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ABSTRACT
Maintaining the source code of large software systems is hard.
One underlying cause is that existing modularisation mechanisms
are inadequate to handle crosscutting concerns. We propose in-
tentional source-code views as an intuitive and lightweight means
of modelling such concerns. They increase our ability to under-
stand, modularise and browse the source code by grouping together
source-code entities that address the same concern. They facilitate
software development and evolution, because alternative descrip-
tions of the same intentional view can be checked for consistency
and relations among intentional views can be defined and verified.
Finally, they enable us to specify knowledge developers have about
source code that is not captured by traditional program documenta-
tion mechanisms.
Our intentional view model is implemented in a logic metaprog-

ramming language that can reason about and manipulate object-ori-
ented source code directly. The proposed model has been validated
on the evolution of a medium-sized object-oriented application in
Smalltalk, and a prototype tool has been implemented.

Keywords
Crosscutting concerns, modularisation, logic metaprogramming,
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1. INTRODUCTION
Documenting, browsing, implementing, maintaining and evolv-

ing the source code of large software systems is hard. Once soft-
ware systems reach a certain size, the modularisation constructs
provided by current programming languages fall short. Typically,
they support only a limited number of modularisations of the soft-
ware.
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As has been recognized by the aspect-oriented programming com-
munity (AOP) [6], system-wide concerns often do not fit nicely into
the chosen modularisations; they crosscut these modularisations.
Choosing another modularisation merely shifts the problem, lead-
ing to another set of concerns that crosscut the ‘dominant’ mod-
ularisations into which everything else needs to be fit. Perry et
al. call this problem the tyranny of the dominant decomposition
[14]. AOP addresses this problem by implementing crosscutting
concerns as separate aspects and merging them afterwards with
a special-purpose compiler called aspect weaver. Unfortunately,
AOP implies a completely new way of programming and is not
mature enough yet to be used in every-day programming practice.
We propose a complementary approach that provides a power-

ful and expressive software modularisation mechanism on top of
an existing programming language. Instead of describing different
concerns in separate aspects that are weaved afterwards, we allow
the source code to be modularised into a number of user-defined
intentional views that may crosscut the actual implementation de-
composition and that may be overlapping. Each intentional view
corresponds to an important (functional or non-functional) concern
that may be spread throughout the source code. It groups the set of
source-code entities that address this concern. An intentional view
is a view in the sense that it provides only partial information and
does not have to be explicit in the actual source code.1 It is in-
tentional as it describes the common characteristics of the entities
belonging to a view in an abstract and intuitive way that clearly ex-
presses the ‘intent’ of the view. More specifically, we describe this
intent in SOUL, a Prolog-like logic programming language that can
reason about and manipulate the source code directly.
In addition to defining intentional views, our proposed model

allows us to express, verify and enforce important relations among
intentional views. As such, many hidden assumptions in the source
code are codified as explicit knowledge about the software system.
Using intentional views and their relations to make software con-

cerns explicit, increases software maintainability and understand-
ability. First of all, they enhance software understanding because
they provide important knowledge about where and how certain
concerns are implemented and how they relate with other concerns.
As such, intentional views and their relations serve as active and
enforceable documentation at an abstract level that is not explicitly
available in the source code. Secondly, it becomes easier to man-
age the source code because important concerns have been made
explicit in the intentional views, even if they are spread through-
out the source code. Finally, when the software evolves, we can
analyze the constraints imposed by the intentional views and their
relations to verify that no assumptions have been invalidated. This
1In this sense, it is similar to a database view.



verification can be done automatically because the description of
views and their relations is an executable description in a logic
metaprogramming language.
In this paper we introduce our model of intentional views that en-

hances the limited modularization mechanisms of current-day pro-
gramming languages. We present concrete motivating examples
of intentional views in a realistic and non-trivial case study. Then
we sketch the formal model behind our approach and show how it
is implemented using a logic metaprogramming language. Next,
we discuss some of our experiences with the model and associated
prototype tool. We conclude with some related and future work.

