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Abstract

Many searches for physics beyond the Standard Model at the Large Hadron
Collider (LHC) rely on top tagging algorithms, which discriminate between
boosted hadronic top quarks and the much more common jets initiated by light
quarks and gluons. We note that the hadronic calorimeter (HCAL) effectively
takes a “digital image” of each jet, with pixel intensities given by energy deposits
in individual HCAL cells. Viewed in this way, top tagging becomes a canonical
pattern recognition problem. With this motivation, we present a novel top tagging
algorithm based on an Artificial Neural Network (ANN), one of the most popular
approaches to pattern recognition. The ANN is trained on a large sample of
boosted tops and light quark/gluon jets, and is then applied to independent test
samples. The ANN tagger demonstrated excellent performance in a Monte Carlo
study: for example, for jets with pT in the 1100-1200 GeV range, 60% top-tag
efficiency can be achieved with a 4% mis-tag rate. We discuss ...
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Abstract: Many searches for physics beyond the Standard Model at the Large Hadron

Collider (LHC) rely on top tagging algorithms, which discriminate between boosted

hadronic top quarks and the much more common jets initiated by light quarks and gluons.

We note that the hadronic calorimeter (HCAL) effectively takes a “digital image” of each

jet, with pixel intensities given by energy deposits in individual HCAL cells. Viewed in this

way, top tagging becomes a canonical pattern recognition problem. With this motivation,

we present a novel top tagging algorithm based on an Artificial Neural Network (ANN),

one of the most popular approaches to pattern recognition. The ANN is trained on a large

sample of boosted tops and light quark/gluon jets, and is then applied to independent test

samples. The ANN tagger demonstrated excellent performance in a Monte Carlo study:

for example, for jets with pT in the 1100–1200 GeV range, 60% top-tag efficiency can be

achieved with a 4% mis-tag rate. We discuss the physical features of the jets identified by

the ANN tagger as the most important for classification, as well as correlations between

the ANN tagger and some of the familiar top-tagging observables and algorithms.
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1 Introduction

Many extensions of the Standard Model (SM) predict new particles with masses around the

TeV scale. Searches for such new particles form a major component of the experimental

program at the Large Hadron Collider (LHC). In most models, the new particles are

unstable, and their decays often contain weak-scale SM states, namely the W and Z bosons,

the Higgs boson, and the top quark. Searches for final states containing top quarks are

particularly important, due to the special role played by the top sector in many models

of electroweak symmetry breaking. Decays of heavy new particles with mass above the

electroweak scale typically result in highly energetic, relativistic top quarks in the lab

frame. Identifying and characterizing such “boosted” top quarks in the data is crucial for

new physics searches and tests of naturalness [1] at the LHC, especially as the bounds on

the new physics mass scales in many candidate models are pushed higher. Examples of

new physics leading to boosted top signatures include Kaluza-Klein gluons [2, 3] and string

Regge states [4] of the Randall-Sundrum model, stops [5] and gluinos [6] of supersymmetry,

top and light quark partner decays in Composite Higgs models [7–12], and many others.

Due to relativistic kinematics, the decay products of a boosted top quark are highly

collimated. For instance, hadronic decay of a top quark of pT ∼ 1 TeV would produce

three quarks collimated into a cone of rough size R ∼ 0.4 and result in a specific pattern of

hadronic activity in the detector. Classical event reconstruction techniques are inadequate

to tag and measure such topologies, as most of the showered radiation falls into a small

angular region. One solution is to cluster the event with a large jet cone (R ∼ 1), and

consider the features of energy distribution inside such “fat” jets (so-called jet substruc-

ture), instead of correlations between individual small radius jets. Over the past decade,

a variety of methods for boosted top tagging via jet substructure have been developed

(see refs. [13, 14] for a review), most of which can be cast into several (non exclusive)

groups. Jet shapes are observables based on various moments of the jet energy distribu-

tion. Notable examples are angular correlations studied extensively in ref. [15], sphericity
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tensors [16, 17] and other perturbatively calculable jet shapes [18]. Considerations of jet

clustering history led to development of several jet grooming methods [19–21], where the

differences in the late steps of jet clustering between heavy SM states and QCD jets from

light partons have been successfully applied in tagging of heavy SM states. HEPTopTag-

ger [22] applied mass-drop filtering to top tagging. Furthermore, Prong Taggers such as

Johns Hopkins tagger [23] and N -subjettiness [24, 25] exploit the differences in the number

of hard energy depositions within the boosted jet (e.g. three-body top decays compared to

the typical two-body splitting of a light jet). Parton level models of boosted decays and

kinematic constraints built into them can also be used to study jet substructure, with the

Template Overlap Method (TOM) [26–29] being the most notable example. More recently,

Matrix Element Method [30, 31] inspired techniques such as Shower Deconstruction have

emerged [32, 33], where a boosted jet is tagged using approximations to hard matrix ele-

ments and the parton shower. Soft drop declustering (a generalization of modified mass

drop tagging) is another method which has been recently developed for removing non-

global contributions (soft radiation) to the jet [34]. Several of these methods have been

implemented in the analyses of the LHC data by the CMS and ATLAS collaborations; see,

for example ref. [35–38].

