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Abstract
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then focus on the available ways to target specifically particular compounds of
fibrogenesis and on the new models of liver diseases like the humanized liver
mouse model.
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Abstract

Liver fibrosis is part of the wound-healing response to liver
damage of various origins and represents a major health
problem. Although our understanding of the pathogenesis of
liver fibrosis has grown considerably over the last 20 years,
effective antifibrotic therapies are still lacking. The use of
animal models is crucial for determining mechanisms under-
lying initiation, progression, and resolution of fibrosis and for
developing novel therapies. To date, no animal model can
recapitulate all the hepatic and extra-hepatic features of liver
disease. In this review, we will discuss the current rodent
models of liver injuries. We will then focus on the available
ways to target specifically particular compounds of fibrogen-
esis and on the new models of liver diseases like the
humanized liver mouse model.

E 2015 The Second Affiliated Hospital of Chongqing Medical
University. Published by XIA & HE Publishing Ltd. All rights
reserved.

Introduction

Fibrosis is part of the general wound-healing response to liver
damage of various origins and is defined by the accumulation
and qualitative changes in extracellular matrix (ECM) com-
ponents. The hepatic stellate cell (HSC) is the main cellular
effector of this phenomenon and the major producer of scar
ECM.1

Liver fibrosis remains a major health problem as fibrotic
liver diseases have a high mortality rate and predispose to
liver failure, portal hypertension, and hepatocellular carci-
noma (HCC).2 Although intense research during the last 20
years has led to considerable improvements in the under-
standing of liver fibrosis pathogenesis, effective antifibrotic
therapies are still lacking. A better understanding of the
mechanisms implicated in the initiation, progression, and
resolution of fibrosis is crucially needed. Animal models are
essential to study the processes underlying fibrogenesis, to
identify potential therapeutic targets, and to evaluate the
impact of antifibrotic therapies.3 Larger animal (rabbit, dog,
chimpanzee, etc.) may be used, but rodent (mouse and rat)
models are preferred and best standardized.4

When using animal models, one must keep in mind some
general concepts, advantages, and pitfalls. A Gold Standard
Publication Checklist (GSPC) was published in 2010 to
improve the quality of animal studies and related publica-
tions and the feasibility of systematic reviews.5 GSPC
directly benefits animal welfare and should be taken into
account by all investigators when planning an experimental
design. In studies on liver fibrosis, reproducibility, specificity,
feasibility, optimal number of animals (to eliminate indivi-
dual heterogeneity), and opportunity to largely sample the
liver (to avoid sampling error) must be considered.6 The
rodent strain is also of importance given large variations in
fibrosis susceptibility related to the genetic and immunologic
background.3

Compared to clinical research, the use of animal models
offers several advantages: (i) the possibility to collect multi-
ple samples at different time-points and to realize sequential
studies, (ii) a shorter time for disease development, (iii) the
ability to control and reduce variables that cannot be closely
followed in humans, and (iv) the ability to study the
implication of specific genes/signaling pathways by the use
of genetically modified animals. Moreover, compared to in
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vitro systems, animal models allow for the study of the liver
as a complete organ, with intact and dynamic cell-cell and
cell-matrix interactions and intact crosstalk of the liver with
the entire body, including immune, vascular, metabolic, and
endocrine interactions.6

Unfortunately, animal models are not the panacea to
resolve all questions. Because animals are not humans, they
do not develop human diseases. Large variations in
responses to noxious agents exist between humans and
animals regarding pathogenicity, timing, and immuno-
inflammatory reactions.6 Differences between humans and
animals reside at several levels. First, some hepatic diseases
do not exist in rodents. For example, the hepatitis C virus
(HCV) does not infect rodent hepatocytes; chimpanzees and
Tupaia belangeri (a Northern tree shrew) are the only animals
that support HCV infection, although they do not develop
chronic liver disease and fibrosis.7 Second, animals may be
less or more susceptible to toxic agents than humans.
Alcoholic liver disease (ALD) is particularly difficult to induce
in rodents. They have a total aversion to alcohol, and rapid
alcohol metabolism prevents high blood alcohol levels.
Moreover, even in animals continuously and chronically fed
alcohol by intragastric infusion (Tsukamoto-French model),
severe liver fibrosis does not develop, arguing for a different
susceptibility to alcohol toxicity between animals and
humans.8 In contrast to alcohol, common bile duct ligation
(CBDL) results in secondary biliary cirrhosis after only a few
weeks in rodents, whereas month-long impairment of the
bile flow is needed to cause severe liver fibrosis in humans.
Finally, some liver pathology occurs in a specific metabolic
or immune context, like non-alcoholic steatohepatitis
(NASH) and autoimmune hepatitis (AIH), or is strongly
associated with particular clinical entities, like primary
sclerosing cholangitis (PSC), which is preferentially observed
in patients suffering from inflammatory bowel disease. To
date, no animal model recapitulates complex hepatic and
extra-hepatic features and succeeds in modeling intricate
diseases.