2. CASE STUDY
The case study used in this paper to validate our approach is the

development of SOUL2 (Smalltalk Open Unification Language), a
medium-sized (about 100 classes) object-oriented application im-
plemented in VisualWorks Smalltalk. In essence, SOUL is an in-
terpreted logic metaprogramming language. It comes with an asso-
ciated library of logic predicates for reasoning at metalevel about
object-oriented source code. As we will see later, SOUL is not only
our case: it is also the medium in which we implemented our tool
for dealing with intentional source-code views.
Before presenting our model of intentional views, we use this

case study to illustrate some concrete examples of views, how they
are related, and how this information may help us in understanding
and maintaining source code.

2.1 Unit testing
A particularly interesting aspect of the SOUL software develop-

ment process is that it makes extensive use of unit testing, one of
the essential ingredients of eXtreme Programming [2]. This gave
rise to two implicit constraints in the SOUL implementation:

C1 For each method in the SOUL implementation there is a corre-
sponding test method.

C2 For every predicate in the logic library there should be a corre-
sponding test method that verifies whether the predicate fails
and succeeds when expected.

These constraints imply that whenever a method or predicate
is modified the developer needs to rerun the corresponding test
method, to make sure that the method or predicate still behaves
as expected. Constraint C2 is particularly important as incorrectly
working predicates are important indicators of deeper problems
with the SOUL language implementation. It happened on several
occasions that a predicate that had worked correctly in many earlier
versions, suddenly gave rise to errors, typically caused by incorrect
changes to, or optimizations of, the SOUL interpreter. With the
unit testing approach many of these errors were detected at a very
early stage.
In practice not every predicate has a corresponding test method.

As most predicates were ported in bulk from an earlier version of
SOUL without unit tests, these unit tests had to be added a poste-
riori on a predicate per predicate basis, which was time-consuming
and labour-intensive. Our model of intentional views helped the
developers in achieving completeness of the test suite. Two inten-
tional views played a crucial role. One view groups all logic pred-
icates, and another one groups all unit test methods. Completeness
constraint C2 was made explicit as a relation between these two in-
tentional views: for every predicate in the first view there must exist
2http://prog.vub.ac.be/research/DMP/soul/
soul2.html

a corresponding test method in the second one. All invalidations of
this relation corresponded to a breach of constraint C2.
Finally, we also used these views and relation to automatically

generate “stub” test methods for all methods that did not have a
corresponding test method. These stub test methods contained a
test that always failed. As such, when running the test suites the
developers’ attention was triggered by the fact that a whole range
of tests failed (because they still needed to be filled in). Before
generating these methods the developers were not even aware of
the fact certain test methods were missing unless they had manually
looked for missing test methods.

2.2 Alternative definitions of views
A second example illustrates how we can use alternative logic

descriptions of the same intentional source-code view to detect in-
consistencies when the software evolves. Consider the intentional
view that contains all logic predicates. Since SOUL is implemented
entirely in Smalltalk, the logic predicates are actually wrapped in
Smalltalk methods, so this view actually contains methods instead
of predicates. There are two alternative ways of defining this view:
(1) The first alternative uses a naming convention: all logic predi-
cates are wrapped in methods of a class that belongs to a Smalltalk
class category of which the name starts with the string ‘Soul-Logic’;
(2) The second alternative relies on the fact that all classes contain-
ing logic predicates must be descendants of the same abstract class
LogicRoot. It is this abstract class that defines a means of wrapping
logic predicates in ordinary Smalltalk methods.
The fact that both alternative descriptions have to be consistent

implies that the naming convention in the first alternative must be
respected by all subclasses of LogicRoot. Although this particu-
lar constraint is not ‘crucial’ in the sense that breaking it would
not give rise to program errors, respecting it does make the soft-
ware ‘cleaner’ and thus more understandable and easier to browse.
In fact, the constraint gives an explicit semantics to the naming
convention so that we can actually be sure that everything in a
Smalltalk category with the correct name represents a real logic
predicate.

2.3 Meta-level interface
A third motivating example illustrates how we can use source-

code views to support maintenance and evolution of source code.
The metalevel interface (MLI) of SOUL is the part of the soft-

ware system that links the metalevel logic code to the base-level
Smalltalk code. It has been factored out to be able to reason about
different dialects of Smalltalk. More specifically, the MLI is de-
fined as a class hierarchy, where ExplicitMLI is the abstract root
class, and all its descendants represent different languages dialects.
In an earlier version of SOUL we had the class hierarchy shown in
Figure 2.

