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Abstract

In 1733, Georges-Louis Leclerc, Comte de Buffon in France, set the ground of geometric
probability theory by defining an enlightening problem: What is the probability that a needle
thrown randomly on a ground made of equispaced parallel strips lies on two of them? In this
work, we show that the solution to this problem, and its generalization to N dimensions,
allows us to discover a quantized form of the Johnson-Lindenstrauss (JL) Lemma, i.e., one
that combines a linear dimensionality reduction procedure with a uniform quantization of
precision δ > 0. In particular, given a finite set S ⊂ RN of S points and a distortion level
ε > 0, as soon as M > M0 = O(ε−2 logS), we can (randomly) construct a mapping from
(S, `2) to (δZM , `1) that approximately preserves the pairwise distances between the points
of S. Interestingly, compared to the common JL Lemma, the mapping is quasi-isometric
and we observe both an additive and a multiplicative distortions on the embedded distances.
These two distortions, however, decay as O(

√
(logS)/M) when M increases. Moreover, for

coarse quantization, i.e., for high δ compared to the set radius, the distortion is mainly
additive, while for small δ we tend to a Lipschitz isometric embedding. Finally, we prove
the existence of a “nearly” quasi-isometric embedding of (S, `2) into (δZM , `2). This one
involves a non-linear distortion of the `2-distance in S that vanishes for distant points in this
set. Noticeably, the additive distortion in this case is slower, and decays as O( 4

√
(logS)/M).

1 Introduction

The Lemma of Johnson-Lindenstrauss (JL) [1] is a corner stone of (linear) dimensionality re-
duction techniques. This result, which can be seen as a direct consequence of the concentration
of measure phenomenon [2], is at the heart of many applications in classical search methods for
approximate nearest neighbors [3], high-dimensional machine learning [4, 5], and compressed
sensing [6, 7].

In short, this lemma states that given a finite set of S points in an N -dimensional space,
and provided that M scales like O(ε−2 logS) for some allowed distortion level ε > 0, there exists
a mapping that projects the elements of this set into a smaller M -dimensional space, without
disturbing the pairwise distances of these points by more than a factor (1± ε).

Mathematically, the classical formulation of this important lemma is as follows.

Lemma 1 (Johnson-Lindenstrauss). Given ε ∈ (0, 1), for every set S of S points in RN , if M
is such that

M > M0 = O(ε−2 logS),
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Email: laurent.jacques@uclouvain.be. LJ is funded by Belgian National Science Foundation (F.R.S.-FNRS).

1

ar
X

iv
:1

30
9.

15
07

v6
  [

cs
.I

T
] 

 2
2 

Ju
l 2

01
5

laurent.jacques@uclouvain.be


then there exists a Lipschitz mapping f : RN → RM such that

(1− ε) ‖u− v‖2 6 ‖f(u)− f(v)‖2 6 (1 + ε) ‖u− v‖2, (1)

for all u,v ∈ S.

Beyond this proof of existence, the construction of (random) Lipschitz mappings from RN
to RM satisfying (1) is easy [2]. In particular, for

f(u) = Φu,

where Φ ∈ RM×N is a certain random matrix (e.g., whose independent entries follow identical
Gaussian, Bernoulli or sub-Gaussian distributions [25]), measure concentration guarantees that
[6]

P
[∣∣‖Φ(u− v)‖2 − ‖u− v‖2

∣∣ > ε‖u− v‖2
]

6 2e−Mη(ε),

where the probability is related to the generation of Φ, and η is a nondecreasing function of
ε ∈ (0, 1). For instance, for Φ ∼ NM×N (0, 1/M), i.e., Φ ∈ RM×N with Φij ∼iid N (0, 1/M), we
have η(ε) = ε2/2− ε3/6 > ε2/3 [6].

Proving the JL Lemma amounts to applying a union bound on all possible pairs of points u
and v taken in S. Since there are no more than

(
S
2

)
6 S2/2 such pairs, the probability that at

least one of them fails to respect (1) is bounded by 2
(
S
2

)
e−Mη(ε) 6 e2 logS−Mη(ε). Therefore, as

soon as M > 2 η(ε)−1 logS, this probability can be made arbitrarily low. Moreover, generating
a sequence of Φ further decreases this probability by hoping that at least one such matrix
respects (1); in the limit, this ensures the existence of f with probability 1 in Prop. 2.

Combining such linear random mappings with a quantization procedure Q (e.g., uniform
or non-uniform) has recently been a matter of intense research. The implicit objective of this
association is to reduce the amount of bits required to encode the result of the dimensionality
reduction [8], and to understand the impact of quantization on the distortion caused by the
mapping. For instance, the field of 1-bit Compressed Sensing is interested in reconstructing
sparse vectors from the sign of their random projections [9–12, 14]. At the heart of this topic
lies the extreme “one-bit” (or binary) mapping ψbin : RN → BM with B = {±1}, i.e.,

ψbin(u) = sign (Φu)

for a Gaussian random matrix Φ ∼ NM×N (0, 1). Thanks to ψbin, a set of vectors of RN can be
mapped to a subset of the Boolean cube BM . For characterizing the distortion introduced by
such a mapping, we must suitably define two new distances: the normalized Hamming distance
dH(r, s) = 1

M

∑
i I(ri 6= si) between two binary strings r, s ∈ BM and the angular distance

dS(u,v) = arccos(‖u‖−1‖v‖−1〈u,v〉) between two vectors u,v ∈ RN . The use of dS stems
from the vector amplitude loss in the definition of ψbin. Within such a context, the following
result is known (its proof is sketched in Sec. 2).

Proposition 1 ([11, 15]). Let u,v ∈ RN . Fix ε > 0 and randomly generate Φ ∼ NM×N (0, 1).
Then we have

P
( ∣∣ dH(ψbin(u),ψbin(v)

)
− dS(u,v)

∣∣ 6 ε
)
> 1− 2 e−2ε2M , (2)

where the probability is with respect to the generation of Φ.

Following again a union bound argument on all pairs of a set S ⊂ RN of size S, for a fixed
ε > 0 and given M > M0 = O(ε−2 logS), Prop. 1 induces a certain embedding of (S ⊂ RN , dS)
in (BM , dH) where, for all u,v ∈ S,

dS(x, s)− ε 6 dH
(
ψbin(x),ψbin(s)

)
6 dS(x, s) + ε, (3)
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with high probability.

We directly notice two striking differences with the classical formulation of the JL Lemma:
the use of new distance definitions of course, but more importantly, the presence of an error ε
that is now additive with respect to the angular distance dS .

Actually, (3) shows that 1-bit quantization breaks the isometric property of random lin-
ear mappings. These actually become quasi-isometric between the metric spaces (S, dS) and
(ψbin(S) ⊂ BM , dH) in the following sense.

Definition 1 ([16]). A function h : X → Y is called a quasi-isometry between metric spaces
(X , dX ) and (Y, dY) if there exists C > 0 and D > 0 such that

1
C dX (x, s) − D 6 dY(h(x),h(s)) 6 CdX (x, s) + D,

for x, s ∈ X , and E > 0 such that dY(y, h(x)) < E for all y ∈ Y.

This paper aims at going beyond the aforementioned binary case. We want to characterize
the impact of a more general uniform quantization Q of precision (or bin width) δ > 0 on a
linear dimensionality reduction procedure. In particular, our objective is to find a mapping
ψ : RN → δZM , combining a linear random projection from RN to RM with a certain Q :
RM → δZM , for which the following quasi-isometric relation is satisfied:

(1− ε)d(u,v)− ε′ 6 d′(ψ(u),ψ(v)) 6 (1 + ε)d(u,v) + ε′,

for all u,v ∈ S, for some distances d and d′, and with ε, ε′ > 0 decreasing with δ or M . This
would generalize nicely the JL Lemma by also showing that, despite is quasi-isometric nature,
the mapping is tighter when the dimensionality M increases, or that it is nearly isometric when
δ vanishes.

As it will become clear in Sec. 4, we answer positively to this quest when d and d′ are the
`2 and `1 distances, respectively, and for ε ∝ ε′. Our main result is as follows.

Proposition 2. Let S ⊂ RN be a set of S points. Fix 0 < ε < 1 and δ > 0. For M > M0 =
O(ε−2 logS), there exist a non-linear mapping ψ : RN → δZM and two constants c, c′ > 0 such
that, for all pairs u,v ∈ S,

(1− ε)‖u− v‖ − cδε 6 c′

M ‖ψ(u)−ψ(v)‖1 6 (1 + ε)‖u− v‖+ cδε. (4)

More specifically, given a uniform quantization λ ∈ R 7→ Qδ(λ) := δbλ/δc ∈ δZ (applied
componentwise on vectors), Sec. 4 demonstrates that, for some C, c′′ > 0, if M > Cε−2 logS,
then, given a random Gaussian matrix Φ ∼ NM×N (0, 1) and a uniform random vector (or
dithering [10, 26]) ξ ∼ UM ([0, δ]) (with U the uniform distribution), the quantized random
mapping

x ∈ RN 7→ ψδ(x) := Qδ(Φx+ ξ) ∈ δZM (5)

respects (4) with probability at least 1− exp(−c′′ε2M).

Prop. 2 shows that there exists a quasi-isometric mapping between (S ⊂ RN , `2) and (ψ(S) ⊂
δZM , `1) with constants D = cδε, C = 1/(1− ε) > 1 + ε for 0 6 ε < 1, and finite E in Def. 1. In
the rest of this paper, we will forget these subtleties and say that a relation such as (4) defines a
quasi-isometric mapping between (S, `2) and (δZM , `1), or equivalently, a `2/`1 quasi-isometric
embedding of S in δZM .

We clearly see in (4) the two expected distortions: one additive of amplitude cδ ε, and the
other multiplicative and associated to an error factor (1± ε). The additive distortion vanishes
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Figure 1: (a) Picture of [19, page 147] stating the initial formulation of Buffon’s needle problem (Courtesy of E.
Kowalski’s blog http://blogs.ethz.ch/kowalski/2008/09/25/buffons-needle). (b) Scheme of Buffon’s needle
problem

if δ tends to zero (whereas the other does not). Moreover, by inverting the relation between
M and ε, we observe that both errors decay as O(

√
logS/M). In the case of an infinitely

fine quantization (δ → 0), we also recover classical embedding results of (RN , `2) in (RM , `1)
associated to measure concentration in Banach spaces [17, 18] (see Sec. 2).

