
Available at:
http://hdl.handle.net/2078.1/171835

[Downloaded 2019/04/19 at 00:33:27]

"The Smart Table Constraint"

Mairy, Jean-Baptiste ; Deville, Yves ; Lecoutre, Christopthe

Abstract

Table Constraints are very useful for modeling combinatorial problems in
Constraint Programming (CP). They are a universal mechanism for representing
constraints, but unfortunately the size of their tables can grow exponentially with
their arities. In this paper, we propose to authorize entries in tables to contain
simple arithmetic constraints, replacing classical tuples of values by so-called
smart tuples. Smart table constraints can thus be viewed as logical combinations
of those simple arithmetic constraints. This new form of tuples allows us to encode
compactly many constraints, including a dozen of well-known global constraints.
We show that, under a very reasonable assumption about the acyclicity of smart
tuples, a Generalized Arc Consistency algorithm of low time complexity can be
devised. Our experimental results demonstrate that the smart table constraint is
a highly promising general purpose tool for CP.

Document type : Communication à un colloque (Conference Paper)

Référence bibliographique

Mairy, Jean-Baptiste ; Deville, Yves ; Lecoutre, Christopthe. The Smart Table Constraint. 12th
International Conference on Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems (CPAIOR 2015) (Barcelona). In: Proceedings of 12th
International Conference on Integration of AI and OR Techniques in Constraint Programming for
Combinatorial Optimization Problems, Springer Verlag2015

DOI : 10.1007/978-3-319-18008-3_19

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DIAL UCLouvain

https://core.ac.uk/display/34085188?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Smart Table Constraint

Jean-Baptiste Mairy1, Yves Deville1, and Christophe Lecoutre2

1 ICTEAM, Université catholique de Louvain, Belgium
{jean-baptiste.mairy , yves.deville}@uclouvain.be
2 CRIL-CNRS UMR 8188, Université d’Artois, F-62307 Lens, France

lecoutre@cril.fr

Abstract. Table Constraints are very useful for modeling combinatorial prob-
lems in Constraint Programming (CP). They are a universal mechanism for rep-
resenting constraints, but unfortunately the size of their tables can grow expo-
nentially with their arities. In this paper, we propose to authorize entries in ta-
bles to contain simple arithmetic constraints, replacing classical tuples of values
by so-called smart tuples. Smart table constraints can thus be viewed as logical
combinations of those simple arithmetic constraints. This new form of tuples al-
lows us to encode compactly many constraints, including a dozen of well-known
global constraints. We show that, under a very reasonable assumption about the
acyclicity of smart tuples, a Generalized Arc Consistency algorithm of low time
complexity can be devised. Our experimental results demonstrate that the smart
table constraint is a highly promising general purpose tool for CP.

Table constraints explicitly express the allowed combinations of values as sets of
tuples, which are called tables. Table constraints can theoretically encode any kind of
constraints and are amongst the most useful ones in Constraint Programming (CP).
Indeed, they are often required when modeling combinatorial problems in many ap-
plication fields. The design of filtering algorithms for such constraints has generated
a lot of research effort, see [2, 19, 16, 8, 27, 14, 15, 21, 24]. The biggest problem with
table constraints are their size. Several approaches have been proposed to reduce this
size. Two of them modify the definition of classical tuples: compressed tuples [12, 25,
30] and short supports applied to table constraints [10]. Compressed tuples allow tuples
entries to contain sets. A compressed tuple thus represents all the tuples in the carte-
sian product of the sets. Short supports applied to table constraints allow variables to
be left out of the short tuple. Left-out variables can take any values from their domains.
In this paper, we propose to generalize both compressed tuples and short supports in
table constraints by authorizing tuples to contain simple arithmetic constraints. We call
such tuples smart tuples, and tables containing smart tuples smart tables. For instance,
the following set of tuples {(1, 2, 1), (1, 3, 1), (2, 2, 2), (2, 3, 2), (3, 2, 3), (3, 3, 3)} on
variables {x1,x2,x3} with domains {1, 2, 3} can be represented by a smart table con-
taining only one smart tuple:

x1 x2 x3

= x3 ≥ 2 ∗

or in an equivalent form by (x1 = x3,x2 ≥ 2). A symbol ∗ in the tabular form of
a smart tuple means that, if not occurring anywhere else, the corresponding variable is
not constrained at all by the tuple (which is not the case here).

As a motivating example, let us consider a car configuration problem. We assume
that the cars to configure have 2 colors (one for the body, colB , and the other for the roof,
colR), a model number modNum , an option pack optPack and an onboard computer
comp. A configuration rule might state that, for a particular model number a and some
fancy body color set S, an option pack less than a certain pack b implies that the onboard
computer cannot be the most powerful one, c, and that the roof color has to be the same
as the body color. This configuration constraint can be written as:

modNum = a ∧ colB ∈ S ∧ optPack < b⇒ comp 6= c ∧ colR = colB

The encoding of this constraint with a smart table consists of four smart tuples:
(modNum 6= a), (colB 6∈ S), (optPack ≥ b) and (comp 6= c, colR = colB), which
gives under tabular form:

modNum colB colR optPack comp

6= a ∗ ∗ ∗ ∗
∗ 6∈ S ∗ ∗ ∗
∗ ∗ ∗ ≥ b ∗
∗ ∗ = colB ∗ 6= c

Encoding this constraint with classical tuples is exponentially larger. Even using
compressed tuples or short supports results in a table that is strictly longer. This is
because none of these techniques can be used to encode compactly the relation existing
between colB and colR (they require, for this case, one distinct tuple for each possible
color). Smart table constraints can never be larger than classical table constraints, even
using compressed tuples or short support because smart table constraints generalize
all of the above. Using reification (decomposition by adding auxiliary variables) of
the configuration rule does not guarantee the same level of pruning as the smart table
encoding since there is a cycle to handle.

