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Abstract

This study was designated to investigate the effects of dietary fish oil (FO diet)
replacement by linseed oil (LO diet) on regulation of immune response and
disease resistance in Eurasian perch (Perca fluviatilis). A control diet containing
fish oil (FO = cod liver oil) and characterized by high levels of n-3 high LC-PUFA
(6% EPA, 7.5% of total fatty acids (FAs)) was compared to linseed oil diet (LO diet)
composed of low LC-PUFA contents (1% EPA, 2.3% DHA of total FAs) but high
C18 fatty acids levels. The experiment was conducted in quadruplicate groups of
80 fish each. After 10 weeks of feeding, the innate immune status was evaluated
in various organs (liver, spleen, and head-kidney) (feeding condition). Two days
later, a bacterial challenge was performed on fish from 2 rearing conditions: fish
infected with Aeromonas salmonicida (bacteria condition) and fish injected with
sterile medium but maintained in the same flow system that fish challenged with
bacteria (sentinel condition). ...
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a b s t r a c t

This study was designated to investigate the effects of dietary fish oil (FO diet) replacement by linseed oil
(LO diet) on regulation of immune response and disease resistance in Eurasian perch (Perca fluviatilis). A
control diet containing fish oil (FO ¼ cod liver oil) and characterized by high levels of n�3 high LC-PUFA
(6% EPA, 7.5% of total fatty acids (FAs)) was compared to linseed oil diet (LO diet) composed of low LC-
PUFA contents (1% EPA, 2.3% DHA of total FAs) but high C18 fatty acids levels. The experiment was
conducted in quadruplicate groups of 80 fish each. After 10 weeks of feeding, the innate immune status
was evaluated in various organs (liver, spleen, and head-kidney) (feeding condition). Two days later, a
bacterial challenge was performed on fish from 2 rearing conditions: fish infected with Aeromonas sal-
monicida (bacteria condition) and fish injected with sterile medium but maintained in the same flow
system that fish challenged with bacteria (sentinel condition). Three days after injection of bacteria, a
significant decrease of lymphocyte, thrombocyte and basophil populations was observed while neu-
trophils were not affected. In addition, plasma lysozyme activity and reactive oxygen species production
in kidney significantly increased in fish challenged with A. salmonicida while the plasma alternative
complement pathway activity was not affected. Increase of plasma lysozyme activity as well as reactive
oxygen species production in spleen and kidney of sentinel fish suggest that these immune defenses can
also be activated, but at lower bacteria concentration than infected fish. No differences in leucocyte
populations, plasma lysozyme and alternative complement pathway activities were observed between
dietary treatments. Similarly, expression of genes related to eicosanoid synthesis in liver were not
affected by the dietary oil source but were strongly stimulated in fish challenged with A. salmonicida.
These findings demonstrated that the use of linseed oil does not deplete the innate immune system of
Eurasian perch juveniles.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Traditionally, fish oil (FO) is the main lipid source in aquaculture
feeds due to its long chain polyunsaturated fatty acids (LC-PUFA)
levels including high contents in eicosapentaenoic acid (EPA,
20:5n�3) and docosahexaenoic acid (DHA, 22:6n�3), but also low
content in arachidonic acid (ARA, 20:4n�6). A large number of fish
species currently farmed are carnivorous and display high dietary

requirements in LC-PUFA. Indeed, these species exhibit low endog-
enous LC-PUFA synthesis capacities as these fatty acids (FAs) are
supplied through the ingestion of LC-PUFA-rich prey from their
natural environment [1]. However, the use of marine ingredients is
not sustainable in the long run since it further reduces the marine
fish stocks. In addition, the decrease of marine ingredient availabil-
ities has induced an increase of feed costs with negative conse-
quences on the on-farm production costs. In this economic context,
alternative ingredients to replace fish oil in fish feed have been
investigated since the 1990's. Until now, vegetable oils (VOs) are
considered as the best alternative to marine sources. Nevertheless,* Corresponding author.
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contrary to fish oils, vegetable oils are deprived in LC-PUFA but
contain a significant proportion of Poly Unsaturated Fatty Acids
(PUFA), some being particularly rich in linoleic acid (LNA, 18:2n�6),
while a fewcontainmostlya-linolenic acid (ALA,18:3n�3). Thus, the
useof dietaryVOs strongly reduces the LC-PUFAs, as these fattyacids
are only supplied by fish meal, but also modify the n�3/n�6 PUFA
ratio.

Effects of dietary FA profiles resulting of VO on fish growth per-
formances and its nutritional values (especially onLC-PUFAcontents
in flesh) have been investigated during the last decades, whereas
consequences on fish health and disease resistance are less docu-
mented. As demonstrated, dietary FA compositions modulate im-
mune functionality including phagocytosis and macrophage
respiratory burst activity, as well as humoral immunological pro-
cesses such as serum lysozyme and alternative complement activ-
ities [2e4]. Indeed, lipids may interfer with immune cell activity
through severalmechanisms, including changes of physical stability
of immune cell membranes (fluidity,membrane-associated enzyme
activities and receptor sites) and cell signaling through production
of eicosanoids and cytokines. For example, LC-PUFA from phos-
pholipids can be recruited as precursors in eicosanoid production
through enzymatic cascades including phospholipase A2 (PLA2),
cyclooxygenases (COX1/COX2) and lipooxygenases (FLAP/ALOX5) to
produce signaling molecules such as thromboxanes (TX), leukotri-
enes (LTB) and prostaglandins (PG), themselves involved in
inflammation process and other pathwaymechanisms of immunity
[5]. As demonstrated, EPA is considered as an antagonist to ARA,
acting as a competitive substrate for the main enzymes of the
eicosanoid pathway. Indeed, in Atlantic salmon (Salmo salar),
increasing of n�6 PUFA intake has induced an increase of ARA-
derived eicosanoids [6] while supplementation of EPA-enriched
medium in isolated astrogial cells of turbot (Scophthalmus max-
imus) decreased the production of ARA-derived eicosanoids [7]. In
fact, eicosanoids derived fromn�6 LC-PUFA have pro-inflammatory
and immunoactive functions, whereas eicosanoids derived from

n�3 LC-PUFA have anti-inflammatory properties, traditionally
attributed to their ability to inhibit the formation of n�6 LC-PUFA-
derived eicosanoids [5]. Fish cell membranes usually contain
higher amounts of EPA than ARA, but it has been demonstrated that
ARA is the preferred FA substrate for the enzymes involved in
eicosanoid synthesis [8,9]. In mammals as in fish, ARA is the pre-
cursor of leukotriene B4 (LTB4) and prostaglandin E2 (PGE2), which
are two of the main eicosanoids involved in the regulation of im-
mune functions. LTB4 contributes in the activation of the prolifera-
tion of T and B cells, stimulates the release of cytokines from
monocytes and T cells such as tumor necrosis factor a (TNF-a) and
interleukins (IL1, IL6), acting as a potent chemoattractant and
inducing natural killer cell activity [10e12] while PGE2 is mainly
related with pro-inflammatory and immunosuppressive functions.
Thus, a well-balanced in n�3/n�6 fatty acid ratio is essential for
good fish health and disease resistance.

