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ABSTRACT: Organochlorine molecules (Clorg) are surprisingly abundant in soils and
frequently exceed chloride (Cl−) levels. Despite the widespread abundance of Clorg and
the common ability of microorganisms to produce Clorg, we lack fundamental knowledge
about how overall chlorine cycling is regulated in forested ecosystems. Here we present
data from a long-term reforestation experiment where native forest was cleared and
replaced with five different tree species. Our results show that the abundance and
residence times of Cl− and Clorg after 30 years were highly dependent on which tree
species were planted on the nearby plots. Average Cl− and Clorg content in soil humus
were higher, at experimental plots with coniferous trees than in those with deciduous
trees. Plots with Norway spruce had the highest net accumulation of Cl− and Clorg over
the experiment period, and showed a 10 and 4 times higher Cl− and Clorg storage (kg
ha−1) in the biomass, respectively, and 7 and 9 times higher storage of Cl− and Clorg in the
soil humus layer, compared to plots with oak. The results can explain why local soil
chlorine levels are frequently independent of atmospheric deposition, and provide
opportunities for improved modeling of chlorine distribution and cycling in terrestrial ecosystems.

■ INTRODUCTION

Tree species and their associated microbial communities play a
central role in nutrient cycling in forest ecosystems.1,2 While
chlorine (Cl) is essential for healthy growth of higher plants,3

studies of interactions between trees and Cl are still rare.
Instead, Cl biogeochemistry in terrestrial ecosystems has been
of interest for several reasons other than plant interactions.
Historically, it was believed that chloride (Cl−) was inert in soil
and that transformation to organic chlorine (Clorg) did not
occur naturally. Cl− was then frequently used as a nonreactive
tracer of soil and groundwater.4 In contrast, studies during
recent decades show that Clorg typically accounts for more than
60% of the total soil Cl pool in boreal and temperate forest
soils, which led to suggestions of substantial natural
chlorination.5,6 The natural and primarily biotic formation of
this Clorg pool has been confirmed experimentally,7−11 but the
detailed content of the Clorg pool and the reasons for its high
abundance remain puzzling, and there is a lack of
comprehensive Cl budgets for different ecosystems.12 The
natural formation of Clorg from Cl− has important con-
sequences as it may influence the soil pool of Cl− available to
organisms and vegetation and thereby the Cl cycling. The high

chlorination rates and the large amounts of Clorg found,
13 and a

large number of organisms being able to mediate chlorination
(e.g., refs 14−16), indicates that the chlorine cycling is
ubiquitous and may also have fundamental but yet unknown
ecological implications.17,18 In addition, the radioisotope 36Cl
has recently caused concerns due to its presence in radioactive
waste and its long half-life (301 000 years). The fact that Cl are
physiologically important for humans and other organisms, for
example, in cellular ion balances,19 and the potentially rapid
uptake of 36Cl by plants and in the end humans, makes it
desirable to account for in 36Cl radioactive risk assessment
models. Longer residence time of 36Cl in soil means increased
radiation exposure times to humans, plants and soil-systems in
case of contamination.20 In spite of these implications we still
lack fundamental knowledge about the spatial and temporal
variability and the regulation of the processes involved in Cl
cycling. Even very fundamental spatial patterns of Cl
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distribution remain unexplained, and local levels of Cl in soils
can deviate substantially from the expected large scale input
from wet and dry atmospheric deposition of Cl.
Previous attempts to study what controls Cl abundance and

transformation rates have been based on small-scale laboratory
experiments detached from full ecosystems, or correlations
between Cl levels and monitored environmental variables
where cause-effect relationships are unclear.6,7,21−24 At large
scales, the distance to the sea and the climatic factors including
precipitation has been suggested to determine Cl levels.12 At
local scales these patterns do not remain and recently the
cycling between the soil pools of Cl−, Clorg and organic matter
was suggested to be responsible for the high local variability in
overall soil Cl levels.22 Importantly, the conclusion of previous
studies exploring spatial patterns of Cl in terrestrial environ-

ments could only hypothesize, but not confirm, cause-effect
relationships.
Here we turn our attention to the potential influence of trees

