
Available at:
http://hdl.handle.net/2078.1/171498

[Downloaded 2019/04/19 at 00:06:36 ]

"Building conditionally dependent parametric one-factor copulas"

Mazo, Gildas ; Uyttendaele, Nathan

Abstract

So far, one-factor copulas induce conditional independence with respect to
a latent factor. In this paper, we extend one-factor copulas to conditionally
dependent models. This is achieved through two representations which allow to
build new parametric one-factor copulas with a varying conditional dependence
structure. Moreover, the latent factor's distribution can be estimated despite it
being unobserved. In order to dis- tinguish between conditionally independent and
conditionally dependent one-factor copulas, we provide with a novel statistical
test which does not assume any parametric form for the conditional dependence
structure. Illustrations of the approach are provided through examples, numerical
experiments as well as a real data analysis where we capture the intrinsic state
of a financial market and the dependence structure of its individual assets.

Document type : Document de travail (Working Paper)

Référence bibliographique

Mazo, Gildas ; Uyttendaele, Nathan. Building conditionally dependent parametric one-factor
copulas. ISBA Discussion Paper ; 2016/04 (2016) 25 pages

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DIAL UCLouvain

https://core.ac.uk/display/34085507?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
 
 

I N S T I T U T  D E  S T A T I S T I Q U E 

B I O S T A T I S T I Q U E  E T 

S C I E N C E S  A C T U A R I E L L E S 

( I S B A ) 

 
UNIVERSITÉ CATHOLIQUE DE LOUVAIN 

 

 
 

D I S C U S S I O N 
P A P E R 

 

2016/04 
 
 

 
 
 

Building conditionally dependent parametric  
one-factor copulas 

 
 
 
 
 

MAZO, G. and N. UYTTENDAELE 
  



Building conditionally dependent parametric

one-factor copulas

Gildas Mazo and Nathan Uyttendaele
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Abstract

So far, one-factor copulas induce conditional independence with re-
spect to a latent factor. In this paper, we extend one-factor copulas to
conditionally dependent models. This is achieved through two represen-
tations which allow to build new parametric one-factor copulas with a
varying conditional dependence structure. Moreover, the latent factor’s
distribution can be estimated despite it being unobserved. In order to dis-
tinguish between conditionally independent and conditionally dependent
one-factor copulas, we provide with a novel statistical test which does not
assume any parametric form for the conditional dependence structure.
Illustrations of the approach are provided through examples, numerical
experiments as well as a real data analysis where we capture the intrinsic
state of a financial market and the dependence structure of its individual
assets.
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1 Introduction

Nowadays, factor copulas [9, 11, 12, 15] refer to those copulas which can be ex-
pressed by means of unobserved variables, the factors. Often, only one uni-
variate factor, denoted by X0, is invoked, and thus one talks about one-factor
copulas. In the rest of this paper, (U1, . . . , Ud) denotes the vector of interest,
with uniform margins, whose joint distribution is a copula.

When it comes to build parametric models, the scope of current one-factor
copulas is still limited. First, the possibility of considering a factor other than
uniformly distributed not allowed. Yet, in applications, the identification of a
factor may implicitely assume estimating its distribution, which may be seen
as a parameter of interest. Second, studying the factor’s impact on the depen-
dence structure is not allowed, too. Indeed, in current one-factor copulas, only
conditional independence — that is, the variables U1, . . . , Ud are independent
conditionally on the factor X0 = x0 — are permitted. This means that, for all
u1, . . . , ud ∈ [0, 1],

P (U1 ≤ u1, . . . , Ud ≤ ud|X0 = x0) =

d∏
j=1

P (Uj ≤ uj |X0 = x0).

As a result, current one-factor copulas write [11]

C(u1, . . . , ud) =

∫ 1

0

d∏
j=1

Cj|0(uj |u0) du0, (1)

where the notations are to be understood as Cj|0(uj |u0) = ∂C0j(u0, uj)/∂u0 =
P (Uj ≤ uj |U0 = u0). Therefore, the task of modeling only amounts to choose
parametric forms for the P (Uj ≤ uj |X0 = x0). What if the practitioner, after
the identification of one factor, assumes that the dependence grows with the
factor’s value? Or, what if the dependence structure remains the same, but is
not conditional independence?

This paper is an attempt to overcome these limitations. It introduces two
most general representations for one-factor copulas to extend further the para-
metric models which can be built. These representations being most general,
they cover all the models of the literature, as seen in Section 2. Section 3
addresses data generation, estimation, and also proposes a novel test to as-
sess whether conditional independence may hold or not, without assuming any
parametric form for the dependence structure. Section 4 presents the numeri-
cal experiments used to illustrate our testing procedure as well as a real data
analysis.

2 Two useful representations to extend one-factor
copulas

This section introduces two representations to build new parametric families
of one-factor copulas, which can be grouped into three different categories. It
is shown that many standard copulas of the literature can be recovered. Tail
dependence questions are also addressed.
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2.1 The representations

Consider the the law of total probability,

C(u1, . . . , ud) = P (U1 ≤ u1, . . . , Ud ≤ ud)

=

∫
P (U1 ≤ u1, . . . , Ud ≤ ud|X0 = x0)f0(x0) dx0, (2)

(the integral is taken over the support of X0 and f0 denotes its density), from
which originated the formula of current one-factor copulas, given by (1). One
easily sees that one-factor copulas are a reformulation of the law of total proba-
bility in which the factor X0 is uniformly distributed on [0, 1] (hence the change
of notation U0 = X0) and the variables U1, . . . , Ud are assumed to be indepen-
dent conditionally on the factor U0 = u0.

To extend one-factor copulas, in addition to let the density of X0, f0, be un-
specified, we propose to reconsider the decomposition of P (U1 ≤ u1, . . . , Ud ≤
ud|X0 = x0) in (2). Fix x0. Given X0 = x0, certainly the vector (U1, . . . , Ud) has
a distribution function, but it is not, in general, a copula, because Uj |X0 = x0

is not, in general, uniformly distributed. By Sklar’s theorem [19, 22], P (U1 ≤
u1, . . . , Ud ≤ ud|X0 = x0) can be decomposed as a copula and marginal distri-
butions, as

P (U1 ≤ u1, . . . , Ud ≤ ud|X0 = x0)

=Cx0(P (U1 ≤ u1|X0 = x0), . . . , P (Ud ≤ ud|X0 = x0)). (3)

If we let x0 vary, both the copula Cx0
and the margins P (Uj ≤ uj |X0 = x0),

j = 1, . . . , d, will be, in fact, conditional distributions. The following examples
illustrate our point.

Example 1. Consider (2) with X0 following an exponential distribution, as

f0(x0) = e−x0 , x0 > 0. (4)

Moreover, in (3), assume that

P (Uj ≤ uj |X0 = x0) =

∫ uj

0

Γ(1 + x0)

Γ(x0)
(1− t)x0−1 dt,

where

Γ(z) =

∫ ∞
0

tz−1e−t dt, z > 0, (5)

is the well known gamma function. Finally, assume that the density of Cx0 , cx0 ,
writes

cx0(u1, . . . , ud) = (det R(x0))−1/2 exp

[
−1

2
z>([R(x0)]−1 − I)z

]
, (6)

where z = (z1, . . . , zd), zj is the quantile of order uj of the standard normal
distribution, I is the d× d identity matrix, and

R(x0) =


1

. . . β(x0)

β(x0)
. . .