Importantly, smart table constraints can be viewed as a disjunction of conjunctions
of basic arithmetic constraints. Indeed, each smart tuple contains a conjunction of basic
arithmetic constraints and the table is a disjunction of such tuples, since the variables
can satisfy any of the smart tuples. Filtering of logical combinations of constraints has
already been studied in the literature [1, 3, 4, 29, 28, 11, 17, 18, 9]. However, the partic-
ular form of our smart tuples leads to a filtering algorithm with a low polynomial time
complexity. More precisely, we show how Simple Tabular Reduction (STR) [27, 14]
can be adapted for smart table constraints to produce an efficient filtering procedure to
enforce Generalized Arc Consistency. Smart table constraints can be viewed as a subset
of the logic algebra defined in [1]: we impose a particular form on the logical com-
binations (disjunction of conjunction, conjunctions forming acyclic networks) and we
restrict the constraints that can be combined to be simple arithmetic constraints. The
rules for the filtering smart table constraints follow the ones defined in [1]. The reasons

for such a subset of the logical algebra are multiple. The choice of disjunction of con-
junctions has been made to keep smart tables close to classical tables. The restriction
to acyclic conjunctions is a requirement for the filtering rules from [1] to provide the
GAC maximal inconsistent sets. Maximal inconsistency sets are mandatory if the filter-
ing rules from [1] are to be used to compute GAC of a smart table constraint. Without
this guarantee, a procedure, more complex and more expensive than the filtering rules
of [1], would have to be used. See for instance the filtering for general conjunctions
defined in [3, 11, 17]. Despite those restrictions, smart tuples greatly increase the ex-
pressive power of classical tuples. The novelty in our approach lies in the introduction
of a concrete propagator for such a subset of the logic algebra. The pruning achieved
by the disjunction is equivalent to the pruning of constructive disjunction [29, 28]. The
propagation of a whole table constraint can even be seen as the propagation of a large
constructive disjunction. The ability to leave variables out of the constraints in the smart
tuple makes their filtering as efficient as the improved constructive disjunction filtering
defined in [17]. In [4], the authors propose a filtering for constructive disjunction based
on indexicals as well as a stronger filtering, considering disjunctions together with other
constraints. In this paper, we do not investigate propagating more than one table con-
straint at a time. The filtering for disjunctions proposed in this paper is stronger than the
one proposed in [9], as we have here the same pruning as the constructive disjunction,
which is not the case in [9].

1 Defining Smart Table Constraints

A Constraint Satisfaction Problem (CSP) P is composed of an ordered set of variables
X = {x1, . . . ,xn}, where each variable x has a domain of possible values denoted by
dom(x), and a set of constraintsC = {c1, . . . , ce}, where each constraint c corresponds
to a relation denoted by rel(c) on a subset of variables of X ; this subset is called the
scope of c and denoted by scp(c). Each constraint c defines the possible combinations
of values satisfying c in rel(c). The arity of a constraint c is #scp(c), i.e., the number
of variables involved in c. The largest arity is denoted by r, while the size of the largest
domain is denoted by d.

A literal is a variable value pair (x, a) such that x ∈ X . A literal of a constraint c
is a literal (x, a) such that x ∈ scp(c). A literal (x, a) is valid iff a ∈ dom(x). A tuple
on an (ordered) subset of variables Y = {y1, . . . , yp} ⊆ X is a sequence of literals
((y1, a1), . . . , (yp, ap)), one for each variable y ∈ Y . When there is no ambiguity about
Y , we simply write (a1, . . . , ap). A tuple is valid iff all its literals are valid. A tuple τ is
allowed by a constraint c iff τ ∈ rel(c). A tuple τ satisfies a set of constraints C ′ iff for
every constraint c′ ∈ C ′, τ [scp(c′)] is allowed by c′, where τ [Y] denotes the restriction
of τ on literals referring to variables in Y . The set of solutions of a CSP P = (X,C) is
denoted by sols(P) ; these are the valid tuples on X that satisfy C. A table constraint
is a constraint whose semantics is defined in extension by listing the set of allowed (or
forbidden) tuples. These tuples are classical. In this paper, we introduce smart table
constraints.

A smart table constraint sc is defined semantically from a set of smart tuples, called
smart table and denoted by table(sc). A smart tuple σ is a set of tuple constraints, where
a tuple constraint can take four possible forms:

1. <var> <op> a
2. <var> ∈ S or <var> 6∈ S
3. <var> <op> <var>
4. <var> <op> <var> + b

where <var> is a variable in the scope of the smart table constraint, a and b some
constants, S a set of constants and <op> an operator in the set {<,≤, =, 6=,≥,>}.

The semantics of smart table constraints is simple and natural: a classical tuple τ is
allowed by a smart table constraint sc iff there is at least one smart tuple σ ∈ table(sc)
such that τ satisfies σ. Note that when a variable x ∈ scp(sc) is not involved in any
tuple constraint of a smart tuple σ ∈ table(sc) then x can take any value in its domain;
such a variable is said to be unrestricted on σ and the set of unrestricted variables on
σ is denoted by unres(σ). Note also that any classical tuple (a1, . . . , ar) on a set of
variables {x1, . . . ,xr} can be re-written as the smart tuple {x1 = a1, . . . ,xr = ar}.