(including both direct effects from the trees themselves, and
indirect effects from tree-related environmental factors such as
soil processes and soil microbial communities) on terrestrial Cl
cycling. Trees have a major influence on most elements serving
as nutrients in forests. The tree canopies influence the amount
and chemical composition of litterfall and throughfall. Trees
can also influence the nutrient availability through rhizosphere
processes25 such as N2 fixation, mineral weathering by root
exudates, root uptake, and other soil processes.2 There are
differences in bacterial and fungal communities in litter, forest
floor, and soil that can be attributed to various dominating tree
species.26

Figure 1. Budget (kg ha−1) and fluxes (kg ha−1 y−1; fluxes shown in italics) of chloride (Cl−) and organic chlorine (Clorg) in tree stands with oak (A),
European beech (B), black pine (C), Douglas fir (D), and Norway spruce (E), at the experimental forest site at Breuil-Chenue (in the east of
France) established in 1976 and sampled during 2002−2005. TF+SF denote the sum of throughfall and stemflow. Values are presented as means ±
standard deviation (n = 5 for atmospheric deposition, throughfall, foliage, and litterfall including leaves and branches; n = 8 for humus; n = 3 for
mineral soil down to 75 cm below the humus). The remaining components are presented with average values for composite samples from three
replicates (denoted by the subscript “a”). The maximal analytical variability was 2%. Leaching and uptake are calculated as explained in the
Supporting Information. Thick gray arrows denote fluxes and the black arrows denote possible transformations between Cl− and Clorg.
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The research regarding uptake of Cl by plants have been
focused on agriculture. A field study on agriculture crop uptake
of 36Cl during three vegetation seasons showed a retention of
36Cl in the soil system based on observations that 36Cl is taken
up by vegetation through root uptake.27 No mineral sorption
was observed. Kashparov et al.28 showed that 36Cl taken up by
the biota is released quickly from dry vegetation without
decomposition. There were however no separation of Cl− and
Clorg in these studies making their relative contributions
unknown. Forest and single trees species have been studied
in connection to precipitation and throughfall. Cl− were
generally measured more frequently than Clorg, but Clorg
concentrations in throughfall and soil has been measured in
forest plots to study potential sources of Clorg (e.g., refs 29,30).
The previous studies provided important information about

chlorine distribution and speciation in forest ecosystems. They
have revealed striking inconsistencies between local hetero-
geneity and the larger scale patterns of potential regulator
variables (e.g., between local Clorg levels and chlorine
deposition),22 and generated multiple hypotheses to explain
the inconsistencies. However, there has been a lack of
experimental studies at the ecosystem level being able to
address cause-effect relationships. In the present study we
investigated if tree species influence overall terrestrial Cl cycling
in an experimental forest ecosystem and studied the balance
between Cl− and Clorg in the soil and in different plant parts.
The study thereby represents an ecosystem experiment, aiming
to reveal potential cause-effect relationships linking Cl cycling
with the establishment of different tree species.

■ MATERIALS AND METHODS
The experimental forest used in this study is located at Breuil-
Chenue, Bourgogne, in eastern France (latitude 47°18′10″N;
longitude 4°4′44″E). The original soil at this site is an acid
brown soil, classified as an Alumnic Cambisol (IUSS Working
Group WRB 2006), developed from granite that is very poor in
major cations (0.5% magnesium oxide, 0.6% calcium oxide and
4.4% potassium oxide). The native forest, consisted of a
previously coppiced woodland with beech (Fagus sylvatica), oak
(Quercus sessilif lora), birch (Betula verrucosa), and hazel nut
trees (Corylus avelana) as the dominating tree species. In 1975,
an area of the native forest was cleared, to form a number of 0.1