Notice that Prop. 2 generalizes somehow the result obtained in [8] for universal binary
schemes [10], i.e., when the 1-bit quantizer is non-regular and has discontinuous quantization
regions. The reason for this is that, despite its regularity, our quantizer can be seen as a B-bit
uniform quantizer where B should be related to log2(maxj,u∈S |(ψ(u))j |/δ). Thus, we show
here that the behavior of the additive distortion of binary quantized mappings discovered in [8]
is also valid at a higher number of bits.

For reasons that will become clear later, the context that makes Prop. 2 possible1 was
already defined in 1733 by Georges-Louis Leclerc, Comte de Buffon in France. In one of the
volumes of his impressive work entitled “L’Histoire Naturelle2”, this French naturalist stated
and solved the following important problem [19]:

[English translation of Fig. 1(a) from [20]] “I suppose that in a room where the floor
is simply divided by parallel joints one throws a stick (N/A: later called “needle”)
in the air, and that one of the players bets that the stick will not cross any of the
parallels on the floor, and that the other in contrast bets that the stick will cross
some of these parallels; one asks for the chances of these two players.”

As explained in Sec. 3.1, the solution is astonishingly simple: for a short needle compared
to the separation δ between two consecutive parallels (see Fig. 1(b)), the probability of having
one intersection between the needle and the parallels is equal to the needle length times 2

δπ .
If the needle is longer, then this probability is less easy to express but the expectation of the
number of intersections (which can now be bigger than one) remains equal to this value.

This problem, and its solution published in 1777 [19], is considered as the beginning of the
discipline called “geometrical probability” [21]. Moreover, the solution has also shed new light

1 However, as mentioned at the end of this Introduction, this is not the only context able to induce Prop. 2.
2http://www.buffon.cnrs.fr/?lang=en
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on the estimation of π, i.e., by estimating the probability of intersection on a large number of
throws, paving the way to the well-known stochastic (Monte Carlo) estimation methods.

In this paper, we are going to show that the analysis of Buffon’s problem, and its general-
ization to an N -dimensional space, allows us to specify the conditions surrounding Prop. 2. As
explained in Sec. 4, the connection between the existence of a quantized embedding and Buffon’s
problem is simple. Forgetting a few technicalities detailed later, uniformly quantizing the ran-
dom projections in RM of two points in RN and measuring the difference between their quantized
values is fully equivalent to study the number of intersections made by the segment determined
by those two points (seen as a Buffon’s needle) with a parallel grid of (N − 1)-dimensional
hyperplanes.

As an aside to proving Prop. 2, this paper provides also, to the best of our knowledge, new
results on the behavior of Buffon’s needle problem in high-dimensional space. For instance,
we establish a few interesting bounds and asymptotic relations concerning the moments of the
random variable counting the needle/grid intersections (see Sec. 3.2).

In summary, the main contributions of this paper can be considered threefold:

(C1) We study the impact of a simple (dithered) quantization on the Johnson-Lindenstrauss
Lemma and show how the introduced distortions (both additive and multiplicative) decay
with M ;

(C2) We generalize Buffon’s needle problem in N dimensions and bound all the moments of
a discrete distribution Buffon(a,N) (with a > 0) counting the intersections that a randomly
thrown 1-D “needle” of length a makes in RN with a fixed grid of parallel (N − 1)-hyperplanes
spaced by a unit length;

(C3) A bridge is built between the characterization of a quantized JL Lemma and this gener-
alized Buffon’s needle problem.

Of course, this paper does not claim that (C1) can only be proved thanks to (C2) and
other methods developed on different mathematical tools could exist. However, we find that
the connection (C3) made between (C1) and (C2) is sufficiently interesting for being presented
in this work.

The rest of the paper is organized as follows. First, we discuss in Sec. 2 our main result,
i.e., Prop. 2, and we identify different distortion regimes of our quantized embedding related to
the extreme values of both δ and the number of measurements M . Next, the initial problem
of Buffon’s needle, i.e., the core of our developments, and its solution are explained in Sec. 3.1
before its N -dimensional generalization developed in Sec. 3.2. The relation between this problem
and the existence of an `2/`1 quantized embedding of S ⊂ RN in δZM is then provided in Sec. 4.
Finally, we provide in Sec. 5 an extension of our analysis that provides a “nearly” quasi-isometric
embedding of (S, `2) in (δZM , `2). This one must be considered with a non-linear distortion
of the `2-distance in S that vanishes for large pairwise distances in this set. Remarkably, the
additive distortion in this mapping decays more slowly with M , i.e., as O((logS/M)1/4).

Let us finally acknowledge an anonymous and expert reviewer for having pointed out a very
elegant and compact proof of Prop. 2 that does not rely on our generalization of Buffon’s needle
problem. In short, this proof actually uses the properties of sub-Gaussian random variables [13]
in order to (i) characterize the sub-Gaussian nature of ψδ(u) − ψδ(v) for any pair of vectors
u,v ∈ RN , (ii) demonstrate the concentration properties of the `1-norm of this difference around
its mean, and (iii) showing that this mean can be characterized by the two-dimensional case
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of Buffon’s needle problem. This proof is reported in Appendix A. In order to make it self-
contained, we have also briefly recalled there the definition and main properties of sub-Gaussian
distributions. We believe that the tools developed in this alternative proof provide a powerful
analysis of quantized random projections that can be useful for the interested readers.

Conventions: Most domain dimensions are denoted by capital roman letters, e.g., M,N, . . .
Vectors, vector functions and matrices are associated to bold symbols, e.g., Φ ∈ RM×N or
u ∈ RM , while lowercase light letters are associated to scalar values. The ith component of
a vector (or a vector function) u reads either ui or (u)i, while the notation ui refers to the
ith element of a set of vectors. The set of indices in RD is [D] = {1, · · · , D}. The scalar
product between two vectors u,v ∈ RD for some dimension D ∈ N is denoted equivalently by
uTv = u · v = 〈u,v〉. For any p > 1, the `p-norm of u is ‖u‖pp =

∑
i |ui|p with ‖·‖ = ‖·‖2.

We will abuse the notation “`p” to either denote the `p-norm as above or the `p-distance
(or metric) between two points u,v ∈ RN defined by ‖u − v‖p (e.g., for defining a metric
space (X ⊂ RD, `p)). The event indicator function I is defined as I(A) = 1 if A is verified
and 0 otherwise. A uniform distribution over I ⊂ R is denoted by U(I). A random matrix
Φ ∼ DM×N (Θ) is an M × N matrix with entries distributed as Φij ∼iid D(Θ) given the
distribution parameters Θ of D (e.g., NM×N (0, 1) or UM×N ([0, 1])). A random vector in RM
following D(Θ) is defined by v ∼ DM (Θ). Given two random variables X and Y , the notation
X ∼ Y means thatX and Y have the same distribution. The probability of an event E is denoted
P(E). The diameter of a finite set S ⊂ RN of cardinality |S| is diamS = maxu,v∈S ‖u− v‖ and
its radius is radS = maxu∈S ‖u‖. The (N − 1)-sphere in RN is SN−1 = {x ∈ RN : ‖x‖ = 1}.
For asymptotic relations, we use the common Landau family of notations, i.e., the symbols O,
Ω and Θ (their exact definition can be found in [22]). The positive thresholding function is
defined by (λ)+ := 1

2(λ+ |λ|) for any λ ∈ R.

2 Discussion

How can we analyze the distortions induced by the quasi-isometric mapping provided by Prop. 2?
Interestingly, we can identify three key regimes, depending on the values of δ and M , where a
quantized embedding respecting (4) displays different typical behaviors.

(a) Nearly isometric regime Under a fine quantization scheme, i.e., if

δ � νS := min
u,v ∈S: u6=v

‖u− v‖, (6)

Eq. (4) essentially provides a Lipschitz embedding of (S, `2) in (ψ(S), `1). This is sensible since,
considering the mapping ψδ(x) := Qδ(Φx+ ξ) defined in (5), for such a fine quantization, the
corresponding distortion almost disappears, i.e., Q(λ) ' λ for any λ� δ, and it is known that,
for a Gaussian random matrix Φ ∼ NM×N (0, 1) and two fixed vectors u and v,

(1− ε) ‖u− v‖ 6
√
π√

2M
‖Φu−Φv‖1 6 (1 + ε)‖u− v‖, (7)

with probability higher than 1− 2e−
1
2
ε2M .

Indeed, as explained for instance in [30, Appendix A], this is a simple consequence of the
following result due to Ledoux and Talagrand.

6



Proposition 3 (Ledoux, Talagrand [18] (Eq. 1.6)). If F is Lipschitz with constant3 λ = ‖F‖Lip,
then, for a random vector ζ ∈ RM with ζi ∼iid N (0, 1) ( i.e., ζ ∼ NM (0, 1)),

P
[
|F (ζ)− µF | > r

]
6 2e−

1
2
r2λ−2

, for r > 0,

with µF = E[F (ζ)].

For a Gaussian random matrix Φ ∼ NM×N (0, 1), the vector ζ = ‖u − v‖−1Φ(u − v) is
distributed as NM (0, 1). Taking F (·) = ‖ · ‖1 with ‖F‖Lip =

√
M and r = Mε with ε > 0

provides (7) since µF = M
√

2
π .

As explained before, the result (7) is easily extendable (from a union bound argument) to
the embedding of a finite set S of S points in RN provided M > M0 = O(ε2 logS). Noticeably,
Prop. 2 converges exactly to this isometric mapping if δ � νS .

