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Abstract
The only tuberculosis vaccine currently available, bacille Calmette-Guérin (BCG) is a poor

inducer of CD8+ T cells, which are particularly important for the control of latent tuberculosis

and protection against reactivation. As the induction of strong CD8+ T cell responses is a

hallmark of DNA vaccines, a combination of BCG with plasmid DNA encoding a prototype

TB antigen (Ag85A) was tested. As an alternative animal model, pigs were primed with

BCGmixed with empty vector or codon-optimized pAg85A by the intradermal route and

boosted with plasmid delivered by intramuscular electroporation. Control pigs received

unformulated BCG. The BCG-pAg85A combination stimulated robust and sustained Ag85A

specific antibody, lymphoproliferative, IL-6, IL-10 and IFN-γ responses. IgG1/IgG2 antibody

isotype ratio reflected the Th1 helper type biased response. T lymphocyte responses

against purified protein derivative of tuberculin (PPD) were induced in all (BCG) vaccinated

animals, but responses were much stronger in BCG-pAg85A vaccinated pigs. Finally,

Ag85A-specific IFN-γ producing CD8+ T cells were detected by intracellular cytokine stain-

ing and a synthetic peptide, spanning Ag85A131-150 and encompassing two regions with

strong predicted SLA-1*0401/SLA-1*0801 binding affinity, was promiscuously recognized

by 6/6 animals vaccinated with the BCG-pAg85A combination. Our study provides a proof

of concept in a large mammalian species, for a new Th1 and CD8+ targeting tuberculosis

vaccine, based on BCG-plasmid DNA co-administration.
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Introduction
The only vaccine currently available to prevent tuberculosis (TB) is the live, attenuatedM.
bovis Bacille Calmette-Guérin (BCG) vaccine. BCG vaccination protects children against TB
meningitis and against disseminated, miliary disease, but confers a variable protection (ranging
from 0% to 80%) against pulmonary TB [1,2]. Clearly, there is a need for a more efficacious TB
vaccine for both prophylactic and post-exposure use [3]. Although a Th1 type CD4+ mediated
immune response is essential for protection against tuberculosis (as indicated by the increased
risk for TB in HIV-co-infected individuals), CD8+ T cells are also important, especially for the
control of a latent tuberculosis infection and prevention of reactivation [4,5]. BCG vaccination
is only a weak inducer of CD8+ T cells as compared to tuberculosis infection. Indeed, BCG car-
ries numerous genes that act to dampen CD8+ T cell responses [6] and a 200-fold higher dose
of BCG is needed to induce CD8+ responses comparable in magnitude to those induced with
M. tuberculosis [7]. The induction of robust CD8+ responses requires the use of the endogenous
antigen presentation pathway, as it is triggered by live pathogens (e.g.M. tuberculosis) or live
attenuated viral vaccines (e.g. recombinant adenoviruses). By virtue of their capacity to use this
endogenous antigen presentation pathway, plasmid DNA vaccines can elicit robust MHC class
I restricted CD8+ responses (besides inducing also strong MHC class II restricted Th1 type
CD4+ responses). This makes them particularly attractive as vaccine delivery systems against
intracellular pathogens, such as mycobacteria [8] [9][10]. It has previously been shown in mice
and cattle that priming with DNA vaccines encoding TB antigens prior to BCG, can improve
the potency of the BCG vaccine [11] [12,13] [14] [15]. However, priming with DNA and boost-
ing with BCG is an unrealistic vaccine regimen in humans as BCG is routinely given to neo-
nates. As an alternative, we have examined a simultaneous co-administration of BCG with
plasmid DNA encoding anM. tuberculosis antigen. As a prototype mycobacterial antigen for
this study, we selected the mycolyl-transferase Ag85A (Rv3804c) [16]. Together with Ag85B
(Rv1886c), these two proteins are among the most studied vaccine antigens ofM. tuberculosis,
present abundantly in mycobacterial culture filtrate. The Ag85A component ofM. tuberculosis
can induce strong T cell proliferation and IFN-γ production in most healthy individuals
infected withM. tuberculosis /M. leprae and in BCG vaccinated mice, but not in tuberculosis
or lepromatous leprosy patients [17]. In mice and guinea pigs, members of the Ag85 family
were demonstrated to be promising candidates for future TB vaccines [18,19] and more than
half of the vaccine candidates that successfully boosted BCG in preclinical studies contain these
antigens [20]. Nevertheless, two phase 2b clinical trials of MVA85A failed to increase protec-
tion conferred by BCG, despite remarkably persistent vaccine-induced Ag85A-specific CD4+ T
cell responses in healthy, HIV-uninfected adults, adolescents, children and infants, up to 6
years after booster vaccination [21–23]. The choice of antigen, tissue location, epidemiological
or clinical factors and the high rate ofM.tuberculosis transmission in the two trial populations
all may underlie this lack of vaccine-induced protection. However, it is also possible that the
rationale for boosting a waning immune response is flawed and that BCG induces an wrong/
incomplete (i.e. exclusively CD4+ focused) immune response which can no longer be redi-
rected/completed by MVA85A boosting [24].

For this study, we choose domestic pigs, which are closely related to humans in terms of
anatomy, genetics and physiology and which resemble humans for> 80% of immune parame-
ters (vs.< 10% for mice) [25]. Pigs are highly relevant for skin studies, as epidermal thickness
and dermal: epidermal thickness ratio is comparable to human, which has obvious relevance
for a vaccine routinely administered by the intradermal route. When injected with naked
DNA, pig skin transiently expresses the injected gene at high levels in the epidermis and pro-
duces biologically active protein (eg. cytokines)[26]. Also quantitative expression of the
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plasmid encoded protein is significantly higher in pig (and human) skin than in mouse skin,
which appears to take-up and express the injected plasmid DNA at multiple sites besides the
epidermis [27]. Furthermore, it was previously reported that mycobacteria-specific T cell
responses can be induced by BCG vaccination in 4 week old piglets [28]. Thus, both γδ and
CD4+ T cell mediated IFN-γ production could be detected after stimulation with culture filtrate
protein, as well as innate and acquired antigen-specific γδ and CD8+ T cell mediated cytolytic
activity against autologous BCG infected monocytes [29].

