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Abstract—The temporal variation of spatial correlation be-
tween on-body radio links are empirically characterized for
different walking scenarios. Non-stationary behaviors are high-
lighted and a model is proposed for the long-term fading
correlation.

Index Terms—Body Area Networks, channel modeling, corre-
lation, measurement.

I. I NTRODUCTION

Body Area Networks (BANs) consist of different wireless
nodes placed on or in the proximity of the human body. BAN
applications encompass various domains such as medicine,
surveillance, sport and entertainment [1]. In the last years,
significant efforts have been made in BAN radio channel mod-
eling. In particular, the first- and second- order characteristics
were investigated in static and dynamic conditions [2]–[6].
It has been observed that the communication reliability is
strongly affected by second-order statistics. To overcomethe
strong attenuation and shadowing by the human body, relay
approaches have been proposed [7]. However, the design and
performance evaluation of multi-hop techniques is highly de-
pendent on the correlation between different links. In [8]–[10],
on-body correlations have been modeled assuming stationary
statistics over time. Even if this might be true for small periods
of time and regular motions, this might not be valid for realistic
motions.

In this letter, we investigate the inter-link correlation prop-
erties of on-body channels in various walking scenarios with a
focus on the non-stationary effects. In [5] the authors modeled
the BAN failures with a semi Markov-chain Model. Here
the same approach is used but to describe the non-stationary
behaviour of WBAN channels, and model the changing spatial
correlation properties along the body movement.

II. ON-BODY CHANNEL MEASUREMENT CAMPAIGNS

On-body channel measurement campaigns were performed
with several human subjects in different indoor environments
for various mobility scenarios. To compare the results ob-
tained from different measurement campaigns, we focus on
datasets recorded at 4.2 GHz, and selected the measurements
performed with antennas presenting normal polarization with
respect to the body surface. The main difference between both
datasets lie in the observation duration and the non-regular
mobility pattern in [4].
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Fig. 1. On-body nodes emplacements inMeasurement Campaign I (a) and
Measurement Campaign II (b)

A. Measurement Campaign I

This ultra-wideband measurement campaign was previously
exploited at 2.4 GHz in [11]. Here, we rather exploit the
channel acquisitions at 4.2 GHz, in order to compare them
with those presented in the next subsection.

The measurement testbed consisted in a pulse step generator
and a power amplifier at the transmitting side, whereas low-
noise amplifiers were connected to a wideband real-time
digital oscilloscope at the receiving side. This configuration
enabled the simultaneous collection of several impulse re-
sponses, each one corresponding to a different on-body link.
Fig. 1(a) depicts the different transmitter and receiver locations
considered. Wideband Top Loaded Monopole (TLM) antennas
were used. TLM is based on a wire-patch monopole design
[12] and is fed by a stripline within the antenna ground plane.
TLMs present an impedance matching band from 2.33 up to
11 GHz, with respect toS11 < −7 dB, with a total on-body
efficiency of 70% from 2.36 to 5 GHz. The experiments were
performed in an indoor office equipped with some general
furniture. Three human subjects walking on a straight line were
considered. For every subject, two acquisitions of 3 s each
were performed. The sampling period considered in this data
is equal to 20 ms. Hereafter, we number the human subjects
of this measurement campaign from 1 to 3, and we denote
walk 1 andwalk 2 the two measurements performed for each
subject.
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B. Measurement Campaign II

In this measurement campaign, a MIMO8 × 8 Elektrobit
channel sounder was used to characterize the on-body radio
channel [4]. Each on-body node was connected to the channel
sounder through a6 m SMA cable. Different configura-
tions were considered resulting into 12 node positions on
the body (Fig. 1(b)). SMT-3TO10M-A SkyCross antennas
placed normally to the body were employed in the mea-
surements. The channel burst sample rate was about20 Hz.
Each burst consisted of 4 successive measurements that were
averaged to increase the measurement Signal-to-Noise Ratio
(SNR). Eventually, the effective sampling period was equal
to 23.6 ms. Measurements were taken successively on two
subjects, namely subjects 4 and 5, walking freely in a quasi-
empty room. For each acquisition, 3000 channel measurements
were recorded, corresponding to about18 s for each dataset.