ha plots, which were replanted with single tree species in 1976.
Five of these replanted forest stands were chosen for this study:
Douglas fir (Pseudotsuga menziesii), Norway spruce (Picea
abies), black pine (Pinus nigra), European beech (Fagus
sylvatica), and oak (Quercus sessilif lora). Triplicate samples of
litterfall and ligneous parts of standing biomass (stem, bark, and
branches),31 as well as samples of bulk humus layer soil (eight
replicates per stand) and mineral soil (triplicate soil profiles, n =
6 per profile) collected in 2005, and yearly samples of living
foliage (2002−2006; five replicates per stand), were analyzed as
described below. The tree biomass and litterfall were estimated
according to ref 31. We also had access to data on the Cl−

content in atmospheric deposition, throughfall and stemflow
for the same period. The atmospheric deposition was collected
daily at a central location next to the forest stands in an open
deposition collector system. Throughfall was collected every
month by double gutters (three replicates per forest stand).31

Stemflow was collected by means of plastic collars attached to
the trunks of 10 trees per stand selected to represent different
growth classes. The Cl− concentrations were analyzed using ion
chromatography (MIC-2, Metrohm).32

The amount of total Cl and the Clorg content in soil and tree
compartments were determined stepwise by analyses of total
halogens (TX) and total organic halogens (TOX) by adding
sieved and milled soil and tree samples to a small crucible
followed by combustion at 1000 °C in an O2 atmosphere using
an ECS3000 analyzer (Euroglas).33 Before the TOX analyses
the samples were leached with acidic nitrate solution (6 × 3
mL, 0.01 KNO3, 0.001 M HNO3), followed by acidified Milli-Q
water (6 × 3 mL, <pH 2 by acidification with HNO3), to
remove any remaining Cl−.33 The same type of combustion as
described above then returned Clorg plus possible mineral
bound Cl (Clmineral) in the mineral soils samples. In the mineral
soil samples we therefore also determined the possible Clmineral
content by analyzing samples after precombustion of organic
matter at 500 °C for 4 h and leaching to remove all nonmineral
Cl−. The Clmineral was then subtracted to yield Clorg in these
samples. Cl− was calculated by subtracting values of Clorg and
Clmineral from the total Cl.
Based on all available data of biomass stocks and fluxes,31

their Cl− and Clorg concentrations, as well as of Cl
− deposition,

stemflow and throughfall, we estimated ecosystem Cl− and Clorg

Table 1. Distribution of Total Chlorine (Cl; mg Cl kg−1 Dry Weight) And Percentage of Organic Chlorine (% Clorg) in Material
from Trees and Soil at the Experimental Plots Planted with Different Tree Speciesa

oak European beech black pine Douglas fir Norway spruce

component Cl % Clorg Cl % Clorg Cl % Clorg Cl % Clorg Cl % Clorg

foliage 235 15 183 8 196 7 253 8 424 10
branches 26 30 19 32 82 10 54 10 133 9
bark 26 28 26 30 79 18 54 5 296 5
wood 12 23 10 30 12 23 14 38 27 21
litterfall (leaves) 93 41 90 17 69 20 127 9 269 13
litterfall (branches) 53 65 45 54 100 73 61 34 117 43
humus 126 57 138 67 149 66 201 74 317 64
soilb 0−7.5 cm 85 82 131 61 87 63 113 63 127 59
soilb 7.5−15 cm 77 84 99 68 75 46 77 53 81 54
soilb 15−30 cm 48 71 55 55 60 58 47 65 53 59
soilb 30−45 cm 34 78 35 73 33 66 31 60 31 70
soilb 45−60 cm 25 84 27 67 29 66 27 71 29 57
soilb 60−75 cm 25 71 29 58 32 60 29 57 23 50

aSee Materials and Methods and Figure 1 for information about sample replication and standard deviation. bThe mineral-bound Cl fraction in the
soil samples (4.7 ± 0.2 mg Cl kg−1 dry weight across all plots) was small compared to Cl− and Clorg pools.
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fluxes, and thereby the overall Cl cycling, for each plot as
described in detail in the Supporting Information.