(b) Quasi-isometric binary regime In the case where δ is greater than the diameter diamS,
i.e., the greatest distance between any pair of points in this set, then the quantization distortion
dominates and the quantized embedding reduces to a quasi-isometric embedding. Indeed, for
such a situation, we reach

‖u− v‖ − (1 + c)δε 6 c′

M ‖ψ(u)−ψ(v)‖1 6 ‖u− v‖+ (1 + c)δε, (8)

since then ‖u − v‖ 6 δ. This is reminiscent of the observations made in [11, 15] about the
embedding properties of “binarized” random projections. As explained in the Introduction,
given u,v ∈ RN and ε > 0, if we randomly generate Φ as NM×N (0, 1), then, from (2),

dS(u,v) − ε 6 dH
(
sign (Φu), sign (Φv)

)
6 dS(u,v) + ε,

with probability exceeding 1− 2 e−2ε2M . In short, this result amounts to first showing that the
signs of ϕTj u and ϕTj v differ with a probability equal to dS(u,v) for any j ∈ [M ], and second
to observing that the sum of all such signs collected at every j (as performed in the Hamming
distance dH) behaves as a Binomial random variable of M trials and probability dS(u,v). This
kind of random variable is known to concentrate quickly around its mean dS(u,v) from a simple
application of the Chernoff-Hoeffding inequality [11].

In this considered case, the 1-bit quantization of the random projections performed by the
sign operator is not strictly equivalent to our quantization scheme defined in (34) in that there
is no dithering. This absence imposes the definition of other distances dS and dH , while in our
case the dither allows one to recover an Euclidean (`2) distance in RN rather than the angular
one. However, for both kinds of quantizations, we do observe the same quasi-isometric behavior
with a dominant additive distortion ε.

(c) High measurement regime This is possibly the most interesting regime since it dis-
plays some “blessing of dimensionality” for tightening the two quasi-isometric distortions as M
increases. It was formerly observed in [31, p. 3] that for a scalar uniform quantizer Q such as
ours, if M > M0 = O(ε2 logM), the JL Lemma induces a priori a quasi-isometric mapping
with a much looser additive distortion. Indeed, given Φ ∼ NM×N (0, 1) (with this prescribed
M), for any points u,v ∈ S we have

(1− ε)‖u− v‖ − cδ 6 1√
M
‖Q(Φu)−Q(Φv)‖ 6 (1 + ε)‖u− v‖+ cδ, (9)

3The Lipschitz constant of F is defined as ‖F‖Lip , supx,y∈RM , x6=y |F (x)− F (y)| / ‖x− y‖2.
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for some c > 0. For our uniform quantizer Q and any dithering ξ ∈ RM , this is easily obtained
from the relation |Q(λ)− λ| 6 λ/2 and from

‖Φu−Φv‖2 − 1
2 Mδ2 6 ‖Q(Φu+ ξ)−Q(Φv + ξ)‖2 6 ‖Φu−Φv‖2 + 1

2 Mδ2, (10)

with ‖Φu−Φv‖ close to ‖u− v‖ up to a distortion factors (1± ε) by the JL Lemma. Notice
that taking the square root of this inequality for lowering the power 2 is not a problem since
(a− b) 6 (a2 − b2)1/2 if a > b > 0 and (a2 + b2)1/2 < a+ b for any a, b > 0.

Similarly, introducing the quantization in the `2/`1 isometric embedding explained in (7)
has also the same impact since

‖Φu−Φv‖1 − 1
2 Mδ 6 ‖Q(Φu+ ξ)−Q(Φv + ξ)‖1 6 ‖Φu−Φv‖1 + 1

2 Mδ. (11)

In both situations, the additive error induced by the quantization is constant with M . As
expressed by Prop. 2 (and later in Prop. 14), our analysis shows that there exists a mapping for
which the same error actually scales as O(δ/

√
M), i.e., the finding of Buffon’s needle helped us

to reduce that distortion by a factor
√
M .

3 Buffon’s needle problem

3.1 Initial formulation and solution

Let us rephrase Buffon’s needle problem stated in the Introduction in a more formal way. Let
G ⊂ R2 be a set of equispaced parallel lines in R2, two consecutive lines being separated by a
distance δ > 0. Let a needle N of length L be thrown uniformly at random on the plane R2: its
orientation θ is drawn uniformly at random on the circle [0, 2π], while from the δ-periodicity of
G, the distance u of the needle’s midpoint to the closest line is a uniform random variable over
[0, δ/2] (see Fig. 1(b)).

Buffon’s needle problem then amounts to computing the probability P that N(u, θ)∩G 6= ∅.
As a matter of fact, this probability is easily estimated since, conditionally to the knowledge of
θ, there is at least one intersection if 2u 6 L| cos θ|. Therefore, we find

P = 1
πδ

∫ 2π
0 dθ

∫ δ/2
0 I

(
2 min(u, δ − u) 6 L| cos θ|

)
du

= 4
πδ

∫ π/2
0 dθ

∫ 1
2

min(δ, L cos θ)

0 du. (12)

We observe that if L < δ, then L cos θ < δ and P = 2L
πδ , while if L > δ, the solution reads

P = 2
πθ1 + 2L

πδ (1− sin θ1) with cos θ1 = δ
L .

Notice that if L < δ, only one intersection is possible, and if X denotes the random vari-
able associated to the occurrence of such an intersection, we have therefore EX = P = 2L

πδ .
Interestingly, for any L > 0, this expectation still keeps the same value.

Proposition 4 ([23]). Let X be the discrete random variable counting the number of intersec-
tions of N with G, i.e., X = |{N(u, θ) ∩ G}| where u and θ are two random variables defined as
above. Then, writing a = L/δ,

0 6 X 6 bac+ 1 and EX = 2
πa.

Proof. We follow the spirit of the proof given in [23]. The domain of X is obvious from the
problem definition. For estimating the expectation, let us observe that the needle N can always
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be considered as being made of two joint needles N1 and N2 of lengths L1 and L2 (L1 +L2 = L).
If X1 and X2 are the random variables counting their respective intersection with G, we have
X = X1 + X2. Therefore, since EX necessarily depends on L through some nondecreasing
function h, we find h(L) = EX = E(X1 +X2) = EX1 +EX2 = h(L1) + h(L2). This shows that
h(L) = cL for some c > 0 independent of L. From the knowledge of EX for L < δ, we deduce
that c = 2

πδ .

Surprisingly enough, this proposition still holds if the needle is replaced by any smooth curve
of length L [23]. Indeed, such curve can always be approximated by a piecewise linear contour
with arbitrary small error and the proof above does not depends on a possible bending of the
N1 and N2. However, the distribution of X does depend on the curve shape.

Let us specify now what is known of the distribution of X in the case of a (straight) needle.

Proposition 5 ([21, pp. 72–73][24]). Given a = L/δ, define the angles θk ∈ [0, π/2] such that
cos θk = k/a for 0 6 k 6 n with n = bac, cos θk = 0 for k < 0 and cos θk = 1 for all k > n. The
distribution of X ∈ [n+ 1] is determined by the probabilities

pk = P(X = k) = κk+1 + κk−1 − 2κk, (13)

with κk = (2a sin θk/π)− (2kθk/π).

Proof. This proof only differs in notations from the one of [21, pp. 72-73]. Let n = 0, p0 = 1−P
with P computed in (12). For θ fixed, the conditional probability of having n+ 1 intersections
reads a| cos θ| − n if θ 6 θn, and 0 otherwise. Therefore, we have

pn+1 = 2
π

∫ θn

0
(a cos θ − n) dθ = 2a

π sin θn − 2n
π θn.

For 1 6 k 6 n, there are k intersections if θk+1 6 θ 6 θk−1. Thus, the conditional probability
reads (k + 1− a cos θ) if θk+1 6 θ 6 θk, and (a cos θ − k + 1) if θk 6 θ 6 θk−1. Therefore,

pk = 2
π

∫ θk
θk+1

(k + 1− a cos θ) dθ

+ 2
π

∫ θk−1

θk
(a cos θ − k + 1) dθ

= 2a
π (sin θk+1 + sin θk−1 − 2 sin θk)

− 2
π ((k + 1)θk+1 + (k − 1)θk−1 − 2kθk).

The rest of the proof consists in expressing these results in terms of κk.

An analysis of the other properties of the random variable X (e.g., characterizing its mo-
ments) is postponed after the discussion of the multidimensional generalization of Buffon’s
needle problem.

3.2 N-dimensional generalization

How does Buffon’s needle problem generalize in an N -dimensional space? More precisely, what
phenomena do we observe on the “random throw”4 of a 1-dimensional needle N of length L on
an infinite set G of equispaced parallel hyperplanes of dimension N − 1 separated by a distance
δ > 0?

4Assuming of course that we can throw an object in an N -dimensional space so that it stops in a fixed position
of RN , as it stops on the floor of the 2-dimensional formulation.
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In N dimensions, the position of the needle relatively to G can again be determined by its
distance u ∈ [0, δ/2] to the closest hyperplane of G, while its orientation can be characterized
by a set of (N − 1) angles {θ, φ1, φ2, · · · , φN−3} on SN−1. These include the angle θ ∈ [0, π]
measured between the needle and the normal vector orthogonal to all hyperplanes5, while the
others range as φk ∈ [0, π] for 1 6 k 6 N − 3 and φN−2 ∈ [0, 2π]. We recall that in this
hyperspherical system of coordinates, the (N − 1)-sphere SN−1 is measured by

σ(SN−1) =
∫ π

0 (sin θ)N−2dθ
( ∫ π

0 (sinφ1)N−3dφ1 · · ·
∫ π

0 sinφN−3 dφN−3

∫ 2π
0 dφN−2

)
, (14)

where σ(·) denotes the rotationally invariant area measure on the (N − 1)-sphere.

The first question we can ask ourselves is how the expectation of X = |N∩G| evolves in this
multidimensional setting. Following the same argumentation of the previous section, we must
still have EX ∝ a, but what is now the proportionality factor?

Proposition 6. In the N -dimensional Buffon’s needle problem, the expected number of inter-
sections between the needle and the hyperplanes reads

EX = τNa, with τN =
Γ(N

2
)

√
π Γ(N+1

2
)
, (15)

τ2 = 2
π and τ3 = 1

2 .