In fish nutrition, the use of VOs has been shown to induce
alterations in several immune parameters, depending on the
substitution level, VO source and studied species [13]. In Euro-
pean sea bass (Dicentrarchus labrax), dietary VOs significantly
decreased the number of circulating leucocytes and the macro-
phage respiratory burst activity [14], while the use of a full
vegetable-based diet significantly increased alternative comple-
ment pathway activity and lysozyme activity in plasma [15].
Supplementation of fish oil by rapeseed oil (RO) or soybean oil
(SO) in diet decreased the macrophage activity in gilthead
seabream (Sparus aurata) [4]. More recently, it has also been
demonstrated that gilthead seabream fed with VO-based diets
exhibited lower basal expressions of interleukine 1b (IL1b) and
tumor necrosis factor (TNF-a) cytokines compared with fish fed a
FO-based diet [13] and depleted alternative complement
pathway activity [16]. In contrast, in Atlantic salmon, the use of
linseed oil (LO) did not affect the lysozyme activity, the alter-
native complement activity and the reactive oxygen species
(ROS) production [17]. Similarly, Seierstad et al. [18] did not find
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differences in the expression of pro-inflammatory cytokines after
stimulation with LPS in Atlantic salmon head kidney leukocytes
of fish fed FO, RO or a blend of FO/RO. As previously reported,
inclusion of VOs in diets induced strong alterations of several
immune parameters in marine fish [3,4,19] while these effects
appeared less pronounced in freshwater fish and salmonids
[18,20]. However, effects of dietary vegetable oils on fish im-
munity are often not conclusive or contradictory.

The discrepancy in the modulation of immune parameters
among fish species might be related to their own endogenous LC-
PUFAs biosynthesis capacities which allow to partially compen-
sating a strong LC-PUFAs deficiency in VO-based diets. Indeed, the
LC-PUFA levels in fish tissues are maintained by both dietary input
and endogenous LC-PUFAs synthesis. As described in salmonids
[21e25] in zebrafish (Danio rerio) [26,27], in Nile tilapia (Oreo-
chromis niloticus) [27] and in Senegalese sole (Solea senegalensis)
[28], supplementation of VO in diets induced an activation of LC-
PUFAs endogenous biosynthesis while very low endogenous LC-
PUFA productions were observed in some marine carnivorous fish
such as sea bass [2] and Atlantic cod (Gadus morhua) [29]. During
the last decades, a dichotomy between freshwater/salmonids and
marine fish species has been proposed to explain the differences in
LC-PUFA biosynthesis capacities among fish, because of the differ-
ences in the abundance of these fatty acids between marine and
freshwater environments. However, recent studies suggested that
the trophic level of a species could arguably exert a more pro-
nounced influence on the LC-PUFA biosynthesis capacity than the
traditional dichotomy “freshwater/salmonids and marine” fish
species.

The endogenous LC-PUFA biosynthesis potential was also
investigated in the freshwater carnivorous Eurasian perch (Perca
fluviatilis) because of a recent interest on this species to diversifi-
cation in the inland aquaculture in Europe [30,31]. The relative high
DHA concentrations recorded in flesh of Eurasian perch after a
nutritional challenge with low LC-PUFA levels in diets suggested a
relatively high endogenous potential of this fish species to syn-
thesize LC-PUFAs from PUFA precursors [31,32]. However, effects of
dietary VOs on immune system of Eurasian perch were never
investigated.

The present work was part of a wide study on the effects of
dietary LO on lipid metabolism and immune functions. The first
objective was to characterize the endogenous LC-PUFA synthesis
potential of Eurasian perch after a nutritional conditioning of 10
weeks with two experimental diets, a control diet formulated
with FO, and a second diet in which FO was replaced by LO [33].
At the end of this nutritional trial, findings from complementary
approaches (fatty acid composition, fads2 and elovl5 gene
expression and FADS2 enzymatic activity) suggest that Eurasian
perch can synthesize LC-PUFAs at a significant physiological
level. The objective of the present study was to investigate how
total replacement of FO by LO in diet for 10 weeks affects basal
innate immune system of Eurasian perch and its global immune
competence after exposure to Gram-negative bacteria, Aero-
monas salmonicida achromogen. To this end, leucocyte pop-
ulations in blood, lysozyme and alternative complement pathway
activities in plasma, ROS production in spleen and kidney, and
expression of genes related to innate immune system in spleen,
kidney and liver were investigated at the end of the nutritional
challenge (feeding condition). In a second experiment, these
immune parameters were investigated at the end of a bacteria
challenge performed under two experimental conditions: fish
injected with sterile liquid medium but reared in the same flow
system than fish injected with A. salmonicida (sentinel condition)
and fish injected with bacteria (fish injected with 4.107 cfu of
bacteria).

2. Materials and methods

2.1. Nutritional trial

Details concerning the nutritional trial are given in Geay et al.
[33]. Briefly, Eurasian perch juveniles obtained from the commer-
cial farm Asialor pisciculture (Nancy, France) were randomly
distributed into four 100 l fiberglass tanks per dietary treatment at
the density of 80 fish per tank. Fish with an initial mean body
weight of 17.5 g were reared at 23 �C under a 12L:12D (Light:Dark)
photoperiod, and hand fed 3 times per day (except on Sunday) at
apparent satiation during 10 weeks.

Two isoenergetic and isonitrogenous diets (18.7 MJ kg�1; 50%
crude protein, 11.6% crude lipid) were formulated using two
different oil sources (Table 1). The control diet was formulated from
cod liver oil (fish oil: FO diet) and characterized by n�3 high LC-
PUFA levels, especially EPA (6.0% of total FAs) and DHA (7.5% of
total FAs) (Table 2). The second diet, prepared with linseed oil (LO
diet), was composed of low LC-PUFA contents (1% EPA and 2.3%
DHA of total FAs) but high C18 fatty acids levels (48.1% ALA and
14.6% LNA of total FAs) with a n�3/n�6 PUFA ratio close to 3
(Table 2).

During the experiment, mortality was recorded daily. After 10
weeks of feeding, 5 fish were sampled from each replicate tank as
described later.

2.2. Bacterial challenge

A strain of A. salmonicida achromogen was provided by the
Centre d'Economie Rurale (CER) group (Marloie, Belgium). Bacteria

Table 1
Formulation (g kg�1) and chemical composition (% dry matter) in fish oil (FO) and
linseed oil (LO) experimental diets.