In this study, three groups of six animals each, were primed intradermally withM. bovis
BCG alone (group 1), BCG mixed with empty control vector (group 2) or BCG mixed with
codon-optimized V1J.ns-tPA-Ag85A vector (group 3). Groups 2 and 3 received two additional
intramuscular booster vaccinations of plasmid DNA coupled to in vivo electroporation. Myco-
bacteria-specific humoral and cellular immune responses were analyzed prior to and at 4 time
points after vaccination, over a period of 118 days.

Materials and Methods

Animals
Eighteen pigs (Sus scrofa domestica, line TOPIGS20) of ten weeks of age at day 0, were supplied
by a conventional pig farm with a high health status (Geert van Beek B.v., Runderweg, Lelystad,
NL); the herd has an SPF status, which is defined by the breeding organization (TOPIGS, NL)
and is free of common swine pathogens. The study was approved by the Animal Ethical Com-
mittee of WUR (Study Approval nr.: 2012113).

Plasmids
tPA-flagged antigen 85A DNA sequence [18] was codon optimized for pig, upgrading the CAI
to 0.81, and was optimized considering GC content reduction, stem-loop structures break, and
negative cis-acting sites (GenScript, Piscataway, USA). Next, the gene was cloned into pV1J.ns
vector [30] and amplified in E. coliDH5-α, before purification with PureLink HiPure Gigaprep
kit (Life Technologies, Carlsbad, USA). Empty pV1J.ns-tPA vector was used as control.

Immunization
Three groups of six animals each were allocated to the different treatment groups by stratified
randomization based on animal weight (Table 1). All pigs were housed in one animal room
and each treatment groups was kept in one pen (CVI, wing 043, Edelhertweg 15, NL-8219 PH
Lelystad). No blinding to vaccination or challenge period was applied.

On day 0, BCG Danish 1331 (Staten Serum Institute SSI) 2x106 CFU (i.e. the equivalent of
ten human doses, taken into account the initial piglet weight) per animal was delivered intra-
dermally about 10 cm below the right tuber ischiadicum in two adjacent areas of the skin; per
injection site 125 μl was administered slowly. For groups 2 and 3, BCG was dissolved in empty
vector or codon optimized pAg85A respectively (prepared at a concentration of 2 mg/mL in

Table 1.

Group number 1 2 3

Initial weight 18.3 ± 2.2 kg 19.0 ± 3.1 kg 19.6 ± 2.7 kg

d0 BCG (i.d.) BCG mixed with 500 μg empty vector (i.d.) BCG mixed with 500 μg pAg85A (i.d.)

d21, d42 - 1000 μg empty vector (i.m. with electroporation) 1000 μg pAg85A (i.m. with electroporation)

doi:10.1371/journal.pone.0132288.t001
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PBS and stored at -20°C until use) to achieve a final dose of 500 μg/250 μl. Due to financial con-
straints, a fourth group of pigs only vaccinated with pAg85A DNA could not be included.

On day 21 and day 42, animals of groups 2 and 3 were anaesthetized with intravenously
administered propofol (10mg/mL, Propovet, Abbott, GB) and the plasmid (diluted in PBS) was
administered intramuscularly in the right thigh at about the same location as the intradermal
BCG injection in two sites about three cm apart in a volume of 0.25 mL per injection site.
Immediately after injection an in vivo electroporation procedure was applied at the site of injec-
tions, using an electroporation device (Cliniporator, IGEA) with linear /hexagonal needle elec-
trodes. The space between the needles was approximately 2 cm and the electroporator was set
to 100V. To maintain an average amperage of 0.6 A, a current of 50 V/cm was used. Eight
pulses of 20 milliseconds with a 200 millisecond interval between the pulses were applied.

Blood sampling
Heparinized blood from all 18 animals was collected the day before the BCG vaccination (Day
-1), the day before the first (Day 20) and second (Day 41) DNA boost and three weeks after the
second DNA boost (Day 63). An extra blood sample was collected, for group 3 animals only, at
day 84 for Ag85A T cell epitope mapping. A final blood sample was collected 11 weeks after
the second boost (Day 118) and the following day animals were were anesthetized and exsan-
guinated, and a general pathological examination was performed. Popliteal lymph nodes were
harvested after sacrifice, homogenized and cells were kept frozen in DMSO at -80°C for SLA
typing. At each time point, heparinized blood was transported within 8 hours after sampling
by express courier from Lelystad to the analyzing laboratory in Brussels and cultures were set
up the next day.

Ag85A-specific antibody production
Ag85A-specific porcine IgG was measured by ELISA on 1:200 diluted plasma, using recombi-
nant E. coli derived histidine-taggedM. tuberculosis Ag85A [31] for coating (5 μg/mL) and per-
oxidase-conjugated rabbit anti-pig total IgG (diluted 1:1000) for detection (Sigma-Aldrich,
St. Louis, USA). Antibody isotypes were analysed on plasma diluted 1:50, using peroxidase-
conjugated mAb-anti-swIgG1, clone 23.49.1 and mAb-anti SwIgG2, clone 341.1.a (Central
Veterinary Institute, 1:1000 dilution).