To increase our understanding of human liver disorders,
animal models that replicate specific disease mechanisms or
the disease as a global entity, including metabolic and
immune aspects, and tools able to target specific cells,
components of the ECM, or signaling pathways, are valuable.
In the first part of this review, we will briefly discuss the
current animal models in use for liver injuries, with emphasis
on fibrosis progression and translational aspects. In the
second part, we will focus on the available tools that target
specifically one particular element involved in fibrogenesis.
These tools include the use of genetically modified animals,
cell-tracking/labelling methods, and targeted delivery sys-
tems. Finally, we will discuss new models of liver disease, like
the humanized mouse, and its potential applicability in the
field of liver fibrosis.

Animal models of liver diseases

The use of animal models for experimental liver fibrosis
research has been extensively discussed previously.6,9 They
are listed in Table 1. We will briefly highlight their main
features and interesting specificities and provide relevant
information for translation of experimental findings from
animals to humans.

Hepatotoxin-induced liver fibrosis as a model of
postnecrotic fibrosis (Table 2)

Carbon tetrachloride (CCl4), thioacetamide (TAA), dimethyl-
nitrosamine (DMN), and diethylnitrosamine (DEN) are the
most commonly used toxic agents to induce liver fibrosis in
rodents. These toxins are mainly metabolized by centrilobular
hepatocytes and cause centrilobular liver damage. The
resulting fibrosis first appears in the perivenular area. As
fibrosis extends, bridges between central areas are formed,
with portal areas being secondarily involved (portal-central
septa). Importantly, in humans, fibrosis is more frequently
distributed in periportal and lobular areas and central fibrosis
such as caused by hepatotoxins is only seen in hemodynamic
or vascular disorders, i.e. chronic right ventricular dysfunc-
tion or chronic Budd-Chiari syndrome.

The CCl4-induced model of liver fibrosis is a widely used
and studied, reliable animal model of hepatic fibrosis.10

Repeated doses of CCl4 lead to repeated rounds of wound-
healing, causing HSC activation, imbalance between ECM
production and degradation, and development of progressive
hepatic fibrosis.6 Multiple protocols for CCl4 administration in
mouse and rat are described in the literature, which vary in
terms of route of administration (intraperitoneal (ip) injec-
tions, subcutaneous (sc) injections, oral gavage, and inhala-
tion), dosage, adjustment of the initial dosage to daily/
weekly change in body weight, frequency of dosing, duration,
dilution of CCl4, nature of the vehicle (olive oil, corn oil,
paraffin oil, etc.), and the eventual use of phenobarbitone in
the drinking water as enzyme inducer.11 In addition to these
parameters, the susceptibility of a given animal strain,
depending on immunologic background, affects efficiency
and severity of liver fibrosis development.12–14 The impact of
immune status is illustrated by variation in the severity of
fibrosis following CCl4 administration observed (i) in Balbc
and C57BL/6 mice due to a different Th1/Th2 cytokines
response13 and (ii) in wild-type Balbc mice, severe combined
immunodeficiency (SCID) mice (lacking B, T cells but having
NK cells), and SCID beige (lacking B, T and NK cells) mice.15

Repeated (ip injections) or chronic (supplementation in
drinking water) TAA exposure leads to severe fibrosis/
cirrhosis between 12 and 16 weeks in rats and between 16
and 24 weeks in mice.16,17 Compared to CCl4-induced
cirrhosis, TAA is associated with more prominent regenera-
tive nodules and rapid development from periportal fibrosis to
a state resembling human cirrhosis.18 While CCl4-induced
liver fibrosis reverses in a short time,19 fibrosis persists for
more than 2 months after TAA withdrawal,16 making these
models complementary for studying processes of fibrosis
reversal. Moreover, CCl4 fibrosis develops linearly,6 whereas
with TAA, fibrogenesis initiation is slow, followed by a sudden
exponential acceleration of matrix deposition to a steady
state level (nonlinear fibrosis).17 Besides causing fibrosis,
TAA, but not CCl4, has hepato- and cholangiocellular carcino-
genic properties. In rats, biliary dysplasia and cholangiocel-
lular carcinoma may be observed quickly, depending on
animal strain and dose-dependent toxicity on the biliary
tract.20 HCC development is slower as hepatocellular cancers
appear on a background of chronic liver fibrosis after several
months of TAA administration,21 recapitulating the multi-
stage process of human carcinogenesis. Other hepatotoxins,
such as DEN and DMN, are also used to induce HCC in the
context of chronic fibrosis.22–24
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Animal models of biliary fibrosis

Cholestatic liver disease encompasses a large variety of
entities that may lead to biliary fibrosis, cirrhosis, and end-
stage liver disease independently of etiology. Several animal
models are available and attempt to reproduce cholestatic
liver injuries and related fibrosis in a specific context
according to the human pathology.