FO LO

Cod fish meala 330 330
Blood mealb 80 80
Wheat glutenc 80 80
Gelatind 30 30
Starchd 200 200
Glucosed 25 25
Bacteriologic agard 10 10
Carboxymethylcellulosed 50 50
Cellulosed 10 10
Cod oile 90 0
Linseed oilf 0 90
Vitamin mixg 10 10
Mineral mixh 65 65
Antioxydant mixi 10 10
Betained 10 10
Proximate composition
Protein 50.0 ± 0.2 50.3 ± 0.1
Lipid 11.6 ± 0.3 11.6 ± 0.2
Moisture 11.0 ± 0.3 10.3 ± 0.4

BHA, butylated hydroxyanisole; BHT, butylated hydroxyl toluene.
a Cod fish meal provided by SNICK euroingredient NV, Ruddervoorde (Belgium).
b Actipro Hemoglobin, Zwevezele (Belgium).
c Roquette Freres, Lestrem (France).
d SigmaeAldrich, Saint-Louis, MO, (USA).
e Mosselman SA, Ghlin (Belgium).
f Huilerie Emile N€oel SAS (France).
g Vitamin mix was provided by INVE aquaculture. Composition of mixture ac-

cording to Griffin et al., 1994.
h Mineral mix (g kg�1of mix) was prepared in the lab, from (CaHPO4)2H2O,

727.77; (MgSO4)7H2O, 127.50; NaCl, 60.00; KCl, 50.00; (FeSO4)7H2O, 25.00; (ZnSO4)
7H2O, 5.50; (MnSO4)4H2O, 2.54; (CuSO4)5H2O, 0.78; (CoSO4)7H2O, 0.48; (CaIO3)
6H2O, 0.29; (CrCl3)6H2O, 0.13.

i 5 g kg�1 butylated hydroxyanisole (BHA) and 5 g kg�1 butylated hydroxyl
toluene (BHT) provided by Fluka, Steinheim (Switzerland).
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were cultured in sterile brain heart infusion (BHI) liquid medium
(SigmaeAldrich, Saint-Louis, MO, USA) and incubated at 23 �C in
order to follow its growth for 3 days. The relationship between
optical density (OD) at 595 nm and bacterial concentration in liquid
mediumwas estimated in several ODs (0.15; 0.33; 0.58; 0.75; 0.92).
To this end,100 ml of culture in each time point was diluted in series
in liquid BHI medium and spread in triplicate on solid BHI medium.
After 2 days of incubation at 23 �C, clones on each plate were
counted to estimate the bacterial concentration corresponding to
each OD value.

One day after the end of the nutritional experiment, 160 fish
(FO: 47.6 g, LO: 40.9 g) from each experimental diet were randomly
selected and transferred in a class 2 confinement facility adapted to
conduct bacterial challenges. For each dietary treatment, fish were
maintained in eight 100 l glass tanks at the density of 20 fish per
tank. In this bacterial challenge, two experimental conditions were
investigated: sentinel and bacteria (4 tanks per condition). Fish of
sentinel and bacteria groups were reared in the same flow system,
but sentinel fish were injected with sterile BHI mediumwhile those
of bacteria group were injected with A. salmonicida achromogen.
Based on the relationship between OD and bacteria concentration,
a liquid culture was prepared and stopped when the culture
reached an OD of 0.7, corresponding to 4.107 cfu/ml. Hundred ml of
bacterial solution were injected intraperitoneally to fish anaes-
thetized with 120 mg l�1 MS-222 (aminobenzoic acid). Fish were
reared under the same experimental conditions including water
temperature (23 �C), photoperiod (12L:12D), feeding method (3
meals/day) and fed the same experimental diets (FO and LO diets).
During this experiment, mortality was recorded daily for 3 days.
Three days after bacterial injections, 5 fish per tank were randomly
collected.

Nutritional trial and bacterial challenge were approved by the
local Ethic Committee for Animal Research of the University of
Namur (Belgium) (Protocol Number: UN KE 14/213).

2.3. Sampling procedures

In both trials, 5 fish per tank were randomly collected and

anesthetized with 120 mg l�1 of MS-222. Around 0.5 ml of blood
was sampled andmixed with 50 ml heparin (heparin 5000 U.I. ml�1,
LEO Pharma B.V., The Netherlands) to avoid blood coagulation.
Before centrifugation at 5000 g for 8 min to collect serum for the
hemolytic alternative complement (ACH50) and lysozyme assays,
an aliquot of 50 ml of total blood was kept on ice to characterize the
leucocyte populations. After blood sampling, fish were euthanized
with an overdose of MS-222 (240 mg l�1). Around 50 mg of liver,
anterior kidney and spleenwere sampled from each fish and stored
directly at�80 �C for gene expression analysis. The remaining parts
of kidney and spleen samples were individually kept on ice for
measuring the reactive oxygen species (ROS) production (respira-
tory burst activity).

2.4. Plasma lysozyme activity

Lysozyme activity was assayed according to the method of
Siwicki and Studnica [34] with some modifications. Briefly, 7 ml of
plasma were mixed with a freshly prepared Micrococcus luteus
(SigmaeAldrich) solution (0.6 mg ml�1 Na2HPO4 buffer 0.05 M, pH
6.2). Lysozyme assay was performed in triplicate. Absorbance was
measured at 450 nm for 30 min. Lysozyme activity (Unit.ml�1) was
defined as the amount of enzyme causing an absorbance decrease
of 0.001 per min.

2.5. Hemolytic activity of alternative complement pathway
(ACH50)

Following the method of Milla et al. [35], ACH50 was evaluated
by measuring hemolytic activity of perch serum against rabbit red
blood cells (RRBC) (Biomerieux, Marcy-l'Etoile, France). Ten ml of 3%
RRBC suspension in veronal buffer (Biomerieux, Marcy-l'Etoile,
France) were added to 60 ml of serially-diluted plasma (from 1/66 to
1/1419 in veronal buffer). Total and spontaneous hemolysis was
obtained by adding 60 ml of distilled water or veronal buffer to 10 ml
RRBC. Plates were incubated at 25 �C for 100 min, mixed every
20 min and finally centrifuged at 2000 g for 10 min. Supernatant
was collected and absorbance was measured at 405 nm ACH50 was
expressed as the 50% lysis dilution calculated by linear regression.