■ RESULTS AND DISCUSSION

Did the Change in Dominating Tree Species Affect
the Chlorine Pools? The results showed that the
experimental manipulation of dominating tree species clearly
had influenced ecosystem levels of both Cl− and Clorg almost 30
years after the reforestation treatment was initiated (Figure 1).

Total Cl concentrations per dry mass (mg kg−1) in both the
tree tissue and the humus layer were higher in Norway spruce
stands than in the other trees (Table 1; one-way ANOVA, n = 5
for foliage and n = 8 for humus, p < 0.0005). Average Cl− and
Clorg content in soil humus were 1.5−6.5 and 1.4−9 times
higher, respectively, at experimental plots with coniferous trees
than those with deciduous trees. When comparing the mass of
total Cl per hectare (kg ha−1) accounting for tree specific
differences in biomass, plots with Norway spruce were found to
have the highest levels of Cl− and Clorg in the humus of all

Table 2. Overview of the Average Annual Fluxes Involved in Plant Cl Cycling for Different Tree Species Planted in the Same
Type of Soila

annual total Cl flux (kg ha−1 y−1)

oak European beech Black pine Douglas fir Norway spruce

Incorporation in Biomass
trunk wood 0.06 0.14 0.02 0.17 0.18
trunk bark 0.02 0.02 0.02 0.10 0.20
branches 0.07 0.11 0.05 0.18 0.34
total annual incorporation in biomass 0.16 0.27 0.09 0.45 0.72
return
litterfall (foliage) 0.30 0.24 0.25 0.38 0.87
litterfall (branches) 0.09 0.04 0.01 0.03 0.05
total litterfall 0.40 0.28 0.26 0.41 0.91
leachingb 0 0−1.9 0−5.5 5.6−12.7 1.1−5.8
total return f rom litterfall and leachingc 0.4 0.3−2.2 0.3−5.8 8.3−13.1 2.0−6.7
uptake 0.6 0.6−2.4 0.4−5.9 8.8−13.5 2.8−7.5

aThe detailed cycling of Cl− and Clorg, respectively, and the variability estimates are presented in Figure 1. The calculations are described in the
Supporting Information. bThe ranges given are based on a sensitivity analysis with two extreme scenarios for the contributions of dry deposition and
leaching. One scenario assumes that the total deposition collector accurately captures all dry deposition, and the other scenario that the total dry
deposition scavenged by canopies is 50% of the total deposition (see Supporting Information for details). For oak, the throughfall plus stemflow was
always slightly lower than the measured total deposition (Figure 1), which is why no range is given. cThe ranges reflect the sensitivity analysis
described in a footnote a.

Table 3. Cl Pools, Litterfall, Accumulation in Humus Layer, And Mean Residence Time in Experimental Plots with Different
Tree Speciesa