CBDL is the archetype model for obstructive cholestasis,
since the interruption of bile flow induces an intense ductular
proliferative response, portal inflammation, and rapid estab-
lishment of portal fibrosis.25,26 The structural and functional
changes due to CBDL have been extensively reported in the
literature.27 The main controversy involves the severity of
induced fibrosis and the celerity of severe fibrosis develop-
ment. Some works describe liver cirrhosis 15–28 days after
CBDL28,29 while others are unable to demonstrate evidence of
cirrhosis after 40 days.30–32 Interestingly, the study of
fibrosis reversibility is feasible in this model by using
bilioduodenal anastomosis or choledoco-jejunostomy surgi-
cal techniques to restore normal biliary outflow.33,34 The
occurrence of surgical complications (e.g. bile leakage and
subsequent sepsis) is the main pitfall of the CBDL model. This
may occur more frequently in mice than rats because of the
more pronounced fragility of some mouse strains, especially
transgenic mice, and the inevitable dilatation of the gall
bladder (not present in rat) and subsequent perforation and
bilioperitoneum.35

PSC is a chronic cholestatic liver disease characterized by
strictures of the biliary tree due to an inflammatory and
fibrotic process affecting the intra- and extra-hepatic bile
ducts. Main complications are irregular bile duct obstru-
ction, development of secondary biliary cirrhosis, and cho-
langiocarcinoma.36 Pathogenesis of PSC is incompletely
understood, but this entity has been described as an
immune-mediated phenomenon triggered by environmental
factors in genetically susceptible individuals.37 The perfect
animal model that summarizes all the attributes of PSC
(cholangitis of the intra- and extra-hepatic bile ducts in
association with gut inflammation and development of
cholangiocarcinoma and/or secondary biliary cirrhosis) and
exhibits a male predominance does not exist. However,
several animal models may be used to study individual
features.38 From a fibrosis point of view, the most relevant
one is the Abcb4-/- mouse model. Mice deficient in the
phospholipid transporter multi-drug resistant protein 2
(MDR2), encoded by the Abcb4 gene, rapidly develop after
birth inflammatory cholangitis with portal inflammation and
ductular proliferation, onionskin-type periductal fibrosis,
focal obliteration of the bile ducts, extra- and intrahepatic
biliary strictures, and segmental duct dilation.39 The near
total absence of phospholipid secretion into bile in Abcb4-/-
mice results in increased concentration of free non micellar
bile acids, which have toxic effects on the apical membrane of
hepatocytes and cholangiocytes.40 This animal model can
also be used as a model for the human hepatic disease due to
MDR3 (the human orthologue of MDR2) deficiency. In
humans, this genetic defect may lead to a wide spectrum of
clinical phenotypes, ranging from neonatal cholestasis to
biliary cirrhosis of adulthood.41

Primary biliary cirrhosis (PBC) is a liver-specific auto-
immune disease mostly affecting middle-aged women and is
characterized by the presence of anti-mitochondrial antibo-
dies and progressive destruction of the small bile ducts,

causing liver fibrosis, portal hypertension, and potentially
liver failure.36,42 Similar to PSC, the interplay between
genetic predisposition and environmental factors is a major
contributor to pathogenesis of PBC and explains why it is
difficult to define relevant animal models that mimic disease
pathophysiology. PBC models include inducible and geneti-
cally modified animals and represent good tools to investigate
the genetics and immunoregulation occurring in the earliest
stage of the disease.43,44 There are only two models in the
literature that eventually lead to fibrosis: (i) C57BL/6 mice
co-immunized with 2-octynoic acid coupled to bovine serum
albumin and a-galactosylceramide (2OA-BSA-a-GalCer
mice), an invariant natural killer T cell activator, develop
fibrous septa 4 weeks postimmunization;45 (ii) Ae2a,b

-/- mice
have a widespread disruption of the Cl2/HCO3

2 anion
exchanger 2 (AE2) and develop elderly immunologic and
hepatobiliary changes similar to PBC with slight liver fibro-
sis.46 Increased levels of anti-mitochondrial antibodies are
found in both of these models.45,46

Some modified diets can induce biliary damages. A diet
containing 3,5-diethylcarbonyl-1,4-dihydrocollidine (DDC), a
porphyrinogenic hepatotoxin, causes the formation of por-
phyrin crystals within the hepatocytes in the periportal region
and porphyrin plugs in small bile ducts. The tissue response
involves a florid ductular reaction, peri-cholangitis, periductal
fibrosis, and portal-portal fibrosis after 4–8 weeks that
resembles sclerosing cholangitis in humans.47 a-naphtyli-
sothiocyanate (ANIT) is a hepatocyte and bile duct epithelial
cell toxicant. When conjugated to glutathione in hepatocytes,
ANIT is secreted by the MRP2 transporter into bile, where it
can exert its toxic effect on biliary cells. As the ANIT-
glutathione complex is not stable in the bile, free ANIT
undergoes recycling rounds of absorption and metabolism,
leading to a high and toxic biliary concentration.48,49 Animals
exposed chronically to low doses of ANIT develop periportal
inflammation, mild hepatocellular injury, significant bile duct
proliferation, and progressive fibrosis.50,51