As seen in the introduction, smart tuples can help modeling constraints in a compact
and natural way, when disjunction is needed. Smart table constraints can also be used to
encode some global constraints. The encodings of Lex, Max and Element are smart table
constraint versions of the ones proposed in [1]. In the examples below, tuple constraints
are written directly inside the tables to ease reading. A tuple constraint of the form xi
<op> a (resp. xi <op> xj + b) is written as <op> a (resp. <op> xj + b) in the
column of the table corresponding to xi. The following global constraints illustrate the
modeling power of the smart table constraint. Their equivalent with classical tuples are
exponentially larger. For instance, in the table for element, each smart tuple corresponds
to dm classical tuples. For compressed tuples, if only one variable is the target of all the
tuple constraints, each smart tuple can be translated as d compressed tuples. This is the
case for all the global constraints presented below except for Lex. For this constraint,
the smart table is O(dm) times smaller than the table using compressed tuples. Short
supports applied to table constraints can only encode efficiently unrestricted variables,
making the encoding of each smart tupleO(dm) tuples with short supports for Lex, Max
and AtMost1. Global constraints are of course not the sole purpose of the smart table
constraints but being able to encode efficiently those constraints has many advantages.

Lex([x1,. . . ,xm], [y1,. . . , ym]): x̄ > ȳ

x1 x2 . . . xm y1 y2 . . . ym

> y1 ∗ . . . ∗ ∗ ∗ . . . ∗
= y1 > y2 . . . ∗ ∗ ∗ . . . ∗
. .

= y1 = y2 . . . > ym ∗ ∗ . . . ∗

Max([x1,x2, . . . ,xm],M): max(x̄) = M

x1 x2 . . . xm M

∗ ≤ x1 . . . ≤ x1 = x1
≤ x2 ∗ . . . ≤ x2 = x2
.

≤ xm ≤ xm . . . ∗ = xm

Element(I, [x1,x2, . . . ,xm],R): x̄[I] = R

I x1 x2 . . . xm R

= 1 ∗ ∗ . . . ∗ = x1
= 2 ∗ ∗ . . . ∗ = x2
.

= m ∗ ∗ . . . ∗ = xm

AtMost1([x1, . . . ,xm],Y): #{1 ≤ i ≤ m|xi = Y } ≤ 1

x1 x2 . . . xm Y

∗ 6= Y . . . 6= Y ∗
6= Y ∗ . . . 6= Y ∗
.

6= Y 6= Y . . . ∗ ∗

NotAllEqual(x1, . . . ,xm): ∃1 ≤ i, j ≤ m : xi 6= xj

x1 x2 x3 . . . xm

∗ 6= x1 ∗ . . . ∗
∗ ∗ 6= x1 . . . ∗
.

∗ ∗ ∗ . . . 6= x1

Diffn([x1, . . . ,xm], [i1, . . . , im], [y1, . . . , ym], [j1, . . . , jm]):
no overlap between orthotopes defined in Rm from points x̄ and ȳ with lengths along
axes of ī and j̄ respectively.

x1 x2 . . . xm y1 y2 . . . ym

∗ ∗ . . . ∗ ≥ x1 + i1 ∗ . . . ∗
≥ y1 + j1 ∗ . . . ∗ ∗ ∗ . . . ∗
∗ ∗ . . . ∗ ∗ ≥ x2 + i2 . . . ∗
∗ ≥ y2 + j2 . . . ∗ ∗ ∗ . . . ∗
. .

∗ ∗ . . . ∗ ∗ ∗ . . . ≥ xm+im

∗ ∗ . . . ≥ ym+jm ∗ ∗ . . . ∗

2 Filtering Smart Table Constraints

This section presents a filtering algorithm to establish GAC on smart table constraints.
GAC is a property that relies on the concept of support. A support of a constraint c is a
tuple on scp(c) which is both valid and allowed by c. A support on c for a literal (x, a)
of c is a support of c containing (x, a).

Definition 1. A constraint c is Generalized Arc Consistent (GAC) iff all the literals of
the constraint have a support on c. A CSP is GAC iff all its constraints are GAC.

In general, identifying the set of supports of a constraint allows us to enforce GAC.
Actually, for any smart table constraint sc, each smart tuple σ corresponds to a small
CSP Pσ = (Xσ,Cσ), with Xσ = scp(sc) and Cσ = σ. The classical tuples that
are supports of sc from σ are exactly the solutions in sols(Pσ). Hence, the full set
of supports of sc is equal to

⋃
σ∈table(sc) sols(Pσ). This is similar to the way set of

supports are computed for constructive disjunction.
Our objective is to efficiently identify and remove valid literals of sc without any

support. It may seem costly to compute sols(Pσ) for every smart tuple σ. Obtaining
the set of supports for an arbitrary logical combination of constraints is NP-hard [1].
However, we impose that the constraint graph of any CSP Pσ that is associated with
a smart tuple σ, is acyclic and Pσ is a conjunction. This restriction allows an efficient
processing of the smart tuples when used for filtering.

Property 1. Let σ be a smart tuple of a smart table constraint, P ′
σ , the GAC closure of

Pσ , is globally consistent, i.e., each literal of P ′
σ appears in at least one solution of Pσ .