Proof. As for the proof of Prop. 4, determining τN can be done for L < δ where EX matches the
probability of having one intersection. In this case, following the determination of this probabil-
ity for the two-dimensional case (Sec. 3.1), we can say that, conditionally to the knowledge of θ
and of the N − 2 other angles {φ1, · · · , φN−2}, there is an intersection if 2u 6 L| cos θ|. There-
fore, defining Ik :=

∫ π
0 (sinα)kdα with σ(SN−1) = 2I0 · · · IN−2 and considering the periodicity

of |cos θ|, the probability PN of having one intersection generalizes as

PN = 2
δσ(SN−1)

∫ π
0 (sin θ)N−2 dθ

( ∫ π
0 (sinφ1)N−3 dφ1 · · ·

· · ·
∫ π

0 sinφN−3 dφN−3

∫ 2π
0 dφN−2

)
×
∫ δ/2

0 I
(
2u 6 L|cos θ|

)
du

= 4
δIN−2

∫ π/2
0 (sin θ)N−2 dθ

∫ δ/2
0 I

(
2u 6 L cos θ

)
du

= 2a
IN−2

∫ π/2
0 (sin θ)N−2 cos θ dθ = 2a

(N−1)IN−2
.

Since Ik =
√
π Γ(k+1

2 )/Γ(k2 + 1) and EX = PN for a < 1, we find

τN = 2
(N−1)IN−2

=
2Γ(N

2
)

√
π (N−1) Γ(N−1

2
)

=
Γ(N

2
)

√
π Γ(N+1

2
)
.

The values for τ2 and τ3 come from the evaluations Γ(1) = 1, Γ(1/2) =
√
π and Γ(3/2) =√

π/2.

To the best of our knowledge, τN was only known for the case N = 2 and N = 3 (see [21,
pp. 70 and 77, respectively]). This quantity behaves as follows.

Proposition 7. In the N -dimensional Buffon’s needle problem,√
2
π (N + 1)−

1
2 6 τN 6

√
2
π (N − 1)−

1
2

so that EX = Θ(a/
√
N).

5Notice that, conversely to the two-dimensional analysis, this angle θ covers now the half circle [0, π], the
other angles guaranteeing that all orientations in SN−1 can be obtained.
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Proof. Since τN = 1
a EX, this is a direct consequence of the inequality (2N−3

4 )1/2 6 Γ(N2 )/Γ(N−1
2 )

6 (N−1
2 )1/2 and of the fact that (N − 3

2)
1
2 /(N − 1) > 1/

√
N + 1 for N > 2.

We find useful to introduce right now the following general quantity which takes the value
τN as a special case:

χN (x) :=
Γ(x+ 1

2)Γ(N2 )
√
π Γ(N2 + x)

. (16)

We can compute χN (0) = 1, χN (1
2) = τN and χN (1) = 1

N . The importance of χN , and the
notation simplification brought by its introduction, will become clear later.

Having established how the expectation of X behaves, can we go further and characterize
its distribution as in the two-dimensional case? A positive answer is given in the following
proposition.

Proposition 8. Given a = L/δ and the angles θk ∈ [0, π/2] defined in Prop. 5. The distribution
of X ∈ [n+ 1] is determined by the probabilities

pk = P(X = k) = κk+1 + κk−1 − 2κk, (17)

with κk = τN a (sin θk)
N−1 − k τN JN (θk) and JN (α) := (N − 1)

∫ α
0 (sin θ)N−2 dθ.

We denote the (discrete) distribution determined by such probabilities as Buffon(a,N).

Proof. The proof consists in considering the hyperspherical coordinates defined in the demon-
stration of Prop. 5. For k = 0, we must only estimate p0 = 1−PN for any value of a. For a < 1,
we know that PN = τNa, while for a > 1,

PN = 4
IN−2δ

∫ π/2
0 (sin θ)N−2 dθ

∫ δ
2

0 I
(
2u 6 L cos θ

)
du

= 4
IN−2δ

(
δ
2

∫ θ1
0 (sin θ)N−2 dθ

+ L
2

∫ π/2
θ1

(sin θ)N−2 cos θ dθ
)

= τN JN (θ1) + τN a (1− (sin θ1)N−1).

For k = n+1, considering θ fixed, the conditional probability of having n+1 intersections reads
a| cos θ| − n if θ 6 θn and 0 otherwise. Therefore,

pn+1 = 2
IN−2

∫ θn
0 (a cos θ − n) (sin θ)N−2 dθ = τN a (sin θn)N−1 − τN nJN (θn). (18)

For 1 6 k 6 n, there are k intersections if θk+1 6 θ 6 θk−1. The conditional probability reads
(k + 1− a cos θ) if θk+1 6 θ 6 θk, and (a cos θ − k + 1) if θk 6 θ 6 θk−1. Therefore,

pk = 2
IN−2

∫ θk
θk+1

(k + 1− a cos θ) (sin θ)N−2dθ

+ 2
IN−2

∫ θk−1

θk
(a cos θ − k + 1) (sin θ)N−2dθ

= τN a
(
(sin θk+1)N−1 + (sin θk−1)N−1 − 2(sin θk)

N−1
)

− τN
(

(k + 1)JN (θk+1) +

(k − 1)JN (θk−1)− 2kJN (θk)
)
.

As for Prop. 5, the rest of the proof consists in expressing these results in terms of κk.
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Notice that, from a simple change of variable, the value κk can be conveniently rewritten as

κk = τN a (sin θk)
N−1 − k τN (N − 1)

∫ θk
0 (sin θ)N−2 dθ

= τN (N − 1)
∫ θk

0 (sin θ)N−2 (a cos θ − k) dθ

= τNa (N − 1)
∫ 1

0 (1− u2)
N−3

2 (u− k
a)+ du. (19)

The following proposition bounds the moments of a random variable X ∼ Buffon(a,N).
These will be useful later for developing our `2/`1 quantized embedding in Sec. 4.

Proposition 9. Let X ∼ Buffon(a,N). If a < 1, for any q ∈ N0, EXq = τNa.
If a > 1, then EXq > τNa for any q ∈ N0. Moreover, for a > 0,

max(τNa,
1
N a

2 ) 6 EX2 6 τNa+ 1
N (a2 − 1)+, (20)

and ∣∣EX3 −
(
τNa+ χN (3

2) a3
)∣∣ 6 3

N a2. (21)

For q > 4 and a > 1, the bounds are a bit more technical and read∣∣EXq −
(
τNa+ χN ( q2)aq

)∣∣
6 q χN ( q−1

2 ) aq−1 + 1
24

(
q
2

)
χN ( q−2

2 )(2a)q−2

+ 1
12

(
q
3

)
χN ( q−3

2 ) (2a)q−3. (22)

For any q > 2 and any a > 0, we have the upper bound

EXq 6 τNa+ 2q−2χN ( q2) aq + 2q−2q χN ( q−1
2 ) aq−1. (23)

This last proposition leads to a nice asymptotic relation.

Corollary 1. For a Buffon random variable X ∼ Buffon(a,N), we have asymptotically in a,

|EXq − χN ( q2)aq| = O(aq−1).

Before delving in the proof of Prop. 9, we must introduce three useful lemmata.

Lemma 2. For any sequence {ck}
n+1∑
k=0

ckpk = c0(κ−1 − 2κ0) + c1κ0 +
n∑
k=1

∆2(ck−1)κk, (24)

with the difference operator ∆ such that ∆(ck) = ck+1 − ck.

Proof. Following [24], this is a simple consequence of the “summing by parts” rule for any
sequences ak and bk, i.e.,

∑n+1
k=0 aj∆(bj) = an+2bn+2 − a0b0 −

∑n+1
k=0 ∆(ak)bk+1, and the fact

that
∑n+1

k=0 ckpk =
∑n+1

k=0 ck∆
2(κk−1).

Lemma 3. We can compute that ∆2
(
(k − 1)2

)
= 2 and ∆2

(
(k − 1)3

)
= 6k, while for higher

power q > 4 and k > 1,

|∆2
(
(k − 1)q

)
− q(q − 1)kq−2| 6 2

(
q
4

)
(2k)q−4. (25)

A weaker bound reads
∆2
(
(k − 1)q

)
6 2q−1

(
q
2

)
kq−2. (26)

12



Proof. The first two results come from the identities ∆2
(
(k−1)2

)
= (k+1)2 +(k−1)2−2k2 = 2

and ∆2
(
(k − 1)3

)
= (k + 1)3 + (k − 1)3 − 2k3 = 6k. The last one is obtained by estimating

∆2((k − 1)q) from a third order Taylor development of both (k + 1)q and (k − 1)q around k,
their fourth order errors being both bounded by

(
q
4

)
(k + 1)4 6

(
q
4

)
(2k)4. The weaker bound is

obtained similarly from a first order Taylor development with a bounding of the second order
error.

Lemma 4. The sum of κk is bounded as

1
N a2 − τNa 6 2

∑n
k=1 κk 6 1

N (a2 − 1)+, (27)

while for other power p ∈ N0,∣∣(p+ 1)(p+ 2)
∑n

k=1 k
pκk − χN (p2 + 1) ap+2

∣∣ 6 (p+ 2) χN (p+1
2 ) ap+1. (28)

Proof. Using the alternate formulation (19) of κk, we find first for p > 0.∑n
k=1 k

pκk = τNa (N − 1)
∫ 1

0 (1− u2)
N−3

2
∑n

k=1 k
p (u− k

a)+ du. (29)

In the case where p = 0, 1
2(u2 − u) 6

∑+∞
k=1 (u − k)+ 6 1

2u
2. This is easily observed from

u = buc+ (u−buc) =
∑+∞

k=1 I(u > k) + (u−buc), which integrated gives 1
2u

2 =
∑+∞

k=1(u−k)+ +∫ u
0 (v−bvc) dv, the last integral being a positive and smaller than 1

2u. Therefore, for any a > 0,

1
2(au2 − u) 6

∑+∞
k=1 (u− k

a)+ 6 1
2au

2. (30)

Moreover, for any s ∈ N and given the definition of τN ,

τN (N − 1)
∫ 1

0 (1− u2)
N−3

2 us du = τN
N−1

2 B( s+1
2 , N−1

2 ) =
Γ
(
s+1

2

)
Γ
(
N
2

)
√
π Γ
(
N+s

2

) = χN ( s2), (31)

with the “Beta” function B(x, y) = Γ(x)Γ(y)/Γ(x+ y) and χN defined in (16).

Therefore, using (29) combined with the lower bound of (30) and the identity Γ(x)x =
Γ(x+ 1) for any x ∈ R+, we get∑n

k=1 κk >
1
2χN (1) a2 − 1

2χN (1
2)a = 1

2N a2 − 1
2 τNa.