Autoimmune fibrosis

AIH consists of a progressive T cell-mediated necroinflamma-
tory and fibrotic process in the liver, likely triggered by the
combination of environmental factors, failure of immune
tolerance, and genetic predisposition.52 Considering the
animal models, the difficulty lies in the breakage of immune
tolerance and the long-term maintenance of immune altera-
tions necessary for progression to chronic hepatitis and liver
fibrosis. Several animal models have been proposed,53,54 but
very few reproduce chronic hepatitis and develop fibrosis.
The double transgenic mouse Alb-HA/CL4-TCR sponta-
neously develops histologic features of AIH and hepatic
fibrosis, exclusively in males. This mouse expresses the
influenza virus hemagglutinin autoantigen (HA) under the
control of mouse albumin regulatory elements and a-feto-
protein enhancer (Alb) (Alb-HA mouse), and a specific T-cell
receptor (TCR) (CL4-TCR mouse).55 Wild-type FVB/N mice
infected with adenovirus Ad5 expressing human cytochrome
P450 2D6 (Ad-2D6) develop a chronic and severe form of AIH
with extensive fibrosis and generate type 1 liver kidney
microsomal-like antibodies similar to type 2 AIH patients.56

Schistosoma infection and prolonged administration of
heterologous serum, mainly porcine serum, are other ways to
study hepatic fibrosis development triggered by an initial
immunologic stimulus.57–60
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Alcohol-induced fibrosis

ALD is a major public health burden, representing the first
cause of advanced liver disease in Europe. Chronic consump-
tion of alcohol may lead to progressive hepatic impairment,
ranging from simple steatosis to alcoholic steatohepatitis
(ASH), progressive fibrosis, cirrhosis, and HCC.61 ALD
pathogenesis is complex and includes changes in hepatic
metabolism that lead to accumulation of lipids, depletion of
essential nutrients, and enhanced hepatotoxicity. Persistent
hepatic damage and sustained inflammation are associated
with formation of reactive oxygen species (ROS), induction of
an inflammatory immune response, HSCs activation, and
collagen deposition. This complexity is enhanced when
considering other factors like alcohol-induced changes in
the gut microbiome, inter-individual susceptibility, and the
large panel of alcohol consumption behaviors. To date,
despite major efforts, no animal model has been able to
recapitulate all features of alcoholic disease.62,63 Moreover,
natural aversion to alcohol, absence of an addictive behavior,
spontaneous reduction in alcohol intake when acetaldehyde
blood levels increase, a high rate of alcohol catabolism, and a
high basal metabolic rate impair the ability to obtain and
maintain over time high blood alcohol levels in rodents and
explain the paucity of hepatic damage.63

Several animal models for ALD have been developed and
have been reviewed elsewhere.62 Briefly, the Lieber-De Carli
model, the oldest model of chronic alcohol consumption,
consists of administering an alcohol-containing isocalorically
controlled liquid diet (with up to 36% calories from alcohol) as
the sole source of food and drink.64 It induces mild steatosis
and low-grade inflammation but not significant fibrosis, even
after prolonged administration.63,65 This animal model is
considered appropriate to study the early stages of ALD but
not the mechanisms implicated in alcohol induced-fibrosis.
Similar histological changes are observed after alcohol
administration ad libitum in the drinking water.66

The intragastric feeding model was developed by
Tsukamoto and French to overcome the natural aversion of
animals to alcohol and to achieve a sustained high blood
alcohol level.67 Rats fed according to this method develop
steatosis, inflammation, and peri-central necrosis in about 2
to 4 weeks and fibrosis after 6 to 8 weeks.8 The implantation
and maintenance of the intragastric cannula are the major
technical limitations of this model.68

Models of NASH-associated fibrosis

Obesity, dyslipidemia, type 2 diabetes, and metabolic syn-
drome are major risk factors associated with non-alcoholic
fatty liver disease (NAFLD). NAFLD covers a large spectrum of
histological changes, including nonalcoholic fatty liver (NAFL-
defined as the presence of hepatic steatosis with no evidence
of hepatocellular injury), NASH (defined as the presence of
steatosis, lobular or portal inflammation, and hepatocyte
injury (ballooning)), pericellular fibrosis, cirrhosis, and HCC.69