Figure 2: The SOUL metalevel interface class hierarchy.
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Figure 1: Rule-based architecture of SOUL

An intentional source-code view that documents this metalevel
interface can be expressed in two alternative ways:
(1) All MLI classes are contained in the Smalltalk class category
‘Soul-MetaLevelInterface’;
(2) All MLI classes are descendants of the abstract class Explic-
itMLI.
As in the previous example, the fact that both alternatives must

be consistent imposes an implicit constraint on the software. In-
validations of this constraint can reveal problems during software
evolution. For example, in a later version of SOUL, support for
the Java programming language was added. Obviously, this re-
quired some modifications to the metalevel interface, since a new
subclass ExplicitMLIForJava of ExplicitMLI needed to be added
to provide an interface between Java and the metalevel logic code.
These modificications gave rise to an invalidation of the above con-
straint, since the class ExplicitMLIForJava was defined in a class
category ’Soul-Java’ instead of ’Soul-MetaLevelInterface’. As a
result, the two alternatives of the intentional view yielded different
results.
Another interesting constraint expresses that each concrete met-

alevel interface (represented by a leaf class in the ExplicitMLI class
hierarchy) must implement at least all predicates that are defined
abstract in ExplicitMLI. Hence, to check whether the MLI for a spe-
cific language has been implemented completely, we simply have
to check whether the view containing all abstract methods in leaf
classes of ExplicitMLI is empty.
When verifying this view, we identified the following problem-

atic methods for the leaf classes ExplicitMLIForSqueak and Explic-
itMLIForJava.

isNameSpace:
allClassNamesInNamespace:
allNamespacesInNamespace:
allClassesInNamespace:
namespaceForClass:
namespaceAsStringFor:
allNamespaces

Additionally, for class ExplicitMLIForJava the method metaclass-
For: was also identified as problematic.
These results corresponded to our intuition, since there is no di-

rect support for namespaces in Squeak or Java. Hence, it is obvious
that they do not implement methods related to namespaces. To
solve the problem, all methods related to namespaces, which were
originally defined in ExplicitMLI, were moved down to ExplicitM-
LIForVisualWorks.
The problem with metaclassFor: can be explained by the fact

that we do not yet support metaclasses for Java. As such, meta-
classFor: should not be defined as an abstract method in Explic-
itMLI, but one level lower, in ExplicitMLIForSmalltalk.

2.4 More semantic views
We conclude with two interesting examples of views that are a

bit more semantical in nature. Due to space limitations, the details
of these views will not be shown in the remainder of this paper.
The first one is again related to the use of logic rules. Occasion-

ally, a merge conflict arises when the same logic rule appears twice
in the logic repository. Typically this is caused when the defini-
tion of a rule is moved from one logic module to another, but after
a merge is not really removed from the old module so that it ap-
pears in both the old and the new module. This situation obviously
has an impact on the behaviour of a logic program that uses this
rule. In the best case, the program is much slower and produces
duplicate results. In the worst case, it is just wrong. To detect this
undesired situation we define a view that contains all logic rules of
which there exist multiple occurences in the logic repository with
exactly the same implementation. Once this view is defined we can
use it to automatically remove all duplicate occurences of rules in
that view.
A second example, which was explained in detail in an earlier pa-

per [11], is to declaratively codify a software architecture by means
of intentional views. The idea is that the architectural components
correspond to intentional source-code views3 and the architectural
connectors to relations among those views. Checking conformance
of the architecture to the source code then merely boils down to
computing the intentional source-code views and verifying the re-
lations among the views. Since SOUL is a logic interpreter, we
considered the rule-based architecture depicted in Figure 1. The
meaning of the quantifier symbols will become clear later in this
paper. For more details on this particular experiment of codifying
an architecture and checking its conformance to the source code we
refer to [11].

