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Abstract
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APPLICATIONS OF BOURGAIN-BREZIS INEQUALITIES TO FLUID

MECHANICS AND MAGNETISM

SAGUN CHANILLO, JEAN VAN SCHAFTINGEN, AND PO-LAM YUNG

Abstract. As a consequence of inequalities due to Bourgain-Brezis, we obtain local in
time well-posedness for the two dimensional Navier–Stokes equation with velocity bounded
in spacetime and initial vorticity in bounded variation. We also obtain spacetime estimates
for the magnetic field vector through improved Strichartz inequalities.

1. Incompressible Navier–Stokes flow

Let v(x, t) ∈ R
2 be the velocity and p(x, t) be the pressure of a fluid of viscosity ν > 0

at position x ∈ R
2 and time t ∈ R, governed by the incompressible two-dimensional Navier–

Stokes equation:

(1)

{

vt + (v · ∇)v = ν∆v − ∇p,

∇ · v = 0,

When the viscosity coefficient ν degenerates to zero, (1) becomes the Euler equation. In two
spatial dimensions, the vorticity of the flow is a scalar, defined by

ω = ∂x1
v2 − ∂x2

v1

where we wrote v = (v1, v2). In the sequel, when we consider the Navier-Stokes equation,
without loss of generality we set the viscosity coefficient ν = 1.

The vorticity associated to the incompressible Navier-Stokes flow in two dimensions prop-
agates according to the equation

(2) ωt − ∆ω = −∇ · (vω).

This follows from (1) by taking the curl of both sides. We express the velocity v in the
Navier-Stokes equation in terms of the vorticity through the Biot-Savart relation

(3) v = (−∆)−1(∂x2
ω, −∂x1

ω).

This follows formally by differentiating ω = ∂x1
v2 − ∂x2

v1, and using that ∇ · v = 0.
Our theorem states:

Theorem 1. Consider the two-dimensional vorticity equation (2) and an initial vorticity
ω0 ∈ W 1,1(R2) at time t = 0. If

‖ω0‖W 1,1(R2) ≤ A0,
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then there exists a unique solution to the vorticity equation (2) for all time t ≤ t0 = C/A2
0,

such that
sup
t≤t0

‖ω(·, t)‖W 1,1(R2) ≤ cA0.

Moreover, the solution ω depends continuously on the initial data ω0, in the sense that if ω
(i)
0

is a sequence of initial data converging in W 1,1(R2) to ω0, then the corresponding solutions
ω(i) to the vorticity equation (2) satisfies

sup
t≤t0

‖ω(i)(·, t) − ω(·, t)‖W 1,1(R2) → 0

as i → ∞.
Finally, the velocity vector v defined by the Biot-Savart relation (3) solves the 2-dimensional

incompressible Navier-Stokes (1), and satisfies

sup
t≤t0

‖v(·, t)‖L∞(R2) + sup
t≤t0

‖∇v(·, t)‖L2(R2) ≤ cA0.

Via the Gagliardo-Nirenberg inequality we note that we can conclude from our theorem
that

sup
0≤t≤t0

‖ω(·, t)‖Lp(R2) ≤ C, 1 ≤ p ≤ 2.

In particular this is enough to apply Theorem II of Kato [8] to express the velocity vector in
the Navier-Stokes equation (1) in terms of the vorticity via the Biot-Savart relation displayed
above.

In [7, 8], it was proved that under the hypothesis that the initial vorticity is a measure,
there is a global solution that is well-posed to the vorticity and Navier–Stokes equation; see
also an alternative approach in Ben-Artzi [1], and a stronger uniqueness result in Brezis [4].
The velocity constructed then satisfies the estimate [8, (0.5)]

(4) ‖v(·, t)‖L∞(R2) ≤ Ct− 1

2 , t → 0.

In contrast, in Theorem 1 we have v ∈ L∞
t L∞

x , x ∈ R
2, though we are assuming that the

initial vorticity has bounded variation, that is, its gradient is a measure.
The estimate (4) is indeed sharp as can be seen by the famous example of the Lamb–Oseen

vortex [9], which consists of an initial vorticity ω0 = α0δ0, a Dirac mass at the origin of R2

with strength α0. The constant α0 is called the total circulation of the vortex. A unique
solution to the vorticity equation (2) can be obtained by setting

ω(x, t) =
α0

4πt
e−

|x|2

4t , v(x, t) =
α0

2π

(−x2, x1)

|x|2

(

1 − e−
|x|2

4t

)

.

It can be seen from the identities above that,

‖ω(·, t)‖W 1,1(R2) ∼ ‖v(·, t)‖L∞(R2) ∼ ct− 1

2 , t → 0.

