurement Vector (MMV) model. This scheme
allows us to estimate both the noise power and the instrumental point spread function in a
specific calibration procedure.

We formulate the spectrum reconstruction task as the solving of a linear inverse problem
regularized by an analysis sparsity prior using a translation invariant wavelet frame. Our results
demonstrate the capability and advantages of using a CS based approach for deflectometric
imaging both on simulated data and experimental deflectometric data.

Finally, the paper presents an extension of our method showing how we can extract the main
deflection direction in each point of the object surface from a few compressive measurements,
without needing any costly reconstruction procedures. This compressive characterization is then
confirmed with experimental results on simple plano-convex and multifocal intra-ocular lenses
studying the evolution of the main deflection as a function of the object point location.

Keywords deflectometry, compressive imaging, compressed sensing, optical metrology, proximal
methods, Chambolle-Pock

1 Introduction

When light travels through a medium of varying refractive index, the refractive index gradient in
the direction of light propagation causes light to deflect from its original path. By carefully studying
the patterns of deflection, the composition of the medium under consideration can be discovered. A
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Figure 1: Left, illustration of a deflection spectrum. Right, a typical (projected) deflection spectrum
sp for a plano convex lens of optical power 25.12D.

set of imaging techniques, known as schlieren imaging, allows us to optically visualise the extent of
light deflection [49]. These schlieren deflectometers operate by converting deflections into grayscale
values and can be employed for any medium (solid, liquid and gases). Applications of schlieren
techniques include flow modeling and computer graphics [16, 50, 29]. In this article, we consider an
instance of schlieren deflectometer, which is used for characterizing solid transparent objects such
as optical lenses.

Most of the alternative optical modalities for characterizing transparent objects are based on
interferometry [36]. However, these techniques are very sensitive to vibrations and also need precise
calibrations for the methods to work successfully. On the other hand, thanks to the nature of
deflectometry, problems due to vibrations and sensitive calibrations are avoided and hence they
make an excellent alternative for industrial deployment in applications such as optical metrology
and quality control.

Consider a (thin) transparent object with a beam of parallel light rays incident on one of its
sides, as shown in Fig. 1(left). At each surface location p (a non-zero area defined by the spatial
resolution of the instrument), light deviates in multiple directions and they can be characterized
in a local coordinate system (e1, e2, e3), with e3 being parallel to the incident light beam. Using
the spherical coordinates (θ, ϕ) in this system (see Fig. 1(left)), the resulting deflection spectrum
s̃p(θ, ϕ), which is non-negative in nature, represents the flux of light deviated in each direction
(θ, ϕ).

As we consider a different location p′ on the surface of the object, the local information about its
shape is given by the corresponding deflection spectrum s̃p′(θ, ϕ). Therefore, by studying deflection
spectra across all the locations on the object, we can understand the overall shape of the object,
thereby characterizing the same.

In this article, the deflection spectrum s̃p is conveniently represented by its projection on to the
plane Π that is normal to e3, i.e., according to the projected function sp(r(θ), ϕ) = s̃p(θ, ϕ) with
r(θ) = tan θ. Moreover, the object surface is assumed sufficiently smooth to be parameterized by
a projection of the location p on to the same plane (with an arbitrarily fixed origin), so that p is
basically parameterized as a 2-D vector in the coordinate system {e1, e2}.
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For most objects (e.g., with smooth surfaces), deflections at any location p are well behaved and
occur in a limited range of angles. The deflection spectra therefore tend to be naturally sparse in
plane Πp or even in some appropriate basis of this domain, such as redundant wavelets. Fig. 1(right)
shows an example of a discretized deflection spectrum sp for one location of a plano-convex lens,
obtained using the setup that will be described in Sec. 2. The bright spot in the illustrated deflection
spectrum signifies that light deflects only in a few directions around a dominant deflection (as
governed by classical optics) and deflections elsewhere are negligible.

Measuring deflection angles in a straightforward way using goniophotometer is a cumbersome
and elaborate process, and it is only suited for large dynamic of deflection angles and high con-
trast [48]. However, in the present context, the deflection information is observed using an indirect
method. The particular optical setup at our disposal, which will be described in Sec. 2, measures
the spectrum indirectly by optical comparison with a certain number of programmable modulation
patterns. These optical comparisons are actually modeled as inner products between the modula-
tion patterns and the underlying deflection spectrum. The discretization of the modulation pattern
dictates the discretization of the deflection spectrum, and hence the inner products can also be en-
visaged as being discrete. Furthermore, the optical setup is capable of simultaneously performing
the optical comparisons of a single modulation pattern with deflection spectra corresponding to a
regular sampling of the test object’s surface. These parallel optical comparisons, which are inner-
products, are in turn collected in a Charged Coupled Device (CCD) array. By this arrangement,
each CCD pixel probes one location on the object, and to reconstruct each spectrum one needs to
solve a linear inverse problem from the inner products collected at the corresponding CCD pixel.

Indirectly probing a signal through its inner products, with known patterns, is a generalization
of the classical sampling procedure where the modulation patterns are simply shifted delta func-
tions [3]. Therefore, inner products with known modulation patterns are generalized samples of the
signal. From now on, we will simply refer to these inner product samples as measurements. In the
context of sampling band limited signals using shifted delta functions, the number of samples per
unit time needed to reconstruct the signal is dictated by the overall bandwidth of the considered
signal space. This is the classical Shannon’s sampling theorem. Alternatively, if the underlying
signal can be expressed or approximated by a linear combination of a few basis vectors, then results
in sparse signal recovery and in compressed sensing [19, 21] show that with appropriate (random)
patterns, one can successfully recover such a signal from a fewer number of measurements compared
to the dimension of its ambient domain. This signal recovery procedure is non-linear in general
and the performance greatly depends on the nature of the modulation patterns.

In the context of our schlieren deflectometry, we have a situation where the unknown signals
(deflection spectra) are sparse and can be observed only through their inner products with pro-
grammable modulation patterns. This is an appropriate situation for adopting compressed sensing
for recovering deflection spectra.

Compressed sensing, despite some difficulty in implementation for optical systems [59], has
found several applications in imaging, beginning with the famous single pixel camera [18] to recent
applications in, for example, magnetic resonance imaging [34, 35, 41], astronomical imaging [7],
radio interferometry [58], hyper spectral imaging [24] and biological imaging [52].

Contributions and organization of the article: The contributions of this article are twofold.
Firstly, we demonstrate a novel way to compressively acquire sparse deflection spectra in a schlieren
deflectometer and present a numerical method for their reconstruction along with experimental re-
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sults. To this end, we present a design of optical modulation patterns based on spread spectrum1

compressive sensing [42]. This framework not only enables us to leverage the power of random
measurements, as advocated by compressed sensing theory, but also makes the numerical methods
exploit the advantage of fast algorithms for matrix-vector multiplications. The schlieren deflec-
tometer that is used for all the work reported in this article is described in Sec. 2.

At the outset, this paper does not provide a detailed theoretical treatment of the imaging
process. However, the objective of this paper is to demonstrate how compressed sensing can be
used to access detailed deflection information in an efficient manner, which is impossible with the
existing Phase Shifting schlieren (PSS) technique, described in Sec. 3.

Of course, in a brute force way, one can sift through each possible deflection direction and collect
information, which amounts to performing Nyquist sampling of the deflection spectrum. This is
very inefficient both in terms of the number of SLM patterns required and also the limited light
throughput. Fortunately, due to the reason that deflection spectra are sparse for a large class of
interesting optical objects, guided by compressed sensing principles, we can afford to reduce the
number of SLM patterns.

We rely on spread spectrum compressed sensing for selecting suitable SLM patterns. Sec. 4.1, Sec. 4.2
and Sec. 4.3 provide the development of sensing SLM patterns and their adaptation to make them
amenable for optical implementation. As described in the beginning, CCD pixel simultaneously
collect measurements (of corresponding underlying spectra) for a given SLM pattern. This process
is mathematically formalized as a Multiple Measurement Vector (MMV) [38] model in Sec. 4.4.
This formalism greatly aids in modeling different sources of noises and also numerically estimate
the quantities associated with them.

Even though we have remarked that spectra of smooth objects are sparse in its inherent domain,
much can be gained by considering its sparse representation in an overcomplete dictionary such as
undecimated wavelets [37]. As opposed to the classical synthesis based sparsity priors, we rely on
analysis sparsity approach for solving the inverse problem [20], as described in Sec. 5. In Eq. (17),
we detail the numerical method, based on a primal-dual approach, used to solve the three problems.

Sec. 6 contains the experimental results, both on simulated data and actual data obtained
using the deflectometer. Our experimental results show the potential of compressed sensing based
deflectometric imaging in reducing the number of measurements.

A description of the optical setup and a preliminary reconstruction method, along with the
results, were briefly presented in our conference communications [54, 53]. However, the present
article contains several new material including the details of modulation pattern selection, analy-
sis of noise and its numerical estimation, along with new contributions on how to use deflection
information for object characterization.