Similarly, the upper bound of (30) can lead to
∑n

k=1 κk 6
1
2χN (1)a2 = 1

2N a2. A tighter bound
is obtained by observing that, from (29), κk(a = 1) = 0 and∑n

k=1
d
daκk(a) = τN (N − 1)

∫ 1
0 (1− u2)

N−3
2
∑n

k=1 u I(u > k
a) du

= τN (N − 1)
∫ 1

0 (1− u2)
N−3

2 u bauc du

6 τNa(N − 1)
∫ 1

0 (1− u2)
N−3

2 u2 du

= 1
N a,

using (31) with s = 2 in the last equality. Therefore,∑n
k=1 κk(a) = I(a > 1)

∫ a
1

∑n
k=1

d
duκk(u) du 6 1

2N (a2 − 1)+. (32)

For analyzing positive power p, we rely on the fact that, for a continuous and integrable
function g : [l,m]→ R with a unique extremum on [l,m] ⊂ R,∣∣ ∑m

k=l+1 g(k)−
∫m
l g(t) dt

∣∣ 6 maxt∈[l,m] |g(t)|.
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Taking g(t) = tp(u − t) which has a unique maximum on p
p+1u of height ( p

p+1)p 1
p+1u

p+1 6
1
p+1u

p+1, we find
∣∣∑∞

k=1 k
p(u − k)+ − 1

(p+2)(p+1)u
p+2
∣∣ 6 1

p+1u
p+1, since

∫∞
0 tp(u − t)+ dt =

up+2B(p+ 1, 2) = 1
(p+2)(p+1)u

p+2. For any a > 0, this leads to∣∣∣∣(p+ 2)(p+ 1)
∞∑
k=1

kp(u− k
a)+ − ap+1up+2

∣∣∣∣ 6 (p+ 2)apup+1.

The result follows by inserting this last bound in (29) and reusing (31) for s ∈ {p+1, p+2}.

Notice that (28) (in Lemma 4) is probably improvable for small values of a since, as said in
the proof above, κk(1) = 0. We note, however, that the expression is tight asymptotically in a.

Thanks to the previous Lemmata, we are now ready to prove Prop. 9.

Proof of Prop. 9. If a < 1, then, for all q > 1, EXq = 1q p1 = τNa, while if a > 1, (24) shows
that EXq = κ0 +

∑n
k=1 ∆2((k − 1)q)κn > τNa since κ0 = τNa.

Let us consider now more specific values of q for the case a > 1. For q = 2, we know from
Lemmata 2 and 3 that EX2 = κ0 + 2

∑n
k=1 κk and the upper bound follows from (27) since

κ0 = τNa.

For q = 3, the same two lemmata provide EX3 = κ0 + 6
∑n

k=1 kκk. Moreover, from (28),∣∣6∑n
k=1 kκk − χN (3

2) a3
∣∣ 6 3χN (1) a2,

which involves ∣∣EX3 −
(
τNa+ χN (3

2) a3
)∣∣ 6 3χN (1) a2.

For q > 4, the result becomes a bit technical. Again from Lemmata 2 and 3,

∣∣EXq −
(
κ0 + q(q − 1)

n∑
k=1

kq−2κk
)∣∣ 6 2q−3

(
q
4

) n∑
k=1

kq−4κk.

Using twice (28), we find∣∣EXq −
(
κ0 + χN ( q2)aq

)∣∣
6 q χN ( q−1

2 ) aq−1 + 2q−3
(
q
4

)∑n
k=1 k

q−4κk

6 q χN ( q−1
2 ) aq−1 + 2q−6

3 q(q − 1)
(
χN ( q−2

2 )aq−2 + (q − 2)χN ( q−3
2 ) aq−3

)
6 q χN ( q−1

2 ) aq−1 + 1
24

(
q
2

)
χN ( q−2

2 )(2a)q−2 + 1
12

(
q
3

)
χN ( q−3

2 ) (2a)q−3.

Finally, for the weak upper bound (23), we note that (28) involves(
q
2

) ∑n
k=1 k

q−2κk 6
1
2χN ( q2) aq + 1

2q χN ( q−1
2 ) aq−1.

Using (24) and (26), we obtain

EXq 6 τNa+ 2q−1
(
q
2

)∑n
k=1 k

q−2

6 τNa+ 2q−2χN ( q2) aq + 2q−2q χN ( q−1
2 ) aq−1.
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4 Quasi-Isometric Quantized Embedding

Buffon’s needle problem and its generalization to an N -dimensional space lead to interesting
observations in the field of dimensionality reduction: it helps in understanding the impact of
quantization on the classical Johnson-Lindenstrauss (JL) Lemma [1, 25].

To see this, let us consider the common uniform quantizer of bin width δ > 0

Q(λ) = δbλδ c ∈ δZ, (33)

defined componentwise when applied on vectors. Notice that we could have defined the more
common midrise quantizer Q′ : λ → δbλ/δc + δ/2 with no impact on the rest of our develop-
ments.

Given a random matrix Φ ∼ NM×N (0, 1) and a uniform random vector ξ ∼ UM ([0, δ]), we
define the non-linear mapping ψδ : RN → δZM such that

ψδ(u) = Q(Φu+ ξ), (34)

where ξ plays a useful dithering role: its action randomizes the location of each unquantized
component of Φu inside a quantization cell of RM [26]. Our dithered construction is similar to
the one developed in [10], but our quantizer is different.

How can we interpret the action of this mapping ψδ? How does it approximately preserve
the distance between a pair of points u,v ∈ RN? Surprisingly, the answer comes from Buffon’s
needle problem from the following equivalence.

Proposition 10. Under the notations defined above, for each j ∈ [M ] and conditionally to the
knowledge of rj = ‖ϕj‖, we have

Xj := 1
δ |(ψδ(u))j − (ψδ(v))j | ∼iid Buffon(

rj
δ ‖u− v‖, N). (35)

Proof. Let G be a grid of parallel (N−1)-dimensional hyperplanes that are δ apart. Without any
loss of generality, we assume them normal to the axis e1 = (1, 0, · · · , 0)T and each hyperplane
corresponds to the set Hk = {x ∈ RN : eT1 x = δk} for k ∈ Z. Let us now imagine a “needle”
N(u,v) whose extremities are determined by two points u and v somewhere in RN . Note that
the parameterization of the needle with its extremities is equivalent to the one defined in Sec. 3.

Notice that the number of intersections N(u,v) has with G = ∪k∈ZHk can obviously be
expressed with the quantizer Q as

1
δ |Q(eT1 u)−Q(eT1 v)|.

The reason is that, if x ∈ RN falls between Hk(x) and Hk(x)+1 (the last hyperplane excluded),

then Q(eT1 x) = kxδ with kx := be
T
1 x
δ c. Therefore, 1

δ |Q(eT1 u) − Q(eT1 v)| = |ku − kv| is the
number of hyperplanes crossing N(u,v).

Let us define now a random dithering ξ ∼ U([0, δ]) and a random rotation γ whose distribu-
tion is uniform on the rotation group6 SO(N) of RN . From these, we can create the mapping
xγ,ξ = Tγ,ξ(x) = R(γ)x+ ξe1, where R(γ) ∈ RN×N stands for the matrix representation of γ.

Thanks to this transformation, given two vectors u,v ∈ RN , the needle N(uγ,ξ,vγ,ξ) of
length ‖uγ,ξ − vγ,ξ‖ = ‖u − v‖ whose extremities are defined by uγ,ξ and vγ,ξ is oriented

6This is made possible from the existence of a Haar measure on SO(N) (see, e.g., [27]).
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uniformly at random (conditionally to ξ) thanks to the action of γ, i.e., the random vector
R(γ)(u− v) is uniform7 on SN−1.

Moreover, conditionally to γ, this needle is also positioned uniformly at random relatively
to the δ-periodic grid G = ∪k∈ZHk. From the action of the dithering, any fixed point p ∈
N(uγ,0,vγ,0) on the undithered needle (e.g., its midpoint) has an abscissa p1 +ξ ∼ U([p1, p1 +δ])
along e1 after dithering. Therefore, from the periodicity of G, the distance between p + ξe1 ∈
N(uγ,ξ,vγ,ξ) and the nearest hyperplane of G is distributed as U([0, δ/2]) conditionally to γ.

Consequently, the quantity

1
δ |Q(eT1 (uγ,ξ))−Q(eT1 (vγ,ξ))|

counts the number of intersections between G and the needle N(uγ,ξ,vγ,ξ), which is oriented
and positioned uniformly at random relatively to G. In other words, we are in presence of a
Buffon random variable Buffon(‖u− v‖/δ,N)!

Moreover, for any x ∈ R, we have eT1R(γ)x = (R(γ)−1e1)Tx ∼ θTx where θ is a random
vector uniformly distributed7 on SN−1. Therefore,

1
δ |Q(eT1 (uγ,ξ))−Q(eT1 vγ,ξ)| ∼ 1

δ |Q(θTu+ ξ)−Q(θTv + ξ)| ∼ Buffon(1
δ‖u− v‖, N). (36)

Since any Gaussian random vector ϕ ∼ NN (0, 1) can be written as ϕ = rϕ̂ with r = ‖ϕ‖
and ϕ̂ = ϕ/r picked uniformly at random on SN−1, we can conclude that, conditionally to r,

1
δ |Q(ϕTu+ ξ)−Q(ϕTv + ξ)| ∼ Buffon( rδ‖u− v‖, N),

which, from (34), behaves exactly as the amplitude of one component of 1
δ (ψδ(u)−ψδ(v)).

Therefore, we can finally state that, for all j ∈ [M ] and conditionally to the knowledge of
the length rj = ‖ϕj‖,

Xj := 1
δ |(ψδ(u))j − (ψδ(v))j | ∼iid Buffon(

rj
δ ‖u− v‖, N),

with the independence of the random variables Xj resulting from the one of the rows of Φ.

Now that this equivalence is proved, we see how to reach the characterization of a quantized
embedding determined by ψδ: we have to study the concentration properties of each Xj around
their mean. Therefore, targeting the use of a classical concentration result due to Bernstein
(explained later), we first have to analyze the moments of these random variables.