Lymphoproliferation assays
Lymphoproliferative responses were tested using heparinized whole blood diluted 1:10 in
RPMI-1640 medium (Gibco, LifeTech) supplemented with Penicillin/Streptomycin and 2-mer-
capto-ethanol (5x10-5 M) as previously described in human studies [32]. A volume of 180 μl of
cells was added to 20μl of the respective antigens (at tenfold final concentration) in round-bot-
tomed 96 microwell plates. Cells were stimulated in vitro with bovine PPD (M. bovis strain
AN5, produced at former Pasteur Institute of Brussels, 5 μg/mL final), recombinant E. coli
derived Ag85A ofM. tuberculosis (5 μg/mL final),recombinant E. coli derived Ag85A ofM.
avium subsp paratuberculosis [33] (5 μg/mL final), synthetic 20-mer peptides spanning the
mature 294 aa Ag85A protein [34] (Innogenetics, Ghent, Belgium 10μg/mL final) or polyclonal
mitogen PWM (Lectin from Phytolacca americana, Sigma, 20 μg/mL final concentration).
Cells incubated in a humidified CO2 incubator at 37°C. On day 6, 3H-TdR (0,4 μCi/well) was
added and the cells were harvested after 20h, using a Skatron Cell Harvester. Filtermats were
counted in a BetaPlate LKB scintillation counter. Tests were performed in quintuplicate and
results expressed in cpm. Values in non-stimulated cell cultures ranged between 100 and 500
cpm.
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Cytokine assays
For cytokine assays, whole blood was centrifuged at 1,500 rpm for 10 minutes. Plasma was
recovered for antibody assays and replaced by a same volume of RMPI-1640 medium supple-
mented with 10% FCS, antibiotics and 2-mercapto-ethanol (5x10-5 M). Cells were adjusted to a
concentration of 106 leucocytes/mL in complete RPMI-1640-10% FCS medium and incubated
for 7 days in the absence or presence of the different antigens, peptides and mitogen as used in
the proliferation assays. Supernatants from three microwells were pooled for each stimulus and
stored at -20°C until use. Porcine IFN-γ was quantified by ELISA using purified mouse anti-
pig IFN-γ antibody P2G10 for coating and biotinylated detection antibody P2C11 (both BD
Pharmingen, San Diego, CA). Sensitivity of ELISA was 5 pg/mL. Porcine IL-6 and IL-10 levels
were measured by Luminex Magpix technology, using the Milliplex porcine cytokine test
pCYTMAG-23K. This multiplex assay detects IL-6 and IL-10 in a range between 20 pg/mL and
100 ng/mL.

Intracellular IFN-γmeasurement
Intracellular IFN-γmeasurement using flow cytometry was performed on fresh isolated
PBMCs at day 118. Therefore, PBMCs were isolated from heparinized blood samples by the
use of Leucosep tubes, Greiner Bio-One, according to the manufacturer’s instruction. PBMCs
(1x106 cells/mL) were cultured in 96-well tissue culture plates in RPMI 1640 medium (Gibco)
supplemented with penicillin and streptomycin, 2 mM L-glutamine, 5 x10-5 M 2-mercapto-
ethanol, 10% FCS, and 5 μg/mL of rAg85A. Cells were maintained in 5% CO2 at 37°C. After 3
days of culture, IFN-γ production was analyzed by intracellular staining and fluorescence-acti-
vated cell sorter analysis. Brefeldin A (Sigma) was added to the cells at a concentration of
10 μg/mL during the last 4 h of culture and then cells were harvested and washed once in stain-
ing buffer. Cell suspensions were transferred to microtiter plates (100 μl per well) and centri-
fuged for 3 min at 350 x g. Cells were incubated with mAbs directed to porcine CD4 (mouse
anti-porcine-CD4: clone 74-12-4, IgG2b) and CD8 (mouse anti-porcine-CD8b: clone SL2 (11/
295/33), IgG2a) for identification of T-cell subpopulations for 30 min at 4°C. The primary anti-
bodies were detected by APC- or FITC-conjugated anti-mouse isotype specific immunoglobu-
lins for CD8+ and CD4+ T cells respectively (Southern Biotechnology Associates). Next, cells
were washed twice in staining buffer and a fixation/permeabilization kit (BD Pharmingen, Cat.
nr 555028) was applied according to manufacturer’s instructions. Cells were incubated with
phycoerythrin conjugated mouse-anti-pig IFN-γ antibodies (BD Pharmingen, Cat nr. 559812,
clone P2G10) diluted in BD perm/wash buffer solution for 30 min at 4°C in the dark followed
by two washing steps.

Flow cytometry analyses were performed with a CyAn ADP flow cytometer using Summit
Software (both Beckman Coulter). For each sample, at least 1.5 x 104 cells were counted and
lymphocytes were gated on the basis of their characteristic forward- and side-scatter profiles.
Within the lymphocyte gate CD4+, CD8+ and IFN γ+ cells were analyzed.

SLA allele typing
Genomic DNA was isolated from frozen popliteal lymph node cells using QIAamp DNAmini
kit (Qiagen, cat.no. 51304) and purified by ethanol precipitation. Low resolution MHC class I
typing was performed as previously described [35]. In brief, 48 PCR reactions were set up with
different primer sets. Each reaction of 10 μl contained 1 μl purified DNA (50–400 ng/μl),
1xPCR Gold buffer (Applied Biosystems, Part no. 4311816), 0.2 mM of each dNTP (Qiagen,
cat.no. 201900), 2 mMMgCl2, 1 μM forward primer, 1 μM reverse primer, 1xLoading buffer
(71 μg/mL cresol red (Sigma-Aldrich, cat.no. 114480), sucrose (15 mg/mL)), 50 μg/mL bovine
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serum albumin (BSA), 0.06 μl AmpliTaq Gold DNA Polymerase (Applied Biosystems, Part no.
4311816). Co-amplification of the porcine alpha-actin gene was used as the positive control in
each reaction. Sequences for the specific typing primers have been described elsewhere [36].
PCR products were analysed on 2% agarose gels (Invitrogen E-Gel, cat.no. G6018-02) to verify
the presence of correctly sized amplicons (compared with a molecular marker (50 bp DNA
Ladder, Invitrogen, cat.no. 10416–014).