The second part of the contribution deals with the local characterization of lenses using com-
pressive measurements, such as mapping local dioptric power (related to the local focal length)
across the surface of the lens. The deflection spectrum provides detailed information about the
deflection pattern at a particular location on the object. However, the price to be paid to ob-
tain such rich information is the computation effort spent on its numerical reconstruction. When
computational resource is scarce, we can still extract meaningful information about the deflection
spectra, sufficient to characterize the shapes of objects under consideration. This work is on the
lines of compressed domain signal processing and parameter estimation [15, 14, 22].

1“Spread Spectrum” is not related to the studied deflection “spectrum” but it refers to the signal frequency
spectrum.
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Figure 2: (a) 2D schematic of schlieren deflectometer and (b) a commercially available
NIMOTMschlieren deflectometer.

We develop a simplified description of deflection spectrum, which is characterized by a pair of
translation parameters. This is inspired by the fact that when the surface of an object is smooth, the
deflection spectra at consecutive locations tend to have similar shape and size but translated on the
spectral plane. Therefore, we propose a compressed domain matched filtering, in Sec. 7, to extract
these parameters directly from the measurements, without involving any expensive reconstruction
method.

A method for estimating parameters in compressed domain, up to sub-pixel accuracy, is pre-
sented and comparison is made with the parameters estimated from reconstructed deflection spec-
tra. We then describe the relationship between the optical power of the object under consideration
and the evolution of the parameters, using the schematic of the optical system. Our experiments
show the capability of compressive method to provide relevant characterization of simple test objects
such as plano-convex lenses and also complicated objects such as diffractive multifocal intra-ocular
lenses [32], i.e., lenses displaying multiple foci due to their special design of surfaces.

In summary, this article presents an entire system level design of a compressive imager, able to
simultaneously acquire a large number of deflection spectra. Our approach includes mathematically
concrete procedures for tuning the design parameters and also presents concrete ways to utilize
deflection information to characterize optical properties of transparent objects.

Conventions We find useful to introduce here some of the mathematical notations used through-
out the paper. Most of domain dimensions are denoted by capital roman letters, e.g., M,N, . . .
Vectors and matrices are associated to bold symbols, e.g., Φ ∈ RM×N or u ∈ RM , while lowercase
light letters are associated to scalar values. The ith component of a vector u reads either ui or
(u)i, while the vector ui may refer to the ith element of a vector set. The vector of ones in RD is
denoted by 1D = (1, · · · , 1)T , with (·)T denoting the transposition of a matrix. The set of indices
in RD is [D] = {1, · · · , D}. The cardinality of a set C, measuring the number of elements of the set,
is denoted by |C|. The (convex) indicator function ıC(x) of the set C is equal to 0 if x ∈ C and +∞
otherwise. For any p ≥ 1, the `p-norm of u is ‖u‖pp =

∑
i |ui|p. The Frobenius norm of A is given by

‖A‖2F =
∑

i

∑
j |Aij |2. The support of a vector u ∈ RD is defined as supp u = {i ∈ ND : ui 6= 0}.
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2 Optical setup and notations

The schematic of the schlieren deflectometer used in our work to measure deflection spectra is shown
in Fig. 2(a), which is a simplified 2D representation associated to one 2D slice. Fig. 2(b) shows
a picture of a commercially available schlieren deflectometer sold under the name of NIMOTMby
Lambda-X. Its key components are (i) a Spatial Light Modulator (SLM) based on the Liquid-
crystal Display (LCD) technology (1024×768 pixel grid, 8 bits per pixel), (ii) a schlieren lens with
focal length f , (iii) a Telecentric System (TS) and (iv) a Charged Coupled Device (CCD) camera
to collect light (1296× 966 pixel grid, 14 bits per pixel).

The object to be analyzed is placed in between the schlieren lens and the telecentric system.
On its left side, light rays from a incoherent backlight source (12W, λ = 546 nm) are incident.
Due to the telecentric system, only those light rays emerging out of the object that are parallel to
the optical axis pass through and get collected by the CCD. Up to a coordinate system inversion
around the optical axis O, each location p on the object, at a distance d from the optical axis O
(dashed line), is probed by a corresponding CCD pixel also at a distance of d from O. Each location
p is thus in one-to-one correspondence with a CCD pixel and therefore, the spatial resolution of the
system is dictated by the resolution of the CCD array and the size of the pinhole of the telecentric
system.

From classical optics, a light ray that is incident on location p at an angle θp originates from the
light source at a distance of r = f tan θp from the optical axis. Likewise, the light rays originating
from different locations of the source have different incident angles at p. Since we can always
invert the direction of light propagation virtually in an optical system, we can view the system as
though parallel rays of light were incident from the right side of the object, and the light undergoes
deflections at p on the object, and they form an image on the SLM. Therefore, up to a global scaling
by f , the SLM plane is exactly the plane Π, that was discussed in Sec. 1, on which the deflection
spectra corresponding to every location p is observed. With this arrangement, modulating the SLM
amounts to modulating the deflection spectrum sp, while the light collected in CCD pixel p is just
an inner product of sp with the modulation pattern.

Even though deflection spectrum is a continuous domain object, the use of a discrete SLM, and
hence discrete modulation patterns, renders the inner products to be discrete in nature, i.e., we
observe the continuous spectrum through a discrete representation where each sample is associated
to the integration of light in a single SLM pixel. Hence, the recoverable deflection spectra is also
discrete and has the same resolution as the SLM. Similarly, the discreteness of the CCD also limits
the spatial resolution of the locations that can be probed. Henceforth, we shall use the notation k
to indicate the discrete locations on the object and the corresponding CCD pixel locations.

Even though the deflection spectrum and the modulation patterns are 2D quantities, we shall
represent them as 1D vectors for brevity of notation so that the action of modulation patterns on a
deflection spectrum can be written as a matrix vector product. The 1D vector can be obtained by
simply stacking all the columns of the 2D representation. If we generate M modulation patterns
φi ∈ RN with 1 ≤ i ≤ M in the SLM of N pixels, considering the discrete nature of the CCD
camera (having NC pixels), the discretized deflection spectra are observed through

yk = C(Φsk), 1 ≤ k ≤ NC, (1)

where ΦT = (φ1, · · · ,φM ) ∈ RN×M is the sensing matrix, k is the CCD pixel index, sk ∈ RN is
the discretized spectrum at the kth pixel/object location, and C : RM → RM models a corruption
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of the measurement process, e.g., by shot/photon noise or by additive signal or measurement noises
of finite power (see Sec. 4).

For each modulation pattern, the CCD collects one measurement of the underlying correspond-
ing deflection spectrum. The system is designed in such a way that the CCD pixels are independent
of each other and collect only the samples of its corresponding deflection spectrum. The next step
is to choose a suitable sensing matrix Φ in order to maximize the information captured in each
sample. To this end, we select the modulation patterns relying on the theory of spread spec-
trum compressed sensing [39, 42]. As the forward measurement model in Eq. (1) and the recovery
problem formulation (developed in future sections) are the same for all the locations of the CCD,
we suspend the use of the subscript k to simplify the notations, and resume the usage when the
situation demands.

3 Phase shifting schlieren

The schlieren deflectometer which we consider in our work has been already used, outside the
context of compressive sensing, to measure light deflections in transparent objects. For the purpose
of emphasizing the advantage of the compressive sensing method, we shall briefly explain the
existing method. For a detailed description of the same, the interested readers can consult [31, 30].
The system is configured to work using several phase shifted sinusoidal patterns (for modulation)
in order to measure deflections and this configuration is named Phase Shifting schlieren (PSS). In
PSS, the deflection information is directly encoded into the intensity of the CCD through sinusoidal
modulation.

The key assumption in PSS is that the deflection spectrum for each location consists of a single
peak. Mathematically, if (x1, x2) represents the coordinates in the SLM plane {e1, e2} orthogonal to
the optical axis e3 (see Fig. 2) and if we do not consider the impact of the SLM/CCD discretization
for the sake of simplicity, a spectrum of unique deflection direction (r1, r2)T ∈ R2 observed on object
point k is modeled as

sk(x1, x2) = a δ(2)(x1 − r1, x2 − r2),

with δ(2) the Dirac distribution and given an amplitude a > 0. The PSS measurements are then
made using multiple phase shifted sinusoidal modulations in both horizontal and vertical directions,
for making the measurements. For example, a vertical sinusoidal pattern with period Λ and phase
ξ1 is given by

hv
ξ1(x1, x2) = 1 + sin(2π

Λ x1 + ξ1). (2)

With such a pattern and suitable approximations of the optical system, the intensity recorded on
a CCD pixel at location k in the absence of noise reads

yv
k(ξ1) = 〈hv

ξ1 , sk〉 = a+ a sin(2π
Λ r1 + ξ1). (3)

The PSS method consists then in measuring yv
k over different ξ1, in a phase shifting stage, and

extracting the values r1 from Eq. (3) by using the n-step algorithms [2, 27]. The procedure is
repeated with sinusoids of different periods in order to remove the implicit modulo ambiguity over
r1, while remaining ambiguities are removed with spatial unwrapping procedures [6, 25]. The
vertical component r2 of the displacement is recovered similarly by phase shifting of horizontal
sinusoidal patterns.
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PSS is a simple and effective method for measuring deflection angles and has been successfully
used in tomographic applications such as refractive index map reconstruction [5, 26]. However, this
method is not stable for deflection spectra that are spread out, unlike a point or even of estimating
several main deflection angles for each object location. Therefore, the richness of deflection spectra
to reveal interesting information is lost. Moreover, the use of non-binary modulation patterns in
Eq. (2) brings in the problem of non-linearity in the SLM response and without a careful calibration,
it is prone to computational errors. Our proposed method is capable of recovering full deflection
spectra and also it uses binary modulation patterns to avoid SLM non-linearities.