2.6. Respiratory burst activity of phagocytic cells in spleen and
kidney

The procedure used to measure intracellular superoxide pro-
duction was adapted from Milla et al. [35]. Briefly, the dissected
piece of spleen or kidney tissue was weighted and gently mashed
with 1 ml of L-15 medium through a 100 mm nylon mesh grid and
using the back of a syringe piston. The resulting cell suspensionwas
harvested from the Petri dish, placed in a polypropylene tube and
centrifuged at 500 g for 5 min. The supernatant was discarded and
500 ml of fresh L-15 medium was added to each tube and vortexed
to resuspend the pellet. This washing operation was performed
twice. Then, 100 ml of cell suspension were added to polypropylene
tubes in duplicate. Standard curve was made using aliquots of
100 ml from pooled cell suspension. Samples and standard curve
were incubated for 30 min and respectively added with 100 ml or
increasing volumes (from 0 to 100 ml) of nitroblue tetrazolium (NBT,
2 mg ml�1 dissolved in PBS, pH 7.4). Following 1 h-incubation at
room temperature, samples and standard curve were centrifuged
and supernatants were discarded. Finally, the cells were fixed with
280 ml of methanol and reduced formazanwas dissolved in 240 ml
of 2 M KOH and 280 ml of N-dimethyl-formamide. After centrifu-
gation at 1200 g, the amount of reduced NBT (i.e. formazan) was
determined by spectrophotometry at 550 nm.

Table 2
Fatty acid composition (% of total fatty acids) in the FO and the LO experimental
diets.

Fatty acids FO LO

C14:0 3.2 0.2
C16:0 14.4 7.5
C17:0 0.2 0.1
C18:0 4.0 4.7
C20:0 0.2 0.2
Total saturated 22.0 12.7
C16:1n�7 4.5 0.3
C18:1n�9 26.8 19.0
C18:1n�7 3.1 1.1
C20:1n�9 1.8 0.0
Total monoenes 36.2 20.4
C18:2n�6 17.3 14.6
C18:3n�6 0.2 0.0
C20:3n�6 0.3 0.0
C20:4n�6 0.5 0.2
Total n�6 PUFA 18.4 14.8
C18:3n�3 3.3 48.1
C18:4n�3 0.8 0.0
C20:3n�3 0.2 0.1
C20:4n�3 0.0 0.0
C20:5n�3 6.0 1.0
C22:5n�3 2.4 0.1
C22:6n�3 7.5 2.3
Total n�3 PUFA 20.1 51.7
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2.7. Blood leucocyte populations

Blood leucocyte populations were determined according to the
method of Inoue et al. [36] adapted from Ref. [37]. Briefly, a stock
solution of 3,3-dihexyloxacarbocyanine (DiOC6(3)) (Sigma-
eAldrich, Steinheim, Germany) (500 mg ml�1 ethanol) was 10 times
diluted in HBSS (SigmaeAldrich, Steinheim, Germany). Ten ml of
heparinized blood were mixed with 1950 ml of HBSS and 40 ml of
freshly prepared DiOC6 into a specific FACS analysis tube. After
gentle mixing, the tubes were incubated for 10 min at room tem-
perature. Blood cells were analyzed (forward scatter: FSC 1.98 (Lin)
side scatter: SSC 528 and green fluorescence: FL-1245) using a FAC-
Scalibur apparatus (Becton Dickinson, Erembodegem, Belgium).
Red blood cells were separated fromwhite blood cells using a FL-1
vs SSC dot-plot. Then, leucocyte populations were determined us-
ing a FSC vs SSC dot-plot and their relative proportions were
calculated using Cell Quest Pro™ software. With this technique,
distinction was possible between neutrophils, basophils and a
mixture of lymphocytes þ thrombocytes (monocytes were rare in
Eurasian perch blood).

2.8. Gene expression analysis

In each fish, total RNA from kidney, liver and spleen were
extracted individually using 1 ml of Extract-all® reagent (Eurobio,
Courtaboeuf, France) following manufacturer's instructions and
analyzed by electrophoresis in a 1.2% agarose gel to check RNA
integrity. After verification of RNA integrity and quantification of
nucleic acid concentration with a Nanodrop 2000 spectropho-
tometer (Thermo Scientific Wilmington, USA), a pool of 20 mg of
total RNA corresponding to each tank replicate (n ¼ 4) was
constituted from 4 mg total RNA of each individual sample. Each
pool of total RNA was treated with RTS DNAse™ kit (MO BIO Lab-
oratories, Carlsbad, CA) to avoid gDNA contaminations. Then, 3 mg
of total RNA were reverse-transcribed using the iScript cDNA Syn-
thesis Kit (Bio-Rad Laboratories, Hercules, CA, USA). At the end of
the reverse transcription reaction, cDNA was diluted 20 times in
sterile water and kept at �20 �C.

The relative expression of virulence array protein A (vapA),
leukotriene a-4 hydrolase (ltah4), arachidonate 5-lipoxygenase
(alox5), Prostaglandin E synthase 2 (ptges2), complement C3, C-
type lysozyme, tumor necrosis factor alpha (tnf-a) and the
housekeeping genes elongation factor 1 alpha (ef1-a) and bactin

were investigated by real-time quantitative RT-PCR using specific
primers (Table 3). Primer sequences were designed with primer3
software and efficiency of each primer set was validated before
gene expression analysis (range of reaction efficiencies between
90 and 105%). In this study, ef1-a and bactin genes were not
altered by dietary treatments and conditions (feeding, sentinel
and bacteria), and could be used as reference genes. Specific
amplification in cDNA samples was performed in triplicate using
the iQ™SYBR® Green Supermix (Bio-Rad Laboratories, Hercules,
CA, USA). Thermal cycling and fluorescence detection were con-
ducted in a StepOnePlus Real Time PCR System (Applied System)
under the following conditions: 10 min of initial denaturation at
95 �C, 40 cycles of 15 s at 95 �C and 1 min at 60 �C. After each run,
amplification of single amplicon was confirmed by analyzing the
melt curve and sequencing of four PCR products by Macrogen
Europe (Amsterdam, The Netherlands). The relative mRNA levels
of VapA, tnf-a, C-type lysozyme, complement C3, Alox5, Ptges2 and
Ltah4 in each sample were normalized with the geometric mean
of ef1-a and bactin calculated by the relative standard curve
method [38].

2.9. Statistical analysis

The statistical analysis was performed using the Statistica bio-
software (version 8.0). Results are presented as means ± SD. The
data were checked for normal distribution and homogeneity of
variances by Pearson and Bartlett tests respectively. Percentage
values of leucocyte populations were transformed with arc sinus
function prior to be analyzed. Effects of dietary treatments and
conditions (feeding, sentinel, bacteria) on leucocyte populations,
ACH50, lysozyme activity, respiratory burst activity (ROS produc-
tion) and gene expressions were carried on using a two-way
ANOVA. In all statistical analysis test used, P < 0.05 was consid-
ered statistically different.

3. Results

3.1. Growth performances and mortality

At the end of the 10 week nutritional experiment, fish fed LO
diet displayed significantly lower weight gain (134%) than fish fed
FO diet (180%) (Table 4), or 1.22 compared to 1.43% day�1 in terms
of specific growth rate.

Table 3
Primers used for each gene expression analysis by real-time RT-PCR.