The ideal animal model that recapitulates all aspects of the
pathogenesis of human NAFLD, the typical histological
features and progression, and the metabolic background
(obesity, insulin resistance, hyperglycemia, hyperinsuline-
mia, dyslipidemia, altered adipokine profiles) does not exist.
However, several models are described and may be classified
in (i) dietary, (ii) genetic, and (iii) combined models.6

Steatosis is a common feature of these models; in some,

steatohepatitis does occur but progression to liver fibrosis is
uncommon.70 Obesity and metabolic syndrome are not
systematically reproduced.6

Animals fed a large variety of modified diets have been
described. The diets are hypercaloric, enriched in various lipid
species (saturated, unsaturated, trans-fatty acids, choles-
terol), carbohydrates (high fructose, high sucrose), or both
(cafeteria diet, western-diet, atherogenic diets).70,71 Such
dietary manipulations are usually associated with varying
degrees of obesity, insulin resistance, and metabolic syn-
drome. Steatosis may or not be seen, sustained inflammation
is uncommon, and fibrosis, if any, inconspicuous. The more
pronounced phenotype is observed using atherogenic diets
or trans-fat enriched diets. An atherogenic diet containing
cholesterol and choline induces progressive steatosis, stea-
tohepatitis, and pericellular fibrosis in a time-dependent
manner both in rats and mice.72,73 Interestingly, mice fed
this atherogenic diet remain remarkably insulin sensitive,
reflecting a different metabolic status compared to the
human NASH situation.73 Trans-fatty acids are the result of
the industrial hardening of the vegetable oils and are found in
fast-foods. They are thought to play a major role in the
development of a severe phenotype with necroinflammatory
changes and profibrogenic responses in a NAFLD model in
mice fed ad libitum high-fat chow containing trans-fats.74

The methionine- and choline-deficient diet (MCDD) is
deficient in two essential factors for the formation of
phosphatidylcholine, which is involved in very low density
lipoprotein (VLDL) production and secretion from the liver.75

Steatohepatitis occurs rapidly after starting the MCDD, and
perisinusoidal fibrosis is observed by week 7 to 10.76 The
severity of MCDD-induced histological changes in rodents
depends on species, strain and gender of the animals.71,77

The MCDD is one of the most commonly used animal models
of NASH, as it induces a liver pathology that recapitulates the
sequence and progression of liver pathology seen in humans.
However, MCDD induces hypercatabolism, significant weight
loss, and hypersensitivity to insulin.78,79 This specific meta-
bolic profile has to be taken into account when drawing
conclusions using this model.

The choline-deficient, L-amino acid-defined diet (CDAA) is
a variant of the MCDD as it contains a low amount of
methionine. Although it acts via a similar mechanism as the
MCDD, the CDAA diet, in contrast, induces moderate pericel-
lular fibrosis in mice. In rats, CDAA results in homogenous
severe macrovesicular steatosis and unspecific inflammation.
After a long time, fibrosis evolves rapidly, forming centro-
portal bridges. HCC develops with a high incidence in rats
chronically fed the CDAA.6,80

The large variety of genetic models available for NAFLD
have been reviewed elsewhere.81 Among those, only two
spontaneously progress to steatohepatitis and fibrosis:
nuclear sterol regulatory element-binding protein 1c
(nSREBP-1c) transgenic mice and the PTEN knockout mice.
nSREBP-1c transgenic mice overexpress nSREBP-1c in adi-
pose tissue under the control of the adipocyte-specific aP2
enhancer/promoter. These mice are characterized by a
disordered differentiation of adipose tissue, marked insulin
resistance, diabetes mellitus, fatty liver with inflammatory
cell infiltration, and pericellular fibrosis in mice aged 20 weeks
or more.82,83 PTEN is a tumor suppressor gene and a nega-
tive regulator of several signaling pathways implicated in
insulin signaling, apoptosis, cell proliferation, and tumor
formation.84 A hepatocyte-specific null mutation of PTEN
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may be generated in mice with the Cre-loxP system
(AlbCrePtenflox/flox mice). Steatosis develops at 10 weeks
of age, and steatohepatitis and fibrosis are present at 40
weeks of age. Moreover, two-thirds of the animals have HCC
by 74–78 weeks of age.85

As NAFLD transgenic models rarely progress to severe
stages of disease, a ‘‘second hit’’ is often necessary, such as
the MCDD or a high fat diet (HFD), to favor NASH and fibrosis
development.86 The low-density lipoprotein receptor deficiency
mouse (LDLR–/–) is a widely-used hypercholesterolemic ather-
osclerosis model. When fed a HFD, middle-aged LDLR–/– mice
develop NASH associated with metabolic syndrome. In this
model, aging and the LDLR deficiency status contribute to the
development of a NASH severe phenotype. Middle-aged
LDLR–/– mice develop steatosis, inflammation, and fibrosis;
while young LDLR–/– mice and middle-age wild type mice are
protected from inflammation and hepatocellular injury.87 Fatty
Zucker rats (fa/fa rats) have a natural mutation in the leptin
receptor and exhibit severe obesity, insulin resistance, and
hyperphagia. They have a fatty liver without signs of progres-
sion to NASH.88,89 Administration of anHFD for 8weeks induces
lobular inflammation, ballooning degeneration, and fibrosis.90