4 Spread spectrum compressive schlieren deflectometry

The programmable nature of the schlieren deflectometer described in Sec. 2 permits its transfor-
mation in a compressive imager of light deflection spectra. This section explains how we adjust
the sensing procedures provided by the Compressed Sensing theory to an actual sensing scheme
respecting our optical constraints. Interestingly, we also show that the ability of our device to si-
multaneously observe the deflection spectra of each object surface point, as discretized by the CCD
pixel grid, is related to a particular Multiple Measurement Model (MMV) [38] of those spectra.
This allows us to establish a specific calibration procedure for studying the main (additive) sources
of noises in our compressive observations and for estimating the point spread function (PSF) of the
instrument.

4.1 Compressive sensing

Compressive Sensing (CS) [17, 11, 3, 33, 21] is a new paradigm in signal sampling which envisages
that any structured (sparse) signal x = Ψα ∈ CN that can be decomposed or compressed with
only few important coefficients in a basis Ψ, can be tractably recovered from a few corrupted linear
measurements of the form

y = Φx + n = Θα + n, (4)

where Φ is a M ×N measurement (or sensing) matrix, Θ = ΦΨ and n is an additive noise such
that ‖n‖2 ≤ ε for some known bound ε > 0. For instance, if Φ is a random Gaussian matrix with
Φij ∼iid N (0, 1/M) and if the number of measurements M is of the order of K log(N/K), then,
with high probability over any possible signal x, the solution α̂ of the following convex optimization
problem

α̂ := arg min
α∈CN

‖α‖1 subject to ‖y −Θα‖2 ≤ ε, (5)

satisfies
‖α− α̂‖2 = O

(
‖α−αK‖1√

K
+ ε

)
, (6)

with αK is the best K-term approximation of α [10, 44].
Similar type of result also holds when the measurement matrix is derived from an orthonor-

mal basis Γ ∈ CN×N . In such a case, a M × N measurement matrix is of the form Γ∗Ω, the
conjugate transpose of the submatrix matrix ΓΩ formed by restricting the columns of Γ to those
index by subset Ω ⊂ [N ] := {1, · · · , N} randomly chosen at uniform. If the coherence µ :=√
N max1≤i,j≤N |〈Γj ,ψi〉| ∈ [1,

√
N ] between Γ and Ψ is very close to 1, then

M = O
(
µ2K log4(N)

)
8



measurements are enough for the optimization problem (with Θ = Γ∗ΩΨ and Φ = Γ∗Ω) to provide an
estimate α̂ that satisfies Eq. (6) [10, 44]. The number of the measurements for successful recovery
scales quadratically with respect to the coherence µ and hence it is desirable to have the two bases
as incoherent as possible to make µ close to 1.

While fully random matrices are optimal in terms of sampling efficiency, measurement matrices
derived from orthonormal bases are often equipped with fast matrix-vector multiplication making
them attractive for practically solving Eq. (5). In the next section, we select a method that achieves
a trade-off between optimal random measurement strategy and structured computations.

4.2 Spread spectrum sensing

The key issue in using orthonormal bases as measurement matrices is that of its possibly high
coherence with the signal sparsity basis. In order to statistically minimize coherence between the
two bases, we employ spread spectrum modulation of the data vector x [39, 42].

Spread spectrum randomly scrambles the phases of signal by point-wise multiplication of the
signal samples with another modulator signal whose samples have random phases but unit mag-
nitude. If the sensing basis is a Fourier or Fourier-like, then this point-wise modulation amounts
to performing a convolution of the signal and the modulator in the spectral domain. As a result
of this, the energy of the signal is spread over its entire spectrum, while preserving its norm, and
hence the name “spread spectrum”.

Further, whenever all the entries of the sensing basis Γ have the same amplitude, then with
high probability, spread spectrum technique ensures that the number of measurements required for
successful reconstruction of the signal is comparable to that of fully random measurements, the
optimal measurement strategy according to compressive sensing. Such bases are called universal
sensing basis and Fourier and Hadamard bases are some examples of them.

Mathematically, the spread spectrum vector is a random vector σ ∈ CN with the amplitudes
of each of its entry |σi| = 1, e.g., a Steinhaus or Rademacher sequence. The sensing matrix that
incorporates modulation by σ is Φ = Γ∗ΩΣ, where Σ = diag(σ) is a diagonal matrix. In this case,
we need

M ≥ CρK log5(N)

measurements in order to recover a solution α? of (5) satisfying (6) with a probability at least
1 − O(N−ρ), for some 0 < ρ < log3(N). Noticeably, the coherence µ has disappeared from the
condition implying that with spread spectrum and universal sensing basis, the recovery guarantee is
universal, irrespective of the sparsity basis. From the perspective of computations, spread spectrum
involves only point-wise multiplication and hence does not break down the structure of the fast
algorithms used for the transforms.

On a related note, some researchers have investigated other ways of designing structured random
sensing matrices. Notable of them are the ones based on convolution with random sequences [28,
55, 46, 60], where the signal is convolved with a random sequence before subsampling. Even this
scheme is shown to be universal and works well with any sparsity basis [46]. Convolutions can be
implemented as multiplication in the Fourier domain and hence they are computationally efficient
too. However, as our application is for an optical system, we would like to have a sensing matrix
that is binary valued in nature to avoid non-linearities of the system and hence we stick to spread
spectrum.
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4.3 Adaptation to optical compressive sensing

As the sensing operation has to be finally implemented in a physical deflectometric system, it is
essential to have the sensing basis and the spread spectrum vector σ to be non-negative real valued,
and also preferably binary in nature to avoid optical non-linearities.

A natural choice for a Fourier-like basis having binary valued entries is the Hadamard basis
Γ = H ∈ {±1/

√
N}N×N , which is also a universal basis as remarked earlier [56]. As the modulation

vector σ should be real valued and having unit magnitude in each of its entry, they are chosen
randomly from {±1} with equal probability. The spread spectrum sensing matrix acting on the
signal domain could be composed as

Φss = HT
ΩΣ, (7)

where as before Ω selects a random subset of M sensing vectors in H and Σ = diag(σ).
As the resulting matrix Φss belongs to {±1/

√
N}M×N , it has to be properly biased to make

it non-negative so that it can be implemented as a on-off pattern in the SLM [52, 59]. Addition-
ally, a scaling of the matrix by

√
N is also required in order to fix the coding of the SLM pixel

conventionally2 in {0, 1}. The optical sensing matrix becomes then

Φopt = 1
2

(√
NΦss + 1M1TN

)
, (8)

where 1D is a D dimensional vector of all ones. Notice that when M = N , i.e., Ω = [N ], Φopt is
invertible only if σ1 = 1, with

Φ−1
opt = 1√

N
(2IN − c11

T
N )ΦT

ss, (9)

otherwise c1 = (1, 0, · · · , 0)T ∈ RN is a non-trivial element of its kernel. For all the experiments
reported in this article, the spread spectrum vector had σ1 = 1.

In a noiseless setting, the optical bias introduce above can be easily removed in our schlieren
deflectometer by completing the compressive observations of a spectrum sk in pixel k with one
associated to a pattern φon = 1N , i.e., simulating the observation of sk with the sensing Φss.
Indeed, we verify easily that

zk = N−1/2 (2 Φoptsk − (φTonsk)1M ) = Φsssk. (10)

As will be clear in the next section, the sensing noise in the model (1) that corrupts both Φoptsk and
φTonsk impacts this bias removal. Actually, the sensing noise impacting zk is bigger than the one
present in 2N−1/2Φoptsk and it could seem then more appropriate to base the reconstruction of sk
on these last observations rather than on zk. However, we found empirically that the reconstruction
procedure detailed in Sec. 5 is much more stable3 when realized from zk, i.e., for Φ = Φss, despite
the additional noise introduce by the extra observation of φTonsk. We must also acknowledge the
fact that zk is based on M + 1 observations of sk and not M , but we will omit this point as M � 1
in all our experiments.

2Associating the values 0 and 1 to an opaque and to a fully transparent SLM pixel, respectively.
3We have also reproduced the same phenomenon on 1-D sparse signal reconstruction with unbiased and positively

biased Bernoulli sensing matrices using a different reconstruction solver included in the SPGL1 toolbox [57].
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4.4 Noisy sensing model

Our schlieren deflectometer described in Sec. 2 is obviously corrupted by several sources of noise.
These are due, for instance, to backlight source inhomogeneities, light leakage in SLM (e.g., due to
incomplete pixel fill factor), optical stray light effect, CCD quantization/readout noise and photon
or shot noise in the CCD pixels collecting the optical compressive measurements. Our sensing model
must account for these noises and bound their impacts in order to define a robust reconstruction
of deflection spectra. However, as will become clearer below, we can summarize the impact of all
these by a global additive noise model both on the signal and on the measurements.