Candidate peptide selection and SLA peptide affinity analysis
Sequences of Ag85A (Rv3804c) and Ag85B (Rv1886c) were analyzed in silico for their potential
to be bound by the SLA-1�0401 molecule using the online available peptide predictor
NetMHCpan v.2.8 (http://www.cbs.dtu.dk/services/NetMHCpan-2.8/). Peptides predicted to
be bound were further confirmed as potential candidates by the individual amino acid
sequences satisfying requirements for binding in positions 2, 3 and 9 of the SLA-1�0401 bind-
ing groove. This was performed using a previously published complete nonamer matrix map-
ping the SLA-1�0401 peptide binding preferences [37]. Recombinant SLA-1�0401 and beta-
2-microglobulin (β2m) proteins were produced as previously described [37]. Peptides were
tested for their ability to form complexes with the SLA-1�0401 molecule using an immunosor-
bent assay [38] [39]. A pre-folded, biotinylated FLPSDYFPSV/HLA-A�02:01 [40] complex was
used as a standard to convert OD450 values to the amount of complex formed using the second
order polynomial (Y = a + bX + cX2) hereby enabling a direct conversion of the actual peptide
concentration offered to the actual concentration of correctly formed pMHC complex. Because
the effective concentration of MHC (2–5 nM) used in these assays is below the equilibrium dis-
sociation constant (KD) of most high-affinity peptide–MHC interactions, the peptide concen-
tration, ED50, leading to half-saturation of the MHC is a reasonable approximation of the
affinity of the interaction.

Statistics
Statistical significance was calculated using one-way ANOVA and Tukey’s post-test (Prism
GraphPad software version 5); � : p<0.05; BCG/p85A VS BCG and VS BCG/control pDNA).

Results

BCG-pAg85A combination induces strong mycobacteria-specific
lymphoproliferative memory responses
Ag85A-specific lymphoproliferative responses were analysed at day -1, day 20, day 41, day 63
and day 118 in diluted whole blood cultures stimulated for 7 days with recombinant protein
(Fig 1A). All eighteen animals were tested individually at each time point. Weak proliferative
responses were observed on day 20 after BCG priming in animals from all three groups, proba-
bly a reflection of the early stimulation of γδ T cells as reported by Lee et al[28]. On day 41, 5/6
animals of group 3 that had received a first pAg85A DNA boost, showed a positive Ag85A-spe-
cific proliferative response. On day 63, three weeks after the second pDNA boost, Ag85A spe-
cific responses were now detected in 6/6 animals of group 3, albeit that values for two pigs were
still lower than for the other four animals. The combined BCG-pAg85A DNA protocol induced
a specific memory response, as indicated by a further increase in Ag85A specific responses in
all 6 animals of group 3 on day 118, eleven weeks after the second DNA boost. In contrast,
Ag85A specific T cell responses decreased to almost baseline values after day 20 in animals of
group 1 and 2.
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Co-immunization with pDNA encoding Ag85A did not only increase Ag85A-specific
responses, but also responses to bovine PPD, the purified protein derivative of tuberculin,
which is a mix of at least 200 different proteins of virulentM. bovis and among which Ag85A is
only a minor component (Fig 1B). BCG vaccination induced a transient response to PPD in
two animals of group 1 at day 20. At day 41, PPD specific responses of about 5,000 cpm were
detected in one animal of group 1 and in two animals of group 3. At day 63, PPD specific
responses further increased in these latter two pigs. Moreover, one animal of group 1 also
scored positive for PPD. Finally at the last time point, day 118, most of the animals showed
some proliferative responses to PPD-as expected because they had all been vaccinated withM.
bovis BCG- but responses were clearly higher in 5/6 animals of group 3. One animal of group 1
also showed strong proliferative responses to PPD at this last time point. In contrast to Ag85A
specific proliferative responses for which an increase was observed as early as day 41 (after the
first DNA boost), the increase in PPD specific response in group 3 animals was only detected

Fig 1. BCG-pAg85A combination induces strongmycobacteria-specific proliferative and IFN-γ responses. Evolution of Ag85A (Fig 1A) and PPD (Fig
1B) specific proliferation throughout the vaccination experiment in group 1 animals vaccinated with only BCG (black symbols), group 2 animals vaccinated
with BCG-control vector (blue symbols) and group 3 animals vaccinated with BCG-pAg85A (green symbols). Each point represents mean cpm values of
quintuplicate cultures of individual animals. Cells were stimulated in vitro with bovine PPD (M. bovis strain AN5, ex-Pasteur Institute of Brussels, 5 μg/mL
final) or recombinant E. coli derived Ag85A (5 μg/mL final). Evolution of Ag85A (Fig 1C) and PPD (Fig 1D) specific IFN-γ production throughout the
vaccination experiment. Bars represent mean IFN- γ levels ± SEM of six animals (pg/mL).

doi:10.1371/journal.pone.0132288.g001
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in 2/6 animals at day 63, and particularly the memory response at day 118 was dramatically
increased.