1

 , (7)
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where

β(x0) = e−x0 .

In Example 1, for a fixed x0, the copula Cx0 is a multivariate Gaussian
copula with an exchangeable correlation matrix with parameter β(x0) = e−x0 .
Likewise, the distribution of Uj given X0 = x0 is a beta distribution with
parameters 1 and x0. By Sklar’s theorem, P (Uj ≤ uj |X0 = x0) and Cx0

can be
set independently.

Example 2. Consider (2) with X0 following a Pareto distribution, as

f0(x0) = x−2
0 , x0 > 1. (8)

Moreover, in (3), assume that

Cx0
(u1, . . . , ud) = exp

[
− ((− log u1)x0 + (− log ud)

x0)
1/x0

]
.

In Example 2, for a fixed x0, the copula Cx0 is recognized to be a Gumbel-
Hougaard copula with parameter x0, see e.g. [19] p. 153. The margins P (Uj ≤
uj |X0 = x0), j = 1, . . . , d were not specified.

While examples such as Example 1 and Example 2 could be multiplied end-
lessly, there is a representation, presented below, which permits to get them all,
and build general parametric one-factor copulas quite easily. So, in view of both
the law of total probability (2) and the “conditional Sklar’s theorem” (3), every
one-factor copula writes

C(u1, . . . , ud)

=

∫
Cx0 [P (U1 ≤ u1|X0 = x0), . . . , P (Ud ≤ ud|X0 = x0)]f0(x0) dx0, (9)

where, as in Examples 1 and 2, Cx0 is to be understood as a collection, running
over x0, of well defined d-variate copulas. The integral is taken over the support
of X0. In representation (9), as well as in Example 1 and Example 2, letting
x0 vary induces a collection of copulas {Cx0

} which reflects the change in the
dependence structure as the factor varies. For instance, in the former example,
Cx0 → Π (pointwise) as x0 → ∞, where Π denotes the independence copula,
that is, Π(u1, . . . , ud) = u1 · · ·ud for all u1, . . . , ud ∈ [0, 1]. On the other hand,
if x0 → 0, then Cx0

→ M , where M denotes the Fréchet-Hoeffding bound
for copulas, that is, M represents the complete positive dependence structure,
with M(u1, . . . , ud) = min(u1, . . . , ud) for all u1, . . . , ud ∈ [0, 1]. In sum, as the
factor’s value varies, the dependence between the variables X1, . . . , Xd varies as
well, ranging from independence to complete positive dependence. The opposite
happens in Example 2. We have that Cx0

→M whenever x0 → 0 and Cx0
→ Π

whenever x0 → 1.
Representation (9) can be recast in terms of standard uniform variables only.

So, let Q0 = F−1
0 be the inverse of the factor’s distribution function F0. By the
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change of variables u0 = F0(x0) in (9), we have

C(u1, . . . , ud)

=

∫
Cx0

[P (U1 ≤ u1|U0 = F0(x0)), . . . , P (Ud ≤ ud|U0 = F0(x0))]f0(x0) dx0

=

∫ 1

0

CQ0(u0)[P (U1 ≤ u1|U0 = u0), . . . , P (Ud ≤ ud|U0 = u0)] du0

=

∫ 1

0

CQ0(u0)[C1|0(u1|u0), . . . , Cd|0(ud|u0)] du0, (10)

where Cj|0(uj |u0) = ∂C0j(u0, uj)/∂u0 = P (Uj ≤ uj |U0 = u0) and (U0, Uj) ∼
C0j , j = 1, . . . , d. Examples 1 and 2 can be recast in view of (10).

Example 3 (continuation of Example 1). From (4), we have Q0(u0) = − log(1−
u0), hence, for a fixed u0 ∈ (0, 1), CQ0(u0) is a multivariate Gaussian copula with
correlation matrix given by

R(u0) =


1

. . . β(u0)

β(u0)
. . .

1

 , β(u0) = e−Q0(u0) = 1− u0.

Furthermore, since P (Uj ≤ uj |U0 = u0) = P (Uj ≤ uj |X0 = Q0(u0)), we have

Cj|0(uj |u0) =

∫ uj

0

Γ(1 +Q0(u0))

Γ(Q0(u0))
(1− t)Q0(u0)−1 dt,

so that the underlying bivariate copula is

C0j(u0, uj) =

∫ u0

0

∫ uj

0

Γ(1 +Q0(t))

Γ(Q0(t))
(1− y)Q0(t)−1 dt dy,

for j = 1, . . . , d.

In Example 3, note that u0 = 0 implies β(u0) = 1, and thus CQ0(u0) is the
Fréchet-Hoeffding boundM . Likewise, u0 = 1 implies β(u0) = 0 (by continuity),
and thus CQ0(u0) is the independence copula.

Example 4 (continuation of Example 2). From (8), we have Q0(u0) = 1/(1−
u0), hence, for a fixed u0 ∈ (0, 1),

CQ0(u0)(u1, . . . , ud)

= exp

[
−
(

(− log u1)β(u0) + (− log ud)
β(u0)

)1/β(u0)
]
, β(u0) = Q0(u0) =

1

1− u0
,

that is, CQ0(u0) is a multivariate Gumbel-Hougaard copula with parameter given
by β(u0) = Q0(u0) = 1/(1− u0).

In Example 4, u0 = 0 implies β(u0) = 1, and thus CQ0(u0) is the inde-
pendence copula. Likewise, u0 = 1 implies β(u0) = ∞ (by continuity), and
thus CQ0(u0) is the Fréchet-Hoeffding bound. In short, we simply replaced
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the x0’s of Example 1 and Example 2 by Q0(u0). Also, note that the vec-
tors (X1, . . . , Xd|X0 = x0) and (U1, . . . , Ud|X0 = x0) have the same copula Cx0

,
while (U1, . . . , Ud|U0 = u0) has copula CQ0(u0).

Mathematically, both representations (9) and (10) are of course equivalent.
It is worth stressing that, however, these representations are better not to be
taken as plain mathematical results, but rather as a convenient way to generate
new parametric one-factor copula models, as was shown in the above examples.
The advantage of the representation in (10) is that it involves copulas only and
allows an easy comparison with the old versions of the one-factor copulas, given
in (1). For example, one sees immediately that they correspond to (10) with
CQ0(u0) = Π. But the representation given in (9) is more convenient when one
adopts a point of view centered on the factor itself.

Both representations (9) and (10) can be rewritten in terms of densities.
Here only the later is given. So, the density of C in (10) is given by

c(u1, . . . , ud) =

∫ 1

0

cQ0(u0){C1|0(u1|u0), . . . , Cd|0(ud|u0)}
d∏
j=1

c0j(u0, uj) du0,

(11)

where c, c0j and cQ0(u0) are the densities corresponding to C, C0j and CQ0(u0),
respectively.

In the rest of this paper, we will sometimes abuse notation. We shall write
Cu0

for CQ0(u0) and cu0
for cQ0(u0), and the notations Cu0

, Cx0
stand for both

the copulas for a fixed x0 or u0 and for the collection of copulas {Cu0}, {Cx0},
letting x0 or u0 run over their respective support. Finally, it is convenient to
refer to Cu0

or Cx0
as the inner copula or conditional copula, while C or c will

be referred to as the outer copula.