Limited influence of the photon noise As noted in [52] in the general case of compressive
optical observations of sparse images, the bias introduced in (8) for ensuring a non-negative sensing
matrix has an impact on the spectrum reconstruction. When the measurements are corrupted by
a Poisson noise, as in the low-photon counting regime, the mean square error (MSE) of typical
CS reconstruction methods (such as (16)) is proportional to the mean of the observed image and
inversely proportional to both the compressive oversampling ratio M/K and to the light intensity,
where K is the expected sparsity level of the image. Moreover, there exist intrinsic upper bounds
on the image reconstruction quality discovered in [43] for compressive optical systems subject to
Poisson noise.

We can make two observations relatively to those prior works. First, the limitations explained
in [43] do not apply readily here. Conversely to the assumption made in this work, our system is
not “flux-preserving”, i.e., the reconstruction relies on an accumulation of measurements obtained
by multiple SLM patterns and, as for the single-pixel CS camera [18], the recorded light flux can be
made arbitrarily large, independently of the incoming light flux. Second, the schlieren deflectometer
analyzed in this paper is not so much affected by the Poisson noise effect analyzed in [52] since the
CCD camera records data in a high-photon counting mode. Our system is globally characterized
by an important light throughput induced by the selection of our binary SLM patterns, i.e., about
50% of the SLM pixels are “on” for any rows of Φopt in (8). Even with a SLM throughput close to
23% (as governed by the LCD technology), the light intensity collected per pixel in the CCD focal
plane is still important, thanks to a 12W monochromatic backlight source illumination (see Fig. 2).
Conversely to fluorescent imaging techniques, the system also observes the direct transmission of
the light source, e.g., with no additional losses of light conversion by the material. A conservative
calculation shows that for a typical exposure time of 50 ms per observation, considering the source
wavelength (546 nm) and an angular acceptance of the telecentric system of 3.14 10−4 steradian,
more than 105 photons per CCD pixel and per observation are collected. At such a high-photon
counting regime the sensing noises are therefore dominated by additive noises or by noises well
approximated by an additive model (e.g., due to high-resolution quantization distortion or to CCD
readout noise). Consequently, the sensing corruption C in (1) will be considered as mainly additive
in our developments.

Noisy multiple measurement vector model We propose a model that covers the impacts of
all the additive noises by splitting their origins into two sources: a signal noise corrupting the signal
before its sensing, and a measurement noise impacting only the observation process independently
of the signal. Moreover, we adopt a (compressive) Multiple Measurement Vector (MMV) model (see
e.g., [38]) that illustrates the implicit (massive) parallelism of our measurement process induced
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Signal Noise Measurement Noise

Mean µ̂s = 1.1313 10−4 µ̂ = 3.0999

Variance ς̂2
s = 7.8747 10−4 ς̂2 = 1.0936

Dynamic ‖sno‖∞ = 0.63 ‖Φopts
no‖∞ = 40.10

Table 1: Measurement and signal noises parameters. Following the calibration methods of
Secs. 4.4.1- 4.4.3, those have been estimated over a CCD area of 4096 pixels. As a point of
comparison, the last line of this table provides the dynamic range of the spectrum sno obtained in
the absence of object and of its compressive observations (see Sec. 4.4.2).

by the NC pixels of the CCD camera. This model is also common in other high-dimensional
compressive acquisition imaging procedures such as in compressive hyperspectral imaging [23, 24].

Mathematically, given a positive sensing matrix Φ ∈ RM×N+ , if we gather the NC measurement

vectors yk (one per CCD pixel) in a single matrix Y = (y1, · · · ,yNC
) ∈ RM×NC

+ , the model (1)
becomes

Y = Φ(S + Ns) + N, (11)

where S = (s1, · · · , sNC
) ∈ RN×NC

+ is the matrix containing the NC deflection spectra, Ns =

(ns,1, · · · ,ns,NC
) ∈ RN×NC

+ is the signal noise corrupting S before the sensing process and N =

(n1, · · · ,nNC
) ∈ RM×NC

+ is the measurement noise impacting only the sensing procedure indepen-
dently of the signals.

To aid our further analysis, we assume that the noises are all independent and that all entries
of Ns, and those of N, are independently and identically distributed, with possibly different distri-
butions between the two independent matrices. This means that the distribution of those noises
are independent of the programmed SLM patterns (i.e., with respect to the row indices of N), of
the CCD pixel location (for the column indices of both Ns and N) and of the deflection spectrum
locations (for the row indices of Ns). Hereafter, we denote by µs and ςs (respectively by µ and ς)
the mean and standard deviation of any of the entry of Ns (resp. of N).

In this context, the debiased measurements Z = (z1, · · · , zNC
) associated to (10) are issued

from the noisy model

Z = N−1/2
(
2Φopt(S + Ns) + N− φTon(S + N′s)1M1TNC

− 1M (n′)T
)
,

= Φss(S + µs1N1TNC
) + µ1M1TNC

+ N̄, (12)

where the entries of N′s and of n′ ∈ RNC are distributed as those of Ns and N, respectively, and
with N̄ a colored noise with zero mean.

We present below how the estimation of these four parameters can been obtained by benefiting of
the properties of our imaging system and of the MMV model above. The result of these estimations
is already summarized in Table 1. As an aside, we also show how to measure the PSF of the
instrument, i.e., its response when light deflection is measured in the absence of object. These
calibrations allow us to finally estimate the impact of these noises on each measurement vector yk,
which is of course mandatory to stabilize the reconstruction of sk described in Sec. 5.
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4.4.1 Calibration of the measurement noise

The parameters of this noise are easily estimated by programming the SLM with a fully opaque
pattern. In other words, by taking a single pattern Φopt = (0, · · · , 0) ∈ R1×N

+ in (11) (i.e., with
M = 1), irrespectively of the observed spectra S, the MMV model (11) reduces simply to

Y 0 := (y0
1, · · · , y0

NC
) = Φopt(S + Ns) + N = N.

with N = (n1, · · · , nNC
) since M = 1.

Assuming as above that the sensing noise is independent of the SLM pattern, these observations
correspond then to NC samples of the distribution characterizing the entries of N. The appropriate
(unbiased) estimators of µ and ς corresponds then simply to

µ̂ = EexpY
0 := 1

NC

∑
j

y0
j and ς̂2 = VarexpY

0 := 1
NC−1

∑
j

(y0
j − µ̂)2,

where Eexp and Varexp are the experimental mean and variance, respectively, computed from the
samples collected on the CCD pixels.

4.4.2 Calibration of the signal noise variance

For estimating the variance of the signal noise, we must exploit some specific properties of our
schlieren deflectometer. We notice first that in the absence of any test object the incident light
does not undergo any deflections and hence the deflection spectrum should ideally consist of a
single peak at its origin, independently of the CCD locations k. Such an ideal spectrum sno is
of course not observed in reality. The schlieren deflectometer displays a non-trivial point spread
function (PSF) induced by the finite size of the TS pinhole in the schematic Fig. 2(a). Incidentally,
we provide in Sec. 4.4.3 a method for estimating sno.

The constancy of sno with respect to k, i.e., the fact that all spectra in (11) are given by
Sno = sno1TNC

, allows us to estimate the variance ς2
s . This is achieved by proceeding as in the

previous estimations of µ and ς, i.e., we set (11) in a single measurement process with Φop = 1TN
and N = (n1, · · · , nNC

) (i.e., M = 1), so that

Y 1,no := (y1,no
1 , · · · , y1,no

NC
) = 1TN (sno1TNC

+ Ns) + N.

Since the first term is constant, we find

VarexpY
1,no = Varexp(1TNNs + N),

with VarexpY
1,no a good estimator of Var y1,no

k on each pixel index k when NC is large. However,
from the independence of Ns and N, we have also on each pixel index k

Var y1,no
k = Var(1TNns,k) + ς2 = Nς2

s + ς2.

Consequently, having established in the previous section an estimator ς̂2 on ς2, we obtain another
one on ς̂s such that

Nς̂2
s := VarexpY

1,no − ς̂2.
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Figure 3: PSF estimation obtained from (14) with M = N measurements: (a) on a single CCD
pixel k (setting NC = 1) and (b) with NC = 4096.

4.4.3 Signal noise mean and point spread function estimations

This section shows that estimating the signal noise mean passes through the calibration of the
instrument point spread function (PSF), i.e., the spectrum observed in the absence of object. This
can be done by configuring the sensing matrix as in (8) with4 M = N and σ1 = 1. Since in the
absence of any object the spectra are independent of the location k, Sno = sno1TNC

and the sensing
model reads

Y no = Φopt(s
no1NC

+ Ns) + N.