III. FADING CORRELATION

In the received signal power, one can distinguish long-term
and short-term fading components as outlined by:

P (t) = P0 · L (t) · S (t) (1)

where P0 represents the mean received power, whileL (t)
and S (t) are the normalized long- and short-term fading
components, respectively. It has been shown that the long-
term fading is related to the shadowing by the human body
during the movements [10]. This effect is particularly evident
in walking scenarios when one of the antenna is placed on a
limb [4], [10]. In the sequel, we extract the normalized long-
term fading component from the measurements by applying a
low pass filter. In practice, the filtering is realized by averaging
the time-dependent power transfer functionP (t) with a sliding
time window of duration∆t:

L (t) =
1

∆t

∫ t+∆t/2

t−∆t/2

P (t)

P0

dt. (2)

The window width∆t is equal to 320 ms and 330.4 ms
for measurement campaign(MC)-I and -II respectively. The
window widths difference is due to the different sampling
periods used for each measurement campaign. Moreover, a
division by the mean received powerP0 is made for power
normalization.

Fig. 2 and Fig. 3 illustrate examples of long-term fading
extraction for two given on-body links inMC-I and MC-II
respectively. The long-term fading has been found to follow
a log-normal distribution. Hence, we define the inter-link
correlation on the long-term fading (expressed in dB) as
follows:

ρi,j (t ; Tobs) =
E [(LTX,i − E [LTX,i]) (LTX,j − E [LTX,j ])]

√

E
[

L2

TX,i − E2 [LTX,i]
]

E
[

L2

TX,j − E2 [LTX,j ]
]

(3)

where E [.] is the expectation operator over an observation
window Tobs. LTX,i and LTX,j represent the long-term fad-
ing components in dB of the radio links associated to the
same transmitting antenna positionTX and the receiving
antenna positionsi and j respectively. More in detail, the
correlation value obtained at the instantt is computed from
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Fig. 2. MC-I - Long-term fading extraction∆t = 320 ms - subject 1 -
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Fig. 3. MC-II - Long-term fading extraction∆t = 330.4 ms - subject 4 -
Tx on Heart

the long-term fadding measured during the window time
[t− Tobs/2 ; t+ Tobs/2]. For t higher than(Tmeas−Tobs/2),
the higher bound of the window is set toTmeas, i.e. 3s for
MC-I and 18s forMC-II. The lower bound is not modified
and still set to(t− Tobs/2).

IV. RESULTS

A. Correlation Dynamics

According to the node location and the human body motion,
long-term fading patterns related to different links can be
synchronous or asynchronous. For instance, in very regular
walks as the one shown in Fig. 2, the Heart-Right Hand and
Heart-Left Hand links exhibit anti-correlated fading behaviors
because of the regular swinging of the arms. This pattern is
expected to result in high anti-correlation values (typically
smaller than -0.4).

In a previous work, it has been shown that the correlation
computed on different time-blocks can have different values
[13]. Let us now compute the long-term fading correlation
over a sliding observation time window. The window width
Tobs has been empirically chosen by visual inspection of the
channel data. This value has been chosen in order to be smaller
than the total duration of the observation, i.e. 3 s inMC-I, and
several time larger than the expected correlation time in the
on-body indoor walking channels (typically from 20 ms up to
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Fig. 4. MC-I - ρi,j over Tobs = 1.8s - Tx on Heart and Rxs on Left/Right
Hand

100 ms according to the link [14] [15]). Fig. 4 and Fig. 5 show
the correlation values measured in both sets of measurements.

In Fig. 4, the two radio links are highly anti-correlated
for all subjects and walk cycles. This is consistent with the
behavior of the extracted long-term fading components given
in Fig. 2. This anti-correlation characteristic can be easily
interpreted by the fact that since one node is located on the
heart, both radio links are shadowed by the body alternately
[10]. The correlation characteristics are relatively stable over
time, except forwalk 1 of subject 3, where the increase of
ρi,j during the last second is due to the fact that the subject
finished the walk prematurely.

By contrast, Fig. 5 shows that the correlation values strongly
vary over time inMC-II. This is in line with the long-term
fading pattern variations shown in Fig. 3. When the subjects
are let free to move and do not follow a straight path, the limb
swinging is more random and changes during the movement.
Moreover, the proximity with some objects in the environment
could yield to very slow variations of the long-term fading that
are included in the shadowing contributions.

Although both measurement campaigns have been per-
formed in walking scenarios, the space-time correlation char-
acteristics are totally different. This correlation analysis shows
a non-stationary behavior of the channel in general walking
scenarios, i.e. not in particular scenarios such as walks on
a straight line. The correlation characteristics depend onthe
observation instantt as showed in Fig. 5. This analysis
confirms the observation of non-stationary on-body channel
characteristics outlined in [16].