2.2 Three forms of one-factor copulas

In order to generate new parametric families of one-factor copulas, one can
act through 3 ingredients: the bivariate copulas C0j , j = 1, . . . , d, the factor’s
distribution, represented either by its density f0 or by its quantile function Q0,
and the set of multivariate copulas {Cx0

}. Depending on the choice for Cx0
,

three different forms of one-factor copulas can be made. The following example
illustrates the method.

Example 5. Let X0 follow an exponential distribution with parameter λ > 0,
as

f0(x0) = λe−λx0 , x0 > 0.

For j = 1, . . . , d, let C0j be a Clayton copula so that

C0j(u0, uj) = [(u
−αj

0 + u
−αj

j − 1)]−1/αj αj ≥ 0. (12)

Finally, let cx0
, the density of Cx0

, be as in (6) where R(x0) is as in (7) and
where

β(x0) = e−β0−β1x0 , β0, β1 ≥ 0. (13)
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In Example 5, we have built a parametric model for one-factor copulas which
allow for different features. First, the number of parameters, d+ 3, is linear in
d, the dimension. While there is no universal rule, this number is seen by many
as being about right for moderate to high dimension applications. Second, as
will be seen in Section 3, one can estimate λ, the parameter of the factor’s dis-
tribution, by maximum pseudo-likelihood. But this factor being unobserved, it
means that we are able to estimate the distribution of a unobservable variable.
Section 4 illustrates this fact. Finally, one can control the growth rate of the de-
pendence structure, relative to the change of the factor’s value. Thus, in (13), a
decrease in β1 yields an increase in β(x0), the correlation parameter. In particu-
lar, β1 = 0 implies that β(x0) = exp(−β0), and thus the correlation parameter,
hence the conditional copula Cx0

, does not depend on x0 anymore: we call this
conditional invariance, not to be mistaken with conditional independence. This
last feature happens when β0 =∞, implying a correlation parameter β(x0) = 0.

In sum, there are 3 types of models, different in nature, that can be built.
They are summarized next.

Conditional independence. Conditional independent one-factor copulas are
those so that, in (9), Cx0

= Π for all x0. They correspond exactly to
copulas of the form (1), described in [11], and their interpretation is such
that, given the factor’s value X0 = x0, the variables X1, . . . , Xd are in-
dependent. In Example 5, it corresponds to β0 = ∞ and β1 is finite.
Let us note that, even in this simple case, the obtained models are quite
reasonable and useful, as was demonstrated not only in [11], but also in
view of the vast literature about conditional independent models [23]. In
Section 3.3, we provide a novel procedure in order to test the assumption
of conditional independence.

Conditional invariance. Conditional invariant one-factor copulas are those
so that, in (9), Cx0

= Cx′0 whatever x0 and x′0 are. That is, there is a
conditional dependence structure, but it remains unchanged whatever the
factor’s value. Example 5 with β1 = 0 enters this setting, and in this case
β0 simply controls the strength of the dependence structure.

Conditional noninvariance. Conditional noninvariant one-factor copulas are
those which are not conditionally invariant. Note that, a fortiori, they are
not conditionally independent either. Here, the conditional dependence
structure is allowed to change with the factor’s value. For example, in Ex-
ample 1, β(x0)→ 0 as x0 →∞ and therefore Cx0

→ Π, the independence
copula. On the opposite, β(x0) → 1 as x0 → 0 and thus Cx0

→ M , the
Fréchet-Hoeffding upper bound, characterizing complete positive depen-
dence. In Example 5, it corresponds to β1 > 0.

Natural parametric one-factor copulas can be built with the help of Kendall’s
tau and Spearman’s rho. Recall that, given a bivariate copula C, Kendall’s tau
is a dependence coefficient in [−1, 1] defined by

τ = 4

∫
[0,1]2

C(u, v) dC(u, v)− 1. (14)

A value of τ ≈ 0 hints at independence, and τ ≈ −1 (respectively τ ≈ +1)
indicates complete negative (respectively positive) dependence. Example 6 il-
lustrates the procedure.
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Example 6. Let X0 follow a standard uniform distribution and let Cx0
be as

Cx0
(u1, . . . , ud) = (u

−τ−1(x0)
1 + · · ·+ u

−τ−1(x0)
d − d+ 1)−1/τ−1(x0)

where τ−1 is the inverse map of

τ(β) =
β

β + 2
∈ [0, 1], β ≥ 0. (15)

In Example 6, for a fixed x0, Cx0 is recognized to be a Clayton copula with
parameter τ−1(x0) = 2x0/(1 − x0) for x0 ∈ [0, 1). The procedure works as
follows. First, choose a parametric family of copulas, here the family of Clayton
copulas

Cβ(u1, . . . , ud) = (u−β1 + · · ·+ u−βd − d+ 1)−1/β , β ≥ 0. (16)

Second, compute Kendall’s tau (there is only one, since all pairs have the same
distribution), given (15). Third, choose the distribution of X0 so that its support
corresponds to the range of the map induced by (15), here [0, 1]. Fourth and
last, replace β by τ−1(x0) in (16).

The conditional dependence structure in Example 6 goes from conditional in-
dependence to conditional complete dependence. Indeed, when x0 → 0, β(x0)→
0 and Cβ(x0) → Π. If x0 → 1 instead, β(x0)→∞ and Cβ(x0) →M , the Fréchet-
Hoeffding upper bound for copulas. If one rather defines β(x0) = − log(x0), then
β(x0)→∞ when x0 → 0 and Cβ(x0) →M . Hence, in one case the dependence
increases with respect to the factor, while in the other case it decreases.

2.3 Tail dependence properties

Copulas of the form (10) can successfully address tail dependence questions. Let
us remember that the lower tail dependence coefficient, for a bivariate vector
(Xj , Xj′) with marginal distribution functions Fj and Fj′ , denoted by λLjj′ , is
defined by the limit of P (Fj(Xj) < u|Fj′(Xj′) < u) as u → 0. Likewise, the
upper tail dependence coefficient, denoted by λUjj′ , is defined as the limit of
P (Fj(Xj) > u|Fj′(Xj′) > u) as u → 1. It is well known that the Gaussian
copula, for instance, is such that λLjj′ = λUjj′ = 0, provided the absolute value of
its correlation coefficient is not equal to one. For a copula to be able to model
a phenomenon where the co-occurrence of extreme values in both dimensions is
likely to happen, it is reasonable to demand that λLjj′ , λ

U
jj′ , or both, be positive.

This positiveness property holds for copulas of the form (10), as it is shown now.

Proposition 1. Suppose that the inner copula Cu0 converges to some limit
copula C0 (respectively C1) as u0 → 0 (respectively u0 → 1). Assume also that
c0 (respectively c1), the density of C0 (respectively C1), is such that c0(u, v) > 0
(respectively c1(u, v) > 0), for all u, v. If the lower (respectively upper) tail
dependence coefficient of C0k is positive for both k = j and k = j′, then λLjj′ > 0

(respectively λUjj′ > 0).

The above result is an extension of that in [11] (Proposition 5), see also [9],
Chapter 3.
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2.4 Links to models in the literature

Many well-known copula models in the literature can be recovered from (10),
as shown below.