BCG-pAg85A combination promotes strong mycobacteria-specific IFN-γ
responses
In parallel with the proliferative assays, we measured the IFN-γ levels in 7 day culture superna-
tants of the diluted whole blood cultures. In order to avoid interference with circulating IFN-γ,
cells were washed prior to culture and plasma replaced by RPMI-1640 medium supplemented
with 10% FCS. As early as day 20, Ag85A specific IFN-γ responses could be detected in 4/6 ani-
mals of group 3 which had received the mix of BCG and pAg85A intradermally, whereas
responses in all the other animals were very low or below detection level (Fig 1C, S1 Table).
Ag85A-specific IFN-γ levels were further boosted by the two additional plasmid DNA injec-
tions and at day 118, 5/6 animals had IFN titers that ranged between 18,000 and 103,000 pg/
mL. Animal 4 of group 3 showed only a modest Ag85A specific IFN-γ response, reflecting its
low lymphoproliferative responses. Ag85A specific IFN-γ titers remained low in all group 1
and group 2 animals.

Modest PPD-specific IFN-γ responses could be detected in 4/6 group 2 animals at day 20
and at day 41, all but one animal in group 1 and group 2 showed some response to PPD. At day
118, all animals of group 1 and 2 produced IFN-γ levels in the range of 1000 to 3000 pg/mL,
whereas 5/6 animals of group 3 showed much higher PPD responses, ranging from 6000 to
26000 pg/mL (Fig 1D, S1 Table).

BCG-pAg85A combination induces Ag85A-specific antibodies
Ag85A specific IgG antibodies were measured in plasma of the 18 animals. As shown in Fig 2A
IgG titers were very low and comparable for the three groups prior to vaccination on day -1.

Fig 2. BCG-pAg85A combination induces Ag85A-specific IgG antibodies. A. Ag85A-specific antibodies as detected at day -1 before BCG priming and at
days 20, 41, 63 and 118 of the vaccination protocol. Mean O.D. values (490/620nm) of individual sera diluted 1:200 are shown for group 1 (black symbols),
group 2 (blue symbols) and group 3 (green symbols). B. IgG1:IgG2 ratio of Ag85A specific antibodies measured at day 63 of vaccination on sera diluted 1:50.

doi:10.1371/journal.pone.0132288.g002
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BCG vaccination or BCG vaccination combined with empty vector induced a very weak
Ag85A specific antibody response, although mean IgG levels on day 118 were twofold higher
than on day -1 in two animals of group 1 and group 2. In contrast, Ag85A-specific responses
increased in 5/6 animals of group 3 after the first pAg85A boost and antibody titres increased
further after a second DNA boost (day 63). On day 118, antibody titres had somewhat declined,
but they were still 3 to 10 fold higher than at day -1. Antibody isotypes reflected to some extent
the Th1 bias of the induced response as IgG1/IgG2 ratio was inferior to 1 in 4/6 animals of
group 3 (Fig 2B). However IgG1/IgG2 ratios higher than 1 were measured in animals 3 and 4
(with the lowest overall immune response). Antibodies of group 1 and 2 animals were overall
low, but essentially of IgG1 isotype.

BCG-pAg85A combination induces an IFN-γ producing CD8+ T cell
compartment
In order to find out whether the BCG-pAg85A combination had induced IFN-γ producing
Ag85A specific CD8+ T cells, intracellular IFN-γ staining was performed at day 118 on Ficoll
purified PBMC from all 18 animals. Cells were stimulated for 3 days with Ag85A protein and
the percentage of CD4+ and CD8+ T cells producing IFN-γ was measured. Confirming the
whole blood lymphoproliferative and IFN-γ responses, group 3 animals had a higher percent-
age of IFN-γ producing cells following Ag85A stimulation, than animals of group 1 or 2 (Fig
3A). Total % of gated CD8+ T cells ranged between 40% and 50% (Fig 3B). Somewhat unex-
pectedly, intracellular IFN-γ staining showed that these CD8+ T cells rather than CD4+ T cells
were the main IFN-γ producers in this experimental setup (Fig 3C, data not shown for CD4+
T cells).

Fig 3. BCG-pAg85A combination induces an IFN-γ producing CD8+ T cell compartment. A: Intracellular IFN-γ staining of Ficoll purified PBMC cells
following 3 day culture of purified PBMC from group 1 (black symbols), group 2 (blue symbols) and group 3 (green symbols) animals, cultured in the presence
of rAg85A. B: Percentage of total CD8+ andC: IFN-γ producing CD8+ T cells as detected by intracellular cytokine staining following 3 days of culture in
presence of rAg85A.

doi:10.1371/journal.pone.0132288.g003
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BCG-pAg85A combination increases mycobacteria-specific IL-6 and IL-
10 responses
PBMC from pigs vaccinated with the BCG-pAg85A combination also produced higher levels
of IL-6 and IL-10 when stimulated with Ag85A and PPD than PBMC of pigs vaccinated with
BCG only or with BCG combined with empty vector (S1 Fig). IL-6 levels in culture superna-
tant of cells stimulated with the T cell dependent B cell mitogen PWMwere low and compara-
ble for the three groups. IL-10 levels in PWM stimulated culture supernatant were lower in
group 2 and group 3 than in group 1, but the difference was not statistically significant.