Projecting the left and the right hand sides of this equation on the vector N−1
C 1NC

and applying
the inverse sensing matrix on the result, we get a biased estimation of sno

s̃no := N−1
C Φ−1

optY
no1NC

= sno + n̄s + Φ−1
optn̄,

with n̄s = N−1
C Ns1NC

and n̄ = N−1
C N1NC

.
It is easy to see that, up to a constant bias that will be subtracted later, s̃no provides a good

estimate of sno when NC is large. First, each component of n̄s has a mean µs and a variance
ς2
s /NC . Concerning Φ−1

optn̄ we find EΦ−1
optn̄ = µΦ−1

opt1N . From (9) and H1N =
√
Nc1, we get

Φ−1
opt1N = 1√

N
(2IN − c11

T
N )ΣH1N = c1, so that EΦ−1

optn̄ = µc1.

Second, we can show that the covariance of Φ−1
optn̄ vanishes as O(1/NC). Indeed,

E(Φ−1
optn̄− µc1)(Φ−1

optn̄− µc1)T = Φ−1
optE

(
(n̄− µ1N )(n̄− µ1N )T

)
(Φ−1

opt)
T

= 1
NC
ς2Φ−1

opt(Φ
−1
opt)

T

= 1
NC
ς2 1
N (2IN − c11

T
N )(2IN − 1Nc

T
1 ),

but for any u ∈ RN , a crude bound gives uT (2IN − c11
T
N )(2IN − 1Nc

T
1 )u ≤ (N + 8)‖u‖2, so that

Cov(Φ−1
optn̄) 4 1

NC
ς2(1 + 8

N )IN = O(IN/NC).
Consequently, for large NC , we find

s̃no ≈ sno + µs1N + µc1.

4In order to limit the number of measurements, the SLM can be programmed on a limited area around the expected
spectrum location, i.e., inserting the rows of Φopt only in a limited zone and filling the rest of the SLM with opaque
pixels. For the “no object” spectrum, we have set N = M = 642 = 4096.
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Moreover, since c1 is non-zero only on the first pixel of the spectrum domain, assuming reasonably
that the support of sno does not contain this first pixel (i.e., cT1 s

no = 0) and is small compared to
its complementary set, we can define the two following estimators:

µ̂s = median (s̃no) (13)

ŝno = H1(s̃no − µ̂s1N ), (14)

where H1(u) sets to zero the first value of u ∈ RN . Anticipating slightly over the experimental
setup described in Sec. 6.2, Fig. 3 compares the estimation of sno obtained by simply inverting Φopt

(with M = N) on yk for a arbitrary pixel k with the one associated to (14). We clearly observe
that the level of noise vanishes from the averaging procedure given in (14).

4.4.4 Noise impact on random measurements

Having established above how to estimate the main parameters of noises Ns and N, it is now easy
to bound the noise power on the observations of deflection spectra.

Focusing our analysis on a single pixel k and on the spread-spectrum CS matrix Φopt given is
Eq. (8), the model Eq. (11) becomes

zk = 2y(sk,Φopt)− y(sk,A
1)1M ,

where y(sk,Φopt) is a vector of noisy measurements of sk of size M and y(sk,A
1) is the single

measurement of sk using an all ones pattern A1 = 1N , with a different noise realization.
After expanding the two terms, we have

zk =
√
NΦsssk + 2Φoptns + 2n− 1M (1TNn

′
s)− n′1M .

The noise terms in the above expression can be further split into zero mean terms and systematic
bias terms. Recalling that the signal noise and measurement noise have means µs and µ, we obtain

zk =
√
NΦsssk +

√
NΦssµs1N + µ1M︸ ︷︷ ︸

systematic bias

+ 2Φoptñs + 2ñ− 1M (1TN ñ
′
s)− ñ′11M︸ ︷︷ ︸

zero mean noise

,

where ñs, ñ
′
s, ñ and ñ′1 are zero mean noises.

First, the systematic bias
b :=

√
NΦssµs1N + µ1M (15)

must be subtracted from the observations zk.
Second, bounding the observation noise power amounts to finding an appropriate bound ε such

that
‖zk −Φsssk − b‖2 ≤ ε2

holds with high probability with respect to the noise randomness. This is mandatory for adjusting
the fidelity constraints of any reconstruction method (such as the variation of BPDN (5) introduced
in the next section). With ξ := 2Φoptñs + 2ñ− 1M (1TN ñ

′
s)− ñ′11M , we have

zk =
√
NΦsssk + b+ ξ.

Replacing b by b̂ :=
√
NΦssµ̂s1N + µ̂1M , we obtain ξ ≈ zk −

√
NΦsssk − b̂.
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Estimating the noise bound ε2 amounts to estimating ‖ξ‖22, which is hard in general but thanks
to the measurements of the no object spectrum we can rely on the estimate ŝno in Eq. (14) and
the MMV model in Eq. (11) of the deflectometric system. For each M , we consider the no object
measurement vectors zk = 2y(sno,Φopt) − y(sno,A1)1M at all CCD locations and construct the
empirical distribution (across CCD locations) of ‖zk −

√
NΦssŝ

no − b‖22. We then simply set ε2 to
be the 75th percentile of this empirical distribution.

5 Deflection spectrum recovery and numerical method

While solving the optimization problem in Eq. (5) the choice of the sparsity basis Ψ plays an
important role in terms of the quality of the solution. Even though it is remarked earlier that the
spectra we wish to reconstruct are sparse in the canonical domain itself, due to the nature of the
objects we investigate, it is advantageous nevertheless to work in some other domain. One choice
is to use wavelets as they are suitable for signals which are piecewise regular.

For sparse representation of deflection spectra, we use translation invariant frame of wavelet
associated with the UnDecimated Wavelet Transform (UDWT), i.e., the usual wavelet transform
without the decimation [37]. The non-uniqueness of the decomposition of a signal in such a re-
dundant frame allows us to represent signals in their sparsest possible way [19, 9], which may not
be possible with a wavelet basis. Moreover, for (locally) smooth objects, the deflection spectra
associated to neighboring CCD pixels are mainly differentiated by a small translation while their
shapes are almost identical. This justifies the use of a translation invariant sparsity prior in order
to ensure a reconstruction error for the different deflection spectra that is spatially constant. In our
work, we use a UDWT built on the Daubechies 16 tap filter in all our reconstruction experiments.

Notice that, rather than estimating the deflection spectra with the sparse synthesis prior used
in Eq. (5) [53, 54], we have preferred an analysis based prior model [19, 41] for regularizing our
inverse problem. Consequently, as our deflection spectra are positive by nature, the optimization
problem we solve for estimating each of them in each pixel k reads

ŝk := arg min
s
‖Ψ∗s‖1 subject to ‖yk −Φopts− b‖2 ≤ ε and s ∈ RN+ , (16)

where b is the noise bias estimated in Eq. (15) and ε is the noise power estimated in Sec. 4.4.4.
In the absence of the positivity constraint, if the analysis dictionary Ψ is a tight frame and Γ

satisfies Dictionary-Restricted Isometry Property (D-RIP) with the isometry constant δ2K < 0.08,
then the solution ŝ satisfies [9, Thm. 1.4]

‖sk − ŝk‖2 = O
(
‖Ψ∗sk−(Ψ∗sk)K‖1√

K
+ ε

)
. (17)

Recovery guarantees when Ψ is not a tight frame and measurements are Gaussian can be found
in [45]. In the reported work, Ψ is always a UDWT based tight frame.

Convex optimization algorithm

To solve the program (16), we make use of a primal-dual method called the Chambolle-Pock (CP)
algorithm [12]. Chambolle-Pock algorithm solves primal-dual forms of unconstrained convex prob-
lems and it relies on proximal operators of the functions involved in the objective. It has a flexible
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structure, which allows easy inclusion of additional terms in the objective function. Furthermore,
it has guarantees of convergence under under broad conditions on the objective function.

Chambolle-Pock algorithm is used to solve primal-dual formulations of the primal problems of
type

min
u∈RN

F (Ku) +G(u), (18)

whereK : RN → RM be a continuous linear operator with a bounded norm. Let F : RM → [0,+∞]
and G : RN → [0,+∞] be two proper, convex, lower-semicontinuous functions [4].

The algorithm primarily relies on the proximal operators of the two functions in Eq. (18) [40].
Proximal operators generalize simple gradient descent when the functions are not differentiable.
Moreover, proximal operators of several functions commonly used in signal processing have closed
forms which are easy to evaluate [13, 40]. More Details on the algorithm and its convergence can
be found in [12].

The constrained problem Eq. (16) is converted into the unconstrained form Eq. (18) with the
help of convex indicator function of the convex sets associated with each constraint. The convex
indicator function ıC of a convex set C (see Introduction) is proper, convex and lower-semicontinuous
function and hence it satisfies the requirements of the Chambolle-Pock algorithm [8]. The `2 ball of
radius ε, centred on the measurement vector yk, Bk =

{
z ∈ RN | ‖(yk − b)− z‖2 ≤ ε

}
, is a convex

set. Hence the constraint ‖yk − Φopts − b‖2 ≤ ε can be inserted into unconstrained problem by
including the convex indicator function of the set Bk into the objective.