In this paper, we pursue an alternative approach to jet substructure. Experimentally,

information about hadronic activity in an event comes mainly from the hadronic calorimeter

(HCAL), with the basic observable being the energy deposited in each of the HCAL cells.

One can think of the information provided by the HCAL as a digital image, with each cell (or

topo-cluster) being identified as a pixel, and with energy deposit in the cell corresponding

to the intensity (or grayscale color) of that pixel. From this point of view, boosted top

identification is simply a classic image-recognition problem: distinguishing the energy-

deposit patterns characteristic of boosted tops from patterns due to other sources, such as

the usual QCD jets. This suggests that computational algorithms developed in the field of

image recognition could be of use in boosted top tagging. In a recent application of this

idea, ref. [39] studied jet substructure as an image recognition problem in the context of

boosted W tagging as well gluon/quark discrimination. The authors utilized a linear Fisher

discriminant trained on a sample of signal and background events, in order to distinguish

the desired events from the backgrounds. The method out-performs the existing methods of

W tagging, illustrating the benefits of the image recognition approach to jet substructure.

For earlier examples of image-recognition techniques applied to jets, see refs. [40–43].

With this motivation, we constructed a new top tagger algorithm based on one of the

most popular approaches to image recognition, Artificial Neural Networks (ANNs). In this

approach, each jet is classified as top or non-top according to a highly non-linear scoring

function. The function contains multiple adjustable parameters, called weights. These are

chosen using a training procedure, in which the ANN is presented with a large sample of

jets that are known to be top or non-top, and the weights are chosen to maximize the

number of correctly identified jets in this sample. (In our study, all samples are generated

by Monte Carlo simulations. In experimental applications, ANN may be trained on either

MC samples or carefully selected “calibration” data sets.) Having fixed the weights, the

ANN is then applied to independent samples containing both top and non-top jets, and
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asked to discriminate between them. We find that the performance of the ANN tagger

significantly exceeds that of several popular tagging algorithms currently in use over a

wide range of pT , demonstrating the practical utility of this approach.

The paper is organized as follows. Section 2 describes the MC event samples used for

training and testing the ANN tagger, as well as the pre-processing steps applied to these

samples before the ANN is applied. Section 3 contains a detailed description of the ANN

tagger, including the network architecture and the training algorithms we employed. In

section 4, we present the results of our study of ANN tagger performance and comparisons

with other popular taggers. We also discuss the physical features of jets that are dominant

in the ANN classification, and the extent to which ANN output is correlated with that

of other taggers. We conclude with a recap and a brief discussion of directions for future

research in section 5. An appendix contains a brief description of the top taggers we use

for the purpose of comparison with the ANN tagger.

2 Event generation and pre-processing

We generate benchmark event samples with MadGraph 5 [44] at leading order, and shower

them with Pythia 6 [45]. In order to study the effects of different showering algorithms

on the results, we also generate separate data samples showered with Pythia 8 [46]. For

simplicity, we extract a pure sample of top jets from a Standard Model top pair-production

simulation, at leading order with no matching. The tops are decayed in MadGraph 5, so

that the angular distribution of the decay products is modeled correctly. Only hadronic top

decays, t→ bjj, are included. Similarly, we generate the light jet sample from a simulation

of the QCD di-jet process, including both quarks and gluons in the final state, but no

matching to extra jets. Fiducial cut |η| ≤ 5.0 is imposed at the hadron level. We cluster

the events using the fastjet [47] implementation of the anti-kT algorithm [48] with a large

jet cone of R = 1.0. For our analysis, we only use the highest pT jet in each event, and

impose the cut |ηjet| ≤ 2.5. We consider samples of jets within three jet pT ranges: 500–

600 GeV, 800–900 GeV and 1100–1200 GeV. These three bins span a range of jet pT values

relevant for top tagging at the LHC, while analyzing them separately provides information

about pT sensitivity of the tagging efficiency and other parameters. Unless otherwise noted,

we impose a cut on the jet mass (i.e. the invariant mass of all particles assigned to the jet),

selecting jets within a window

130 GeV < mR=1.0
J < 210 GeV. (2.1)

A vast majority of top jets fall within this mass range, while most QCD jets are rejected by

this cut. Discriminating the remaining QCD jets from top jets is the task for the top tagger.