Ag85A T cell epitope mapping in vaccinated pigs
We have previously shown in experimental mouse models, that plasmid DNA vaccination is a
very powerful tool for the broadening the immune repertoire and the identification of murine
CD4+ and CD8+ T cell epitopes of a protein antigen, using synthetic 20-mer peptides for initial
screening [41–43]. Because of the strong Ag85A specific responses observed on day 63 in
group 3 animals, an additional blood sample was collected for these 6 pigs on day 84, 6 weeks
after the second DNA boost. Cells were stimulated with synthetic peptides spanning the entire
sequence of mature Ag85A protein [44]. Proliferative and IFN-γ responses were analysed in 7
day cultures. As shown in Fig 4, a number of peptides induced strong proliferative responses
by T cells of group 3 pigs. Interestingly, stimulation with peptide 14 (Ag85A131-150) stimulated
a positive proliferative response in 5/6 animals, suggestive of the presence of a promiscuously
recognized T cell epitope. Other peptides such as Ag85A61-80 and Ag85A region spanning aa
221–250 also induced proliferative responses, particularly in animals 1 and 2. IFN-γ levels mea-
sured in response to peptide stimulation closely reflected the proliferative responses. Significant
IFN-γ levels were detected in cultures stimulated with Ag85A131-150 in all six group 3 animals
(Table 2).

In a final experiment, the proliferative response of all eighteen animals was tested at day 118
in response to Ag85A 131–150 and to two Ag85A peptides Ag85A 111–130 and Ag85A 231–250

(that scored negative in the MHC predictions, but were recognized by some group 3 animals).
As shown in Fig 5, positive responses were detected to bovine PPD and Ag85A 231–250 in ani-
mals of all three groups, although magnitude of the response was lower in animals that had
been vaccinated with BCG alone or BCG combined with empty vector. Responses to
Ag85A111-130 and Ag85A131-150 were only measured in group 3 animals and this was also the
case for responses against the recombinant Ag85A ofM. tuberculosis. Cross-reactive responses
against recombinant Ag85A ofM. avium subsp. paratuberculosis (Map) were only detected in
group 3.

SLA allele typing, candidate peptide selection and SLA peptide affinity
analysis
Using the online available prediction algorithm NetMHCpan (http://www.cbs.dtu.dk/services/
NetMHCpan-2.8/), which has been proven as a solid tool in successful peptide predictions
beyond humans [45–47], we analysed the sequence of Ag85A for possible SLA class I binding
motifs. Ag85A131-150 turned out to encompass a predicted strong binding epitope for SLA-
1�0401 and SLA-1�0801 alleles. Typing of group 3 animals for SLA-1 alleles expression identi-
fied the following alleles: animal 1: 08XX, 11XX; animal 2: 04XX, 11XX; animal 3: 08XX,
13ms21; animal 4: 01XX, 11XX; animal 5: 08XX, 11XX; animal 6: 04XX, 15XX [36,48]. Hence
three animals expressed the SLA-1�08XX, two animals expressed the SLA-1�04XX allele
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whereas one animal (number 4) expressed the SLA-1�01XX allele. This latter animal was over-
all the lowest responder in lymphoproliferation, IFN-γ secretion and antibody response.

One of the most commonly occurring SLA alleles, the SLA-1�0401 [49], has recently been
mapped for its peptide binding preferences [37]. Nine Ag85A and Ag85B derived peptides
were selected based on in silico NetMHCpan predictions with rank scores of<2.0 (Table 3).
The peptides were all present as part of the longer Ag85A131-150 peptide. A single peptide hav-
ing a NetMHCpan rank score of 7.00/4.00 was included because of a specific SLA-1�0401 bind-
ing groove P9 pocket match [37]. All nine candidate peptide epitopes were analysed in vitro for
their specific binding affinities by the SLA-1�0401 molecule. NetMHCpan rank scores and
actual binding affinities for each of the candidate peptide epitopes are shown in Table 3.

The tested peptides were bound to the SLA-1�0401 molecule with affinities in a range of 5–
20,000 nM. One very strong SLA-1�0401 binding peptide spanning aa 136–145 was identified
with an affinity of 5 nM for SLA-1�0401. Furthermore, this peptide had a rank score 0.5 for the
SLA-1�0401 binding prediction, and an even better rank score of 0.12 for SLA-1�0801. Ag85B
134–143 showed only a low binding affinity of 6,043 nM for SLA-1�0401, indicating that the pre-
dicted CD8+ epitope spanning aa 136–145 is probably specific for the Ag85A member of the
Ag85 complex. Ag85A 130–138 was also identified as a strong SLA-1�0401 binder with an

Fig 4. Ag85A T cell epitopemapping in group 3 pigs vaccinated with BCG-pAg85A combination. Ag85A T cell epitope mapping in group 3 pigs
vaccinated with BCG-pAg85A combination, as tested on day 84, six weeks after the second pAg85A boost. Each point represents mean cpm values ± SEM
of quintuplicate cultures stimulated with the overlapping synthetic 20-mer peptides spanning the mature 294 aa Ag85A protein [34] (Innogenetics, Ghent,
Belgium 10μg/mL final), bovine PPD (5μg/mL) or recombinantMtb Ag85A protein (5μg/mL). Different symbols were used to identify the 6 animals. For
technical reasons, peptide 10 spanning aa 91–110 of Ag85A was replaced by the corresponding peptide of Ag85B spanning aa* 91–108. This sequence is
identical to the Ag85A sequence except for a Gly107Gln shift.

doi:10.1371/journal.pone.0132288.g004
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affinity of 17 nM. The promiscuously recognized peptide 14 (Ag85A131-150) does not have the
serine in position 130, but this serine 130 is present in peptide 13 (aa 121–140), recognised by
animals 1 and 3. The synthetic peptide spanning the corresponding Ag85B130-138 sequence also
bound with strong affinity to SLA-1�0401 molecule, suggesting that besides an Ag85A specific
CD8+ epitope (spanning aa 136–145), there may be a cross-reactive epitope (spanning aa 130–
138) shared between Ag85A and Ag85B in this particular region.

Table 2. T cell epitopemapping in group 3 animals vaccinated with the BCG-pAg85A combination.