3. THE LANGUAGEMODEL
The formal model of intentional views basically consists of two

parts. The first part is a language model that describes the kinds
of software entities in the host language we would like to view
and the primitive implementation relations in terms of which we
can define high-level relations among views. The second — and
most important — part is the intentional view model itself, given in
Section 4. It defines the notions of intentional views and relations
among views, as well as which constraints can be imposed on them.
The purpose of the language model is to abstract away from im-

plementation details that are not relevant to define views or rela-
tions among views, like the actual parse-tree representation of a
method, or the way that abstract methods are represented in a par-
3In [11], we used the term ‘virtual classification’ instead of ‘inten-
tional source-code view’.



ticular language. The language model reflects only those language
constructs that programmers want to reason about using views.
Those concepts might correspond to actual language constructs (e.g.,
method calls), idiomatic conventions (e.g., naming conventions) or
concepts provided by the development environment (e.g., class cat-
egories and namespaces in Smalltalk). Since the model is not sup-
posed to be a complete and painstaking representation of the lan-
guage syntax, one may have different language models for the same
language, depending on the concepts of interest. In the current pa-
per, we use intentional views to reason about applications written
in VisualWorks Smalltalk, and the particular language model that
we use for this purpose is shown in Figure 3. The language model
is given by a restricted UML class diagram. For the moment, we
only use abstract and concrete classes with public attributes, inher-
itance relations, aggregations and unidirectional associations. We
do not make use of cardinalities in associations.
To properly define the model of intentional views, for every class,

association and attribute in the UML language model, there should
be a primitive operation to reason about the corresponding source-
code construct. (This set of operations can be extracted automat-
ically from the information present in the language model.) We
use a logic metaprogramming approach and define these primitive
operations as logic predicates in the Prolog-like language SOUL.
Below we discuss the three kinds of extracted predicates that

need to be implemented. Note that logic variables start with ques-
tion marks, and that the exact form of a reference to a source-code
entity (e.g., method, class, variable) depends on the actual imple-
mentation language.
Class predicates. For each class ↵ in the UML language model,

there must exist a predicate ↵(?entity) that describes whether a
given source-code entity is an instance of ↵. If the argument is
uninstantiated, the predicate returns all such instances through uni-
fication. The predicate also takes into account the inheritance re-
lations in the UML model. For example, for the language model
of Figure 3, the predicate variable(?entity) describes that a
given entity is a variable, which is either a method parameter, a
class attribute, or an occurrence of a self pseudo variable. The
same predicate can be used to find all such variables in the source
code.
Attribute predicates. For each attribute ↵ in the UML language

model, we have a predicate ↵(?entity, ?value). The predicate fails
if the first argument is not an instance of a class having an attribute
↵. For example, the predicate isAbstract(?entity,true) can
be used to find all Smalltalk classes and Smalltalk methods that
are abstract, and isAbstract([ExplicitMLI],?value) should
return true for ?value.
The predicate hasClassScope(?entity,?value) can be used
to detect whether an attribute of a Smalltalk class is either a class
variable or an instance variable.
Association predicates. For each association ↵ in the UML lan-

guage model, there is a predicate ↵(?from,?to) with arguments in
the same order as the association roles. For example, the predi-
cate inherits(?sub,?super) checks if the first argument is a
subclass of the second one, and name(?entity,?name) finds or
checks the name of a certain entity. These predicates can also be
used with one or two arguments uninstantiated.
The actual implementation of these class, attribute and associa-

tion predicates makes use of a specific meta-level interface between
the logic language and Smalltalk, so that the logic predicates can
directly and dynamically reason about real Smalltalk programs. Al-
though the details of this meta-level interface are outside the scope
of this paper (see [10] for more details), we show the SOUL imple-
mentation of one of the predicates. For example, there must exist a

predicate class(?entity) that can check whether ?entity is a
valid Smalltalk class.

class(?entity) if
atom(?entity),
[ Soul.ExplicitMLI current isClass: ?entity ].

The above rule calls the meta-level interface for the current Small-
talk dialect to check whether the value bound to the logic vari-
able ?entity is an existing Smalltalk class (which is implemented
by sending an appropriate method to one of the Smalltalk system
classes). A second rule is needed to handle the case when the pred-
icate is called with an unbound variable.

class(?entity) if
var(?entity),
memberOfCollection(?entity,

[ Soul.ExplicitMLI current allClasses ]).

This rule calls the current meta-level interface to retrieve all pos-
sible Smalltalk classes and then unifies each of the classes in the
returned collection with the logic variable ?entity.