The non-negative constraint in (16) can be included through the convex indicator function of
the non-negative orthant RN+ . With these considerations, the unconstrained formulation of the
reconstruction problem (16) takes the form:

ŝk := arg min
s∈RN

(
‖Ψ∗s‖1 + ıBk(Φopts) + ıRN

+
(s)
)
.

The proximal operator of `1 norm is the soft-thresholding operator proxγ‖·‖1(u) = (|u| −
γ)+ sign(u), and the one of the indicator functions of Bk and RN+ are the projections proxıBk

(u) :=

y + (u − y) min(1, ε‖u − y‖−1) and proxıRN+
(u) := (u)+ respectively. The adaptation of CP algo-

rithm to handle more than two functions (as against two functions in its standard formulation),
based on product space expansion, is described, e.g., in [26].

6 Experiments on Deflection Spectra Reconstructions

The spread spectrum Hadamard sensing approach to measure and reconstruct deflection spectra
was first evaluated with synthetic experiments in an ideal noiseless condition. Subsequently, it was
implemented and evaluated on an actual deflectometric system.

For all the experiments reported in this article (synthetic as well as actual deflectometric),
the spread-spectrum vector σ was generated once and fixed5, thereby fixing the full sized spread-
spectrum Hadamard measurement matrix HTΣ in Eq. (8) throughout. For a given set Ω ⊆ [N ] of
M random indices, a typical vector of compressive measurements was generated using the sensing
matrix Φopt, defined in Eq. (8).

5Fixing σ1 to 1 for allowing a full inversion of Φopt with Eq. (9) when M = N (see Sec. 4.3).
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(a) (b)

Figure 4: Examples of synthetic deflection spectrum: (a) one spectral spot and (b) five spectral
spots

6.1 Spectrum reconstruction from synthetic measurements

In Sec. 1, we discussed that light deflections induced by smooth surfaces tend to be strong around
a mean deflection angle and they gradually decay away from the mean angle. Moreover, when
the object surface is not too curved the deflection spectral spot is also symmetric, while for more
complicated surfaces we expect the spectrum to be decomposed over several spectral spots resulting
both from the instrument resolution limit and PSF.We describe the resolution limit aspect in Sec. 9.
Therefore, our compressive schlieren imaging scheme has been first verified with synthetic spectra
composed of Q spectral spots with 1 ≤ Q ≤ 5. These were synthesized by simply adding Q 2-D
Gaussian functions uniformly and independently placed at random over a 2-D spectrum domain of
size 64 × 64 (N = 4096). The height and the width of each Gaussian pattern were set to 1 and
to a standard deviation of 3 pixels, respectively, the width being fixed by the typical width of the
instrumental PSF observed in Sec. 4.4.3. For reasons that will become clearer later, this is size is
also close to those of actual deflection spectra.

Those spectra have been numerically observed with the sensing matrix Φopt in (8) under the
conditions described at the beginning of this section. We select a noiseless sensing model as we
focus here on the reconstruction capability of the compressive scheme as a function of the number
of measurements M and of the synthetic spectra complexity. The spectra were reconstructed by
the method described in Sec. 5. The iterations were chosen to be stopped when the relative error
of successive iterates dropped below a threshold 10−4.

In case of synthetic experiments, as the ground truth s was available to us, the reconstruction
performance for a given number of measurements M was evaluated by the output SNR defined by
20 log10(‖s‖2/‖s − ŝ‖2), where ŝ is the reconstructed spectrum obtained by solving (16) and s is
the true spectrum.

The input spectrum for a given number of spots was fixed in all the experiments. For each
value of M/N , 20 reconstruction trials were performed, each of them consisting of a new vector of
measurements obtained using a new measurement matrix Φopt drawn according to (8). The output
SNR was averaged across the 20 trials respectively.

Fig. 4 shows a typical synthetic deflection spectrum with (a) one and (b) five deflection spots,
without any noise. Fig. 5 contains the results of reconstruction using M/N = 3.6% of the mea-
surements. Fig. 6(a) shows the SNR curve for the three reconstruction modes on synthetically
generated data as a function of the ratio M/N in percentage, for deflection spectra containing one
and five spots (as depicted in Fig. 4).
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(a) (b)

Figure 5: Reconstruction examples of synthetic spectra with 3.6% of measurements: (a) corresponds
to one spectral spot and (b) corresponds to five spectral spots.
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Figure 6: (a) Output SNR versus number of measurements for synthetic deflection spectra with
one and five spots. (b) Output SNR versus number of spots in the deflection spectrum for M/N =
10.99%.
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Figure 7: Reconstruction performances of Hadamard sensing with and without spread spectrum
modulation.

Fig. 6(b) shows the reconstruction performance as a function of the number of spots in the
deflection spectrum, for a fixed M/N = 10.99%. As expected, the performance decreases as the
number of spots increases. This is in concurrence with the fact that as the number of spots increase
in the spectrum, its sparsity (number of non-zero coefficients) increases and hence would actually
require larger number of measurements to have a comparable reconstruction quality. In other
words, the error term ‖Ψ∗s− (Ψ∗s)K ‖1/

√
K in (17) decays more slowly if K is high.

Additional reconstruction experiments were carried out to assess the benefit of spread spectrum
sensing over conventional Hadamard sensing. For Hadamard sensing, the spread spectrum sequence
σ was simply set to 1N in the generation of Φopt. Fig. 7 compares the reconstruction performances
of both the methods on synthetic spectrum (with 4 spots) reconstruction. The spread spectrum
sensing clearly outperforms the plain Hadamard sensing as already reported by [42] in different
settings.

The synthetic experiments in the ideal conditions show that the method of spread spectrum
compressed sensing is capable of reconstructing deflection spectra with good SNR, using a small
number of measurements. With this positive note, we shall now present the reconstruction results
obtained using actual deflectometric measurements.

6.2 Spectrum reconstruction from deflectometric measurements

In this section, we present the spectrum reconstruction results for actual test objects. All the
deflectometric experiments were carried out using Lambda-X’s NIMOTM[1] (see Fig. 2(b)) deflec-
tometric system, which has a programmable interface to load optical modulation patterns into its
SLM.

We consider a SLM region of interest of 64 × 64 pixels positioned at its physical centre, for
making the measurements. The SLM pixels outside this area were always set to be opaque. Hence,
the size of the modulation patterns and the underlying deflection spectra are 64× 64 pixels in size,
which in the vectorized version have the size N = 4096. This makes the size of the Hadamard
matrix 4096× 4096.
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(a) (b) (c)

Figure 8: Reconstruction examples of a spectrum of a 9.99D plano-convex lens: (a) corresponds to
100% of measurements, (b) corresponds to 11% of measurements and (c) corresponds to 15.8% of
measurements.

Data generation For experiments with the deflectometric data, we chose two plano-convex
lenses of optical powers6 9.99D and 60D. The size of the deflection spectrum to be reconstructed
was set to 64 × 64 pixels, so that N = 4096. All the 4096 possible modulation patterns were
generated according to Eq. (8) and the corresponding number of measurements for all locations k
were collected on the CCD by loading the modulation patterns one by one into the SLM. For a
given value of M , a set of indices Ω ⊆ [N ], |Ω| = M , was drawn uniformly and the measurements
corresponding the indices in Ω were selected to form the vector yk, for a given CCD location k.
The spectrum was reconstructed by solving (16) with the UDWT analysis-based prior described
in 5. The bias b and the value of ε were appropriately set in all the experiments as described in
Sec. 4.4.4 with the estimators of Table 1.

Input SNR It is important in our reconstruction to evaluate the level of noise corrupting the
compressive observations of a deflection spectrum at pixel k, i.e., the corresponding input Signal-
to-Noise (SNR) ratio. Having no access to the pure observations of the spectrum, this SNR is
approximated by

SNRin = 20 log10
‖Φsssk‖
‖zk−Φsssk‖ ≈ 20 log10

‖Φsssno‖
‖zk−Φsssno‖ , (19)

with the “no object” spectrum sno obtained in Sec. 4.4.3. Note that the input SNR is computed
using zk, not yk, because this is the vector that will be finally used for spectrum reconstruction.
As both ‖zk − Φsssk‖2 and ‖Φoptsk‖2 are (approximately) proportional to M , we observed that
this input SNR has an almost constant value of about 4.8 dB, for most k.

Results Fig. 8 shows typical reconstructions of a deflection spectrum for the 9.99D lens, at
some arbitrary location k, for 100%, 11% and 15.8% measurements. It can be seen from these
example reconstructions that the quality of reconstruction improves as the number of measurements
increases.

Fig. 9 shows the SNR curves for the spectra of the two specified lens (9.99D and 60D), as a
function of the ratio M/N in %. Each point on the plot was obtained by considering 4 different
locations on the CCD and performing 20 independent reconstruction trials on each of them for

6The optical power of a lens is defined as D = 1/f , the reciprocal of its focal length f and it is measured in the
unit m−1 or dioptres (D)
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Figure 9: Output SNR versus number of measurements for analysis UDWT reconstruction mode
for plano-convex lenses of optical powers 9.99D and 60D.

every value of M/N considered and subsequently averaging over all locations and trials. For each
new trial, a new index set Ω was generated and used.