B. Correlation modeling

In order to model the on-body channel space-time cor-
relation properties over several seconds in random walking
scenarios, we exploit the results obtained withMC-II. We
propose to use a Markov chain defined by 5 correlation states
(see Fig. 6):

• highly anti-correlated (HA):ρi,j ≤ −0.5
• anti-correlated (A):−0.5 < ρi,j ≤ −0.3
• non-correlated (D):−0.3 < ρi,j < 0.3
• correlated (C):0.3 ≤ ρi,j < 0.5
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Fig. 6. Space-time correlation model based on a Markov chain

• highly correlated (HC):0.5 ≤ ρi,j .

The correlation threshold values are arbitrary chosen consid-
ering the correlation values obtained inMC-II. And we assign
the following correlation values for each correlation state:

• highly anti-correlated (HA):ρi,j = −0.6
• anti-correlated (A):ρi,j = −0.4
• non-correlated (D):ρi,j = 0
• correlated (C):ρi,j = 0.4
• highly correlated (HC):ρi,j = 0.6.

We compute the transition probabilities between all states
according to Fig. 6. Let us remind that the sampling period
is equal to 23.6 ms inMC-II. We intuitively understand that
these transition probabilities are strongly dependent on the
sampling period. Indeed, the greater the duration between two
consecutive observation instants (i.e. the sampling period), the
higher the probability for the correlation state to change.In
our case, we note that the sampling period is small enough
to not allow any brutal correlation value variation. In other
words, between two consecutive observation instants, there is
not any transition from a correlation state to another one which
is very different.

The transition probability values are found to be very similar
between the subjects. The mean values oversubject 4 and
subject 5 are reported in Table I for different on-body link
pairs. We remark that the highest transition probabilitiesare
those for which there is no transition from a correlation state
to a different one. This means that the channel correlation
characteristics are stable between two consecutive observation
instants, i.e. during one sampling period (23.6 ms).

In order to initialize the Markov process, starting probabili-
ties are required. For that purpose, we compute the probabili-
ties for all radio link pairs in each correlation state. Comparing
the obtained values given in Table II, one can see that most of
them are different between the two subjects. This difference
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TABLE I
TRANSITION PROBABILITIES BETWEEN THE CORRELATION STATES

Tx location Heart Right Hip Hip center Left Ear

Rxs locations Left/Right Left/Right Left/Right Left/Right

Hand Hand Foot Hand

P (HA → HA) 0.97 0.97 0.95 0.97

P (HA → A) 0.03 0.03 0.05 0.03

P (A → HA) 0.03 0.02 0.07 0.08

P (A → A) 0.92 0.92 0.83 0.86

P (A → D) 0.05 0.06 0.10 0.07

P (D → A) 0.01 0.01 0.01 0.01

P (D → D) 0.97 0.96 0.96 0.98

P (D → C) 0.2 0.03 0.02 0.01

P (C → D) 0.06 0.09 0.06 0.04

P (C → C) 0.92 0.87 0.89 0.90

P (C → HC) 0.02 0.04 0.04 0.06

P (HC → C) 0.04 0.02 0.05 0.04

P (HC → HC) 0.96 0.98 0.95 0.96

TABLE II
INITIAL CORRELATION STATE PROBABILITIES

Tx location Heart Right Hip Hip center Left ear

Rxs locations Left/Right Left/Right Left/Right Left/Right

Hand Hand Foot Hand

Subject 4 - P (HA) 0.10 0.00 0.03 0.31

P (A) 0.10 0.02 0.02 0.13

P (D) 0.50 0.15 0.42 0.40

P (C) 0.24 0.13 0.11 0.13

P (HC) 0.06 0.70 0.42 0.03

Subject 5 - P (HA) 0.14 0.19 0.22 0.15

P (A) 0.12 0.15 0.09 0.04

P (D) 0.59 0.55 0.45 0.42

P (C) 0.06 0.06 0.21 0.08

P (HC) 0.09 0.05 0.03 0.31

is related to the fact that the subjects have a different walking
behavior. In the model implementation, the initializationphase
of the correlation states can alternate between these two sets
of probabilities corresponding to different walking modes.

V. CONCLUSIONS

In this letter, we characterized space-time correlation prop-
erties of on-body radio links. It is observed that the correlation
properties could vary from very stationary to non stationary
according to the observation time and regularity of walk.
A Markov chain model has been proposed to reproduce the
variation over time of the space-time correlation. This model

can be exploited for cooperative approaches using on-body
nodes as relays.
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