4. THE INTENTIONAL VIEWMODEL
While the language model defines what kinds of source-code en-

tities and relations are of interest to the developer, the intentional
view model defines how views and their relations can be defined for
the given language.

4.1 Intentional views
An intentional view describes a set of source-code entities. It

contains one or more alternative intentional descriptions of this set
(one of which is called the ‘default’ intentional description). Each
such description provides an alternative insight on the intention be-
hind the view. The description is intentional in the sense that the
source-code entities in the view are not explicitly enumerated. In-
stead, logic predicates are used to describe all entities belonging
to the view. As explained in Section 3, the logic predicates are
defined in terms of primitive logic predicates that correspond to
the language constructs specified by the language model. In the
Prolog-like logic language we use to define predicates, in addition
to prefixing logic variables with question marks, the keyword if
separates the body from the head of a rule; a comma denotes log-
ical conjunction; lists are delimited with <>, and terms between
square brackets are reified Smalltalk values.
Logic facts of the form view(View, Alternatives) declare

the name of a view and its alternative descriptions (a list). view-
Comment(View, Comment) describes the purpose of the view. The
default alternative is specified by a fact of the form default(View,
Alternative). For each alternative, we must define a logic predi-
cate intention(View,Alternative,?entity),which describ-
es when an entity belongs to the view according to this alterna-
tive description. Known exceptions and deviations to the inten-
tional descriptions can be specified separately by means of facts
include(View, Alternative, Entity) and exclude(View,
Alternative, Entity), that declare which entities should be
included in (resp. excluded from) the description.
As an example, reconsider the intentional view from Section 2

that groups all SOUL predicates. The precise logic definition is
given below. Note that for the alternative byCategory, we need to
include three extra classes that are not captured by the category
naming convention. Also note that the predicate inHierarchy
used in the definition of the alternative byHierarchy is the transi-
tive version of inherits.

view(soulPredicates,<byCategory,byHierarchy>).
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Figure 3: UML class diagram representing a particular language model for VisualWorks Smalltalk.

viewComment(soulPredicates, [’This intentional
view contains ALL classes that implement SOUL
predicates (= Prolog-predicates that may use
Smalltalk code due to language symbiosis).’])

default(soulPredicates,byHierarchy).

intention(soulPredicates,byCategory,?class) if
category(?category),
name(?category,?catName),
startsWith(?catName,[’Soul-Logic’]),
class(?class),
classInCategory(?class,?category).

include(soulPredicates,byCategory,
[Soul.SoulTests.TestClauses1]).

include(soulPredicates,byCategory,
[Soul.SoulTests.TestClauses2]).

include(soulPredicates,byCategory,
[Soul.SoulTests.TestClassifications]).

intention(soulPredicates,byHierarchy,?class) if
class(?class),
inHierarchy(?class,[Soul.LogicRoot]).

Internal consistency of a view requires that the entities in an
include predicate do not already satisfy the intentional descrip-
tion (otherwise they are already included), and that elements in an
exclude predicate do satisfy the intentional description (otherwise
there is no need to exclude them).
If we want to know whether a certain entity satisfies a certain

intention, but no particular alternative is specified, the default alter-
native is assumed:
intention(?View,?Entity) if

default(?View,?Alternative),
intention(?View,?Alternative,?Entity).

Views can be defined in terms of other views using this last predi-
cate. For example, the following defines the view of all SOULmet-
alevel interface classes for VisualWorks Smalltalk 5 only (where
soulMLI is assumed to represent the view of all metalevel inter-
face classes in SOUL):
intention(vw5MLI, byHierarchy, ?Entity) if

extension(soulMLI, ?Entity),
inherits(?Entity, [ExplicitMLIForVW5]).

The reason why we can always safely choose the default alter-
native is because we verify automatically that all alternative inten-
tional descriptions (together with their exceptions and deviations)
are mutually consistent, i.e., they yield exactly the same extension.
The extension can be computed automatically from an intentional
description by the following pre-defined predicates:
extension(?View,?Alt,?Entity) if

or( intention(?View,?Alt,?Entity),
include(?View,?Alt,?Entity) ),

not( exclude(?View,?Alt,?Entity) ).

extension(?View, ?Entity) if
default(?View, ?Alternative),
extension(?View, ?Alternative, ?Entity).