Gene GenBank accession no. Sense Primer sequences (50�30) Annealing temperature (�C) PCR efficiency (%)

VapA AJ749879 Forward ATTAGCCCGAACGACAACAC 60.0 102.4
Reverse CCAACACAATGAAACCGTTG 58.0

C-type lysozyme DR730904 Forward TGACTGGGTTTGTCTGAGCAAGTG 60.1 97.4
Reverse GATGCCATAGTCAGTGGATCCGTC 60.0

Tnf-a FJ946993 Forward AGATCCCCACTACACGTTGAGGCA 61.2 96.1
Reverse TTGGAAGCCGCCCTGAGCGAA 63.6

Complement C3 DR730703 Forward GTACCAGCTCTTTGGGTGTCAGCA 61.8 93.5
Reverse GTAAGCCCTCATGTCCCATAGCAG 62.0

Ltah4 KR360726 Forward ACAACCCTCTGACCAACCTG 62.0 94.5
Reverse CAGGACGTCCACCTTGTCTT 62.0

Alox5 KR360727 Forward TGACAAGGCTAACGCAACAG 60.0 94.4
Reverse GTAGCCTCCCACACCCTGTA 64.0

Ptges2 KR360725 Forward GGAGATCAAGTGGTCGGTGT 62.0 102.5
Reverse CATGCTTCTCTCCGTGTTGA 60.0

EF1-a KC513785 Forward GGAAATTCGTCGTGGATACG 60.0 91.1
Reverse GGGTGGTTCAGGATGATGAC 62.0

bactin EU664997 Forward ACCTTCTACAACGAGCTGAGAGTT 50.6 98.2
Reverse AGTGGTACGACCAGAGGCATAC 51.6
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In the bacterial challenge, no mortality was observed after 3
days in fish injected with sterile BHI medium (sentinel condition)
for both dietary treatments (Table 4). In contrast, injection of
A. salmonicida 4.107 cfu induced a cumulative mortality of 35%
and 37% after 3 days in FO diet and LO diet respectively.

3.2. Blood leucocyte populations

The leucocytepopulation inblood significantlydecreased infishof
sentinel and bacteria groups in comparison with feeding group
(Fig.1). However, in the sentinel group, only fish fed FO diet exhibited
a significantly lower leucocyte population compared with fish fed FO
in this group. Among leucocyte cells, lymphocytes þ thrombocytes
and basophiles populations significantly decreased in fish of sentinel
and bacteria groups compared with feeding group, while neutrophil/
eosinophil populations were not affected (Fig. 1). Globally, the leu-
cocyte populations were not modulated by the dietary treatments
(Table 5).

3.3. Plasma ACH50 and lysozymes activities

In plasma, the activity of alternative complement pathway was
not significantly modulated between dietary treatments and con-
ditions (feeding, sentinel and bacteria) (Fig. 2). Similarly, the lyso-
zyme activity measured in plasma was not significantly affected by
oil source whereas its activity significantly increased in sentinel
and bacteria groups, compared with feeding group (Fig. 2, Table 5).

3.4. Reactive oxygen species production (respiratory burst activity)
in spleen and kidney

ROS production significantly increased in spleen and kidney of
fish of sentinel groups. Injection of bacteria also induced an in-
crease of ROS production in kidney but not in spleen. In this assay,
the ROS production was not significantly modulated by the dietary
treatments (Table 5).

Table 4
Growth and survival rates in Eurasian perch juveniles fed FO and LO diets observed at the end of the nutritional trial of 10weeks andmortality recorded after 3 days of bacterial
challenge. Mean values in similar row with different superscript letters are significantly different (Student t-test, P < 0.05).

FO diet LO diet

Nutritional conditioning Initial weight (g) 17.5 ± 0.2 17.4 ± 0,2
Final weight (g) 47.6 ± 1.2b 40.9 ± 4.5a

Weight gain (%) 180 ± 8b 134 ± 22a

Mortality (%) 4.7 ± 3.0 5.0 ± 1.0
Bacterial challenge Sentinel Bacteria Sentinel Bacteria

Mortality (%) 0 35 0 37
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3.5. VapA, tnf-a, C-type lysozyme, complement C3, alox5, ptges2
and Ltah4 relative gene expression in kidney, spleen and liver

The relative expression of vapA involved in the virulence of
A. salmonicida was investigated in kidney, spleen and liver
(Figs. 4e6) in order to detect the presence of this pathogen in the
tissues. No vapA transcripts were detected in these tissues from fish
of feeding group. In sentinel group, very low expression levels of
vapA gene were measured in liver, spleen and kidney. Fish injected
with A. salmonicida displayed high vapA expression levels in liver,
kidney and spleen, without significant differences between dietary
treatments.

Among genes of immune system investigated, tnfa involved in
inflammatory response was not modulated by diet and group fac-
tors in kidney (Fig. 4). In spleen, tnfa expression was significantly
down regulated in fish belonging to the bacteria group, compared
with fish feeding and sentinel groups whereas its expression was
not affected by dietary treatments (Fig. 5). On the contrary, tnfa
expression in liver was significantly up regulated in fish fed LO diet
whereas its expression was not significantly different between
groups (feeding, sentinel and bacteria) (Fig. 6).

C-type lysosyme expression was not modulated by diet and
group factors in spleen (Fig. 5) while it was stimulated in kidney of
fish fed FO diet and injected with bacteria (Fig. 4). In liver, C-type

Table 5
Results of the two-way analysis of variance.

Factors

Variables Diet Condition Diet � condition

Leucocyte populations Leucocytes NS * *
Lymphocytes þ thromocytes NS * NS
Neutrophils NS NS NS
Basophils NS * NS

Enzymatic activities Lysozyme activity NS * NS
ACH50 NS NS NS
ROS spleen NS * NS
ROS kidney NS * NS

Gene expression in kidney VapA NS * NS
Tnf-a NS NS NS
C-type lysozyme NS * *
Complement C3 NS NS NS
Alox5 NS * NS
Ptges2 NS NS *
Ltah4 NS NS *

Gene expression in spleen VapA NS * NS
Tnf-a NS * NS
C-type lysozyme NS NS NS
Complement C3 NS NS *
Alox5 NS NS NS
Ptges2 NS NS NS
Ltah4 NS NS NS

Gene expression in liver VapA NS * NS
Tnf-a * NS NS
C-type lysozyme * * NS
Complement C3 * * NS
Alox5 NS * NS
Ptges2 NS * NS
Ltah4 NS * NS

Significance levels are * P < 0.05 and NS P > 0.05.

0

100

200

300

400

500

600

700

800

900

1000

Feeding Sen nel Bacteria

AC
H5

0

FO
LO

0

200

400

600

800

1000

1200

1400

1600

1800

Feeding Sen nel Bacteria

Ly
so

sy
m

e 
ac

vi
ty

 (U
ni

t)

FO
LO

B

B

A

A B

Fig. 2. Hemolytic activity of alternative complement pathway (ACH50) (A) and lysozyme activity (B) measured in plasma from fish fed FO and LO diets and reared under feeding,
sentinel and bacteria conditions. Values are expressed as mean ± SD of twenty replicates. Statistical differences (P < 0.05) between dietary treatments are indicated by different
Greek letters, statistical differences (P < 0.05) between conditions (feeding, sentinel and bacteria) are indicated by different capital letters, while significant interactions
(diets � conditions, P < 0.05) are indicated by lower capitals.