Another attractive ‘‘second hit’’ model is foz/fozmice fed a HFD.
These mice have a mutation in the Alms1 gene that encodes a
ciliary protein that interferes with the central control of
satiety.91 Foz/foz mice spontaneously develop obesity, severe
insulin resistance, and diabetes, whereas foz/foz mice fed a
HFD progress from steatosis to steatohepatitis and pericellular
fibrosis after 20-24weeks.92 ‘‘Second hit strategies’’ have been
also reported using other genetically modified or selected
animals with disorders in lipid/glucose homeostasis, including
Abc11-/-, ppara-/-, db/db, ApoE-/-mice, and Otsuka Long-
Evans Tokushima Fatty (OLETF) rats.6

Genetically modified models, cell tracking, and cell
targeting

Gene overexpression or silencing

Targeted gene disruption or overexpression in rodents allows
for the study ofmultiple factors associatedwith hepatic fibrosis
and implicated in different signaling cascades related, for
instance, to hepatocyte necrosis/apoptosis, growth factor-
dependent fibrosis, immune response, and inflammatory
cytokines. Constitutive, inducible, and/or cell specific gene
manipulations are often used in combination with precited
models to examine the impact of a specific pathway on the
fibrotic process.93–95 Some of these models disrupt key
fibrogenic components or alter hepatocyte function and
spontaneously cause liver fibrosis. These include: transgenic
mice overexpressing transforming growth factor beta1 (TGF-
b1) that spontaneously develop liver fibrosis;96 liver-specific
and inducible overexpression of platelet-derived growth fac-
tor-beta (PDGF-b) that induce HSCs activation and liver
fibrosis;95 MDR2 deficiency that causes biliary fibrosis;39 and
hepatospecific c-myc overexpression that is associated with
HSC activation.97 Accordingly, these transgenic mice may be
used as disease models.

Single cell gene expression modulation, fate tracing,
and targeting: the example of hepatic stellate cells

HSCs are key effector cells in hepatic fibrosis, and the
understanding of HSC biology is crucial for the identification

of novel targets for antifibrotic therapy. In the last two
decades, the isolation and culture of primary HSCs, that in
some respects recapitulates the activation process under-
gone during in vivo fibrogenesis, have been and remain a
fantastic tool to study features of HSCs. This reductionist
model, however, is artificial and not sufficient to evaluate all
aspects of HSC biology. Gene expression patterns of HSCs
isolated from animals with CBLD or CCl4-induced liver fibrosis
(in vivo activated) are significantly different from changes in
genes expression during culture-activation of primary HSCs
(in vitro activated).98,99 Similarly, HSCs isolated from normal
human liver and activated in culture express genes related to
fibrogenesis and contractility while activated HSCs isolated
from cirrhotic patients have a different gene expression
profile related to ECM, inflammation and apoptosis.100 The
different phenotype of HSCs, whether they are activated in
vivo or in vitro, suggests an important role of cell-cell and
cell-ECM interactions in the control of HSC biology. Taken
together, these findings demonstrate the need to develop and
use tools able to experimentally target and manipulate HSCs
in vivo.

Stellate cell specific gene silencing can be obtained using
the Cre recombinase system under the control of the glial
fibrillary acid protein (GFAP) promoter (GFAP-Cre) that is
activated in resting HSCs. Using this approach, the role of
autophagy in HSCs during fibrogenesis has been demon-
strated. Deletion of the autophagy-related protein 7 (ATG7)
mediated by the Cre recombinase under the control of the
GFAP promoter reduces matrix deposition and liver fibrosis
following CCl4 or TAA injury.101 GFAP-dependent gene over-
expression or silencing in HSCs may also be combined with
the tetracycline-responsive system (TRE) to reversibly con-
trol gene expression.102 In many cell types, including HSCs,
tumor suppressor p53 participates in senescence. Inducible
p53 specific silencing in HSCs can be generated by crossing
mice harboring a TRE driven short hairpin RNA (shRNA)
capable of efficiently suppressing p53 expression with mice
harboring a tetracycline-controlled transactivator (tTA) trans-
gene expressed from the GFAP promoter. In the absence of
tetracycline, tTA is expressed in HSCs, binds the TRE
promoter, and drives shRNA transcription that suppresses
p53 expression.103 Interestingly, this specific suppression of
p53 in HSCs leads to an increase in activated HSCs, ECM
deposition, and fibrosis after CCl4 exposition, suggesting a
role for senescence in HSCs in limiting fibrosis reaction.103