oak European beech Black pine Douglas fir Norway spruce

atmospheric input 8.1 8.1 8.1 8.1 8.1
(kg ha−1 y−1) (7.4−8.8) (7.4−8.8) (7.4−8.8) (7.4−8.8) (7.4−8.8)
Cl− in tree species 2.1 2.4 4.8 8.0 22
(kg ha−1) (1.2−2.9) (1.4−3.4) (3.2−6.5) (4.4−12) (9.9−34)
Clorg in tree species 0.6 0.9 0.8 1.5 2.5
(kg ha−1) (0.58−0.64) (0.88−0.94) (0.6−1.0) (1.4−1.5) (2.2−2.9)
Cl- in humus 1.1 1.2 1.8 2.5 7.2
(kg ha−1) (0.8−1.4) (0.8−1.7) (1.0−2.5) (1.6−3.4) (4.8−9.6)
Clorg in humus 1.4 2.5 3.4 7.0 12.6
(kg ha−1) (1.2−1.6) (1.8−3.2) (2.5−4.3) (4.2−9.8) (6.7−18.5)
Net Clorg accumulation rate in 0.13 0.08 0.05 0.13 0.28
humus (kg Cl ha−1 y−1) (0.09−0.17) (0.05−0.11) (0.03−0.07) (0.08−0.18) (0.15−0.41)
possible net contribution from 0.11 0.02 0.008 0.01 0.05
Clorg in litter (kg Cl ha−1 y−1) (0.09−0.13) (0.02−0.02) (0.006−0.01) (0.01−0.01) (0.04−0.06)
residence time of Cl− (tree) 6.2 1.0 0.8 0.6 3.0
(y) (3.6−8.7) (0.58−5.9) (0.5−17) (0.3−0.9) (1.3−8.6)
residence time of Clorg (tree) 3.3 15 13 32 19
(y) (2.2−5.8) (8.8−41) (8.9−26) (22−54) (11−35)
residence time of Cl− (humus) 0.1 0.2 0.2 0.3 0.9
(y) (0.1−0.2) (0.1−0.2) (0.1−0.3) (0.2−0.5) (0.5−1.3)
residence time of Clorg (humus) 11 30 65 52 45
(y) (8.2−15) (22−45) (46−111) (44−63) (34−68)

aCl, Cl− and Clorg denote total chlorine, chloride, and organic chlorine, respectively. The ranges presented correspond to ± the maximum coefficient
of variation for the data used in calculations, or the range given by the throughfall sensitivity analysis if larger (see Supporting Information for
equations and explanations, as well as discussion of uncertainty ranges).
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plots, followed by Douglas fir plots, in turn having higher levels
than the black pine, beech and oak plots (Figure 1; one-way
ANOVA for humus, n = 8; p < 0.0005; Fisher’s test in Minitab
for group comparisons). This pattern was characteristic of most
studied ecosystem components in the plots (Figure 1, Tables 1,
2, and 3). Compared to plots of oak, Norway spruce plots
exhibited 10-fold and 4-fold higher Cl− and Clorg storage (kg
ha−1) in the biomass, respectively, and similarly, 7-fold and 9-
fold higher storage of Cl− and Clorg in the humus layer (Table
3). However, levels were similar across plots in the mineral soil
below the humus layer (Figure 1, Table 1). Thus, during a
period of almost 30 years, which may be too short to affect
deeper mineral soils, a change in dominating tree species had an
influence on Cl cycling down to the humus layer, in spite of
identical initial conditions at all plots when the trees were
planted (Table 1 reveals a possible effect also in the uppermost
mineral soil layer but no effect in the deeper mineral soil in
support of the idea that it takes time for the effect to extend
downward into the soil). Our results indicate that forest
ecosystems with coniferous forests are likely to accumulate
higher amounts of both Cl− and Clorg compared to deciduous
forest ecosystems, regardless of initial conditions. Such results
could provide an explanation for the observed patterns in
several previous studies.5,13 Thus, the dominating vegetation,
including the absence or presence of trees and at the next level
the tree species composition, are likely the main factor
providing the frameworks for local terrestrial Cl cycling over
time.
While this study can conclusively show that plots where

different tree species established developed different Cl− and
Clorg levels in biomass, additional studies are needed to reveal
the detailed mechanisms behind this. The trees themselves may
contribute through internal production of Clorg in biomass
(Table 1) or by different Cl uptake (Table 2) affecting Cl
residence times. However, the trees are perhaps more likely to
have indirect effects on the Cl cycling by tree related soil
microbial communities (including both mycorrhiza, wood
degrading fungi, and bacteria) with different capacity of
chlorinating organic matter, or by influencing the soil organic
matter content shown to have effects on Clorg levels.6,22