Overlapping peptide (aa) BCG / pAg85A animal number

1 2 3 4 5 6

RPMI <5 a 64 <5 <5 132 1,620

1–20 <5 305 <5 <5 84 13,875

11–30 <5 1,115 <5 <5 80 <5

21–40 <5 681 <5 128 142 <5

35–53 4,594 438 74 <5 2,105 <5

51–70 5,083 <5 <5 <5 3,125 <5

61–80 8,179 354 579 75 3,611 444

71–90 217 <5 <5 <5 289 <5

81–100 1,900 56 2,968 170 1,547 <5

91–108* <5 2,332 2,377 308 748 <5

101–120 150 1,646 1,177 <5 319 <5

111–130 15,124 2,879 1,415 33 961 <5

121–140 16,699 2,367 306 <5 1,023 <5

131–150 11,114 1,754 5,306 868 11,072 4,687

141–160 9,718 232 1,330 894 3,006 837

151–170 1,020 <5 257 71 349 <5

161–180 1,501 <5 556 37 463 <5

171–190 328 <5 1,066 22 170 <5

181–200 33 <5 8 17 <5 <5

191–210 266 <5 156 38 560 <5

201–220 21 <5 1,315 <5 <5 197

211–230 46 <5 13 <5 <5 218

221–240 470 4,455 1,075 <5 303 2,980

231–250 11,639 13,693 423 <5 1,018 665

241–260 40 <5 <5 <5 <5 66

251–270 410 317 <5 11 161 163

261–280 31 <5 <5 157 728 1,240

275–294 57 <5 <5 <5 114 77

PPD bov 5,467 12,622 2,108 20 3,143 3,345

Ag85A tub 145,331 50,084 68,850 3,712 27,544 14,506

a: IFN-γ levels (expressed in pg/mL) in 7 day culture supernatants of whole blood cells (106 leucocytes/mL) of the six pigs of group 3, collected at day 84,

six weeks after the second DNA boost. Cells were stimulated with synthetic overlapping 20-mer peptides of Ag85A (10μg/ mL). Reponses against

immunodominant peptide14 and peptide 24 are highlighted in bold.

*: 18-mer peptide spanning the sequence of Ag85B.

doi:10.1371/journal.pone.0132288.t002
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Discussion
Designing vaccines that mimic virulentM. tuberculosis orM. bovis, promoting phagolysosomal
translocation into the cytosol is likely critical to enhance CD8+ T cell activation [50]. DNA vac-
cines stimulate both the exogenous (MHC class II restricted) and the endogenous (MHC class
I restricted) antigen presentation pathways, and so far DNA vaccines are the only type of genu-
ine subunit vaccines, expressing-in contrast to viral vectors or recombinant BCGs secreting lis-
teriolysin/ perfringolysin [50]- only the transgene, with a capacity to induce strong CD8+ T
cells. DNA vaccines are particularly suited for homologous prime/boost strategies, devoid of
any concerns about anti-vector immunity.

Using a swine codon optimized plasmid and improved delivery by in vivo electroporation,
we were able to improve dramatically the immunogenic potential of BCG. Our study confirms
the well-known potential of in vivo electroporation for increasing immunogenicity of DNA
vaccines in larger mammalian species, such as cattle, goats, sheep, swine and non-human pri-
mates [51] [52] [53]. To our knowledge, DNA vaccines encoding mycobacterial antigens have

Fig 5. Ag85A T cell epitopemapping in vaccinated pigs. Lymphoproliferative responses at day 118 in animals vaccinated with BCG (left Fig), with BCG
combined with empty vector (middle Fig) or BCG combined with pAg85A (right Fig) of diluted whole blood cultures stimulated for 7 days with medium (T),
bovine PPD, recombinant Ag85A ofM.tuberculosis, recombinant Ag85A ofM. avium subsp. paratuberculosis (Map), 85A 111–130, 85A 131–150 or 85A 231–250.
Each point represents mean cpm values of quintuplicate cultures of individual animals.

doi:10.1371/journal.pone.0132288.g005

Table 3. SLA peptide affinity analysis.

Peptide sequence Ag85 Amino acids NetMHCpan Rank scorea SLA-1*0401
(SLA-1*0401/SLA-1*0801) affinity (nM)b

ASSALTLAI A 129–137 1.50/3.00 10

SSALTLAIY A 130–138 0.40/0.50 17

LAIYHPQQF A 135–143 7.00/4.00 20,000

ASSALTLAIY A 129–138 0.25/0.40 1,971

AIYHPQQFVY A 136–145 0.50/0.12 5

LSMAGSSAM B 125–133 0.80/0.40 375

SSAMILAAY B 130–138 0.20/0.17 106

GSSAMILAAY B 129–138 0.40/0.30 7,755

ILAAYHPQQF B 134–143 1.50/0.50 6,043

a: Peptides having NetMHCpan rank scores of <2.00 were considered as predicted for high affinity binding by the respective SLA molecules of interest

(SLA-1*0401 and SLA-1*0801).

b: Binding affinity of the 9 synthetic peptides determined for SLA-1*0401 as described by Sylvester-Hvid et al [38]. Peptides with strong binding affinity are

indicated in bold.

doi:10.1371/journal.pone.0132288.t003
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not been studied in the porcine model, although pigs are an ideal species for vaccine research
[25]. As compared to cattle, they are relatively cheap and because of their size as adults (which
is comparable to that of humans), they can be housed in large groups. Furthermore, extensive
information on swine leukocyte antigens is available and it is possible to predict cytotoxic T
cell epitopes. Like humans, swine are a natural host toMycobacterium species [54] and wild
boar and free-range pigs can be infected byMycobacterium tuberculosis complex and contrib-
ute to the spread of bovine tuberculosis [55]. Swine develop similar pathological lesions to
those seen in humans followingM.bovis infection [56] and by providing a local pulmonary
structure similar to that in humans, the (mini)pig model highlights aspects that could be key to
a better understanding of particularly latent tuberculosis infection in humans [57].