Deletion in HSCs may be reached in mice expressing the
herpes simplex virus-thymidine kinase (HSV-Tk) gene driven
by the GFAP promoter. In response to ganciclovir, only the
proliferating HSCs are affected and depleted, allowing for the
study of activated HSCs depletion on liver injury and repair.
Using this system in the CCl4 and in the CBDL model, not only
was the expression of HSC activation markers decreased but
liver fibrosis was significantly reduced.104 Caution should be
taken regarding these results, as GFAP expression has
recently been localized in cholangiocytes as well.105

For several years, the nature and fate of matrix-producing
cells during fibrosis induction, maintenance, and resolution
has been a question of great interest. HSCs and portal
fibroblasts are considered the major contributors of ECM
production in the fibrotic process since they may activate into
myofibroblast-like cells during chronic liver injury. Experi-
ments using bone marrow transplantation, chimeric mice,
and genetic labeling of epithelial liver cells confirmed
negligible, if any, participation of extrahepatic cells or liver
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epithelial cells in the production of matrix in the fibrotic
liver.106–108 Recently, Schwabe’s team developed a new
transgenic mouse model to perform fate mapping in HSCs
and demonstrated that HSCs are the major contributor of the
myofibroblast pool in CCl4-induced liver fibrosis.105 Mice
expressing the Cre recombinase under the lecithin-retinol
acyltransferase (Lrat) promoter were crossed with mice
expressing ZsGreen Cre reporter. As Lrat expression is
restricted to HSCs and undetectable in other liver cell types,
including portal myofibroblasts, the system allow for specific
tagging of 99% of HSCs.105 In CCl4-induced liver fibrosis,
cells expressing fluorescent ZsGreen have an overlap of more
than 90%with alpha-smooth muscle actin (aSMA) expressing
cells, providing further evidence that HSCs are the major
contributor to the myofibroblast pool. Moreover, in mice
coexpressing the red-fluorescent LratCre reporter tdTomato
and a green-fluorescent collagen-GFP reporter, there was a
strong overlap between red and green cells, demonstrating
that HSCs are a major cell source of collagen in the fibrotic
liver. These results are confirmed in the TAA-induced liver
fibrosis model and models of cholestatic fibrosis, such as
CBDL, DDC-containing diet, and Mdr2-/- mouse models. In
these cholestatic models, aSMA- and collagen-GFP positive
but LratCre Tomato negative cells were described around the
portal tracts and considered to be portal fibroblasts, while the
population of .89% positive matrix producing activated
HSCs expanded in fibrotic areas.105 Such experiments con-
firm that portal myofibroblasts and activated HSCs are two
distinct cell populations, with different origins and contribu-
tions to fibrogenesis.

Genetic cell tracing tools have also been used to elucidate
the fate of activated HSCs/myofibroblasts during fibrosis
resolution.19 In Col-a2(I)Cre-YFP mice and Col-a1(1)Cre-YFP

mice, induction of collagen expression in HSCs and myofi-
broblasts during fibrogenesis drives the expression of yellow
fluorescent protein (YFP). The latter will remain during the
entire life of the cell. Upon CCl4-induced fibrogenesis, a-SMA
positive activated HSCs and myofibroblasts coexpress YFP.
After cessation of CCl4 administration, a-SMA positive cells
gradually decrease in number and are undetectable 1 month
after the last CCl4 dose, while YFP positive cells persist in liver
parenchyma. This provides strong experimental evidence
that a pool of previously activated HSCs reverts to an inactive
phenotype during fibrosis regression.109 In collagen-GFP
mice characterized by a collagen-driven GFP expression,
activated HSCs undergo apoptosis in the earliest stage of
fibrosis resolution, as colocalization of caspase-3 and GFP are
observed in the liver of mice 7 days after CCl4 cessation.109

Collagen–I degradation seems to be critical during sponta-
neous fibrosis recovery, since a mutation in collagen-I that
confers resistance to collagenase leads to persistent HSCs
activation and reduced HSCs apoptosis.110

Such transgenic models or other systems for genome
edition such as the clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas system111 will undoubt-
edly be used more commonly for time- and cell-type specific
control of gene expression or silencing. Use of these
techniques will provide deeper insight into decisive signaling
pathways implicated in HSC-dependent fibrogenesis and help
to identify targets for therapeutic purposes.