However, the organic carbon content only differed by a factor
of 2 between oak and spruce plots and cannot explain all
differences in Clorg between the humus layers. The Clorg
normalized to carbon was 0.15, 0.32, 0.27, 0.42, and 0.59 μg
Cl mg C1− in the oak, beech, pine, Douglas fir and spruce plots,
respectively; spruce plot values being significantly higher than
values in the oak, beech and pine humus layers, one-way
ANOVA, n = 8, p < 0.05). This indicates that major differences
in humus layer Clorg levels between the plots remained after
normalizing to organic carbon, for example, a 4-fold difference
between oak and spruce plots remained that could not be
explained by differences in organic carbon content. Thus, the
humus layer Clorg levels in the different plots were not only
dependent on the organic matter content but also on the
degree to which the organic matter is chlorinated.
Ecosystem Cl Fluxes. The ecosystem Cl fluxes were

estimated to illustrate the influence of the experimental
manipulation of tree species on overall Cl cycling (see
Supporting Information and Tables 2 and 3). The estimated
Cl fluxes follow the patterns seen in concentrations and
standing stocks (described above). There was in general a more
extensive Cl uptake by trees, higher accumulation of Clorg in
humus layers, and longer Cl residence times in coniferous tree

stands than in the deciduous tree stands (Table 2, Table 3,
Supporting Information). The flux estimates are based on data
from less than 30 year old tree stands and any differences
between the tree stands may increase as the experimental forest
matures with increasing biomass and longer time for soil
processes to develop in response to the changed tree species
composition.

Clorg Accumulation and Cycling. The estimated net
humus Clorg accumulation rates was 0.28 kg Cl ha−1 y−1 in the
Norway spruce stand and ranged from 0.05 to 0.13 kg Cl ha−1

y−1 in the other stands (Table 3). Previous mass balance
estimates of top soil net chlorination in older spruce stands
range from 0.35 to 0.5 kg Cl ha−1 y−1.30 In a survey of various
forests, Redon et al.6 estimated net humus Clorg accumulation
rates ranging from −0.92 to 0.48 kg Cl ha−1 y−1, with negative
rates in primarily oak and beech forests and positive rates
mostly in Douglas fir, spruce, and pine forests. Thus, the
previous mass balances, largely support the differences between
species and the overall levels found here. It should be noted
that local data on carbon and Cl fluxes was typically more
limited in the previous studies than at the Breuil site, and
therefore previous budgets had to rely on combining data from
different locations. The negative values noted by6 may not be
realistic over long time frames, as Clorg were present in all soils,
and the previous nonexperimental work could only speculate
about reasons for the indicated patterns. However, the relative
differences between dominating tree species found seem
consistent with our results, which now conclusively show a
cause-effect relationship between changes in tree species and
the Cl cycling.
The net humus Clorg accumulation should depend on either

production of Clorg in the humus layer or import of Clorg from
litterfall that are resistant enough to degradation to accumulate
over time together with the recalcitrant organic matter in the
soils. Clorg constituted a relatively large fraction of total Cl in
biomass in all the species studied (7−38%; Table 1). Although
the Clorg contribution to the soil from litterfall varied between
the tree stands, this import could potentially have supported a
substantial part of the estimated net Clorg accumulation in the
humus layer in some tree stands (e.g., oak; Table 3). In a
previous study it was shown that about half the Clorg in leaves of
white oak was aliphatic and seemed to be resistant to
degradation.10 Hence, for unknown reasons, chlorination inside
plants seems to be significant and could potentially contribute
to the soil Clorg pool through recalcitrant Clorg in litterfall.
However, for most of the forest stands the estimated net
accumulation of Clorg in humus by far exceeded the possible
contribution from litterfall, showing that Clorg from litter in
many cases cannot support all the Clorg accumulation in the
humus layer. Thus, Clorg formed by microorganisms upon
organic matter decomposition,10,11 is likely the dominating
source for the humus layer Clorg pool in many environments.
In comparison with the estimated net humus Clorg

accumulation rates from ecosystem budgets (0.05−0.28 kg
ha−1 y−1), the gross chlorination rates determined in laboratory
experiments with humus from a spruce forest were substantially
higher and ranged from 1 to 9 kg Cl ha−1 y−1.22 The difference
in chlorination rates between the field and laboratory (i.e.,
between long-term net and short-term gross rates) can be
explained by the relatively rapid degradation of a large
proportion of the Clorg,