For assessing the reconstruction quality gain, the input SNR is represented by an horizontal
dotted line near 5 dB. To recollect, the input SNR tells us the relative strengths of signal and noise
in the input which is used for reconstruction. From the plots, we can infer that the compressive
sensing method produces a reconstruction that has better SNR compared to the input SNR. This
performance is owed to the fact that the reconstruction procedure has the capability to take ad-
vantage of the sparse structure of the signal to carefully discriminate it from noise and suppress
the latter.

The number of measurements needed for a 10 dB reconstruction is about M/N = 16% for the
9.99D lens and M/N = 21% for the 60D lens, which is far lesser than the number of measurements
needed according to classical Shannon sampling.

On a Macbook ProTMwith a 2GHz processor and 4GB RAM, the reconstruction takes about 3
minutes. However, when the ratio M/N increases, the time required for reconstruction marginally
decreases. Reconstruction of spectra for all the locations on the object surface is still a bottleneck
due to computational requirement, but quicker characterization of objects can be achieved without
reconstruction as described in the next section.

7 Compressive characterization of light deflection spectra

The final goal of measuring and reconstructing deflection spectra is to characterize and understand
the object being studied. Though deflection spectra at individual locations themselves contain rich
information about the local geometry of the object, it is essential to see how the spectrum evolves
as a function of the spatial location k. To this end we would like to summarize each deflection
spectrum by a few parameters. In this section, we characterize a spectrum by defining the notion
of centrum of a deflection spectrum, by assuming that each deflection spectrum contains only one
deflection spot, and present a method to compute it using compressive measurements.

The PSS method in Sec. 3 is also aimed at obtaining local deflection information across the
whole surface. However, it is effective and accurate only when each deflection spectra contains only
one Dirac spike. On the other hand, our proposed method considers generic deflection patterns
and hence it is expected to be more effective.
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7.1 Parametric characterization of a deflection spectrum

For smooth objects, the deflection spectrum sk is simply a bright spot centered at a mean deflection
angle that depends on the location k. The evolution of the mean deflection angle across k, which
can be studied via the locations of the spectral spot, provides a global characterization of the
object’s surface.

We fix the spectral origin O (co-ordinates of zero deflection with respect to optical axis) and
locate the spot with respect to O. In an ideal noiseless case, we could simply compute the geometric
centroid to localize, but this fails in our current situation. Alternatively, we fixed a template 2-D
Gaussian Gρ of variance ρ7, located on the spectral origin O. By letting gρr to denote the vectorized
form of Gρ, translated in 2 dimensions by r = (rx, ry)

T ∈ R2, we propose to find the position of
the spectral spot within the deflection spectrum by solving

r∗k = arg max
r
|〈ŝk, gρr〉|. (20)

Finding r∗k in this manner involves a fully reconstructed spectrum ŝk and it is computation-
ally challenging. However, thanks to the embedding properties of compressed sensing matrices,
characterized by the restricted isometry property [21], a similar matched filtering operation can be
instead performed on the vector of measurements yk itself, without involving reconstruction.

7.2 Matched filtering using compressive samples

Many common signal processing tasks such as detection, classification and parameter estimation
can be performed using the compressive samples, without fully reconstructing the signals [15, 14].
On similar lines, we propose to localize the spectral spot of a deflection spectrum directly from
its measurements yk by posing the matched filtering problem (20) in the measurement domain,
appropriately named smashed filtering [15]. Considering a limited impact of the noise on the
procedure, this is done by first computing a de-biased measurement vector

zk :=
(
2yk − 1M (1Nsk)

)
/
√
N ≈ Φsk, (21)

where (1Nsk) is actually measured by the schlieren deflectometer by setting the SLM with the
pattern 1N , and then estimating

r∗k = arg max
r
|〈zk,Φgρr〉| = arg max

r
|〈ΦTzk, g

ρ
r〉|. (22)

Under certain assumptions, solving (22) is similar to solving (20). If the sensing matrix Φ is RIP
or even D-RIP with respect to a sparsity basis/dictionary Ψ where both gρr and sk can be sparsely
represented (see Sec. 5), then, 〈Φsk,Φgρr〉 ≈ 〈sk, gρr〉, where the level of approximation is actually
regulated by the associated Restricted Isometry Constant (RIC) [15, 14, 21]: smaller the RIC,
tighter the approximation.

Eq. (22) is solved in two steps: (1) a coarse estimate r̂k via convolution and peak detection and
(2) finer sub-pixel estimate r∗k by a gradient descent around r̂k.

7The radius ρ was set by analyzing the width of the spectral spot in a sample reconstruction of deflection spectrum.
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Figure 11: Relationship between deflection angle and the position of the deflection spectrum on
the SLM.

7.3 Results

For the experimental evaluation of spectral spot estimation using compressive measurements, we
retained the configuration described in Sec. 6.2. For each of the 4 CCD locations k, the centroid rk
was computed by solving Eq. (22). A “ground truth” centroid r∗k was also found by solving Eq. (20),
using the fully reconstructed spectrum sk (solving (5)) using M = 4096 (100%) measurements with
UDWT dictionary.

Fig. 10 shows the centroid computation error ‖r − r∗‖2 as a function of the number of mea-
surements M/N . Each data point is obtained by averaging 50 independent trials for each value of
M over all the four locations. The horizontal dotted line indicates a unit pixel error and it can be
seen that the compressive centroid estimation achieves sub-pixel accuracy, even with the number
of measurements as low as 2.4% (50 measurements) for the 60D lens, and about 3.7% for the 9.99D
lens.

Compressive centroid computation takes less than a second on the same hardware used for
reconstruction and this faster method can be used to study the global geometry of object surfaces.

24



8 Characterization of objects from deflection spectra

The relationship between the object locations k and the position rk of the spectral spot in the
spectrum sk can be understood with the 1-D schematic in Fig. 118. By making the thin lens
assumption, the relationship between the focal length of the schlieren lens f , dioptric power of the
test object 1/fo and the vertical distance d of a considered point k on the test object is given by

1

fo
≈ 1

f

r

d
, (23)

where r is the linear displacement on the SLM of the light ray incident on k, parallel to the optical
axis.

By computing the distances r and d in physical units (with the knowledge of the pitch of the
CCD and the SLM pixels) and knowing the focal length f of the schlieren lens, we can compute
the local optical power for each location k on the object. For a plano-convex lens, the local optical
power is the same across all the object locations.

8.1 Characterization of plano-convex lenses

For the two plano-convex lenses of optical powers 9.99D and 60D, already used in Sec. 6.2, we
considered an array of 65× 65 CCD pixels (513.42× 513.42µm2 with 7.8989µm CCD pixel pitch,
around the centre of the full CCD array of size 1392 × 1040). Then, the positions rk of all the
spectral spots sk corresponding to the 65 × 65 CCD locations were found using the compressive
matched filtering method, described in Sec. 7.2, for different values of the number of measurements
M . The total time required to find the centroid of all the 65× 65 spectra was about one hour and
ten minutes on the same machine that was used for the experiments in Sec. 6.

Fig. 12(a)-(b) show the surface plots of ‖rk‖2 as the function of location k ∈ R2, computed
using M/N = 100% and 8.5% measurements for the 60D plano-convex lens. Let us refer to these
plot as centroid maps. The centroid maps are symmetric due to the symmetry of plano-convex
lenses. To robustly estimate the constant rate of centroid evolution, a two dimensional inverted
cone is fit to each deflection map, in the least squares sense. The inverted cone is fit by optimizing
its slope to minimize its squared error with the deflection map. Tab. 2 shows the values of the
slopes computed for the centroid evolution plots corresponding to the two lenses.

Optical power mo Estimated power

M/N = 100% M/N = 8.5% M/N = 100% M/N = 8.5%

9.99D 0.1128 0.1065 10.2785D 9.7115D

60D 0.6731 0.6743 61.3544D 61.4612D

Table 2: Table of computed slopes and dioptric powers using compressive measurements with
M/N = 100% and M/N = 8.5% measurements.

The dioptric power of the lens is computed using (due to Eq. (23)) 1/fo = mo/f , with schlieren
lens of focal length 50mm and SLM pixel pitch 36µm. The third column of Tab. 2 lists the estimated
dioptric powers of the two lenses.

8This is exactly the same as described in Fig. 2(a), without the tele-centric arrangement, which is not necessary
for the following discussion
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Figure 12: Evolution of deflection spectrum along the spatial locations of the object, computed
using(a) M/N = 100% and (b) M/N = 8.5% of measurements.
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Figure 13: Percentage error in dioptric power estimation as a function of the number of measure-
ments.

Fig. 13 plots the absolute percentage error (with respect to the true power) as a function of the
number of measurements. As expected, in general the accuracy of the estimated optical power of the
plano-convex lens, using compressive samples improves as the number of measurements increases.
The systematic error in the power estimation of the 60D lens is unexplained and it may be arising
from the bad calibration of the system parameters.