Archimedean copulas. Let ψ be a completely monotonic function on [0,∞],
that is, (−1)kdk/dtkψ(t) ≥ 0 for all integers k and all t > 0, and such that
ψ(0) = 1 and ψ(∞) = limt→∞ ψ(t) = 0. If a copula C can be written as
C(u1, . . . , ud) = ψ(ψ−1(u1) + · · · + ψ−1(ud)), then it is called an Archimedean
copula with generator ψ [17]. Let us note that the above-mentioned conditions
on ψ are sufficient, but not necessary, in order to make sure that C is a proper
copula. For sufficient and necessary conditions, see [18].

Proposition 2. In (10), let Cx0 = Π, assume that the support of X0 is [0,∞],
and put

C0j(u0, uj) =

∫ Q0(u0)

0

e−tψ
−1(uj)f0(t) dt, where ψ(x) =

∫ ∞
0

e−txf0(t) dt,

j = 1, . . . , d, with f0 being the derivative of F0. It can be checked that ψ is com-
pletely monotonic, see for instance [7]. Then C, the left-hand side of equation
(10) or outer copula, is an Archimedean copula with generator ψ.

Let us note that the above result (as well as its proof in the Appendix) is
simply a reformulation of Joe’s [7].

Nested Archimedean copulas. Archimedean copulas can be nested in order
to get more flexible models. Nested Archimedean copulas were introduced by [7]
and have been the main topic of many research papers since, see for instance [17],
[5], [21], or [20]. The simplest nested Archimedean copula one can think of is one
where a bivariate Archimedean copula C12(u1, u2) = ψ12(ψ−1

12 (u1) +ψ−1
12 (u2)) is

nested into another bivariate Archimedean copula C123(•, u3) = ψ123(ψ−1
123(•) +

ψ−1
123(u3)) in order to get a copula of the form

C(u1, u2, u3) = C123(C12(u1, u2), u3)

= ψ123

(
ψ−1

123(ψ12(ψ−1
12 (u1) + ψ−1

12 (u2))) + ψ−1
123(u3)

)
(17)

In general, an arbitrary pair of generators (ψ123, ψ12) does not ensure the copula
in equation (17) will be a proper copula. In this paper, however, we assume this
is always the case. The reader can find more information on this matter in [17].

Proposition 3. Define ψ123 the same way ψ was defined in Proposition 2. Also
let C0j as in Proposition 2. Further define

Cx0
(u, v, w) = exp

(
− x0 × ν

(
ν−1

[ 1

x0
log
( 1

u

)]
+ ν−1

[ 1

x0
log
(1

v

)]))
× w;

where ν(•) = ψ−1
123

(
ψ12(•)

)
and ν(•)−1 = ψ−1

12

(
ψ123(•)

)
and ψ12(•) is equal to

the integral between 0 and ∞ of exp(−t•)dF12(t) with F12 an arbitrary distri-
bution function. Then (10) is the copula given in (17).
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Gaussian copulas. A Gaussian copula is a copula whose density c satisfies

log c(u1, . . . , ud) = −1

2
log(det(R))− 1

2
z>(R−1 − I)z, (18)

where R is a d× d invertible correlation matrix, z = (z1, . . . , zd)
> and zj is the

quantile of order uj of the standard normal distribution. A Gaussian copula
can be represented as in (10), as given below. Let β0 = (β01, . . . , β0d)

> be
a real vector in [0, 1]d and let D be a diagonal matrix with elements given
by 1 − β2

0j , j = 1, . . . , d. Finally let CA be a d-variate Gaussian copula with
correlation matrix A.

Proposition 4. Let Cu0
= CA for each u0 and let C0j be a bivariate Gaussian

copula with correlation β0j, j = 1, . . . , d. Then the outer copula in (10) is a
Gaussian copula with correlation matrix given by R = D1/2AD1/2 + β0β

T
0 .

C-Vine copulas. Let (U0, U1, . . . , Ud) be a random vector following a C-Vine
copula distribution truncated after the second level. The density of this trun-
cated C-Vine is given by

c(u0, . . . , ud) =

d−1∏
j=1

c∗1,1+j|0(C∗1|0(u1|u0), C∗1+j|0(u1+j |u0)|u0)

d∏
j=1

c∗0j(u0, uj)

(19)

where c∗0j = ∂2C∗0j(u0, uj)/∂u0∂uj , C
∗
j|0(uj |u0) = ∂C∗0j(u0, uj)/∂u0, {C∗0j(u0, uj)}

being a set of arbitrary bivariate copulas and {c∗1,1+j|0} is a set of abritrary cop-

ula densities for each u0. Due to their extreme flexibility and ease of use (one
only has to specify sets of bivariate copulas), Vine copulas have been used in an
increasing number of applications and are still a hot topic of research, see for
instance [1], [13] or [2].

Proposition 5. If, in (11), for each u0, cu0 is defined as

cu0
(u1, . . . , ud) =

d−1∏
j=1

c∗1,1+j|0(u1, u1+j |u0),

and c0j(u0, uj) = c∗0j(u0, uj) for all j, then the outer copula c in (11) is the
d-variate marginal distribution, with respect to u0, of (19), that is, its density
writes

c(u1, . . . , ud) =

∫ 1

0

cu0
(C∗1|0(u1|u0), . . . , C∗d|0(ud|u0))

d∏
j=1

c∗0j(u0, uj)du0

=

∫ 1

0

d−1∏
j=1

c∗1,1+j|0(C∗1|0(u1|u0), C∗1+j|0(u1+j |u0)|u0)

d∏
j=1

c∗0j(u0, uj) du0.

If one assumes that, in (19), none of the elements of {c∗1,1+j|0} actually
depends on u0, then the inner copula in Proposition 5 becomes

cu0(u1, . . . , ud) =

d−1∏
j=1

c∗1,1+j(u1, u1+j),

which is nothing more than a C-Vine on (U1, . . . , Ud), truncated at the first
level.
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p-factor models. Define respectively Π1-factor and Π2-factor copulas as cop-
ulas of the form

C(Π1)(u1, . . . , ud) =

∫ 1

0

d∏
j=1

C
(2)
j|0 (uj |v2) dv2, and (20)

C(Π2)(u1, . . . , ud) =

∫ 1

0

∫ 1

0

d∏
j=1

C
(2)
j|0 (C

(1)
j|0 (uj |v1)|v2) dv2 dv1, (21)

where C
(k)
j|0 (uj |v) = ∂C

(k)
0j (v, uj)/∂v for k = 1, 2 and j = 1, . . . , d, and where

the C
(k)
0j are (arbitrary) bivariate copulas. Π1-factor and Π2-factor copulas have

been studied in [11,12] as copula models for conditionally independent variables
given respectively one and two latent factors.

The following (trivial) proposition aims at recovering Π1-factor and Π2-factor
copulas as special cases of the model (10).

Proposition 6. Consider the copulas given in (20) and (21). In (10), put

C0j = C
(2)
0j . If, moreover, Cu0

= Π for each u0, then the outer copula C in

(10) is the Π1-factor copula given in (20). Likewise, if, in (10), C0j = C
(1)
0j and

moreover,

Cu0(u1, . . . , ud) =

∫ 1

0

d∏
j=1

C
(2)
j|0 (uj |ũ0) dũ0,

for each u0, then the outer copula C in (10) is the Π2-factor copula given in
(21).