11 and by the fact that mass balance
calculations in field studies reflect the cumulative net increase of
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more refractory Clorg only, while the laboratory experiments
report gross rates.
Cl− Cycling. This study also provides information regarding

how to interpret throughfall and stemflow, and regarding
uptake and crown leaching, and associated internal cycling of Cl
in plants. The stemflow contributed 1, 14, 11, 11, and 2% of the
Cl− in (throughfall + stemflow in Figure 1) in the oak, beech,
pine, Douglas fir, and Norway spruce stands, respectively. The
estimated Cl− throughfall plus stemflow was substantially
higher for black pine, Douglas fir, and Norway spruce than the
atmospheric deposition (1.7 to >2.6 times higher). The
atmospheric deposition was measured with an open deposition
collector previously shown to capture both wet and dry
deposition (dry deposition was 21% of the total deposition).34

It is sometimes assumed that Cl leaching from canopies is
negligible and that throughfall represents one of the best
estimates of stand-specific dry deposition.35,36 However, the
Cl− levels in (throughfall and stemflow) from oak and beech
were almost equal to the estimated total deposition (Figure 1),
indicating a negligible contribution of dry deposition above
what was captured in the open deposition collector. Further,
Norway spruce stands had substantially lower (throughfall and
stemflow) of Cl− than Douglas fir (Figure 1), despite having a
larger standing foliage biomass (31 t dry mass ha−1 versus 18 t
dry mass ha−1, respectively).37 Thus, throughfall was
independent of foliage biomass, indicating that species-
dependent leaching could be more important for the observed
differences between stands than possible differences in
capturing dry deposition.
Further, even if assuming that Cl− dry deposition is 50% of

the total deposition, as suggested for a spruce forest stand in
Denmark (situated much closer to the coast than the Breuil
site),38 the assumed additional dry deposition (not captured in
the deposition collector) could not account for the high
throughfall from spruce and Douglas fir canopies. Hence, dry
deposition in excess of what was captured by the open
deposition collections is not a likely major cause of the
observed high levels of throughfall. Another potential
contribution is horizontal deposition from, for example, fog
or cloud droplets, but such deposition has primarily been
shown significant along coasts or in mountain areas at altitudes
>800 m.a.s.l.,39,40 and is therefore most likely of minor
importance in the studied location. Instead, substantial Cl−

canopy leaching, up to 12-fold higher than incorporation in
new biomass (Cl immobilized in the new ligneous biomass
produced), and 30−80% of the tree uptake (i.e., use for growth
and return to the soil), is hypothesized to be a more likely
explanation, given the mass balance calculations (Table 2).
In support of significant root uptake of Cl and further

recycling through canopy leaching, Thimonier et al.41

investigated Cl− deposition (bulk deposition and throughfall)
patterns in 11 sites in Switzerland and found a seasonal pattern
of Cl− deposition and especially for throughfall indicating a
significant canopy leaching of Cl−. More specifically, Na:Cl
ratios in throughfall from different forest types were lower than
bulk precipitation, and showed a strong seasonal pattern with
the lowest Na:Cl ratio during the growth season when trees
were physiologically active.41 The observed Cl enrichment of
throughfall during the growth season, combined with the
reduction of Cl− content in senescing foliage, is also logical
given the high internal transfers and further foliage leaching
that have been observed for some other water-soluble ions in
plants, for example, K+ and Cs+,42 with K+ being correlated with

leaching of organic matter and thereby with plant productiv-
ity.43 A similar “luxury consumption” is known for calcium (a
major nutrient)44 and has been found for uranium (a
nonessential element),45 but the elements taken up in excess,
mainly sequestered in senescing foliage, were largely returned
to the soil through litterfall and not by leaching as seems to be
the case for Cl−. In summary, these results indicate that dry
deposition may not be easily estimated from throughfall and
wet deposition, and that the possibility of substantial canopy
leaching must be considered (along with contributions from
potential horizontal deposition in areas where, for example, fog
and near ground clouds are common).
Given the estimated differences between plots in canopy