Hence the assumption that the initial vorticity is a measure cannot yield an estimate like in
Theorem 1. Thus to get uniform in time, L∞ space bounds all the way to t = 0 we need a
stronger hypothesis and one such is vorticity in BV (bounded variation).

It is also helpful to further compare our result with that of Kato [8] who establishes in
(0.4) of his paper, that given the initial vorticity is a measure, one has for the vorticity at
further time,

||∇ω(·, t)||Lq(R2) ≤ ct
1

q
− 3

2 , 1 < q ≤ ∞.
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In contrast we obtain uniform in time bounds for q = 1, as opposed to singular bounds for
q > 1 when t → 0.

It is an open question whether there is a global version of Theorem 1 of our paper.

In order to prove Theorem 1, we rely on a basic proposition that follows from the work of
Bourgain and Brezis [2, 3]. A part of this proposition also holds in three dimension. Recall
that if v(x, t) ∈ R

3 be the velocity of a fluid at a point x ∈ R
3 at time t, then the vorticity

of v is defined by

ω = ∇ × v.

Under the assumption that the flow is incompressible, the Biot-Savart relation reads

(5) v = (−∆)−1(∇ × ω).

Proposition 2. (a) Consider the velocity v in 3 spatial dimensions. Assume that v satisfies
the Biot-Savart relation (5). Then at any fixed time t,

‖v(·, t)‖L3(R3) + ‖∇v(·, t)‖L3/2(R3) ≤ C‖∇ × ω(·, t)‖L1(R3)

where C is a constant independent of t, v and ω.
(b) Consider the velocity v in 2 spatial dimensions. Assume that v satisfies the Biot-Savart

relation (3). Then at any fixed time t,

‖v(·, t)‖L∞(R2) + ‖∇v(·, t)‖L2(R2) ≤ C‖∇ω(·, t)‖L1(R2).

where C is a constant independent of t, v and ω.

We remark that in 2 dimensions, by the Poincaré inequality, it follows from ‖∇v‖L2(R2) <
∞, that v lies in V MO(R2), i.e. has vanishing mean oscillation.

Proof of Proposition 2. Note that

∇ · (∇ × ω) = 0.

Thus we can immediately apply the result of Bourgain-Brezis [3] (see also [2, 5, 10]), to the
Biot-Savart formula (5) and get the desired conclusions in part (a).

To consider the 2-dimensional flow, note that (−∂x2
ω, ∂x1

ω) is a vector field in R
2 with

vanishing divergence. In view of the two-dimensional Biot-Savart relation (3), we can then
use the two-dimensional Bourgain–Brezis result [3], and we obtain (b). �

We note further that the proposition applies to both the Euler (inviscid) or the Navier–
Stokes (viscous) flow.

Proof of Theorem 1. Now set Kt for the heat kernel in 2-dimensions, i.e.

Kt(x) =
1

4πt
e−

|x|2

4t .

Rewriting (2) as an integral equation for ω using Duhamel’s theorem, where ω0 is the initial
vorticity, we have,

(6) ω(x, t) = Kt ⋆ ω0(x) +
∫ t

0
∂xKt−s ⋆ [vω(x, s)]ds

where v is given by (3).
3



We apply a Banach fixed point argument to the operator T given by

(7) Tω(x, t) = Kt ⋆ ω0(x) +
∫ t

0
∂xKt−s ⋆ [vω(x, s)]ds,

where again v is given by (3). Let us set

E =
{

g | sup
0<t<t0

‖g(·, t)‖W 1,1(R2) ≤ A
}

.

We will first show that T maps E into itself, for t0 chosen as in the theorem.
Differentiating (7) in the space variable once, we get

(Tω(x, t))x = Kt ⋆ f0(x) +
∫ t

0
∂xKt−s ⋆

(

vxω
)

ds +
∫ t

0
∂xKt−s ⋆

(

vωx

)

ds.

Here we denote by f0 the spatial derivative of the initial vorticity ω0. Using Young’s convo-
lution inequality, we have

‖(Tω(·, t))x‖L1(R2) ≤ ‖f0‖L1(R2) + C
∫ t

0
(t − s)−1/2(‖vxω‖L1(R2) + ‖vωx‖L1(R2))ds.

Now we apply Proposition 2(b) to each of the terms on the right. For the first term we have,
by Cauchy-Schwartz,

‖vxω‖L1(R2) ≤ C‖∇v‖L2(R2)‖ω‖L2(R2)

The Gagliardo-Nirenberg inequality applies as ω ∈ E and so ω(·, t) ∈ L1(R2) and so,

‖ω‖L2(R2) ≤ C‖∇ω‖L1(R2),

and to ‖∇v‖L2(R2) we apply Proposition 2(b). Similarly

‖vωx‖L1(R2) ≤ ‖v‖L∞(R2)‖ωx‖L1(R2).