Let us start with the evaluation of their expectation. Notice that, since ϕj ∼iid NN (0, 1),
each rj = ‖ϕj‖ ∼iid χ(N) follows a χ distribution with N degrees of freedom. We have also
that for Z ∼iid χ(N) and q ∈ N,

EZq = 2
q
2

Γ(N+q
2 )

Γ(N2 )
=

2
q
2 Γ( q+1

2 )√
π χN ( q2)

, (37)

where χN was defined in (16).

This allows one to see that the expectation of each Xj is proportional to ‖u − v‖ and
independent of N .

7 This is a simple consequence of the uniqueness of the Haar measure on SN−1 and of the fact that, given any
x ∈ SN−1, R(γ)x is rotationally invariant if γ is picked uniformly at random on SO(N).
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Proposition 11. Let δ > 0, Φ ∼ NM×N (0, 1), ξ ∼ UM ([0, δ]) and Q defined as above. Given
u,v ∈ RN and j ∈ [M ], we have

δ EXj = E |Q(ϕTj u+ ξj)−Q(ϕTj v + ξj)| =
√

2
π ‖u− v‖. (38)

Proof. The proposition follows from the law of total expectation applied to the computation of
EXj with Xj = 1

δ |(ψδ(u))j − (ψδ(v))j |. Since, conditionally to r = ‖ϕj‖, Xj ∼ Buffon( rδ‖u−
v‖, N), and since r ∼ χ(N), we have

EXj = E
(
E(Xj |r)

)
= τNE( rδ ‖u− v‖) =

√
2
π

1
δ ‖u− v‖.

Beyond the mere evaluation of EXj , we can show that, if ‖u−v‖ is much larger than δ, any
Xj for j ∈ [M ] behaves like the amplitude of a Gaussian random variable N (0, ‖u − v‖2/δ2).
This fact is established hereafter from an asymptotic analysis of the moments EXq

j .

Proposition 12. Following the previous conventions, for any j ∈ [M ] and α = ‖u− v‖/δ, we
have ∣∣EXq

j − E|Gα|q
∣∣ = O(αq−1),

with Gα ∼ N (0, α2) and E|Gα|q = 1√
π

2
q
2 αq Γ( q+1

2 ) = O(αq).

Proof. First notice that, if Z ∼ χ(N), then, using (37) and a classical result on the absolute
moments of a Gaussian random variable,

χN (p2)EZp = 1√
π

2
p
2 Γ(p+1

2 ) = E|G|p,

with p > 0 and G ∼ N (0, 1).

Let us now consider the case q > 4. Therefore, considering the random mixture Xj ∼
Buffon(rj α,N) with rj = ‖ϕj‖ ∼ χ(N), conditionally to rj , (22) provides∣∣E(Xq

j |rj) −
(
τNa+ χN ( q2)aq

)∣∣
6 q χN ( q−1

2 ) aq−1 + 1
24

(
q
2

)
χN ( q−2

2 )(2a)q−2 + 1
12

(
q
3

)
χN ( q−3

2 ) (2a)q−3,

with a = rj α. From the law of total expectation, this shows that∣∣EXq
j −

(
E|Gα|+ E|Gα|q

)∣∣
6 qE|Gα|q−1 + 2q−2

24

(
q
2

)
E|Gα|q−2 + 2q−3

12

(
q
3

)
E|Gα|q−3.

and the result follows since E|Gα|p = O(αp) for any p > 0. The cases 1 6 q 6 3 are proved
similarly from (15), (20) and (21).

Corollary 12 shows that, for j ∈ [M ], each random variable |(ψδ(u))j − (ψδ(v))j | asymp-
totically behaves like the amplitude of a Gaussian random variable of variance ‖u − v‖2 from
the proximity of their moments when this variance is large. Interestingly enough, without
any quantization, the random variable |(Φu)j − (Φv)j | exactly follows this distribution for
Φ ∼ NM×N (0, 1). Therefore, we can expect later that the concentration properties of

∑
j Xj

should converge to a Gaussian concentration behavior in the same asymptotic regime.

In parallel to this asymptotic analysis, bounds on the moments of Xj can be estimated
thanks to those of a Buffon random variable, as summarized in Prop. 9.
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Proposition 13. Let us define α := ‖u− v‖/δ. In the conventions of Prop. 11, we have

max(
√

2
π α, α

2) 6 EX2
j 6

√
2
π α+ α2. (39)

and, for q > 2,

EXq
j 6

√
2
π α+ 2

3
2 q−2
√
π
αq Γ( q+1

2 ) + 2
3
2 q−

5
2√

π
αq−1 q Γ( q2). (40)

Proof. For the second moment, we start from (20) with a = rjα and rj ∼ χ(N) to get

Emax( 1
N a

2, τNa) 6 EX2
j = E

(
E(X2

j |rj = ‖ϕj‖)
)

6 τNEa+ 1
NE(a2 − 1)+. (41)

However, from (37),

χN ( q2)E aq = 2
q
2√
π δq
‖u− v‖q Γ( q+1

2 ), (42)

so that τNEa =
√

2
πα and8 1

NE(a2 − 1)+ 6 1
NEa2 = α2 which leads to

max
(
α2,
√

2
π α
)

6 EX2
j 6

√
2
π α+ α2.

For higher moments, using EXq
j = E(E(Xq

j |rj)) and following the same techniques as above,
(23) and (42) provide the following upper bound

EXq
j 6

√
2
π α+ 2

3
2 q−2
√
π
αq Γ( q+1

2 ) + 2
3
2 q−

5
2√

π
αq−1 q Γ( q2).

In the last proposition, we can also get rid of the Γ functions by invoking the relation

Γ(x+ 1
2) 6

√
xΓ(x) [28] whose recursive application provides Γ(p+1

2 ) 6 2
1−p
2
√
π
√
p!. Using this

we find, for q > 2,

EXq
j 6

√
2
π α+ 2q−

3
2 αq
√
q! + 2q−

3
2 αq−1 q

√
(q − 1)!. (43)

Having delineated the behavior of the moments of each Xj , we can now study their concen-
tration properties. This is achieved from the Bernstein inequality using a formulation from [29,
p. 24] that suits the rest of our developments.

Theorem 1 (Bernstein’s inequality [29]). Let V1, · · · , VM be independent real valued random
variables. Assume that there exist some positive numbers v and β such that∑M

j=1 EV 2
j 6 v (44)

and for all integers k > 3 ∑M
j=1 EV k

j 6 1
2 k!βk−2 v. (45)

Then, for every positive x,

P[
∣∣∑M

j=1 (Vj − EVj)
∣∣ >

√
2vx+ βx ] 6 2e−x. (46)

8Bounding E(a2 − 1)+ more tightly is possible but this leads later to negligible improvements in our study.
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Notice that setting x = Mε2 in (46) with ε > 0, we get:

P
[
| 1
M

∑M
j=1(Vj − EVj)| >

√
2
M v ε+ βε2

]
6 2e−ε

2M . (47)

This is the formulation that we use in the rest of this paper. From (47), we must focus our
attention on the evolution of

√
2v/M ε+ βε2 once v and β are adjusted to the bounds of EXq

j .
From (39), we already know that∑M

j=1 EX2
j 6 M

(√
2
π α+ α2), (48)

and from (43) and for q > 3,∑M
j=1 EX

q
j 6

√
2
π Mα+M (2q−

3
2 αq
√
q! + 2q−

3
2 αq−1 q

√
(q − 1)!). (49)

For simplifying our analysis, let us conveniently analyze two cases: a coarse quantization where
α = 1

δ‖u − v‖ < 1 and a fine quantization where α > 1. Under coarse quantization and for
q > 3, (49) provides∑M

j=1 EX
q
j 6

√
2
π Mα+ q!M 2q−2 α (1 + 1√

3
) 6 1

2 q! 2q−2 M α (
√

2
6
√
π

+ 2(1 + 1√
3
)), (50)

while (48) leads to ∑M
j=1 EX2

j 6
(√

2
π + 1)Mα < 2Mα.

Therefore, since (
√

2
6
√
π

+2(1+ 1√
3
)) < 4, taking v/M = 4 and β = 2, we satisfy the two Bernstein

conditions9. Under fine quantization (i.e., α > 1), (48) gives now
∑M

j=1 EX2
j 6 M (

√
2
π +1)α2,

and, from (43) and q > 3,∑M
j=1 EX

q
j 6

√
2
π Mα+M(2q−

3
2 αq
√
q! + 2q−

3
2 αq−1 q

√
(q − 1)!)

6
√

2
π Mαq +M(2q−

3
2 αq
√
q! + 2q−

3
2 αq q

√
(q − 1)!)

6 1
2 q! (2α)q−2 M α2 (

√
2

6
√
π

+ 2(1 + 1√
3
))

< 1
2 q! (2α)q−2 M (2α)2,

We see that taking v/M = 4α2 and β = 2α is compatible with both inequalities.

Consequently, we can state that
√
v/M = O(1 + α) and β = O(1 + α) around any value

of α. Therefore, if 0 < ε < ε0 for some fixed value ε0 > 0,

∃ c, c′ > 0 such that
√

2v/Mε+ βε2 < (c+ c′α) ε. (51)

Let us cook now the first important result concerning our mapping ψδ.

Proposition 14. Fix ε0 > 0, 0 < ε 6 ε0 and δ > 0. There exist two values c, c′ > 0 only
depending on ε0 such that, for Φ ∼ NM×N (0, 1) and ξ ∼ UM ([0, δ]), both determining the
mapping ψδ in (34), and for u,v ∈ RN ,

(1− cε) ‖u− v‖ − c′δε 6
√
π√

2M
‖ψδ(u)−ψδ(v)‖1 6 (1 + cε)‖u− v‖ + c′δε. (52)

with probability higher than 1− 2e−ε
2M .

9We could set v/M = 4α but we found that this tighter choice complicates the presentation of the final
concentration results.
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Proof. From (51) and from Theorem 1, we know that there exist two values c, c′ > 0 such that

P
[
| 1
M

∑M
j=1(Xj − EXj)| > (c+ c′α)ε

]
6 2e−ε

2M .

Therefore, since

Xj = 1
δ |(ψδ(u))j − (ψδ(v))j | = 1

δ |Q(ϕTj u+ ξj)−Q(ϕTj v + ξj)|, (53)

with EXj =
√

2
π α, we find√

2
π (1− c′ε)α− cε 6 1

M

∑M
j=1Xj 6

√
2
π (1 + c′ε)α+ cε,

with probability exceeding 1− 2e−ε
2M which provides the result.