This property is derived from [20] and the acyclic nature of the constraint graphs
defined by smart tuples. This means that the set of literals appearing in sols(Pσ) can be
obtained by simply applying GAC on Pσ .

Obtaining the GAC closure on each of the Pσ and taking their union at the end to
have the set of supported literals corresponds exactly to an application of the filtering
rules defined in [1], when seeing the smart table constraint as a logical combination of
basic arithmetic constraints. The acyclic nature of the conjunctions in the smart tuples
guarantees that the set of supported literals computed by this procedure is the set of
GAC literals for the logical combination of arithmetic constraints by Theorem 3 in
[1]. Hence, this procedure is correct and computes the GAC literals for the smart table
constraint. Moreover, the complexity of filtering Pσ can also benefit from the form of
the smart tuples, as expressed below.

Property 2. The GAC closure of an acyclic binary CSP can be obtained in O(e · F),
where filtering an individual constraint if O(F).

The procedure for obtaining the GAC closure of an acyclic binary CSP P = (X,C)
is the following. The CSP forms a forest (possibly, with only one tree), and each tree
of the forest can be filtered independently since no variable is shared between trees.
For each tree T , revising constraints in turn from the deepest ones to the shallowest
ones, and then the other way around, achieves GAC on T . Each constraint in C is thus
revised two times (no fixed point needed). Revising a constraint c consists in removing

the literals that have no support on c. We call this procedure GAC tree. GAC tree can
be viewed as an application of the rules defined in [1] for conjunction. The acyclicity
of the networks guarantees that the inconsistency sets computed are maximal [1] and
hence that GAC tree is correct. GAC tree, as well as properties 1 and 2, are not original
to this work, but they justify the filtering procedure of the smart table constraints.

Applying GAC tree to a smart tuple σ of a constraint sc requires decomposing σ
according to its connected components; the result of this decomposition will be denoted
by forest(σ). More precisely, for each subset cc ⊆ σ that represents a connected com-
ponent, there is an associated tree T in forest(σ) that defines an independent sub-CSP
(XT ,CT) with XT = vars(cc) and CT = cc. We shall refer to such sub-CSPs with
tree shape as treeCSPs. An additional void tree T defining a trivial sub-CSP (XT ,CT)
with XT = unres(σ) and CT = ∅ is introduced if unres(σ) 6= ∅. This guarantees that
sols(Pσ) = ΠT∈trees(σ)sols(T), which results from the independence of the trees w.r.t
each other.

The filtering algorithm proposed for smart table constraints, called smartSTR, works
with the decompositions into treeCSPs instead of working directly with the smart tu-
ples. It is inspired from STR (Simple Tabular Reduction) [27, 14]. STR works by scan-
ning constraint tables, going through each tuple sequentially. The validity of each row
is checked. When a row is not valid, it is removed from the table. Otherwise, all the
literals of the row are marked as having a support. After scanning the whole table, all
the literals for which no support has been found are removed. The difference between
STR and smartSTR is the way validity checks and the collection of supported literals
is performed. A smart tuple σ is valid iff Pσ admits at least one solution. A smart tuple
σ is thus valid iff each treeCSP in forest(σ) admits at least one solution. The literals
supported by σ are the literals in sols(Pσ) (obtained with GAC tree), computed as the
union of the supported literal sets of each individual treeCSP in forest(σ).

Algorithm 1 presents the pseudo-code of smartSTR. In all the algorithms presented
in this paper, pre is the precondition and post is the postcondition. SmartSTR uses
a data structure sl that contains all the literals without any found support (sl stands for
support-less). Line 3 initializes sl with all valid literals (no support has been found yet).
Then the algorithm loops over all the smart tuples of the constraint (line 4). The test
at line 5 checks the validity of the current smart tuple by testing the validity of all its
treeCSPs. If the smart tuple σ is valid, each of its independent treeCSP removes from
sl the literals they support (loop at lines 6-7). The loop at line 8 empties the sets sl of
all unrestricted variables on σ, as there is no restriction on those variables (actually, this
corresponds to dealing with the void tree that is not in practice included in forest(σ)). If
the smart tuple is invalid, it is removed from the table (line 9); the table of the constraint
is represented using a sparse set, as in STR1 and STR2. After going through all the
smart tuples of the constraint, smartSTR removes the literals that are still left without a
support (loop at line 10).

As seen in Algorithm 1, each treeCSP is responsible to check its validity and to
remove from sl the literals it supports. This is done through isValid and collect
methods. Those methods correspond to GAC tree. Their pseudo codes are given below
because it is a non standard GAC procedure, efficient and adapted to smart tuples. This
also eases the complexity analysis. Their specifications can be found in Interface 1,

1 smartSTR(SmartTableConstraint sc):
2 // post: the constraint sc is GAC
3 forall x ∈ scp(sc): sl(sc)[x]← dom(x)
4 forall σ ∈ table(sc):
5 if (∧T∈forest(σ)T.isValid()):

6 forall T ∈ forest(σ):
7 T.collect(sl(sc))
8 forall x ∈ unres(σ): sl(sc)[x]← ∅
9 else: remove σ from table(sc)

10 forall x ∈ scp(sc):
11 dom(x)← dom(x) \ sl(sc)[x]
12

Algorithm 1: smartSTR

called TreeCSP. Note that a treeCSP involves a set of variables vars and belongs to the
forest of a smart tuple σ.