F. Geay et al. / Fish & Shellfish Immunology 47 (2015) 782e796788



lysosyme expression was down regulated in the bacteria group in
comparisonwith feeding and sentinel groups (Fig. 6). In addition, C-
type lysosyme expressionwas globally stimulated in fish fed LO diet,
irrespective of the group conditions.

The expression of complement C3was notmodulated by diet and
group factors in kidney (Fig. 5) whereas its expression was globally
stimulated in liver of fish fed LO diet, irrespective of the group
conditions (Fig. 6). Complement C3 expression in liver was stimu-
lated in fish injected with bacteria in comparison with feeding and
sentinel groups.

Among genes involved in eicosanoid synthesis, alox5 expression
in kidney and liver was stimulated in fish of bacteria group, in
comparison with fish feeding and sentinel groups (Figs. 4 and 5).
Similarly, ptges2 and ltah4 expression levels in liver were signifi-
cantly higher in fish injected with bacteria in comparison with
feeding and sentinel conditions (Fig. 6). In addition, ltah4 expres-
sion in kidney of bacteria group was significantly higher in fish fed
FO diet than in fish fed LO diet (Fig. 4).

Standardization of RT-qPCR conditions and the lack of signifi-
cant differences in the absolute gene expression of both house-
keeping genes (ef1-a and bactin) between tissues allowed
comparing the relative expression of interest genes between or-
gans. Genes of the immune system displayed contrasted expression
patterns between the tested organs. Complement C3 and C-type
lysozyme geneswere strongly expressed in liver in comparisonwith
kidney and spleen (Figs. 4e6). On the contrary, alox5 and tnf-a
genes were mainly expressed in spleen and kidney whereas high
levels of lath4 transcripts were detected in liver and kidney. Finally,
the highest relative ptges2 expression level was observed in liver.

4. Discussion

In the present study, Eurasian perch juveniles were fed for 10
weeks with two experimental diets which differed in their oil
source, fish oil rich in LC-PUFAs including high contents in EPA and
DHA, or linseed oil containing low LC-PUFA contents (1% EPA, 2.3%
DHA of total FAs) but high C18 fatty acids levels. At the end of the
nutritional trial, fish fed LO diet displayed a significantly lower
weight gain (134%) than fish fed FO diet (180%), while the mortality
was low in all tanks and not affected by oil source. In addition,
dietary LO significantly decreased the EPA, ARA and DHA concen-
trations and modified the n�3/n�6 LC-PUFA balance in liver and
muscle phospholipids at the end of the nutritional experiment
(shown in Geay et al. [33]). To evaluate the impacts of dietary FO

replacement by LO on the regulation of Eurasian perch immune
defense, fish were challenged with A. salmonicida achromogen, a
Gram-negative bacteria previously isolated in Eurasian perch
farming where it was responsible of strong mortality (Dr. F. Lieffrig,
CER Marloie, personal com.).

Three days after bacterial injection, no mortality was observed
in sentinel fish while in fish infected with bacteria, 35% and 37% of
mortality rates were recorded in fish fed FO diet and LO diet
respectively. Similarly, in Nile tilapia, no differences in cumulative
mortalities were observed 3 days and 15 days between fish fed FO
or LO diets, after injection with Streptococcus iniae [39]. On the
contrary, bacterial challenge with A. salmonicida spp. salmonicida in
Artic charr (Salvelinus alpinus) revealed a higher mortality (48%) in
fish fed diet supplemented with FO in comparison with fish fed LO
diet (37%) or soybean (SO) diet (20%) after 30 days of challenge [40].
Similarly, Fracalossi and Lovell [41] and Li et al. [42] found that high
n�3 PUFA concentrations in diets also reduced survival rate of
channel catfish (Ictalurus punctatus) after a challenge with
Edwardsiella ictaluri. In Atlantic salmon, Bransden et al. [43] found
significantly increased cumulative mortalities when fish fed diets
containing sunflower oil and challenged with Vibrio anguillarum in
comparison with fish fed FO after 22 days of bacterial challenge.
These findings may indicate a large variability in the key role of a
well n�3/n�6 PUFA dietary balance to improve immune system
and disease resistance in fish. Indeed, carnivorous fish species,
including Eurasian perch, displayed high n�3/n�6 PUFA dietary
ratio requirement which can be maintained by the use of LO rich in
ALA (C18:3n�3), while this high n�3/n�6 PUFA ratio is less
adapted to other fish species including channel catfish in which
relatively high dietary n�6 PUFA are required. Thus, in the present
study, the absence of differences in the cumulative mortalities
between dietary treatments after 3 days of challenge might reflect
an appropriate n�3/n�6 PUFA balance supply by LO diet. However,
as observed in some of the experiments previously cited, differ-
ences of cumulative mortalities between dietary treatments were
only observed after 5e30 days of bacterial challenge, according to
the quantity of bacteria injected, the pathogen virulence, and the
rearing conditions [39,40].

In this experiment, the use of LO in replacement to FO did not
modulate the total leucocyte population as well as each blood
leucocyte population at the end of the nutritional trial (Fig. 1). In
contrast, a significant reduction in the percentage of total leuco-
cytes in blood was previously reported in European sea bass fed
with diets inwhich 60% of dietary FO was replaced by LO, reflecting
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a putative immunodeficiency in these fish [14,19]. In the present
bacterial challenge, a significant decrease of the total leucocyte
concentrations in blood was observed in fish challenged with
A. salmonicida but also in fish of sentinel condition. As observed in
Fig. 1, this decrease of total blood leucocytes may be explained by a
decrease of the lymphocytes, thrombocytes and basophil pop-
ulations. This observation could indicate a depletion of these leu-
cocyte populations in response to A. salmonicida. In contrast,
neutrophil population was not affected in fish injected with bac-
teria and sentinel groups, suggesting a key role of this leucocyte
population in disease resistance.

The consequences of dietary LO on the humoral innate immune
system of Eurasian perch were investigated through the measure of
ACH50 and lysozyme activities in plasma as well as the relative
complement c3 and lysozyme C-type gene expressions in kidney,
spleen and liver. The complement has several functions but it is
most well-known for its capacity to destroy pathogens by creating
pores in their surface membranes and to opsonize pathogens for
destruction by phagocytes [44]. Moreover, in mammals, comple-
ment can modulate adaptive immune system after binding on
lymphocyte membranes. Alternative complement pathway, one of
the three complement pathways, is antibody independent and can
be directly activated by the lipopolysaccharide (LPS) present on the
surface of Gram-negative bacteria such as A. salmonicida, and thus,
inducing its lysis [45].