leaching, the Cl− uptake by different trees likely differed
substantially. Extensive Cl− uptake by plants and high between-
species differences in uptake rates have been confirmed for
various agricultural plants (e.g., radish, lettuce, bean, and
wheat).27 The soil-plant concentration ratio (CR) varied greatly
between studied crops with lowest for radish and highest for
wheat straw. Based on previous literature, a significant uptake in
the plant biota is clear, however the information regarding trees
and especially canopy exchange is much more scattered. The
studies generally focus on salinity effects on tree growth on for
instance oak and tamarack.46,47 Given the limited knowledge on
uptake of Cl− by trees in terms of rates and mechanisms, this
study calls for further studies on the role of both Cl− and Clorg
in various tree species.

Estimated Chlorine Residence Times. Average residence
times of Cl− in trees and humus ranged from 0.6−6.2 and 0.1−
0.9 years, respectively (Table 3). The residence time of Cl− in
trees was highest in the oak plots, while humus Cl− residence
times were highest in Norway spruce stands. The correspond-
ing estimates of residence times of Clorg in trees and humus
ranged from 3.3−32 and 11−65 years, respectively (Table 3);
the highest values being found for the coniferous tree stands.
The residence times for Clorg in the humus are theoretical and
represent aggregated average values for very complex mixtures
of compounds. They are also based on the assumption that
Clorg is degraded as the average organic matter. If the average
Clorg is more refractory than the average organic matter, in line
with the persistence of many known organochlorine pollutants,
the Clorg residence times are underestimated. The results of this
study confirm previous data indicating that Clorg greatly affects
the residence time of Cl in soils,6 and in addition highlight the
importance of dominating tree species for soil and ecosystem
Cl residence times.

The Importance of Trees for Cl Cycling. The reasons for
the observed large spatial variability in Cl− and Clorg in previous
studies have so far been elusive. It has been speculated that the
explanations are related to climate, Cl− deposition, vegetation,
soil organic matter, or soil pH.6,22,48 Our results show that tree
species affect transformations and residence times of Cl in the
trees and in the upper layer of the soil. Some of the other
factors that have been suggested to be related to trees, such as
microbial communities, pH, root development, soil organic
matter content and turnover49 may still be important in the
frameworks defined by the tree community, but further studies
are necessary to reveal the mechanisms behind the observed
effects of our experimental treatments. Apart from demonstrat-
ing a major influence of tree species on processes regulating Cl
cycling, the results presented here also show that Cl− and Clorg
levels can change dramatically in surface soil layers in situ over
time frames as short as decades. This time development
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perspective is interesting as the balance between overall bulk
organic matter chlorination and dechlorination processes is
presently unclear and therefore it has not been known how fast
the overall soil Clorg levels can change. The present results of
large increases in soil Clorg levels over a few decades yield
questions about dechlorination rates in nature, including both
full mineralization of Clorg and also selective removal of Cl
atoms from organic compounds by, for example, reductive
dehalogenation.50

The results of this study have fundamental implications for
our view of the biogeochemical Cl cycle. The influences of tree
species (including direct and indirect effects), and the rapid
cycling of some Cl pools, whereas other pools have very long
residence times, needs to be considered in all studies of Cl in
terrestrial environments, agricultural practices and land use
changes.51 These results challenge hydrological or risk
assessment models that consider Cl− to be inert, as vegetation
can be a rapidly changing driver in the Cl cycle given, for
example, human land-use. Further, this study implies that
unwanted organochlorines or radioactive chlorine can stay and
expose organisms for longer time and occur at higher levels in
areas with certain vegetation types. The results also highlight
how we may affect terrestrial cycling by land-use change
through the vegetation and this opens the possibility of
managing Cl cycling through control of tree species
composition.
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