Here we have shown that co-administration of a DNA vaccine encoding the protective anti-
gen Ag85A ofM. tuberculosis with the existingM. bovis BCG vaccine, can induce a long-lived
mycobacteria-specific IFN-γ producing Th1 cell and B cell response in Sus scrofa domestica.
Immune responses in pigs co-vaccinated with BCG and empty vector were much weaker and
comparable to responses in pigs vaccinated with non-formulated BCG. Intracellular cytokine
staining showed that IFN-γ producing Ag85A specific CD8+ T cells were induced by the BCG-
pAg85A combination. Using synthetic peptides spanning the entire mature Ag85A sequence, a
promiscuous Ag85A131-150 specific IFN-γ response was demonstrated in all group 3 animals.
This peptide was predicted to contain strong candidates for binding by the SLA-1�0401 and
SLA-1�0801 molecules, expressed by 5/6 group 3 animals. These results strongly suggest that
the Ag85A131-150 specific promiscuous T cell response detected in group 3 animals was indeed
mediated by SLA1�0401 and SLA-1�0801 MHC class I restricted CD8+ cells, further highlight-
ing the strong potential of DNA vaccines to induce this T cell subset.

Immune responses directed against PPD were induced in all animals by the BCG vaccine,
but to a higher extent in pigs vaccinated with the BCG-pAg85A combination. In an experimen-
tal mouse model, we have observed that the combination of BCG with plasmid DNA encoding
a particular mycobacterial antigen, can increase and broaden the antigenic repertoire of BCG-
induced responses and induce T cell reactivity to other mycobacterial antigens [58]. These
results suggest that boosting with coding plasmid DNA (but not with empty vector) can induce
bystander activation, probably through the creation of a Th1 type cytokine milieu.

Besides an activation of immune responses against non plasmid encoded BCG- expressed
antigens caused by the DNA booster injections, we have observed that BCG can exert an adju-
vant effect on the plasmid DNA-induced responses. Thus, in an experimental mouse model,
we showed that ovalbumin (OVA)-specific IFN-γ titers were higher in BCG/pOVA co-vacci-
nated mice than in mice only vaccinated with pOVA DNA, although both groups had received
the same plasmid dose three times [58]. The BCG cell wall is composed of several pathogen
associated molecular patterns (PAMPs) that are able to interact with different pathogen recog-
nition receptors, such as TLR2, TLR4, TLR9, NOD2 and Mincle involved in the induction of
innate immune responses. Plasmid DNA vaccines also have intrinsic PAMP properties,
because they can activate TLR9 through their bacterial CpG motifs and stimulate TBK1-depen-
dent innate immune signalling pathways through their double-stranded structure [59]. There-
fore, it is tempting to speculate that there might be synergies on TLR-induced innate immune
responses provided by simultaneous BCG and pDNA administration, knowing, for example,
that TLR9 regulates Th1 responses and cooperates with TLR2 in mediating optimal resistance
toMtb [60]. Moreover, TLR9 signalling seems to be critical for the induction of effective CD8+

T-cell responses through cross-priming following the initial pDNA immunization [61]. In con-
trast to mice, TLR9 expression is mainly limited to plasmacytoid dendritic cells in pigs (as it is
in humans). Therefore, the increased immune potential of BCG we have obtained here in pigs
is an indirect indication that the combined BCG-pDNA approach will also work in humans. It

Improved TB Vaccine by Co-Administration of BCG and pDNA

PLOSONE | DOI:10.1371/journal.pone.0132288 July 14, 2015 14 / 19



is tempting to speculate that the combination protocol could even be used for other bacterial,
viral and protozoal human pathogens.

The combination of BCG with DNA vaccines as we have described here, could be used as
well to increase immune responses against antigens, which are only poorly immunogenic upon
BCG vaccination, such as the so-called latency associated antigens, the expression of which is
up regulated inM. tuberculosis grown in conditions of starvation and dormancy [62] [63].

In summary, our study provides a proof of concept in a large mammalian species for a new
TB vaccine based on a BCG-pDNA combination. A number of phase 1 clinical trials have now
reported on the safety and immunogenicity of DNA vaccines, targeting mostly viral pathogens
[64]. Our findings on the BCG-pDNA combination open interesting prospects for testing this
new type of tuberculosis vaccine in pigs and eventually in non-human primates.

Supporting Information
S1 Fig. Increased mycobacteria-specific IL-6 and IL-10 production in pigs vaccinated with
the BCG-pAg85A combination. IL-6 and IL-10 content (pg/mL) in culture supernatants of
cells from all 18 animals collected at day 118 and tested with Milliplex porcine cytokine kit
pCYTMAG-23K, using MAGPIX technology. Results show the mean IL-6 and IL-10 levels
detected in group 1 (black bars), group 2 (blue bars) and group 3 (green bars) in non-stimu-
lated cells (RPMI) or cells stimulated with recombinant Ag85A, bovine PPD or the polyclonal
pokeweed mitogen PWM (Lectin from Phytolacca americana, Sigma, 20 μg/mL final concen-
tration). Results show the mean titres ± SEM values of the six animals/group.
(TIF)

S1 Table. IFN-γ levels in 7 day supernatant of leucocyte cultures (whole blood diluted 1:10)
stimulated with recAg85A (5 μg/mL) or bovine PPD (5 μg/mL) and tested at different time
points of the follow-up. Supernatants from three wells were pooled. Results are reported in
pg/mL. ND: not done
(DOCX)
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