As indicated in Fig. 2, no difference of basal ACH50 activity levels
in plasma was observed between dietary treatments at the end of
the nutritional trial. This result is also supported by the lack of
difference in the relative complement c3 gene expression between
diets in liver, kidney and spleen in fish of the feeding group
(Figs. 4e6). However, globally, a higher complement c3 expression
level was observed in liver of fish fed LO diet (Table 5), whichmight
be related to an imbalance in liver PUFA contents in these fish, as
reported by Geay et al. [33]. Similarly, the basal serum ACH50 ac-
tivity was not affected by the total replacement of FO by rapeseed
oil (RO) in black carp (Mylopharyngodon piceus) [46] and by LO or
safflower oil in rainbow trout [47]. By contrast to these freshwater
species, total substitution of FO by LO or soybean oil in diet
decreased significantly the serum ACH50 activity in gilthead
seabream [48], while its activity was enhanced in European sea
bass fed with a blend of VOs [15]. The discrepancies between fish
species may reflect an imbalance of LC-PUFA in some of themwhen
dietary FO was replaced by VO. However, the differences in the
modulation of ACH50 activity between fish species may also be
related to genetic variation between teleosts [49]. Indeed, contrary
to mammals in which a single C3 gene was identified, variable
number of complement C3 isoforms encoded by paralogue genes
was found in fish species. For example, catfish, rainbow trout and
seabream possessed respectively one, four and five complement C3
protein isoforms, encoded by different genes [49]. Thus, differences
in the number of c3 genes between fish teleosts might differentially
modulate the ACH50 activity among species.

Surprisingly, ACH50 activity was not modulated when fish were
challenged with A. salmonicida. On the other hand, in gilthead
seabream challenged with Photobacterium damselae, an increase of
the bactericidal activity was observed after 3 days in fish fed FO and
LO diets [13]. The lack of ACH50 stimulation in our study may be
explained by the strain of bacteria used in this bacterial challenge.
Indeed, as explained by Ourth and Bachinski [50], pathogens with
high amount of sialic acid such as A. salmonicida, are less able to
activate complement than non-pathogenic Gram-negative bacteria
which have lower sialic acid content.

As observed with ACH50 activity, the basal level of lysozyme
activity in plasma was not affected by dietary oil source at the end
of the nutritional challenge (feeding condition). Similar result was

obtained in pikeperch (Sander lucioperca), another Percidae, when
dietary FO was replaced by VOs (including LO) [51]. In other
freshwater species including rainbow trout [47] and black carp [46],
the use of full VO diets did notmodulate the basal lysozyme activity
in comparisonwith their respective control diet. On the other hand,
while no effects were observed in European sea bass [19] when 60%
of dietary FO was replaced by VO (including LO), the use of a full
VO-based diet significantly decreased the basal lysozyme activity in
this species [15].

A significant increase of plasma lysozyme activity was recorded
in fish challenged with A. salmonicida (bacteria condition) but also
in the sentinel group. This finding suggests that sentinel fish were
also contaminated passively through release of bacteria in water. A
passive contamination through water was previously observed in
Artic charr reared with “cohabitant” fish contaminated with
6.103 cfu of A. salmonicida [40]. Indeed, 50% mortality was recorded
after 8 days in fish exposed to bacteria but mortality was also
observed in “sentinel” fish after 18 days, reflecting an indirect
contamination. In the present study, Eurasian perch were exposed
to a higher bacterial concentration (4.107 cfu) and displayed faster
and higher mortality after 3 days. Consequently, a relatively high
amount of bacteria might be released in water, and thus, contam-
inated fish of sentinel groups. This hypothesis is supported by the
detection of low vapA transcript levels in liver, kidney and spleen of
sentinel fish. Indeed, vapA gene encodes a protein involved in the
virulence of A. salmonicida. In the present experiment, contami-
nation of fish with A. salmonicida achromogen was investigated
from primers specifically designed to amplify vapA gene of
A. salmonicida achromogen strain, based on Rattanachaikunsopon
and phumkhachorn [52] results. Similar amplitude levels of plasma
lysozyme activity between sentinel and bacteria groups suggest
that low concentration of A. salmonicida is able to activate this
innate immune parameter. Enhanced of plasma lysozyme activity
was also observed in carp (Cyprinus carpio) challenged with Aero-
monas punctata [34] or with the protozoan Eimeria subepithelialis
[53], and in Atlantic salmon infected with A. salmonicida [54].
However, in the present study, increase of plasma lysozyme activity
was not associated to a stimulation of the c-type lysozyme expres-
sion in liver, kidney and spleen. Moreover, the significantly higher
c-type lysozyme expression level observed in liver of fish fed LO diet
(Table 5) was not associated to a higher plasma lysozyme activity in
these fish. These observations may be explained by the fact that
plasma lysozyme is not only synthesize by c-type lysozyme gene,
but also depends of the goose-type lysozyme (g-type lysozyme)
gene, which was not investigated in the present experiment.

As observed in Fig. 2, the dietary oil source did not affect the
amplitude of plasma lysozyme activity in bacteria groups. Similarly,
FO replacement by corn oil or LO in the diet did not result in a
difference of serum lysozyme activity in Nile tilapia when fish were
infected with S. iniae [39]. On the contrary, gilthead seabream fed
with a LO-based diet exhibited a significantly higher serum lyso-
zyme activity after infection with P. damselae than fish fed control
diet (FO) [13]. However, as reported by Saurabh and Sahoo [55], a
negative genetic correlation was demonstrated between disease
resistance and serum lysozyme activity level in several fish species
including rainbow trout, Atlantic salmon and Nile tilapia. Indeed, in
these experiments, higher mortalities after pathogen challenges
were observed in fish which displayed the highest serum lysozyme
activity, reflecting a detrimental effect of high lysozyme levels on
disease resistance of fish. Thus, in the present study, the absence of
differences in the plasma lysozyme activity levels between fish fed
FO diet and LO diet may suggest that the use of LO did not deplete
disease resistance of Eurasian perch.

In addition to plasma ACH50 and lysozyme humoral immune
parameters, the reactive oxygen species (ROS) production, a
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bactericidal agent, was investigated in kidney and spleen (Fig. 3).
ROS production was not significantly different between dietary
treatments at the end of the nutritional trial (feeding group). This
finding is supported by previous experiments in which total FO
replacement by VO sources did not affect the basal ROS production
in head kidney of Atlantic salmon [18] and rainbow trout [47].
Similarly, Thompson et al. [56] found no differences in phagocytosis
and bactericidal activities of head kidney macrophages in Atlantic
salmon fed diets enriched with either n�3 or n�6 PUFA. In
contrast, partial substitution of FO by VO (60%) decreased strongly
the basal ROS production in head kidney of European sea bass
[14,19] and gilthead seabream [4]. As reported byWu and Chen [57]
in juvenile grouper (Epinephelus malabaricus) and Montero et al.
[58] in gilthead seabream, imbalance in n�3/n�6 affected ROS
production.