1 interface TreeCSP
2 fields: Variable[] vars
3 isValid()
4 // post: returns true iff the treeCSP is valid
5 collect(Set{Value}[] sl)
6 // pre: the smart tuple σ, such that the treeCSP
7 // is in forest(σ), is valid
8 // post: ∀x ∈ vars, ∀a ∈ dom(x), (x, a) has a
9 // support in the treeCSP⇒ a 6∈ sl[x]

10

Interface 1: Interface for treeCSPs

From now on, the treeCSPs that are composed of only one constraint will be called
branches. In the code presented below, we have specific classes for unary branches
(containing a tuple constraint of the form <var> <op> a, <var> ∈ S or <var> 6∈ S),
and binary branches (containing a tuple constraint of the form <var> <op> <var> ,
or <var><op><var> + b). There is one unary and binary branch class for each value
of <op> . We also introduce one class for simple trees (trees of height 1 consisting of
multiple branches all sharing the same root variable) and another one for general trees
(trees of height > 1).

Algorithm 2 presents the classes introduced for unary branches with operations =,
and <. The pseudo-code for the other operators are very similar. The additional method
filterX, not contained in Interface 1, is responsible to filter the (pseudo) domain Dx
given as argument. It is used by simple and general trees, where GAC has to be enforced

on several branches. Dx is used to avoid filtering directly dom(x), because the effective
filtering can only be done when all smart tuples have been processed.

1 class UnaryBranchEq:TreeCSP /∗ x = a ∗/
2 fields: Variable x, Value a
3 isValid(): return a ∈ dom(x)
4 collect(sl): sl[x]← sl[x] \ {a}
5 filterX(Dx): Dx ← Dx ∩ {a}
6

1 class UnaryBranchLt:TreeCSP /∗ x < a ∗/
2 fields: Variable x, Value a
3 isValid(): return min(dom(x)) < a
4 collect(sl):
5 sl[x]← sl[x] \ {b ∈ dom(x) : b < a}
6 filterX(Dx): Dx ← Dx \ {b ∈ Dx : b ≥ a}
7

Algorithm 2: Classes for unary branches = and <

Algorithm 3 presents the classes introduced for binary branches with operations =
and <, respectively. Again, the pseudocodes for the other operators are very similar. In
those pseudocodes, S ⊕ b, where S is a set and b a value, represents the addition of the
constant to all the values in the set. They all implement the method filterX, as unary
branches do, but with two parameters (Dx and Dy). Dx is the copy of the domain of x
to filter and Dy is a domain for y to use to filter Dx . The second parameter is needed
during the execution of GAC tree to use an already filtered copy of the domain of y to
filter the copy of dom(x). Again, the filtering of the real domains of the variables can
only occur after all the smart tuples have been processed. Those classes also implement
a filterY method which is the counterpart of filterX for y. They implement a
method collectY, used by simple trees to collect values, but only for the second
involved variable y with respect to a (pseudo) domain Dx , given as a parameter, for the
first involved variable x. It is called after Dx , which is initially a copy of dom(x), has
been filtered through the entire simple or general tree.

Algorithm 4 gives the pseudo-code for simple trees, where all involved branches
share the same root variable x (see the assertion at line 4). Since we can change the
order of the variables in binary branches (x1 < x2 → x2 > x1, etc.), this is not a
requirement on the form of the smart tuples. This is enforced at the creation of the smart
tuples trees. The validity test at line 5 starts by making a copy Dx of dom(x). Then, Dx
is filtered through all branches (loop starting at line 7). The unary branches are treated
at lines 8-9 and the binary ones, at lines 10-11. For the binary branches, filterX is
called with the full domain of y as argument for the copy of y’s domain. If Dx does not
become empty, that means that the simple tree has at least one solution. The method
collect at line 13 uses Dx (which has already been filtered by isValid). Since

1 class BinaryBranchEq:TreeCSP /∗ x = y + b ∗/
2 fields: Variable x, y
3 Value b
4 isValid(): return dom(x) ∩ dom(y)⊕ b 6= ∅
5 collect(sl):
6 I ← dom(x) ∩ dom(y)⊕ b
7 sl[x]← sl[x] \ I
8 sl[y]← sl[y] \ I
9 collectY(sl, Dx):

10 I ← Dx ∩ dom(y)⊕ b
11 sl[y]← sl[y] \ I
12 filterX(Dx,Dy): Dx ← Dx ∩ Dy⊕ b
13 filterY(Dx,Dy): Dy ← Dx ∩ Dy⊕ b
14

1 class BinaryBranchLt:TreeCSP /∗ x < y + b ∗/
2 fields: Variable x, y
3 Value: b
4 isValid(): return min(dom(x)) < max(dom(y)) + b
5 collect(sl):
6 sl[x]← sl[x] \ {a ∈ dom(x) : a < max(dom(y)) + b}
7 sl[y]← sl[y] \ {c ∈ dom(y) : c > min(dom(x))− b}
8 collectY(sl, Dx):
9 sl[y]← sl[y] \ {c ∈ dom(y) : c > min(Dx)− b}

10 filterX(Dx,Dy):
11 Dx ← Dx \ {a ∈ Dx : a ≥ max(Dy) + b}
12 filterY(Dx,Dy):
13 Dy ← Dy \ {c ∈ Dy : c ≤ min(Dx)− b}
14

Algorithm 3: Classe for binary branches = and <

all values in Dx have a support in the simple tree, they are removed from sl[x] (line
14). The loop at line 15 goes through every binary branch (i.e., with a scope containing
2 variables) to collect the supported values for the second involved variables (y) from
the filtered domain Dx . The supported values for variables y are directly removed from
sl instead of copying their domains and filtering them. Note that methods isValid
and collect are adaptations of the two pass filtering GAC tree. During the first pass,
only the domain of x (actually, Dx) is filtered. Indeed, as it may change at each new
processed branch, filtering the domains of variables y (actually, updating sl) is useless
at that time. The validity test is not concerned by the second pass because if x still has
values in its domain after the first pass, the simple tree is guaranteed to have at least one
solution.