Note that Cu0 in the above proposition actually does not depend on u0 hence
the outer copula C is a conditionally invariant model. This restriction can be
easily removed as follows. Let, for each u0, C̃0j(•, •;u0) be bivariate copulas
and

Cu0
(u1, . . . , ud) =

∫ 1

0

d∏
j=1

C̃j|0(uj |ũ0;u0) dũ0,

where C̃j|0(uj |ũ0;u0) = ∂C̃0j(ũ0, uj ;u0)/∂ũ0. The outer copula is then

C(u1, . . . , ud) =

∫ 1

0

∫ 1

0

d∏
j=1

C̃j|0(Cj|0(uj |u0)|ũ0;u0) dũ0 du0. (22)

Admittedly, many copulas have a Π1-factor or Π2-factor copula representa-
tion (Archimedean copulas, structured Gaussian copulas, etc). Our framework
however opens the gate to a potentially even larger number of copulas. For
instance, to the best of our knowledge, nested Archimedean copulas do not al-
low for a Πp-factor copula representation. They can however be recovered in a
nontrivial way from (10), as seen in Proposition 3. Moreover, even if, from a
mathematical point of view, our framework would turn out to be equivalent to
Πp-factor copula models, it still yields a different perspective. Moreover, we are
able to interpret data in a meaningful way, see for instance Section 4.3, and to
easily build d-variate models by tapping into the existing pool of both bivariate
and multivariate copulas in the literature.
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3 Simulation and inference

This section presents a simulation algorithm and procedures to carry out esti-
mation and testing for conditional independence in copula models of the form
(10).

3.1 Simulation

To generate one realization (u1, . . . , ud) of the random vector (U1, . . . , Ud) with
distribution C given by (10), one takes the d-variate margin of (u0, u1, . . . , ud), a
realization of (U0, U1, . . . , Ud), where U0 is the latent factor. Remembering that,
given U0 = u0, the distribution of (U1, . . . , Ud) can be split into the inner copula
Cu0

and a set of univariate margins {Cj|0(•|u0)}, with C−1
j|0 (•|u0) denoting the

inverse function, j = 1, . . . , d, the following algorithm produces the desired
output.

Algorithm 1 Generating one observation from (10).

1: Generate one observation u0 from a standard uniform random variable.
2: Generate one observation (u01, . . . , u0d) from Cu0

.
3: Put uj = C−1

j|0 (u0j |u0) for j = 1, . . . , d.

Let us notice that, in the above algorithm and in the presence of conditional
invariance, that is if Cu0 does not depend on u0, step 1 is not required for
step 2. Needless to say, in the first step, one could have sampled from F0, the
distribution of X0, and in the second step, one would have sampled from Cx0

instead of Cu0
.

3.2 Estimation

In this section, we describe likelihood-based methods to perform estimation in
one-factor copulas of the form (10). All copulas are assumed to be absolutely
continuous with respect to the Lebesgue measure. Moreover, we assume that
the built parametric families of one-factor copulas are identifiable. This may
not be the case, but this issue is not bounded to representations (9) and (10).
Indeed, as we show in the Discussion section, this issue already arised in [11] for
conditional independent one-factor copulas.

Thus, for j = 1, . . . , d, we can write C0j(u0, uj) = C0j(u0, uj ;αj) and
Cx0

(u1, . . . , ud) = C(u1, . . . , ud;β(x0)), where β is a mapping which, to each
x0 in the support of X0, associates a parameter in the appropriate parameter
space. If the mapping β depends on a vector of parameters, as in (13), we
denote this vector also by β. Likewise, we denote the parameter vector which
contains the parameters of the quantile function Q0 of X0 by λ. Accordingly, the
notation for the copula of (U1, . . . , Ud|U0 = u0) becomes CQ0(u0)(u1, . . . , ud) =
C(u1, . . . , ud;β, λ). Finally, let us denote by (xi1, . . . , xid), i = 1, . . . , n, the
sample of the distribution F with margins F1, . . . , Fd and copula C.

12



The pseudo log likelihood function to maximize is

Ln(θ) =

n∑
i=1

log

∫ 1

0

c
[
C1|0(F̂1(xi1)|u0;α1), . . . , Cd|0(F̂d(xid)|u0;αd);β, λ

]
×

d∏
j=1

c0j(u0, F̂j(xij);αj) du0, (23)

where θ stands for the complete parameter vector, that is, θ = (α, β, λ), α =

(α1, . . . , αd) and F̂j denotes an estimate of Fj , j = 1, . . . , d. There are many

ways to estimate Fj . For instance, F̂j may be the empirical distribution function,
as in [4], or may be a parametric estimate, as in [10].

Regarding the computational aspects, especially in higher dimensions and
for datasets of higher sizes, the likelihood 23 may be costly to compute due to
the repeated use of integrals (as many as the sample size). A brief discussion
on these computational aspects are given in Section 4.1.

3.3 Testing for conditional independence

This section provides procedures to test for conditional independence in models
based on the representation (10). Indeed, being able to assess if the variables of
interest are dependent or independent conditioned on the latent factor seems a
crucial issue. Conditional independence would mean that the factor captures all
the dependence in the data whereas no conditional independence would mean
that there is a remaining, intrinsic dependence in the variables even though the
factor has been accounted for.

Throughout this section, the bivariate copulas C0j , j = 1, . . . , d, are assumed
to belong to some parametric families. The inner copula Cu0

, however, is left
unspecified: it can be parametric or nonparametric. The possibility to carry
out a hypothesis test in this setting, is, to the best of our knowledge, new in the
literature.

The hypothesis test for conditional independence is of the form

H0 : Cu0
= Π for all u0

versus H1 : there exists some u0 such that Cu0
6= Π,

(recall that Π stands for the independence copula) where for two functions f
and g, f = g means that f(t) = g(t) for all t in their domain. So are to be
understood inequalities.

If a certain parametric form is assumed for Cu0 , such as in Section 2.2, then
most likely the test will reduce to testing for a parameter to equate a certain
value, and no conceptual difficulties refrain the task. For instance, in (13),
testing for conditional independence amounts to testing for β0 =∞ or β1 =∞
(conceptually). Let us remark that testing for conditional invariance is feasible
in this context: in the above example, for instance, it amounts to testing for
β1 = 0.

If Cu0 is left unspecified, the alternative hypothesis needs to be slightly
restricted in order for a test to exist. Consider

H0 : Cu0
= Π for all u0

versus H1 : Cu0
> Π for all u0 (24)
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In plain English, the alternative hypothesis is: “conditioned on the factor, the
variables of interest are positively dependent”.

Now here is our procedure. Let π be the risk of type I error. One rejects H0

if Tn ≤ cπ, where cπ is chosen so that PH0(Tn ≤ cπ) = π and where

Tn = sup
t∈[0,1]d

M(t)− Ĉ(t), (25)

where M(t) = M(t1, . . . , td) = min(t1, . . . , td) is the Fréchet-Hoeffding upper
bound for copula and

Ĉ(t) =
1

n

n∑
i=1

1(F̂j(Xij) ≤ tj , j = 1, . . . , d) (26)

is the empirical estimator of C, (Xi1, . . . , Xid), i = 1, . . . , n being the data and

F̂j being the empirical distribution function of Xij , j = 1, . . . , d.
The heuristic underlying the expression of Tn is as follows. Denote by C(H0)

the copula under H0, that is, one substitutes Π for the inner copula Cu0
in (10)

and gets

C(H0)(u1, . . . , ud) =

∫ 1

0

d∏
j=1

Cj|0(uj |u0) du0. (27)

If H0 is true, Cu0 = Π, trivially implies that the outer copula C in (10) verifies
C = C(H0). But if H0 is false, Cu0 > Π implies C > C(H0) and thus, in view of
(25), Tn should take smaller values. The Fréchet-Hoeffding bound M is used in
the definition of Tn in order to ensure positiveness.