In addition to user-defined views that can be specified as ex-
plained above, from the language model a set of primitive views
is derived automatically. More precisely, for every kind of entity in
the language model there is a corresponding view that contain all
such source-code entities in the program under consideration. For
example, there is a view class that contains all classes present in
the Smalltalk system. Such views are defined straightforwardly as
follows (where Entity is a kind of entity in the language model):
view(Entity,<primitive>).
viewComment(Entity, [’This intentional view

contains all entities of kind ’, Entity]).
default(Entity,primitive).
intention(Entity, primitive, ?e) if

Entity(?e).
One advantage of using intentional descriptions over explicit enu-

merations of source-code entities is that they are often much more
concise. Another is that they are more intuitive and intentional,
as they define exactly which property all entities in a view have in
common. Thirdly, intentional descriptions are more robust towards
changes than explicit enumerations. An important disadvantage of
intentional descriptions has to do with efficiency of computation.
An explicit enumeration stores all values explicitly and thus can
be retrieved immediately. An intentional description can be stored
much more concisely, but when its values are needed, they need to
be computed from the definition, which may take some time (unless
a caching mechanism is used).

4.2 Relations



Although views by themselves are already useful, they become
even more useful when they can be related explicitly. Since views
are sets of source-code entities, our model provides a series of pre-
defined relations on sets like empty, subset and disjoint. For ex-
ample, subset(soulPredicates, class) states that the inten-
tional view soulPredicates includes Smalltalk classes only, because
it is a subset of the primitive view class that groups all Smalltalk
classes.
Just like a set of primitive views was derived automatically from

the language model, a set of primitive relations among views can
be derived automatically. More precisely, for every association
in the language model with corresponding association predicate
A(?from,?to) we can turn this into a general metapredicate be-
tween views ?V1 and ?V2 as follows:
A(?Q1,?V1,?Q2,?V2) if

?Q1( extension(?V1,?e1),
?Q2( extension(?V2,?e2),

A(?e1,?e2) ) ).
where ?Q1 and ?Q2 represent a quantifier forall (8), exists (9) or
existsOne (9!). Each of these quantifiers takes two arguments: a
predicate that generates values for some variable, and a formula
using that variable.
For example, applying the general metapredicate above to the

inHierarchy association predicate we could declare the fact that
the view vw5MLI (of all SOULMLI classes for VisualWorks Small-
talk 5) is a ‘subhierarchy’ of the view soulMLI (of allMLI classes
in SOUL) as follows:
inHierarchy(forall, vw5MLI, exists, soulMLI).
Other examples are shown on Figure 1. For example, a uses*

relation between methods is transformed into a relation between
the views Query interpreter and Rule selection by means
of two existential quantifiers (indicating that at least one method in
the first view directly or indirectly uses a method in the second).
Note that there is no reason to restrict the kinds of relations be-

tween views to those that can be derived from primitive association
predicates only. In fact, we can turn any predicate A(?from,?to)
between source-code entities into a relation between views. So in-
stead of restricting to association predicates, we allow to take any
combination of class, association and attribute predicates by means
of negation, conjunction and disjunction.
For example, if we define the predicate notHasMethod as the

logical negation of hasMethod:

notHasMethod(?class, ?method) if
not(hasMethod(?class, ?method)).

then we can define a relation methodsFrom between views that
checks that all classes in the first view have only methods included
in the second view, as follows:

methodsFrom(?classView, ?methodView) if
hasMethod(forall, ?classView,

exists, ?methodView),
not( notHasMethod(exists, ?classView,

forall, ?methodView)).

4.3 Case study revisited
To check whether the test suites used during unit testing of SOUL

are complete (as explained in Subsection 2.1), we have defined two
views and a relation between them. The view logicTestClasses con-
tains all classes that implement unit tests for SOUL predicates. The
view validTestMethods describes all wellformed unit test methods
for logic predicates. ‘Completeness’ of the test suites can be veri-
fied by checking the relation
methodsFrom(logicTestClasses, validTestMethods).