The class for general trees is given in Algorithm 5. This algorithm uses several
fields. The array allVars contains all the variables appearing in the tree. The 2 di-
mensional array branches contains all the branches for each level of the tree, from 1

(branches containing the root variable) to treeHeight. The array domCopy contains
the copies of the domains of the variables of the tree that are used during the procedure
GAC tree. For this algorithm, we will suppose that, for all the binary branches, the vari-
able x is always the closest to the root. This is again enforced during the creation of the
smart tuples trees. The assertion at line 5 thus checks that all the variables x have a cor-
responding variable as y at the level below (closer to the root). The isValid method
(line 7) realizes the first pass of GAC tree (using copies of the domains), filtering the
domains of the different x variables from the leafs to the root. If the variable at the
root (branches[1][1].x) of the tree still has values, it returns true. Its collect method
(line 17) then achieves the second pass by filtering the (copies of the) domains of the
y variables of the branches. It also removes supported values from sl. At this point, it
is important to note that the code presented for unary branches, binary branches and
simple trees already covers all the examples given in this paper.

We now study the complexity of our approach. The complexity of filtering a smart
tuple depends on the complexity of filtering each of its treeCSPs, as they are indepen-
dent. For a smart tuple σ (on variables with maximal domain size d), the time complex-
ities for the different operators are:

for unary branches

<op> isValid collect filterX

= O(1) O(1) O(1)

6= O(1) O(1) O(1)

>≥<≤ O(1) O(d) O(d)

∈6∈ O(d) O(d) O(d)

for binary branches

<op> isValid collect/ filterX/

collectY filterY

= O(d) O(d) O(d)

6= O(1) O(1) O(1)

>≥<≤ O(1) O(d) O(d)

Each tuple constraint is either its own tree or belongs to a larger tree. If the branch
is its own tree, the time complexities of isValid and collect are O(d) for any
operator. If the branch is included in a simple or general tree, then GAC tree guarantees
that the collectY, filterX and filterYmethods are called a constant number of
times. The time complexity imputable to the branch is thusO(d) for validity testing and
value collection. This makes the treatment of one smart tuple with k tuple constraints
O(k · d + r), where r is the arity of the table constraint. The last term comes from the
treatment of unrestricted variables. The initialization of sl at the beginning of smartSTR
and the actual filtering of the domains at the end are O(r ·d). The total time complexity
of one call to smartSTR for a smart table constraint of arity r with t smart tuples is thus
O(r ·d+ t ·k ·d+ t · r). For a classical table constraint of arity r with t′ tuples, we have
that STR2 has a time complexity of O(r · d+ t′ · r). In all the examples given, we have
that k ≤ r (less tuple constraints than variables). We also have that the number of smart
tuples is at least d+1 times less than the number of classical tuples. In those conditions,
the complexity of filtering the smart table is less than the complexity of using STR2 on
the table without smart tuples. Indeed, we have t · k · d+ t · r ≤ t′ · r.

1 class SimpleTree:TreeCSP
2 fields: Variable x, TreeCSP[] branches,
3 Domain Dx
4 assert ∀T ∈ branches : T.x = x
5 isValid():
6 Dx ← dom(x)
7 forall T ∈ branches:
8 if #T.vars = 1
9 T.filterX(Dx)

10 else
11 T.filterX(Dx,dom(y))
12 return Dx 6= ∅
13 collect(sl):
14 sl[x]← sl[x] \ Dx
15 forall T ∈ branches : #T.vars = 2
16 T.collectY (sl,Dx)
17

Algorithm 4: Class for simple trees

1 class GeneralTree:TreeCSP
2 fields: Variable[] allVars, TreeCSP[][] branches,
3 Value treeHeight, Domain[] domCopy
4 assert ∀1 < l ≤ treeHeight, ∀b ∈ branches[l],
5 ∃b2 ∈ branches[l − 1] : b.x = b2.y
6 isValid():
7 forall x ∈ allV ars :
8 domCopy[x]← dom(x)
9 forall l ∈ treeHeight..1 :

10 forall T ∈ branches[l]:
11 if #T.vars = 1
12 T.filterX(domCopy[T.x])
13 else
14 T.filterX(domCopy[T.x],domCopy[T.y])
15 return domCopy[branches[1][1].x] 6= ∅
16 collect(sl):
17 forall l ∈ 1..treeHeight :
18 forall T ∈ branches[l]:
19 sl[T.x]← sl[T.x] \ domCopy[T.x]
20 if #T.vars = 2:
21 T.filterY(domCopy[T.x],domCopy[T.y])
22 forall T ∈ branches[treeHeight] : #T.vars = 2
23 sl[T.y]← sl[T.y] \ domCopy[T.y]
24

Algorithm 5: Class for general trees

3 Experimental Results

Optimization present in STR2 can also be included in smartSTR. The obtained algo-
rithm is then called smartSTR2. Comparing SmartSTR2 with all specialized algorithms
developed over the years for the global constraints mentioned earlier is clearly beyond
the scope of this paper. However, we shall show the interest of SmartSTR2 on a few
case studies. Comparing a propagator F with SmartSTR2 on a global constraint means
that, in the same CSP, all the instances of the global constraint are either propagated
with F or their encoding in smart table constraint is propagated with SmartSTR2. We
have conducted an experimentation (with the solver AbsCon) on a laptop computer,
equipped with Intel(R) Core(TM) i7-2820QM CPU @ 2.30GHz, under Linux. Results
are given in seconds, or corresponds to number of visited nodes per second. We have
checked that all tested approaches were traversing the exact same search trees (most of
the time using dom/ddeg as variable ordering heuristic for this purpose).