Finally, this last proposition provides the main result of this paper.

Proposition 2. Let S ⊂ RN be a set of S points. Fix 0 < ε < 1 and δ > 0. For M > M0 =
O(ε−2 logS), there exist a non-linear mapping ψ : RN → δZM and two constants c, c′ > 0 such
that, for all pairs u,v ∈ S,

(1− ε) ‖u− v‖ − c δ ε 6 c′

M ‖ψ(u)−ψ(v)‖1 6 (1 + ε)‖u− v‖ + c δ ε. (4)

Proof. The proof proceeds first by simplifying (52) in Prop. 14 with the change of variable
cε → ε and with ε0 high enough so that 0 < ε < 1 after this rescaling. Next, we follow the
classical proof of the Johnson-Lindenstrauss Lemma [1, 2] already sketched in the Introduction.
Given the mapping ψδ associated to Φ ∼ NM×N (0, 1) and ξ through (34), and considering the(
S
2

)
6 S2/2 possible pairs of vectors in S, we apply a standard union bound argument for jointly

satisfying the inequality (47) for all such pairs. If M > M0 = 2ε−2 logS = O(ε−2 logS), then
2 logS − ε2M < 0 and the global probability of success is higher than 1− exp(2 logS − ε2M) >
0. Moreover, this probability can be arbitrarily boosted close to 1 by repeating the random
generation of ψδ, considering then the event that at least one of the generated mappings will
satisfy (4). This shows the existence of ψ with probability 1, in the limit of an increasingly
large sequence of mappings.

5 Towards an `2/`2 quantized embedding

We could ask ourselves if there exists another form of the quantized embedding given in Prop. 2,
one that involves only the use of `2-distances for both a set S ⊂ RN and its image in δZM .
The expected asymptotic case would be obvious: in the limit where δ vanishes, the standard
JL Lemma should be recovered.

Unfortunately, such an appealing result seems hard to reach with the mathematical tools
developed in this work. Instead, we are able to show the existence of a mapping ψ that is
“close” to this situation in the sense that the `2-distance in RN is actually distorted by a non-
linear function whose action is mostly perceptible when δ is high with respect to the pairwise
distance of the embedded points. Noticeably, the additive distortion of the mapping decays also
more slowly with M , i.e., like O((logS/M)1/4), than for the `2/`1 quasi-isometric mapping of
Prop. 2.
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Proposition 15. Let S ⊂ RN be a set of S = |S| points and fix 0 < ε < 1. For M > M0 =
O( 1

ε2
logS), there exist a non-linear mapping ψ : RN → δZM and one constant c > 0 such that,

for all pairs u,v ∈ S,

(1− ε) gδ(‖u− v‖) − c δ
√
ε 6 1√

M
‖ψ(u)−ψ(v)‖ 6 (1 + ε) gδ(‖u− v‖) + c δ

√
ε, (54)

for a certain non-linear function gδ(λ) such that |gδ(λ)− λ| = O(
√
δλ) for λ� δ and |gδ(λ)−

(
√

2λ/
√
π)1/2| = O(λ) for λ < δ.

For reasons that will become clear below, the function gδ is actually defined by

gδ(λ) := δg(λδ ), g(λ) := (EX2
λ)1/2, (55)

with the random mixture Xλ ∼ Buffon(rλ,N) and r ∼ χ(N). Using (39), we know that

max(
√

2
πλ, λ

2) 6 g2(λ) 6
√

2
π λ+ λ2, which provides the asymptotic properties of gδ from

max
(
(
√

2
π δλ)1/2, λ

)
6 gδ(λ) 6 (

√
2
π δλ)1/2 + λ.

Because of the action of gδ, ψ in Prop. 15 does not provide an `2/`2 quasi-isometric embed-
ding of S in δZM . We are only close to this situation if the smallest pairwise distance νS in S
defined in (6) is large compared to δ.

Strictly speaking, we cannot even say that the mapping ψ in Prop. 15 generates a quasi-
isometric embedding between (S, dδ) and (ψ(S), `2) with the function dδ(u,v) = gδ(‖u − v‖).
Indeed, it is not sure if dδ is actually a distance and, therefore, (S, dδ) is not a metric space,
which prevents us to match the basic requirements of Def. 1. Nevertheless, the asymptotic
behavior of gδ shows that such a quasi-isometry is not far when the pairwise distances between
points of S are big compared to δ.

However, we see that an “almost” `2/`2 quantized embedding exists between a finite set
S ⊂ RN and its image in δZM with multiplicative and additive embedding errors decaying as
O(
√

logS/M) and O((logS/M)1/4), respectively. This constitutes a striking difference with the
`2/`1 quasi-isometric embedding of Prop. 2 where both kind of errors decay as O(

√
logS/M).

On a more practical side, we may be interested in using Prop. 15 for some numerical ap-
plications. As explained in the Prop. 16 at the end of this section, a random construction of
ψ is simply provided by (34) but unfortunately there is no known closed-form expression for
gδ. We know only its quadratic and linear asymptotic behaviors for large or small arguments,
respectively. Despite the absence of an explicit formula, it is probably possible to estimate
numerically gδ from (55). This could be done in two steps. First, by integrating numerically the
second moment of a Buffon random variable Buffon(a,N) and fitting the result with a polyno-
mial function of a with the desired level of accuracy in a certain range of values. Second, since
a ∼ χ(N), by applying the law of total expectation to each term of this polynomial in a using
(37).

Let us finish this section by proving Prop. 15. The developments are quite similar to those
presented in Sec. 4. They begin with the following result.

Proposition 16. Fix ε0 > 0, 0 < ε 6 1 and δ > 0. There exist two values c, c′ > 0 only
depending on ε0 such that, for Φ ∼ NM×N (0, 1) and ξ ∼ UM ([0, δ]) determining ψδ in (34),
and for u,v ∈ RN ,

(1 − cε) g2
δ (‖u − v‖) − c′δ2ε 6 1

M ‖ψδ(u) − ψδ(v)‖2 6 (1 + cε) g2
δ (‖u − v‖) + c′δ2ε, (56)

with probability higher than 1− 2e−ε
2M ,
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Proof. The proof requires to consider the moments of the random variable X̃j = X2
j with Xj

defined by (35) and, as for Sec. 4, to find reasonably small values for v and β for fulfilling (44)
and (45) in Theorem 1 with Vj = X̃j . Notice that by definition of the function g above and by
the equivalence (35), we have

1
M

∑M
j=1 EX̃j = g2(α) = 1

δ2
g2
δ (‖u− v‖), (57)

for α = ‖u− v‖/δ. Moreover, (39) provides

max(
√

2
π α, α

2) 6 g2(α) 6
√

2
π α+ α2, (58)

For the q-moments of X̃j with q > 2, we know from (40) that

EX̃q
j 6

√
2
π α+ 23q−2

√
π
α2q Γ(q + 1

2) + 23q−
5
2√

π
α2q−1 2q Γ(q)

6
√

2
π α+ 1

25/2
√
π

(2
√

2α)2q q! + 1√
π

(2
√

2α)2q−1 q!

=
√

2
π α+ q!

2
√
π

(2
√

2α)2q−1 (α+ 2), (59)

using Γ(q + 1
2) 6

√
q Γ(q) 6 q!/

√
2 for q > 2. For coarse quantization, i.e., α < 1, (59) provides

EX̃q
j 6

√
2
π α+ q!

2
√
π

(2
√

2)2q−4(2
√

2)3 3α

6
√

2
π α+

√
2√
π
q! 8q−2 24α

6 1
28q−2q!

(
1 + 96

) √
2

2
√
π
α < 1

28q−2q! 40α

Thus, we can select v/M = 40 and β = 8. For fine quantization and α > 1, starting again from
(59), a similar development provides

EX̃q
j 6

√
2
π α+ q!

2
√
π

(2
√

2α)2q−4(2
√

2)3 3α4

6
√

2√
π
α+

√
2√
π
q! (8α2)q−2 24α4

6 1
2(8α2)q−2q!

(
1 + 96

) √
2

2
√
π
α4 < 1

2(8α2)q−2q! 40α4,

promoting the values v/M = 40α4 and β = 8α2.

Consequently, gathering both quantization scenarios we have
√

2v/M = O(1 + α2) and
β = O(1 + α2) around any value of α > 0. Therefore, if 0 < ε < ε0, there exist two values
c, c′ > 0 only depending on ε0 such that√

2v/Mε+ βε2 6 (c+ c′α2)ε.

Applying Theorem 1 for this bound allows one to state that

P
[
| 1
M

∑M
j=1(X̃j − EX̃j)| > (c+ c′α2)ε

]
6 2e−ε

2M ,

or equivalently, using (57), that∣∣ δ2
M

∑M
j=1 X̃j − gδ(‖u− v‖)

∣∣ 6 (cδ2 + c′‖u− v‖2)ε,

with probability exceeding 1−e−ε2M . Finally, using (58), we see that with the same probability

(1− c′ε) g2
δ (‖u− v‖)− cδ2ε 6 δ2

M

∑M
j=1 X̃j 6 (1 + c′ε) g2

δ (‖u− v‖) + cδ2ε.
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Given Prop. 16, the proof of Prop. 15 is highly similar to the one of Prop. 2.

Proof of Prop. 15. We first note that (56) in Prop. 16 is equivalent to

(1− cε) gδ(‖u− v‖) − δ
√
c′ε 6 1√

M
‖ψδ(u)−ψδ(v)‖ 6 (1 + cε) gδ(‖u− v‖) + δ

√
c′ε, (60)

using again the fact that (a − b) 6 (a2 − b2)1/2 if a > b > 0 and (a2 + b2)1/2 < a + b for any
a, b > 0, and also the inequalities

√
1− cε > 1− cε and

√
1 + cε 6 1 + cε. The rest of the proof

is similar to the one of Prop. 2 in Sec. 4 and we omit it for the sake of brevity.