In order to estimate the distribution of Tn under H0, bootstrap is required.
Note that under H0, the outer copula C (27) is fully parametric: one can obtain

an estimate Ĉ(H0) by maximum pseudo-likelihood [11]. One then can gener-

ate bootstrap samples (say N) in order to get N test statistics T
(1)
n , . . . , T

(N)
n .

These can be used, for instance, to compute a p-value as PH0(Tn ≤ T
(obs)
n ) ≈

N−1
∑N
k=1 1(T

(k)
n ≤ T (obs)

n ).

Comparing the nonparametric estimator Ĉ in (26) to a parametric estimator

under H0, say Ĉ
(H0)
parametric, for instance by considering Kolmogorov-Smirnov or

Cramér-von Mises distances, would have been possible but would have required,

because of the bootstrap procedure, the computation of Ĉ
(H0)
parametric as many

times as they are bootstrap samples, which increases the computational needs.
Finally, let us note that the test H0 : Cu0

= Π against H1 : Cu0
< Π

can be carried out by considering (25) again, but this time with a rejection
region on the right, that is, we reject H0 if Tn ≥ cπ, where cπ is chosen so that
PH0

(Tn ≥ cπ) = π.

4 Illustrations

The purpose of this section is to illustrate how one can take advantage of the
framework presented in Section 2 in practice. We first provide a few technical
details on how some numerical operations were performed.
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4.1 Computational aspects

In this paper, log-likelihoods are maximized using gradient descent algorithms,
which can be found in the optim function of the statistical software R1. These
algorithms usually require to provide a starting parameter vector. It is advised
to try several such points and retain only the one leading to the best result.

In order to numerically evaluate the integral in (23), we relied on our own
implementation of numerical integration Newton-Cotes formulas coupled with
Romberg’s algorithm (see [14], Section 18 and [6]) in R/C++ using the package
Rcpp [3]. Alternatively, we also often used Gauss-Legendre quadrature formulas
of the R package gaussquad. In this last case, the number k of function evalua-
tions needed to compute the approximated integral I(k) was chosen upon visual
inspection of the graph of (k, I(k)). As a rule of thumb, we chose a value k = k0

such that the quantities I(k), k ≥ k0 do not vary much.

4.2 Testing for conditional independence

In this section, we study the power of the test statistic Tn in (25) by means of
a simulation experiment. Recall that the power is the probability of rejecting
the null hypothesis H0 under the alternative hypothesis H1. We considered the
test (24) and set the type I error risk to π = 0.1. We drew N = 500 datasets of
size n = 50, 500 from the model (10), with d = 3 and C0j being Clayton copulas
as in (12) with parameters αj , j = 1, 2, 3, such that Kendall’s τ coefficients are
equal to 0.4 for j = 1, 0.5 for j = 2 and 0.6 for j = 3. The inner copula Cx0

was a normal copula as in (18) with correlation matrix

R =


1

. . . β

β
. . .

1

 , (28)

for β = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. (There are N = 500 samples of size n for each
β and each n). Note that β = 0 corresponds to the null hypothesis H0.

For each k-th sample, k = 1, . . . , N , we calculated a p-value p(k) based on 200
boostrap replications. That is, we calculated the proportion of 200 simulated
test statistics that where lower or equal than the observed one. As rejection
occurs whenever the p-value is lower or equal to the type I error risk π, we
approximated the power by the proportion of the p(k) falling below π. See
Section 3.3 for details.

Figure 1 shows the estimated power of Tn in (25). As it was expected, the
power of the test increases as n and β grow. Furthermore the power is equal to
the type I error risk π under the null, that is when β = 0.

1https://www.r-project.org/

15

https://www.r-project.org/


●

●

●

●

●

●

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
2

0.
4

rho

po
w

er

●

● ● ● ●
●

n=500
n=50

Figure 1: Power of (25) as a function of β.

4.3 Estimating the distribution of a financial market through
the dependence of its individual assets

It is commonly assumed that dependence within financial markets is higher
in “crisis times” than in “stable times” (see e.g. [24] for a statistical analysis
supporting this view). If one wishes to turn this plain English phrase into a
statistical model, then certainly the approach developed in this paper would be
useful. Indeed, one would let X0 be the crisis indicator and Cx0 account for the
dependence in the market as a function of its state — state which would range
from “no crisis”, represented by the number 0, to “extreme crisis”, represented
by the number 1.

Once a particular model would have been chosen, many things may be of
interest. One may be interested in estimating the latent crisis indicator distribu-
tion and study its evolution through time. Or would assess the goodness-of-fit
of the model in order to infirm or confirm it, in particular the functional depen-
dence related to the latent factor, or, in other words, how the individual assets
respond to the market state.

Data

Our market consists of d = 10 arbitrary components2 of the NASDAQ index.
We gathered weekly data from Yahoo! Finance at http://www.yahoo.com/

between 2005 and 2013. The log-return at the i-th week and k-th year for the

j-th component is denoted by X
(k)
ij = log(V

(k)
ij /V

(k)
i−1,j) where the V

(k)
ij stand for

the raw prices. The log-returns are uniformized as R
(k)
ij /(nk + 1), where nk is

the number of observations for the k-th year (usually 52) and R
(k)
ij is the rank

of X
(k)
ij among X

(k)
1j , . . . , X

(k)
nj . The latent crisis indicator at the i-th week and

k-th year is denoted by X
(k)
i0 . For the sake of simplification, we assume that

the vectors (X
(k)
i0 , X

(k)
i1 , . . . , X

(k)
id ), i = 1, . . . , n, are independent and identically

distributed for each fixed k.

2“Alexion”, “Apple”, “Biogen”, “Rob”, “Citrix”, “Costco”, “EA”, “Fast”, “Garmin” and
“Henry”
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Models and methods

Our choice for the 3 ingredients required (remember Section 2.2) to build a
parametric model are given here. The latent crisis indicator is assumed to be
beta distributed, so that it has a flexible distribution over the interval [0, 1]. So,
for each year k,

f
(k)
0 (x0;λ

(k)
1 , λ

(k)
2 ) =

Γ(λ
(k)
1 + λ

(k)
2 )

Γ(λ
(k)
1 )Γ(λ

(k)
2 )

x
λ
(k)
1 −1

0 (1− x0)λ
(k)
2 −1,

where 0 ≤ x0 ≤ 1, λ
(k)
1 , λ

(k)
2 > 0 and Γ is the gamma function defined in (5).

Consequently, the factor’s median may also be interpreted as a deterministic
crisis indicator: the more the median approaches 1, the more likely we are in

a crisis. The copula of (X
(k)
i0 , X

(k)
ij ) is assumed to be a Frank copula for all

j = 1, . . . , d and all k, that is,

C
(k)
0j (u0, uj ;α

(k)
j ) = − 1

α
(k)
j

log

(
1 +

(e−α
(k)
j u0 − 1)(e−α

(k)
j uj − 1)

e−α
(k)
j − 1

)
,

where α
(k)
j 6= 0 and −∞ < α

(k)
j < ∞ (see e.g. [19] p. 116). The inner copula

is a Gaussian copula with an exchangeable correlation matrix, so that cx0
has

formula (6) with

R(x0) =


1

. . . x0

x0
. . .