In natural language processing, one task is to determine whether a given sentence is
well-formed (i.e., to what extent, it respects a grammar). A constraint model (R. Coletta,
personal communication) has been recently developed for this problem, denoted here
by TAL. It involves the Element constraint (with R as a variable as described earlier
in the paper). Instances for this optimization problem are defined by entering an in-
put sentence. In this model, Element constraints represent about 8% of the constraints.
We compare SmartSTR2 with GACElt that corresponds to the GAC propagator based
on watched literals [7]. In this context, the two algorithms are very close in term of
performance as shown by Table 1.

sentence GACElt SmartSTR2

phrase1 3.6 3.7

phrase2 17.6 17.9

phrase3 54.4 54.2

phrase4 46.8 46.8

phrase5 82.4 82.6

Table 1. CPU time to solve TAL instances.

A BIBD is a standard combinatorial problem. We consider here the model intro-
duced in [22] and the series of instances tested in [5]. There is a lexicographic constraint
between any two adjacent rows or columns. We compare SmartSTR2 with GACLex
that corresponds to the filtering procedure described in [13] and is a variant of [6]. Ta-
ble 2 shows the results we have obtained with both algorithms. Interestingly, one can
observe that replacing the specialized propagator GACLex with the general-purpose
SmartSTR2 has a very limited cost, although SmartSTR2 is generic. Similar results are
obtained with the social golfer problem.

The RectanglePacking problem [26] consists of packing all squares from size 1× 1
to n × n into a rectangle of size w × h. We adopt the model and search parameters

v-b-r-k-λ GACLex SmartSTR2

6-50-25-3-10 1.3 1.6

6-60-30-3-12 1.5 2.1

6-70-35-3-10 2.2 2.8

10-90-27-3-6 5.8 7.3

9-108-36-3-9 11.4 14.2

15-70-14-3-2 7.4 7.9

12-88-22-3-4 7.0 8.3

9-120-40-3-10 17.9 25.1

10-120-36-3-8 10.6 14.0

13-104-24-3-4 99.1 108.6

Table 2. CPU time to solve BIBD instances.

given in [23, 10]. Table 3 reports the nodes searched per second by the algorithms.
This measurement has been chosen because some instances trigger timeouts for some
algorithms. The node count per second gives, in this context, more information than
the runtimes / timeouts. It shows that SmartSTR2 is very efficient on this problem.
It clearly outperforms ShortSTR2, and seems to be at least as efficient as the other
methods proposed in [23] (not implanted in our system) when we compare their results
with ours. Note that GAC-valid (sometimes called GAC-schema) is another general
approach, given here as a baseline.

n-w-h GAC-valid ShortSTR2 SmartSTR2

18-31-69 1, 821 2, 784 57, 249

19-47-53 2, 003 3, 166 57, 221

20-34-85 1, 324 1, 579 45, 600

21-38-88 849 1, 295 40, 600

22-39-88 981 1, 035 41, 162

23-64-68 983 1, 292 40, 495

24-56-88 446 790 32, 758

25-43-129 661 347 30, 544

26-70-89 544 703 31, 374

27-47-148 326 175 26, 786

Table 3. Nodes searched per second for RectanglePacking instances.

For our last experiment, we consider Case Study 4 in [10], where a problem, denoted
by AllDistinctVectors here, involves the VectorDiff constraint. An instance p-a-d of this

problem has exactly p vectors (arrays of variables), each vector of length a and each
variable with a domain whose size is equal to d: any pair of vectors must be distinct.
In [10], it has been shown that ShortSTR2 is an interesting competitor to HaggisGAC.
When we consider Boolean variables only (i.e., d = 2), SmartSTR2 is slightly slower
than ShortSTR2 (because tables are small). However, when we increase d, Table 4
shows that, just when applying GAC stand-alone, SmartSTR2 is clearly superior to
ShortSTR2. This can be explained by the size of the constraint tables. For example,
for 40-100-40, tables contain 156, 000 and 100 tuples in ShortSTR2 and SmartSTR2,
respectively.

p-a-d ShortSTR2 SmartSTR2

40-100-2 0.07 0.07

40-100-8 1.55 0.18

40-100-16 6.49 0.18

40-100-24 14.7 0.19

40-100-32 28.1 0.20

40-100-40 44.5 0.21

Table 4. CPU time to enforce GAC on AllDistinctVectors instances.

4 Conclusion

Smart tuples generalize (classical) tuples in tables of constraints, as well as short and
compressed tuples. They allow a compact and natural representation of many con-
straints, including important global constraints. Smart table constraints can be seen as
a subset of the logical algebra defined in [1]. Restricting smart table constraints to this
subset allows an efficient filtering of the constraints. The contribution of this paper is
to introduce the smart table constraint and propose a practical GAC filtering algorithm
for it. Its practical interest is also demonstrated. We do believe that there exist many
optimisations and extensions to this work that still deserve to be explored.