6 Conclusion

In this paper, we were interested in studying the behavior of the JL Lemma when this one is
combined with a uniform quantization procedure of bin width δ > 0. The main result of our
study is the existence of a (randomly constructed) `2/`1 quasi-isometric mapping between a set
S ⊂ RM and δZM . Our proof relies on generalizing the well-known Buffon’s needle problem to an
N -dimensional space, and in finding an equivalence between this context and the quantization of
randomly projected pairs of points. The final observation of our analysis is that such a mapping
displays both an additive and a multiplicative distortion of the pairwise distances of points in
this set. The two distortions vanish like O(

√
logS/M) as the dimension M increases, while

the additive distortion additionally scales like δ. As an aside, we have also obtained several
interesting results concerning the generalization of Buffon’s needle problem in N dimensions,
delineating the behavior of the moments of the related random variable Buffon(a,N). We have
concluded our study by showing that there exists a “nearly” `2/`2 embedding of S ⊂ RM in δZM
that displays a quasi-isometric behavior. However, this mapping induces a non-linear distortion
of the `2-distances in S and, compared to the `2/`1 embedding described above, the additive
distortion decays more slowly as O((logS/M)1/4).

We acknowledge the fact that there may exist other quantization schemes (e.g., non-regular)
that, when combined with random linear mappings, lead to faster distortion decays (e.g., ex-
ponential). For instance, in [10] it is shown that if two randomly projected vectors lead to
equal quantized projections according to a non-regular quantizer, i.e., if their distance is 0 in
this projected domain, their true distance must decrease exponentially with the projected space
dimension M . The Locally Sensitive Hashing (LSH) method introduced in [32] for reaching
fast approximate nearest neighbors search is another form of efficient quantized dimensionality
reduction that approximately preserves distances between embedded points. Knowing if such
results can be extended to provide quasi-isometric mappings with faster distortion decays than
O(
√

logS/M) leads to interesting open questions.
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A Alternative proof for Prop. 2

During the reviewing process of this paper, an anonymous and expert reviewer has provided
an elegant and short alternative for the proof of Prop. 2. This one relies on the properties
of sub-Gaussian random distributions. We insert his/her developments in this appendix as it
contains powerful mathematical tools for characterizing quantized random projections.

Before describing the proof, let us first provide a brief overview of the properties respected
by sub-Gaussian random variables. The interested reader can consult [13] for a comprehensive
presentation of these concepts and their implications in random matrix analysis.

A random variable (r.v.) X is sub-Gaussian if its sub-Gaussian norm10 [13]

‖X‖ψ2 := sup
p>1

p−
1
2 (E|X|p)

1
p (61)

is finite. Examples of such r.v.’s are Gaussian, Bernoulli, uniform or bounded r.v.’s. In fact,
in the Gaussian case, if X ∼ N (0, σ2), then ‖X‖ψ2 6 cσ for some c > 0 since, from Stirling’s
formula, we get Γ(x) = O(xx) for x > 1 and (E|X|p)1/p = (2p/2π−1/2Γ(p+1

2 ))1/p = O(
√
p).

Sub-Gaussian r.v.’s and their norm respect several interesting properties. First, if X is
deterministic ‖X‖ψ2 = |X|. Since ‖·‖ψ2 is a norm, given two sub-Gaussian r.v.’s X and Y ,
‖X‖ψ2 = 0 iff X = 0, ‖λX‖ψ2 = |λ|‖X‖ψ2 for λ ∈ R and we have the triangle inequality
‖X + Y ‖ψ2 6 ‖X‖ψ2 + ‖Y ‖ψ2 . Moreover, from (61),

‖X‖ψ2 6 ‖X‖∞ := inf{M > 0 : P(|X| 6M) = 1}, (62)

so any bounded r.v. is necessarily sub-Gaussian. The sub-Gaussian norm of a centered sub-
Gaussian r.v. is also easily bounded by

‖X − EX‖ψ2 6 ‖X‖ψ2 + ‖EX‖ψ2 = ‖X‖ψ2 + |EX| 6 ‖X‖ψ2 + E|X| 6 2‖X‖ψ2 , (63)

where the second inequality uses Jensen’s inequality.

In addition, sub-Gaussian r.v.’s have a tail bound characterized by their norm, i.e., there
exist two constants C, c > 0 such that for all ε > 0,

P(|X| > ε) 6 C e
−c ε2/‖X‖2ψ2 , (64)

and (63) shows that for a smaller c > 0, P(|X − EX| > ε) 6 C e
−c ε2/‖X‖2ψ2 .

Finally, for any D ∈ N independent sub-Gaussian random variables {X1, · · · , XD}, their
sum is approximately invariant under rotation, which means

‖∑i(Xi − EXi)‖2ψ2
6 C

∑
i ‖Xi − EXi‖2ψ2

, (65)

for some other constant C > 0.

We are now ready to provide the announced alternative proof. Let us consider the dimension
reduction map ψδ(x) := Qδ(Φx + ξ) associated to our uniform quantizer Qδ(·) := δb·/δc
(applied componentwise) with step δ > 0, to a random Gaussian matrix Φ ∼ NM×N (0, 1) and
to a random dithering ξ ∼ UM ([0, δ]). Given two expressions A and B, we also use below
the simplified notation A . B (resp. A & B) that means A 6 cB (resp. A > cB) for some
constant c > 0.

10Also called Orlicz ψ2 norm.
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1. Concentration Fix u,v ∈ S, with S ⊂ RN a finite set of cardinality S ∈ N. We can
represent

1
M ‖ψδ(u)−ψδ(v)‖1 − E 1

M ‖ψδ(u)−ψδ(v)‖1 = 1
M

∑M
i=1(Zi − EZi)

where, for i ∈ [M ] and ϕ ∼ NN (0, 1),

Zi ∼iid Z := |Qδ(〈ϕ,u〉+ ξ)−Qδ(〈ϕ,v〉+ ξ)|. (66)

Therefore, since for any x ∈ RN , 〈ϕ,x〉 ∼ N (0, ‖x‖2) and ‖〈ϕ,x〉‖ψ2 = ‖|〈ϕ,x〉|‖ψ2 . ‖x‖,
the random variable Y := |〈ϕ,u〉 − 〈ϕ,v〉| = |〈ϕ,u− v〉| satisfies

‖Y ‖ψ2 . ‖u− v‖2, ‖Z − Y ‖∞ 6 2δ, (67)

since |Qδ(λ)− λ| 6 δ for all λ ∈ R. By the triangle inequality and using (62), we obtain

‖Z‖ψ2 . ‖Y ‖ψ2 + ‖Z − Y ‖ψ2 . ‖u− v‖2 + δ.

Then, from (63) and (65),∥∥ 1√
M

∑M
i=1(Zi − EZi)

∥∥
ψ2

. ‖u− v‖2 + δ.

From (64) and by definition of sub-Gaussian norm, this means also that, for some c > 0,

P
[

1√
M

∑M
i=1(Zi − EZi) > t

]
6 2 exp

(
− ct2

(‖u−v‖2+δ)2

)
,

for all t > 0. Choosing t =
√
Mε (‖u− v‖2 + δ), we conclude that∣∣ 1

M ‖ψδ(u)−ψδ(v)‖1 − E 1
M ‖ψδ(u)−ψδ(v)‖1

∣∣ 6 ε‖u− v‖2 + εδ (68)

with probability at least 1−2 exp(−cM2ε2). For an appropriate C > 0, if M > Cε−2 logS as in
Prop. 2, then the failure probability is smaller than S2. This allows us to take a union bound
over all pairs u,v ∈ S so that, with high probability, (68) holds simultaneously for all u,v ∈ S.

2. Expectation It remains to show that the expectation in (68) is proportional (with a
constant factor) to ‖u− v‖2. Note that

E 1
M ‖ψδ(u)−ψδ(v)‖1 = EZ, (69)

where Z is defined in (66). Moreover,

EZ =
√

2
π ‖u− v‖, (70)

as established in Prop. 11. This last result can also be derived in a simpler fashion by observing
that for any ϕ ∼ NN (0, 1), 〈ϕ,w〉 = 〈ϕ,Pw〉 = 〈Pϕ,Pw〉 for all w ∈ W := span(u,v), with
P the orthogonal projection on W. Since this last space is a two-dimensional subspace and
since Pϕ is distributed as N 2(0, 1) (by rotation invariance), an easy variant of Prop. 11 in 2-D
based on Prop. 4 (borrowed from [23]), i.e., without generalizing Buffon’s needle problem in
N -D, suffices to prove (70). Injecting (70) in (68) establishes finally Prop. 2.

Remark: All the developments above remain true for random matrices with rows selected
uniformly at random over

√
N SN−1, i.e., when they are i.i.d. as Unif(

√
N SN−1). In this case,

those rows are also sub-Gaussian random vectors and (67) also holds [27]. The only difference
lies in the mean of EZ in (70) with Z defined as in (66) for ϕ ∼ Unif(

√
N SN−1). In this case,
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EZ 6=
√

(2/π) ‖u−v‖ but |‖u−v‖−1EZ−
√

(2/π)| = O(1/
√
N). Indeed, by rotation invariance

and since Eu(|ba+ uc − bb+ uc|) = |a− b| for a, b ∈ R and u ∼ U([0, 1]), developing Z from its
definition in (66) and using the law of total expectation, we find

EZ = EϕEξZ = Eϕ|〈ϕ,u− v〉| = ‖u− v‖Eϕ|ϕ1|.

The pdf of |ϕ1|/
√
N is known (see, e.g., [33]) and reads f(z) = (N − 1)τN (1− z2)

d−3
2 with

τN defined in (15). Therefore, using (31)

E|ϕ1| =
∫ 1

0 zf(z) dz = (N − 1)τN
∫ 1

0 (1− z2)
d−3

2 zdz = χN (1
2) = τN ,

with χN defined in (16). Consequently,

EZ =
√
NτN‖u− v‖ =

√
N Γ(N

2
)

√
πΓ(N+1

2
)
‖u− v‖.

Since (2N−3
4 )1/2 6 Γ(N2 )/Γ(N−1

2 ) 6 (N−1
2 )1/2, we have also

√
2√
π

√
N
√
N− 3

2

(N−1) 6
√
NτN = 2

√
N√

π(N−1)

Γ(N
2

)

Γ(N−1
2

)
6
√

2√
π

√
N√
N−1

,

so that |
√
NτN −

√
2/
√
π| = O(1/

√
N). Therefore, Prop. 2 holds also for random matrices Φ

with rows i.i.d. as Unif(
√
N SN−1).
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