1

 .

In other words, the dependence between the individual assets increases linearly
as the crisis becomes more severe.

For each year, there were 12 parameters to estimate: 10 for the 10 bivari-

ate Frank copulas (α
(k)
1 , . . . , α

(k)
d ) and 2 for the latent factor beta distribution

(λ
(k)
1 , λ

(k)
2 ). Estimation was performed by pseudo maximum likelihood, as de-

scribed in Section 3.2.
In order to assess the goodness of fit of our model, we compared the average

of the pairwise Kendall’s tau coefficient model-based estimates to its empirical

counterpart. Denote by τ
(k)
jj′ (respectively τ̂

(k)
jj′ ) the true (respectively empirical)

Kendall’s tau coefficient between the j-th and j′-th individual assets for the k-th

year. Let τ (k) =
∑
j<j′ τ

(k)
jj′ /(d(d− 1)/2) and τ (k) =

∑
j<j′ τ̂

(k)
jj′ /(d(d− 1)/2) be

the respective pairwise averages. Recall that the empirical estimate of Kendall’s
tau coefficient beteween the j-th and j′-th individual assets for the k-th year is
given by

τ̂
(k)
jj′ =

(
n

2

)−1∑
i<i′

sign
(

(X
(k)
ij −X

(k)
i′j )(X

(k)
ij′ −X

(k)
i′j′)

)
,

where sign(x) = 1 if x > 0, −1 if x < 0 and 0 if x = 0.
Confidence intervals around τ (k) can be built as follows. Let τ (k) be the

vector whose coordinates are the τ
(k)
jj′ and let τ̂ (k) be its empirical counter-

part. The vector
√
n(τ̂ (k) − τ (k)) tends to a centered normal distribution of
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dimension d(d − 1)/2. The asymptotic variance-covariance matrix can be esti-
mated by bootstrap from formula (12) in [16]. The convergence in distribution
of
√
n(τ (k) − τ (k)) to a centered normal distribution and standard deviation,

say σ(k), comes after applying the delta method. Again, on can compute an
estimate, say σ̂(k), of σ(k) by bootstrap. As a result, one can easily compute a
confidence interval of level 99% as τ (k) ± c.99σ̂

(k)/
√
n, where c.99 is a number

such that the probability of a standard normal variable to lie between −c.99 and
+c.99 is 99%.

Results

Figure 2 pictures the average of the pairwise Kendall’s tau coefficient model-
based estimates. The shaded area represents the 99% empirical confidence in-
tervals. The results presented in Figure 2 support the plausibility of our model
as the curve lies inside the confidence intervals. In particular, these results also
demonstrate the model flexibility, as the curve seems to “follow” the empirical
confidence intervals.

Figure 3 pictures three indexes normalized so that their shape through time
could be drawn and compared on the same picture. The normalizations are
of the form fnormalized(t) = (f(t) − F−)/(F+ − F−) where F− and F+ are the
minimum and maximum values of f respectively. Thus, up to normalization,

the dashed line represents the NASDAQ loss rate, that is, (X
(k)
ij −X

(k+1)
ij )/X

(k)
ij

for k ∈ {2007, . . . , 2013}; the dotted line3 represents the put-call ratio on the
CBOE total exchange volume (see below for an explanation) and the plain line
represents the latent factor estimated median.

The put-call ratio4 on a certain market is, as its name tells, the ratio between
the put options and the call options on that market. Put options are contracts
on assets which give one the right, but not the obligation, to sell that asset in
the future at a price fixed today, so that a profit can be made if the price of the
asset goes down. Conversely, a call option is a contract on a asset which allows
one to buy in the future at a price fixed today. Thus, arguably, the ratio of the
put to the call can be seen as the overall attitude of investors toward a financial
market. As such, we might see it as a crisis indicator. Likewise, the index of a
market, such as the NASDAQ, is commonly regarded as mirroring the state of
some part of the economy, and, therefore, its loss rate can be seen again as a
sort of crisis indicator.

Therefore, we have at our disposal, on the one hand, two crisis indicators
computed independently from our model, and our latent factor estimated me-
dian, which we chose to interpret as a crisis indicator. Arguably, if these three
indexes — the NASDAQ loss rate, the put-call ratio and the latent factor esti-
mated median — exhibit a similar behavior, this would support, first, our choice
to interpret X0 as a crisis indicator, second, the functional form of our copula
Cx0

and third, our model all together.
In Figure 3, all the indexes have a similar shape: that of the letter “M”: it

goes up, down, up and down again. Moreover, they all pick down at around the
same location, corresponding to 2010. Also, they all pick up at around 2008,
corresponding to the world financial crisis that took its root into the subprimes

3The data were downloaded from http://www.cboe.com/data/putcallratio.aspx
4see e.g. http://www.investopedia.com/terms/p/putcallratio.asp
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crisis in the summer of 2007. After 2010, they start to go up again, perhaps
corresponding to the European sovereign debt crisis. While we have, admittedly,
no expertise to discuss the relevancy or confidence one can have in these indexes,
it is still noticeable how they agree with each other, how they tell the same story.
In particular, the behavior of our latent factor is consistent with the behaviors
of the other crisis indicators. Therefore, we believe that our model passed an
important empirical test and we hope that to have convinced the reader of its
usefulness in this situation.
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Figure 2: Pairwise Kendall’s tau estimated coefficients average under the con-
sidered model along with empirical confidence intervals through time.
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Figure 3: Three normalized financial markets trackers through time: the plain,
dashed and dotted curves represent the latent factor estimated median, NAS-
DAQ loss rate and the put-call ratio.

5 Discussion

In this paper, we extended the scope of one-factor copulas by deriving two equiv-
alent representations from which new parametric models can be built. These
models can now feature a varying conditional dependence structure and a fac-
tor’s distribution not restricted to be the standard uniform. This permits to
estimate the factor’s distribution, despite unobserved. The usefulness of our ap-
proach was illustrated by considering the estimation of the behavior of a financial
market through the dependence of its individual components. Furthermore, a
novel hypothesis test was constructed in order to assess whether conditional
independence holds or not.
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Nonetheless, open challenges still remain. In our view, one of great im-
portance is the issue of identifiability. Assuming that parametric families have
been chosen in (10), different parameter vectors can yield the same distribu-
tion. For instance, for d = 2, Cx0 = Π and C01, C02 being Farlie-Gumbel-
Morgenstern copulas, that is, C0j(u0, uj ;αj) = u0uj + αjuju0(1− u0)(1− uj),
with αj ∈ [1,−1], the copula (10) is easily calculated as C(u1, u2, α1, α2) =
u1u2(α1α2(u1 − 1)(u2 − 1) + 3). Thus, one can see that C(u1, u2, α1, α2) =
C(u1, u2, α

′
1, α
′
2) whenever α1α2 = α′1α

′
2, and the last equation can be satisfied

even if (α1, α2) 6= (α′1, α
′
2). Needless to say, in higher dimensions or for other

parametric families, identifiability issues may be tougher to spot.
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6 Appendix

Proof of Proposition 1.