As another example that is useful for unit testing, we can define a
binary relation between views that expresses that for each method
in some method view there is a corresponding test method. This
relation is based on the naming convention that the name of the test
method is the name of the tested method prepended with ’test’, and
that the test method probably calls4 the tested method. To define
this relation between views we first define a relation testedBy
between methods as follows:

testedBy(?m,?t) if
name(?m, ?mn), name(?t, ?tn),
startsWith(?tn,’test’), endsWith(?tn,?mn),
hasExpression(?t,?e), invocation(?e),
name(?e,?mn).

Once this relation has been defined (a straightforward conjunc-
tion of existing association, attribute and class predicates) we can
straightforwardly declare the desired relation between views as fol-
lows (using the approach explained in the previous subsection):
testedBy(forall, ?methodView, exists, ?testView)
For more examples of semantic relations among views, we refer

again to the architectural experiment of [11] that was briefly men-
tioned in Subsection 2.4.

5. TOOL SUPPORT
5.1 Integration with Smalltalk
An important advantage of our intentional view model is that it

is non-intrusive. It can be added on top of an existing program-
ming language or environment, allowing the definition of inten-
tional views on top of the modularisation mechanisms supported by
the language. As a proof of concept, we implemented a prototype
tool for supporting intentional views on top of the VisualWorks de-
velopment environment for the Smalltalk programming language.
Figure 4 gives a schematic overview of this implementation.
The intentional view model is implemented in the logic language

SOUL, which is implemented in VisualWorks Smalltalk. The li-
brary of logic predicates that is used to reason about Smalltalk code
is implemented entirely in SOUL. The collection of logic predi-
cates that implements the intentional view model uses a subset of
the logic library.
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Figure 4: Experimental setup

5.2 User Interface for Intentional ViewModel
Because we do not want to burden a software developer with

the implementation details or syntactic peculiarities that are due to
the fact that the intentional view model is implemented in the logic
language SOUL, we have defined an intuitive user interface.
4We say probably, because a static code analysis for languages with
dynamic dispatching can only see which messages are sent, not
which methods are actually executed.



Figure 5: The Intention Editor

The Intention Editor, shown in Figure 5, can be used to inspect
or modify alternatives for an intentional view, or to add new in-
tentional views to the model. This requires knowledge about logic
programming, as well as knowledge about the language model be-
ing used.

Figure 6: The Extension Viewer

The Extension Viewer, shown in Figure 6, allows a user to browse,
for each intentional view that is defined, all source-code entities
contained in this view. Each source-code entity can be selected to
inspect and modify its contents (using standard Smalltalk browsers).
The Extension Viewer provides a button for checking the consis-

tency of all alternative intentional descriptions of the current view.
The Intention Editor provides a button for checking syntactic well-
formedness of the currently selected alternative intentional descrip-
tion. From both, we can easily access the other, or open the so-

called Relation Editor5, which can be used to view, add, remove
and modify relations between intentional views.

6. RELATED WORK
The idea of defining multiple views on software is not new and

has been used in many different software engineering domains such
as requirements analysis, reverse engineering and architectural re-
covery, re-engineering, and so on. The idea of using a logic lan-
guage to reason about source code at a higher level of abstraction
is not new either. What is new is our explicit focus on inten-
tional source-code views that are explicitly and directly linked to
the source code and the fact that the approach is tightly integrated
with the software development environment. In this way, changes
to the source code are directly reflected in the views and the views
can be used as a starting point for generating or transforming source
code.
Our work on intentional views builds on De Hondt’s software

classification model [4]. A software classification is a collection
of source-code entities, where entities can be classified in multi-
ple classifications. A virtual software classification is not a mere
enumeration of source-code entities, but is computed dynamically
from the development environment or tools. A typical example in
Smalltalk are all senders or implementors of a certain method. Our
notion of intentional views extends virtual classifications in various
ways. Firstly, intentional views can be regarded as classifications
that are specified ‘intentionally’. This makes them more flexible,
as they explicitly document which artifacts are intended to belong
to the classification, instead of having them computed from the en-
vironment. Secondly, our intentional view model is more generic,
since it is defined independently from a particular language model.
Finally, when declared in a logic metaprogramming language, the
definitions of intentional views are often very intuitive and concise,
and can be used in multiple ways (e.g., verificative, generative).
We also illustrated how such a metaprogramming approach enables
generation of source code that crosscuts the implementation struc-
ture.
Our model of intentional views bares important ressemblance