Again we apply Proposition 2(b) to ‖v‖L∞(R2). Hence in all we have,

‖(Tω)x‖L1(R2) ≤ ‖f0‖L1(R2) + C
∫ t

0
(t − s)−1/2‖∇ω‖2

L1(R2)ds.

Thus setting ‖f0‖L1(R2) = ‖ω0‖Ẇ 1,1(R2) ≤ A0, we get for t ≤ t0 and since ω ∈ E,

‖∇(Tω)(·, t)‖L1(R2) ≤ A0 + Ct
1/2
0 A2.

Next from Young’s convolution inequality it follows from (7) that,

‖Tω(·, t)‖L1(R2) ≤ A0 +
∫ t

0
(t − s)−1/2‖vω(·, s)‖1ds

But by Proposition 2(b) again,

||vω||1 ≤ ||v||∞||ω||1 ≤ cA2.

Thus,

||Tω(·, t)||1 ≤ A0 + ct1/2A2.

So adding the estimates for Tω and ∇(Tω) we have,

sup
t≤t0

||Tω(·, t)||W 1,1(R2) ≤ 2A0 + ct
1/2
0 A2.
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By choosing A so that A0 = A/8 and t < t0 = C/A2
0 we can assure that if ω ∈ E, then

sup
t≤t0

‖(Tω)(·, t)‖W 1,1(R2) ≤
A

2
.

Thus Tω ∈ E, if ω ∈ E. If we establish that T is a contraction then we are done.
Next we observe that the estimates in Proposition 2(b) are linear estimates. That is

‖v1 − v2‖∞ + ‖∇v1 − ∇v2‖2 ≤ C‖ω1 − ω2‖W 1,1(R2).

We easily can see from the computations above, that we have

sup
t≤t0

‖Tω1 − Tω2‖W 1,1(R2) ≤ CAt
1/2
0 sup

t≤t0

‖ω1 − ω2‖W 1,1(R2).

By the choice of t0, it is seen that T is a contraction. Thus using the Banach fixed point
theorem on E, we obtain our operator T has a fixed point and so the integral equation (6) has
a solution in E. The remaining part of our theorem follows easily from Proposition 2(b). �

We note in passing an estimate in R
3 from Proposition 2(a) above for the Navier–Stokes

or the Euler flow:

(8) sup
t>0

‖v‖L3(R3) + sup
t>0

‖∇v‖L3/2(R3) ≤ C sup
t>0

‖∇ × ω‖L1(R3).

2. Magnetism

We next turn to our results on magnetism. We denote by B(x, t) and E(x, t) the magnetic
and electric field vectors at (x, t) ∈ R

3 × R. Let j(x, t) denote the current density vector.
The Maxwell equations imply

∇ · B = 0,(9)

∂tB + ∇ × E = 0,(10)

∂tE − ∇ × B = −j.(11)

Differentiating (10) in t and using (11), together with the vector identity ∇ × (∇ × B) =
∇(∇ · B) − ∆B and (9), one obtains an inhomogeneous wave equation for B:

(12) Btt − ∆B = ∇ × j.

The right side of (12) satisfies the vanishing divergence condition

∇ · (∇ × j) = 0

for any fixed time t. Thus an improved Strichartz estimate, namely Theorem 1 in [6] applies.
We point out that the Bourgain-Brezis inequalities play a key role in the proof of Theorem
1 in [6]. We conclude easily:

Theorem 3. Let B satisfy (12) and let B(x, 0) = B0, ∂tB(x, 0) = B1 denote the initial
data at time t = 0. Let s, k ∈ R. Assume 2 ≤ q ≤ ∞, 2 < q̃ ≤ ∞ and 2 ≤ r < ∞. Let (q, r)
satisfy the wave compatibility condition

1

q
+

1

r
≤

1

2
,

and the following scale invariance condition is verified:

1

q
+

3

r
=

3

2
− s =

1

q̃′
+ 1 − k

5



Then, for 1
q̃

+ 1
q̃′ = 1, we have

‖B‖Lq
t Lr

x
+ ‖B‖C0

t Ḣs
x

+ ||∂tB‖C0

t Ḣs−1
x

≤ C(||B0‖Ḣs + ‖B1‖Ḣs−1 + ‖(−∆)k/2(∇xj)‖
Lq̃′

t L1
x
).

The main point in the theorem above is that we have L1 norm in space on the right side.
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