In the present experiment, ROS production level significantly
increased in fish of sentinel and bacteria groups, in the same
amplitude between dietary treatments. This increase of ROS levels
in kidney and spleen as well as the increase of plasma lysozyme
activity in sentinel groups, in which low A. salmonicida were
detected, confirmed that these immune parameters are crucial
actors in disease resistance which can be rapidly activated as soon
as pathogens are detected, even at low concentrations. Moreover,
absence of differences in the ROS production levels between di-
etary treatments may suggest that LO did not induce an immuno-
deficiency in these fish. As reported by Montero et al. [58] in
gilthead seabream and by Waagboo et al. [59] in Atlantic cod, a
selective incorporation of certain FAs such as DHA and ARA was
observed in head kidney macrophages in order to maintain an
appropriate n�3/n�6 balance. Indeed, FA in macrophage mem-
brane cell are essential components as they promote membrane
flexibility, enhance phagocytic ability, and others immune pro-
cesses. Nevertheless, fatty acid compositions in spleen and kidney
were not analyzed in the present study.

As reported in rainbow trout, seabream, turbot, goldfish and
catfish, TNF-a is a pro-inflammatory cytokine which causes acti-
vation of macrophages, leading to increased respiratory burst
[60e62]. In the present experiment, tnf-a gene was mainly
expressed in spleen in comparison with kidney and liver. Thus, the
global significant higher tnf-a gene expression level recorded in
liver of fish fed LO may have low consequences on the global TNF-a
synthesis in fish. However, it is interesting to point out that tnf-a
gene as well as c-type lysozyme and complement c3 genes previously
mentioned, were only modulated in liver in which significant
modification of PUFA contents were observed between dietary
treatments. However, tnf-a gene was not simulated in fish infected
with A. salmonicida (sentinel and bacteria groups) despite the in-
crease of ROS production in these tissues. In contrast, increase of
TNF-a after pathogen infections was previously reported in fish
[63,64]. In gilthead seabream challenged with P. damselae, tnf-a
gene in head kidneywas stimulated one day after infectionwhereas
its expression deceased at the third day [13]. Perhaps, pro-
inflammatory cytokine synthesis such as TNF-a can be reaching
over expression in lymphoid tissues only few hours after infection,
and then, decrease after 3 days. This hypothesize may explain the
lack of tnf-a gene expression stimulation in infected during the
present bacterial challenge.

As previously reported, changes in dietary fatty acid composi-
tion have been shown to affect eicosanoid synthesis [14,65]. Ei-
cosanoids are mainly produced from C20 LC-PUFA (EPA and ARA) of
leucocyte phospholipids. They are catalyzed by the action of
cyclooxygenase and lipooxygenase (ALOX5), resulting in signaling
molecules that include prostaglandins (PG), leukotriene (LT) and
lipoxins that are known to influence a wide range of immune
processes [11]. However, the regulation of genes related to

eicosanoids in response to pathogen infections is poorly docu-
mented [66]. In the present study, the regulation of alox5, ptges2
and ltah4 expressions in response to dietary oil source and bacterial
infection was investigated. As indicated in Figs. 4e6, alox5, ptges2
and ltah4 genes displayed contrasted basal expression pattern be-
tween tissues (feeding group). Indeed, alox5 and ltah4 genes were
mainly expressed in kidney and spleen while high ptges2 tran-
scripts were detected in liver, and then in kidney. The strong
expression of alox5 and ltah4 genes in lymphoid tissues underlines
the key role of leucocytes in eicosanoid synthesis. In the feeding
groups, FO replacement by LO did not affect the expression alox5,
ptges2 and ltah4 genes, suggesting a well n�3/n�6 PUFA balance in
these tissues. Indeed, as mentioned above, selective retention of
certain FAs by leucocytes may occur and thus, allowing to maintain
an appropriate balance in phospholipid FAs [65]. The regulation of
eicosanoid related genes in response to FA dietary contents, espe-
cially balance in n�3/n�6 PUFA, is poorly documented, while
modulation of PGE2 and LTB4 levels in plasma by FA dietary con-
tents have already been investigated in fish species. Ganga and co-
workers [67] demonstrated in gilthead seabream that dietary FO
substitution by LO did not affect plasma PGE2 level but significantly
decrease plasma PGE3 level, a prostaglandin derived from EPA. In
European sea bass, partial replacement of FO by LO (60%) did not
affect plasma PGE2 level [14] whereas, on the contrary, the same
authors identified a significant decrease of PGE2 in this species
with the same dietary substitution [19]. In contrast, total replace-
ment of FO by soybean oil did not affect both LTB4 and PGE2 levels
in head kidney of Atlantic salmon [68].

Interestingly, contrasted regulation of alox5, ptges2 and ltah4
genes were observed between tissues in response to bacterial
infection. In liver, alox5, ptges2 and ltah4 genes were strongly
stimulated in fish of bacteria groups, whereas a significant decrease
of their expressionwas observed in spleen of bacteria group as well
as in sentinel group. In addition, no differences between dietary
treatments were observed in these tissues. In kidney, alox5 and
ptges2 genes were significantly stimulated in both dietary treat-
ments of bacteria groups, while increase of ltah4 transcript level
was only observed in fish of bacteria group fed with FO diet. These
findings showed the relative different sensitivity of each tissues
toward bacterial infection. In addition, the stimulation of alox5,
ptges2 and ltah4 genes in kidney and liver in fish infected with
A. salmonicida demonstrated the key role of eicosanoids in the
innate immune response. The lack of ltah4 gene stimulation in
kidney of fish fed LO diet in bacteria groups might reflect an
imbalance in EPA/ARA in this organ. However, the lack of infor-
mation on the fatty acid composition in kidney does not allow
confirming this hypothesis.

In summary, the results from the present study showed that
total replacement of dietary FO by LO lowered growth rate but did
not affect the immune status as evidenced by various humoral
immune variables and some key-gene transcripts. In addition,
infection of Eurasian perch with A. salmonicida revealed that lyso-
zyme activity, ROS production and genes related to eicosanoid
synthesis were modulated in the same amplitude between dietary
treatments, reflecting an analogue capacity of fish to fight against
pathogens. These findings suggest that the use of LO in Eurasian
perch farming could be applied without impairing fish immune
functions and disease resistance. However, longer dietary trials
associated with bacterial challenges would be necessary to confirm
the lack of immunodeficiency in Eurasian perch fed with VOs.
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[51] A. Kowalska, Z. Zakę�s, A.K. Siwicki, B. Jankowska, S. Jarmołowicz, K. Demska-
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