8.2 Characterization of diffractive multi-focal intra-ocular lenses

A diffractive Multifocal Intra-Ocular Lens (MIOL) has multiple foci, achieved by gratings carved
on its surface as shown in Fig. 14(a). The underlying curvature of the lens (blue dotted curve),
defines the refractive aspect of the diffractive lens and controls the location of zero-order diffraction,
which is utilized for distant vision.

We considered a diffractive MIOL of dioptric powers 28D and 30.25D (two foci). A region of
256×256 was considered on SLM for sensing the deflection maps. On the CCD array, the deflections
were computed using compressive centroid method on an array of 500 × 500 pixels (physical area
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Figure 14: (a) Typical profile of a diffractive multifocal intra-ocular lens. 3D plots of centroid maps
obtained using (b) phase shifting schlieren method and (c) compressive sensing method with 7.63%
measurements.

of 3.95mm× 3.95mm). On a computational grid, the computations took about five hours.
Fig. 14(c) shows the 3D surface plot of centroid evolution of the considered diffractive MIOL,

computed using M/N = 7.63% measurements measurements. The corner artifacts are due to CCD
pixels outside the object boundary. The grating pattern of the MIOL is reproduced in both the
surface plots. The central region which has the same structure as a refractive lens reproduces the
cone like structure observed in Sec. 8.1. Fig. 14(b) shows the 3D map of the diffractive MIOL
obtained by the PSS method described in Sec. 3, without disturbing the experimental setup. PSS
provides horizontal and vertical deflection values rPSS

k ∈ R2 for each CCD pixel k, from which
a 3D map is constructed by first computing the norm ‖rPSS

k ‖2 and appropriately rescaling them
(accounting for unknown PSS algorithmic parameters) to make comparison with the deflection map
provided by the compressive sensing method.

Fig. 15(a) is a cross section9 of the deflection map obtained from CS method usingM/N = 7.63%
measurements. For comparison, the corresponding cross-section of the deflection map obtained
using PSS method is also overlaid. Even though both the methods agree in the refractive region
of the lens, the CS method provides a smoother deflection map in the diffractive region compared
to the PSS method. The PSS method involves a phase-unwrapping stage where neighbouring
pixels influence the deflection information at a given pixel. However, the CS method estimates the
deflections independently at each pixel and hence they are more robust and reliable.

Fig. 15(b) shows a zoomed contour plot of the reconstructed deflection spectrum from M/N =
7.63% measurements for the location indicated by a circle (◦) mark in Fig. 15(a). The blue cross
mark (X) indicates the deflection as estimated by the PSS method and the red cross mark indicates
the deflection estimated by the compressive centroid estimation method. Interestingly, the deflec-
tion spectrum clearly has an elongated profile and appears to be made up of two spots. However,

9The cross-section is selected in the horizontal direction to include the minimum.
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Figure 15: (a) Centroid map along a cross section of a diffractive MIOL with 7.6% measurements.
The two arrows refers to the two points where spectra are further analyzed. Example reconstruc-
tions of deflection spectrum: (b) for the location indicated by a circle (◦) mark in (a) and (c) for
the location indicated by a diamond (�) mark in (a).
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Figure 16: Smoothness of the deflection spectrum computed using the TV norm as a function of
the number of measurements.

the PSS method has no way of exploiting this multi-foci structure in its computations. Similarly,
Fig. 15(c) shows a zoomed contour plot of the reconstructed spectrum at the location pointed by
a diamond (�) mark in Fig. 15(a). Here, the deflection spectrum resembles a deflection spectrum
of a plano-convex lens. However, the estimate due to the CS method seems more accurate at the
centre of the spectral spot than the one provided by the PSS method. This is possibly a reason for
the smoothness of the overall deflection map computed using the CS method.

In order to measure the surface smoothness, we compute the Total-Variation (TV) norm of
the deflection maps. The TV norm of a 2-dimensional discrete signal I(x, y) is defined as [51, 47]
‖I‖TV =

∑
x,y ‖∇I(x, y)‖2, where ∇I(x, y) ∈ R2 is the gradient (horizontal and vertical) vector of

the image at coordinates (x, y). Smaller TV norm means smoother signal. Fig. 16 plots TV norm
(computed by avoiding the corner artifacts) of the deflection map obtained by the CS method as
a function of the number of measurements M/N . For comparison, the TV norm of the deflection
map obtained by the PSS method is also plotted. We see that the CS method provides smoother
deflection maps as the number of measurements increases. When M/N is at least 3%, the CS
method produces deflection maps smoother than the one provided by the PSS method.

Even though the CS method needs more number of measurements to provide a smoother centroid
map than the PSS method, richer information about deflections can be obtained via reconstruction,
especially when deflection spectrum contains multiple spots. PSS is totally ineffective in such cases.
Apart from this advantage, CS method avoids phase unwrapping steps making it robust. Moreover,
unlike PSS method, it relies on binary modulation patterns avoiding SLM non-linearities and is
amenable for fast implementation with digital micro-mirror arrays, instead of slower SLMs.

9 Resolution limit of deflectometry

We observe that any linear combination of several measurement vectors, corresponding to distinct
CCD locations, is exactly the measurement of same linear combination of the spectra. That is,
with Ψ = I, if S = (sk1 , · · · , skL) and Y = (yk1 , · · · ,ykL) are L distinct spectra/measurement
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Figure 17: Deflection spectrum reconstructed using a simulated coarse CCD pixel, consisting of 10
true CCD pixels.

vectors taken on locations {kj : 1 ≤ j ≤ L}, we have Y = ΦS. Therefore, given v ∈ RL,∑
j vjykj = Y v = ΦSv = Φ(

∑
j vjskj ).

In this light, we can explain the nature of elongated spectrum in Fig. 15(b). Each CCD pixel
has a fixed resolution and probes a definite area on the surface of the object. Ideally, this area can
be further broken down into smaller areas and we can associate a deflection spectrum to each of
this sub-area. However, the CCD pixels at our disposal cannot resolve this finer division and hence
at best it probes an average spectrum, which is a linear combination of several spectra at smaller
resolution. Owing to the relation described in the previous paragraph, each measurement vector at
a CCD pixel is to be interpreted as a linear combination of several measurement vectors associated
to finer CCD resolution. The elongated spectrum is a consequence of the limited resolution of the
CCD.

To substantiate, a coarse CCD pixel is simulated by averaging the measurements over a 20× 1
neighbourhood of CCD pixels and the reconstruction is performed on the averaged measurement.
Fig. 17 shows the reconstructed spectrum using a coarse pixel for a 60D plano-convex lens, which
consists of an elongated spot due to averaging of several underlying spectra. The deflection spectrum
in Fig. 15(b) corresponds to a point on the grating edge of MIOL surface. At this location, the
mean deflection transits from one angle to another and the CCD has insufficient resolution to
distinguish the spectral spots giving rise to an elongated spot. However, thanks to the CS method,
such deflection spectra can be visualized via reconstruction while PSS is oblivious to such spectra.

10 Conclusions and perspectives

This paper presents a compressed sensing approach to acquire and reconstruct deflection spectra
of transparent objects, using schlieren deflectometry. The design of the sensing matrix considers
the practical aspects of optical implementation and also algorithmic implementation. A noise
calibration procedure is also described which provides a reasonable bound on the inherent system
noise, which is then used to tune the reconstruction algorithm. To achieve this, we primarily exploit
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the inherent multiple measurement vector structure of the deflectometric system. The experimental
results show a great reduction in the required number of measurements for a good reconstruction
SNR, thereby demonstrating the power of compressed sensing. Moreover, by decoupling the sensing
and the reconstruction stages, compressed sensing framework provides a flexibility to tailor the
reconstruction method by using appropriate sparsity prior.

As a second major contribution, the paper contains a method to extract relevant low-dimensional
parameters of the deflection spectra that can be directly extracted from the compressive measure-
ments, thereby saving computations. This helps in quick characterization of the shape of the object
under study and also provides estimates of optical parameters such as dioptric power.

A fully reconstructed deflection spectrum is certainly rich in information and contains a lot
more than simply a mean deflection angle. Though reconstruction is a computationally intensive
task, it can be selectively used to pinpoint features at particular locations on the object. These
locations could be guided by a first analysis provided by the compressive characterization which is
computationally economical. The accuracy of the compressive characterization method is certainly
dependent on the dioptric power of the object as well as the number of measurements one can
afford. However, accuracy versus complexity trade-off is always a design choice.

While the applicability of compressed sensing for deflectometric imaging is very promising, this
is at best a good starting point for further exploration. Firstly, the reconstruction method can
possibly be improved for speed so that it is viable to reconstruct deflection spectra at all CCD
locations, thereby enabling the user to exploit the rich information in deflection spectra. The
multiple measurement vectors model developed in the paper can be further exploited to impose
relevant data priors such as the low-rankness in order to simultaneously reconstruct the spectra. A
thorough analysis of the optical system noise also helps in better reconstruction quality.

While the compressive characterization of deflection spectra presented in this paper is capable of
providing reasonable information about the objects, it can be further made more robust by having
more parameters in addition to the translation parameters. Modelling the underlying deflection
spectra with complex functions that are closer to reality will result in much better estimation of
parameters. This requires a thorough understanding of the physics of deflection spectrum formation.
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