Drug delivery systems are designed to specifically target
compounds to specific cell types. As reviewed elsewhere,
several systems are available for targeting hepatocytes,
Kupffer cells, sinusoidal endothelial cells, cholangiocytes,

and stellate cells.112 Vitamin A-coupled liposomes are being
developed for HSC targeting. The strategy is based on the
ability of HSCs to store retinol, a function shared with no
other hepatic cell. Small interfering RNA (siRNA), gene
vectors or drugs may be encapsulated in liposomes for
specific delivery to HSCs.113,114 In vitro testing confirm that
Vitamin A-coupled liposomes could deliver a potential anti-
fibrotic compound into HSCs and reduce the level of fibrotic
factors in vitro, whereas most of the liposomes localize to the
liver with very little spread to other organs after in vivo
administration.113,114 Albumin-based carriers that bind to
receptors highly expressed on activated HSCs (such as the
mannose 6-phosphate/insulin-like growth factor II receptor,
the collagen type VI receptor, and the platelet-derived growth
factor beta (PDGF-b) receptor)112 or coupled to single cyclic
peptide115 have been designed to deliver drugs to HSCs with
high efficiency.

Mice with humanized livers

Mice fail to reproduce the whole spectrum of pathological
aspects observed in humans liver diseases. To overcome this
problem, major efforts are devoted to generate mice with
humanized livers. To do this, the murine hepatocyte popula-
tion of immunodeficient mice (to avoid graft rejection) is
replaced with human hepatocytes via transplantation, follow-
ing constitutive or inducible hepatic injury. Four transgenic
models are described: the albumin-uroplasminogen activator
(uPA) transgenic mouse, the fumarylacetoacetate hydrolase
(Fah) gene knockout mouse, the TK-NOG transgenic mouse,
and the AFC8 transgenic mouse.116 In all systems, the
repopulated liver shows normal hepatocyte function and
morphology and respects a normal hepatic architecture with
typical zonation. A high (.70%) rate of hepatocyte repopula-
tion is reached in the uPA transgenic mouse, the Fah gene KO
mouse, and the TK-NOG mouse116 but not in the AFC8
transgenic mouse (15–25%).117 In the AFC8 transgenic
mouse, not only is the liver repopulated by human hepato-
cytes but a functional human immune system is also
reconstituted after the injection of CD34+ human hemato-
poietic stem cells.117

Several applications for mice with humanized livers have
been described: infectious diseases, liver gene therapy, stem
cell biology, drug metabolism, and modeling of human
genetic disease.116 The first aim of human-murine chimeric
liver mouse model development was establishment of a
permissive liver to viral infection. Although hepatitis B
(HBV) and C (HCV) viruses infect and replicate in human
hepatocytes, they do not infect rodents, since their hepato-
cytes do not support virus entry and replication. Several
years ago, transgenic mouse models were developed that
express the whole genome or individual genes of HBV or HCV.
As the mouse immune system tolerates the transgenetically
expressed viral proteins, infection develops without liver
inflammation and without liver fibrosis.117 The humanized
uPA, the Fah–/–, and the TK-NOG transgenic mice support
HBV/HCV infection and replication. Unfortunately, as they
lack a functional human immune system, they do not allow
for the study of the host immune response. The AFC8 and A2/
NSG/Fas humanized mouse models have both human liver
and human immune cells, and these models support HCV and
HBV liver infection, respectively, leading to viral hepatitis and
liver fibrosis.117,118 These animal models provide an attrac-
tive opportunity to study virus induced liver fibrosis.
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The humanized mouse models are only recently available
and are currently being optimized. In addition to the study of
hepatotropic viruses, the next challenge will consist of
evaluating these humanized mice in several well-described
liver disease models, e.g. hepatotoxin fibrosis, NALD, and
ALD models. The combination of human hepatocellular
metabolism and human immune repertoire will likely provide
a relevant system for the study of liver damage and wound
healing response in liver diseases. The results of these
developments are eagerly awaited. Only the future will tell
whether these new models will be instrumental in generating
new information regarding disease mechanisms in humans
and variation in susceptibility between animals and humans.
However, immune-deficiency, immune mismatch or mosai-
cism, the lack of other human hepatic cell types like HSCs, the
variable rate of human hepatocyte engraftment, and the
inevitable interactions between the humanized liver and the
non-humanized extrahepatic environment might be major
limitations of such approaches.

Conclusions

The human liver is a complex organ with cell-cell and cell-
matrix interactions and extrahepatic crosstalk. This complex-
ity likely underlies the difficulty in developing animal models
able to recapitulate liver diseases as global entities with
relevant metabolic and immunologic backgrounds and spe-
cific hepatic features. Although the classical animal models
have yielded major progress in the understanding of fibro-
genesis, they are not sufficient to investigate all components
implicated in the pathogenesis of human liver diseases.
Today, the generation of tools that allow for the study of
particular pathways, soluble factors, and cellular effectors by
using either cell- and time-specific genome edition or cellular
targeting is of major interest. In addition, the humanized liver
mouse model represents a promising perspective, particu-
larly when used in combination with a functional human
immune system. Indeed, utilizing such experimental manip-
ulations will likely allow for a greater understanding of human
liver fibrosis pathogenesis and the identification of specific
novel targets for effective antifibrotic therapies.
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