Assume d = 2. Let δk(v) (respectively δk(v)) be the limit of Ck|0(t|vt) (respec-
tively Ck|0(1− t|1− vt)) as t→ 0 for k = i, j and for 0 < v < 1.

λL = lim
u→0

1

u

∫ 1

0

Cu0
(C1|0(u|u0), . . . , Cd|0(u|u0))du0

= lim
u→0

∫ 1/u

0

Cvu(C1|0(u|vu), C2|0(u|vu))dv.

Fix v > 0. Let ε > 0 and η(v) = εe−v. The triangle inequality yields

|C0(δ1(v), δ2(v))− Cuv(C1|0(u|uv), C2|0(u|uv))|
≤|C0(δ1(v), δ2(v))− C0(C1|0(u|uv), C2|0(u|uv))|
+|C0(C1|0(u|uv), C2|0(u|uv))− Cuv(C1|0(u|uv), C2|0(u|uv))|

for any 0 ≤ u ≤ 1. By definition of δ1 and δ2 and continuity of C0, as u→ 0, the
first term in the right hand side can be made arbitrarily small. So does the sec-
ond term, by uniform convergence of u 7→ Cuv to a continuous copula C0. There-
fore, for u small enough, C0(δ1(v), δ2(v))− η(v) < Cuv(C1|0(u|vu), C2|0(u|vu)).
Thus,∫ 1/u

0

C0(δ1(v), δ2(v)) dv − ε(1− e−1/v) <

∫ 1/u

0

Cuv(C1|0(u|vu), C2|0(u|vu)) dv.

Passing by the limit u→ 0,∫ ∞
0

C0(δ1(v), δ2(v)) dv − ε < lim
u→0

∫ 1/u

0

Cuv(C1|0(u|vu), C2|0(u|vu)) dv = λL.

Note that the integral in the left hand side is finite (otherwise λL would not
exist). It is also (strictly) positive because of the following arguments. The
copula C0 is (strictly) increasing in each of its arguments as its density is (strictly
positive) whenever its arguments are in (0, 1). Moreover, since the lower tail
dependence coefficient of C0k is positive, there exists 0 < v < 1 such that
δk(v) > 0 for both k = i and k = j. See [8] or [11] for a proof.

To conclude that λL > 0, note that ε was arbitrary and therefore could have
been taken as small as desired.

The proof for the upper tail dependence coefficient is quite similar to the
proof of the first part. Since∫ 1

0

Ci|0(ui|u0) du0 = ui,

i = 1, . . . , d, we have

λU = lim
u→0

1

u

∫ 1

0

Cu0
(C1|0(1− u|u0), C2|0(1− u|u0))du0

lim
u→0

∫ 1/u

0

C1−uv(C1|0(1− u|1− uv), C2|0(1− u|1− uv))dv,
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where for any bivariate copula C, C(u, v) = 1 − u − v + C(u, v). To proceed,
one easily adapt the proof for the lower tail dependence coefficient.

Extension to d > 2 simply amounts to look at the bivariate pairs since tail
dependence coefficients as understood in this paper are defined for bivariate
copulas only.

Proof of Proposition 2

Checking that C0i is a copula is straightforward. Moreover, since

∂C0i(u0, ui)

∂u0
= e−Q0(u0)ψ−1(ui),

it holds that

C(u1, . . . , ud) =

∫ ∞
0

e−t
∑d

i=1 ψ
−1(ui) dt = ψ(

d∑
i=1

ψ−1(ui)).

Proof of Proposition 3

First, let us prove that Cx0
is a copula. Define for 0 ≤ u, v, w ≤ 1

Gx0
(u, v, w) = exp

(
− x0 × ν

(
ν−1

[
ψ−1

123

(
u
)]

+ ν−1
[
ψ−1

123

(
v
)]))

× exp

(
− x0ψ

−1
123

(
w

))
.

One can check that Cx0
of Proposition 3 is the copula corresponding to Gx0

.
Now, from [7], page 88, it can be easily deduced that Gx0 is a distribution
function. Therefore Cx0 is a copula.

Let us go on by showing that C in (10) is a nested Archimedean copula. We
have

C(u1, u2, u3) =

∫ 1

0

exp

(
−Q0(u0)× ν

(
ν−1

[ 1

Q0(u0)
log
( 1

C1|0(u1|u0)

)]
(29)

+ ν−1
[ 1

Q0(u0)
log
( 1

C1|0(u2|u0)

)]))
× C3|0(u3|u0) du0.

In the proof of Proposition 2, it was shown that Ci|0(ui|u0) = exp(−Q0(u0) ×
ψ−1

123(ui)). Replacing in (29) gives∫ 1

0

exp

(
−Q0(u0)× ν

(
ν−1

[
ψ−1

123(u1)
]

+ ν−1
[
ψ−1

123(u2)
]))

exp(−F−1
0 (u0)× ψ−1

123(u3)) du0

=

∫ ∞
0

exp

(
− x0

[
ψ−1

123

(
ψ12

(
ψ−1

12 (u1) + ψ−1
12 (u2)

))
+ ψ−1

123(u3)

])
dF0(x0)

=ψ123

(
ψ−1

123(ψ12(ψ−1
12 (u1) + ψ−1

12 (u2))) + ψ−1
123(u3)

)
.
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Proof of Proposition 4.

Let R be a symmetric nonnegative matrix whose diagonal elements are equal
to 1 and whose element in the i-th row and j-th column is denoted by βij . Let
(Z1, . . . , Zd, Z0) be distributed according to a (d+ 1)-variate centered Gaussian
distribution with variance-covariance matrix given by R

d×d
β0
d×1

βT0
1×d

1
1×1


so that (Z1, . . . , Zd|Z0 = z0) ∼ N(β0z0, R−β0β

>
0 ). The partial correlations are

given by

Cov(Zi, Zj |Z0 = z0) = Corr(Zi, Zj |Z0 = z0) =
βij − β0iβ0j√

(1− β2
0i)(1− β2

0j)
,

or, in other words, the partial correlation matrix is A = D−1/2(R−β0β
>
0 )D−1/2.

Given Z0 = z0, the margins (Zi|Z0 = z0) are N(β0iz0, 1 − β2
0i), hence P (Zi ≤

z|Z0 = z0) = Φ((z−β0iz0)/
√

1− β2
0i), and, moreover, the corresponding copula

is a Gaussian copula with A as its correlation matrix; let us denote it by CA.
Let us calculate the copula corresponding to (Z1, . . . , Zd). Let Φ be the cu-

mulative distribution function of the univariate standard Gaussian distribution.

C(Z1,...,Zd)(u1, . . . , ud)

=

∫
P (Φ(Zi) ≤ ui, i = 1, . . . , d|Z0 = z0)Φ′(z0)dz0

=

∫
P (Zi ≤ Φ−1(ui), i = 1, . . . , d|Z0 = z0)Φ′(z0)dz0

=

∫
CA

{
Φ

(
Φ−1(ui)− β0iz0√

1− β2
0i

)
, i = 1, . . . , d

}
Φ′(z0)dz0

=

∫ 1

0

CA

{
Φ

(
Φ−1(ui)− β0iΦ

−1(u0)√
1− β2

0i

)
, i = 1, . . . , d

}
du0

But this expression corresponds exactly to the copula given in (10).
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