with the model of conceptual modules, which has been used to sup-
port software reengineering tasks [1]. Like an intentional view, a
conceptual module is a logical module that can be overlayed on an
existing system. It is a set of lines of source code (from multiple
parts of a system) that are treated as a logical unit. As the model
of conceptual modules focusses essentially on software reengineer-
ing, it provides no support for code generation. Our approach does.
Also, our model of intentional views is more expressive and finer
grained because it can contain any relevant kind of source-code en-
tity — not only lines of source code. It is also more expressive
in that a logic metaprogramming language is used to reason about
intentional views as opposed to a GREP-like pattern matching ap-
proach for reasoning about conceptual modules. However, this in-
creased expressiveness comes at a cost of decreased efficiency.
Our approach is also related to earlier attempts that use logic

programming to support software engineering. For example, [3]
implemented a Prolog-based reverse engineering tool for analysing
and querying data flow in Pascal programs. As mentioned before,
an important difference with our approach is that we reason directly
about the source code, i.e., we do not need to consult an intermedi-
ate representation (such as a database or a set of logic facts) of the
source code. As such, our intentional views will always work on
the most recent version of the source code. Another difference is
that our logic engine is not only useful for extracting information
5This editor is currently under construction.



from the source code (reverse engineering) but also for generating
source code (forward engineering).
Although our approach can be used to enforce the constraints on

views by mapping them to the appropriate source-code dependen-
cies, it falls somewhat short in doing this in an incremental manner.
When small changes have been made to the source code we want to
avoid having to rerun all consistency checks on the entire source.
Preferably, we need a mechanism that notifies the logic environ-
ment of which changes have been made to the source code and that
triggers only those rules that affect this source code. Grundy et. al.
present such an approach [5]. Although we have plans to extend
our logic language to support this as well, until now we have only
conducted some initial experiments on this, see for example [16].
Because one of the goals of our approach is to express crosscut-

ting software concerns, it is akin to aspect-oriented programming
[6]. However, we want to stress that our proposed approach is com-
plementary to AOP research, as AOP technology can be used on
top of intentional views, for example to generate or weave code for
all artifacts that belong to a certain intentional view [15].

7. CONCLUDING REMARKS
Intentional views offer a simple, intuitive and lightweight model

that facilitates software understanding and maintenance. They serve
as an active and enforcable documentation of the code structure.
They make the code more understandable and easier to navigate
through by grouping together source-code entities that address a
similar concern and by allowing the definition, verification, and en-
forcement of relations among these groups of source-code entities.
The source-code entities are not grouped by enumeration but more
intentionally by means of a logic predicate that specifies what it is
the source-code entities have in common. These intentional views
provide a generic and flexible modularisation mechanism and as
such make the software more maintainable. They allow us to ensure
that naming and coding conventions are consistently used through-
out the source code. They support software evolution by explicitly
codifying hidden assumptions and constraints in the source code
and by indicating which constraints have been invalidated when
the software evolves. They can be used for code generation. Fur-
thermore, the verifiable intentional description of views and their
relations within a logic metaprogramming approach makes it pos-
sible to provide (semi-)automated tool support for all the activities
listed above.
In future work, we will refine and extend the language and view

models, and the associated tool support, based on feedback gath-
ered from further examples and case studies. Among other things,
we will look at how OCL [12], which has obvious advantages at
making the transition from the language model in UML to the view
model, might be integrated into our logic framework. Moreover,
since views and their relations capture knowledge about a software
system, we are confident they will be useful to describe higher-level
and more complex programming abstractions, like design patterns,
architectural styles [13], and architectural views [7]. The inten-
tional description of those abstractions might then be used not only
to extract them from the source code, but also to enforce them (e.g.,
to check whether the implementation conforms to the software ar-
chitecture [11, 9, 8]), or to help re-engineering the application.
The logic language itself also needs to be enhanced to obtain a

real multiple-view software development environment (in the sense
of [5]). For example, to enable a more incremental verification al-
gorithm the language needs to be extended with a trigger or con-
straint-based approach that triggers only the affected rules when
changes have been made to the source code. The tool should also
be integrated with a version management system so that all relevant

declared constraints are automatically checked when the source
code is updated to a new version.
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