Acknowledgments: The first author is supported as a Research Assistant by the Belgian
FNRS. This research is also partially supported by the FRFC project 2.4504.10 of the
Belgian FNRS, and by the UCLouvain Action de Recherche Concertée ICTM22C1.
The third author benefits from the financial support of both CNRS and OSEO within
the ISI project ’Pajero’.

References

1. Fahiem Bacchus and Toby Walsh. Propagating logical combinations of constraints. In IJCAI,
pages 35–40, 2005.

2. Christian Bessiere and Jean-Charles Régin. Arc consistency for general constraint networks:
preliminary results. In Proceedings of IJCAI’97, pages 398–404, 1997.

3. Christian Bessiere and Jean-Charles Régin. Local consistency on conjunctions of constraints.
In Proceedings of ECAI’98 Workshop on Non-binary constraints, pages 53–59, 1998.

4. Björn Carlson and Mats Carlsson. Compiling and executing disjunctions of finite domain
constraints. In Proceedings of ICLP’95, pages 117–131, 1995.

5. Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh. Global con-
straints for lexicographic orderings. In Proceedings of CP’02, pages 93–108, 2002.

6. Alan Frisch, Brahim Hnich, Zeynep Kiziltan, Ian Miguel, and Toby Walsh. Propagation
algorithms for lexicographic ordering constraints. Artificial Intelligence, 170(10):803–834,
2006.

7. Ian P. Gent, Chris Jefferson, and Ian Miguel. Watched literals for constraint propagation in
minion. In Proceedings of CP 2006, pages 182–197. Springer-Verlag, 2006.

8. Ian P. Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale. Data structures for gener-
alised arc consistency for extensional constraints. In Proceedings of AAAI 07, pages 191–
197, 2007.

9. Christopher Jefferson, Neil CA Moore, Peter Nightingale, and Karen E Petrie. Implementing
logical connectives in constraint programming. Artificial Intelligence, 174(16):1407–1429,
2010.

10. Christopher Jefferson and Peter Nightingale. Extending simple tabular reduction with short
supports. In Proceedings of IJCAI’13, pages 573–579, 2013.

11. George Katsirelos and Fahiem Bacchus. GAC on conjunctions of constraints. In Proceedings
of CP’01, pages 610–614, 2001.

12. George Katsirelos and Toby Walsh. A compression algorithm for large arity extensional
constraints. In Proceedings of CP’07, pages 379–393, 2007.

13. Christophe Lecoutre. Constraint networks: techniques and algorithms. ISTE/Wiley, 2009.
14. Christophe Lecoutre. STR2: optimized simple tabular reduction for table constraints. Con-

straints, 16(4):341–371, 2011.
15. Christophe Lecoutre, Chavalit Likitvivatanavong, and Roland H. C. Yap. A path-optimal

GAC algorithm for table constraints. In Proceedings of ECAI’12, pages 510–515, 2012.
16. Christophe Lecoutre and Radoslaw Szymanek. Generalized arc consistency for positive table

constraints. In Proceedings of CP’06, pages 284–298, 2006.
17. Olivier Lhomme. Arc-consistency filtering algorithms for logical combinations of con-

straints. In Proceedings of CPAIOR’04, pages 209–224. Springer, 2004.
18. Olivier Lhomme. Practical reformulations with table constraints. In Proceedings of ECAI’12,

pages 911–912, 2012.
19. Olivier Lhomme and Jean-Charles Régin. A fast arc consistency algorithm for n-ary con-

straints. In Proceedings of AAAI’05, pages 405–410, 2005.
20. Alan K Mackworth and Eugene C Freuder. The complexity of some polynomial network

consistency algorithms for constraint satisfaction problems. Artificial intelligence, 25(1):65–
74, 1985.

21. Jean-Baptiste Mairy, Pascal Van Hentenryck, and Yves Deville. Optimal and efficient filter-
ing algorithms for table constraints. Constraints, 19(1):77–120, 2014.

22. Pedro Meseguer and Carme Torras. Solving strategies for highly symmetric CSPs. In Pro-
ceedings of IJCAI’99, pages 400–405, 1999.

23. Peter Nightingale, Ian P. Gent, Christopher Anthony Jefferson, and Ian James Miguel. Short
and long supports for constraint propagation. Journal of Artificial Intelligence Research,
46:1–45, 2013.

24. Guillaume Perez and Jean-Charles Régin. Improving GAC-4 for table and MDD constraints.
In Proceedings of CP’14, pages 606–621, 2014.

25. Jean-Charles Régin. Improving the expressiveness of table constraints. In Proceedings of
CP’11 Workshop on Constraint Modelling and Reformulation, 2011.

26. Helmut Simonis and Barry O’Sullivan. Search strategies for rectangle packing. In Proceed-
ings of CP’08, pages 52–66, 2008.

27. Julian R Ullmann. Partition search for non-binary constraint satisfaction. Information Sci-
ences, 177(18):3639–3678, 2007.

28. Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation, and
evaluation of the constraint language cc(fd). The Journal of Logic Programming, 37(1-
3):139–164, 1998.

29. Jörg Würtz and Tobias Müller. Constructive disjunction revisited. In Proceedings of KI’96,
pages 377–386, 1996.

30. Wei Xia and Roland H. C. Yap. Optimizing STR algorithms with tuple compression. In
Proceedings of CP’13, pages 724–732, 2013.