In order to form an input to the ANN tagger, we preprocess each jet as follows. First,

we find the center of the jet, defined by the sum of the coordinates of all particles weighted

by their energies,

ηC =
1

E

∑
j

ηjEj , φC =
1

E

∑
j

φjEj , (2.2)
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where E =
∑

j Ej is the total energy of the jet. We then shift the coordinates of each

particle so that the jet is centered at the origin in the new coordinates:

η′j = ηj − ηC , φ′j = φj − φC . (2.3)

Further, we find the jet “principal axis” in the (η, φ) plane, defined by

tan(θ) =

∑
j

φ′j ·Ej

∆R′∑
j

η′j ·Ej

∆R′

, ∆R′ =
√
η′2j + φ′2j , (2.4)

and rotate the coordinate system so that this principal axis is the same direction (+η) for

all jets:

η′′j = η′j · cos(θ) + φ′j · sin(θ), (2.5)

φ′′j = −η′j · sin(θ) + φ′j · cos(θ). (2.6)

These coordinate transformations remove information about the jet position in the

calorimeter and its orientation in the (η, φ) plane. Both pieces of information are irrel-

evant for top tagging, and removing them from consideration allows the ANN tagger to

focus on the irreducible physical differences between top and QCD jets.1

In the new coordinates, nearly all (98%) of the particles assigned to a given jet fall

within a window of η′′ ∈ [−π/2, π/2] and φ′′ ∈ [π/2, π/2]. We model the HCAL response

to the jet by dividing this window into 30× 30 square cells. (The cell size is approximately

0.1×0.1, close to the realistic values in ATLAS and CMS.) The normalized energy deposited

in each cell, εab (a, b = 1 . . . 30), is computed by adding up the energies of all particles falling

within that cell, and dividing by the total energy of the jet. The last step is necessary to

render the algorithm insensitive to the total jet energy: once the jet pT is confined to a

narrow range, the jet energy is very well correlated with its direction, which is irrelevant

for top tagging. By construction, εab is dimensionless and lies between 0 and 1. In the

language of image processing, each jet has been converted into an image with 30×30 pixels,

with a grayscale color of each pixel given by the corresponding εab. These images can now

be classified by an Artificial Neural Network (ANN), described in the following section.

3 ANN tagger

ANN tagger is based on a feed-forward neural network with an input layer consisting of

30 × 30 = 900 nodes, one for each calorimeter cell; two hidden layers, of 100 nodes each,

to process the signal; and an output layer consisting of a single node, whose value Y

is interpreted as the probability that a given jet comes from a boosted top decay. The

1As an exercise, we also attempted to train the neural network on a set of jets with randomly ori-

ented principal axes, i.e. without the rotation (2.6). We found that this procedure still yields an effective

tagger; presumably, the neural net learns to ignore the axis orientation information during the training

process. However, to achieve the same tagging performance, the randomly-oriented training set needs to

be significantly larger.
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Input layer Hidden layer 1 Hidden layer 2 Output layer

Bias nodes

Calorimeter image

Figure 1. Graphical representation of the Artificial Neural Network (ANN).

architecture of the network is shown in figure 1. (For pedagogical introduction to Artificial

Neural Networks in the context of image recognition, see for example [49].) Mathematically,

the ANN can be thought of as a succession of non-linear transformations:2

εi → h
(1)
i = f(W

(1)
ij εj + b

(1)
i )→ h

(2)
i = f(W

(2)
ij h

(l−1)
j + b

(2)
i )→ Y = f(W

(O)
j h

(2)
j + b(O)),

(3.1)

where f is the so-called activation function, chosen to be

f(z) =
1

1 + e−z
. (3.2)

The inputs εi are simply the normalized energy deposits εab defined above, rearranged in

a single 900-dimensional vector: εab ≡ ε30a+b. The weights W
(L)
ij and the biases b

(L)
i are

numbers determined by the training procedure, which we will now describe.

To train the network, we use a set of N/2 top and N/2 QCD jets, where N is a large

number. For the i-th jet, we assign the “target output” variable: yi = 1 if it is a top jet,

and yi = 0 if it is a QCD jet. Training consists of adjusting the weights so that the actual

outputs of the ANN Yi correspond as close as possible to the target outputs yi, across the

training set. To quantify the error, we use the logarithmic loss variable

Log-loss = − 1

N

N∑
i=1

[yi log(Yi) + (1− yi) log(1− Yi)] . (3.3)

The goal of training is to choose weights that minimize this function. We use the back-

propagation algorithm [50], combined with gradient-descent minimization. In its simplest

version, the algorithm can be summarized as follows [51]:

1. Initialize the weights of each link to small random values.

2. Repeat until convergence of log-loss, for each input vector εi:

2In eq. (3.1) and below, repeated indices are always summed over.
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• Forward: compute the output of each neuron until the output layer is reached,

according to eq. (3.1).

• Backward: adjust the weights of each neuron by propagating backward the error

at the output using

δ(O) = (y − Y )Y (1− Y ) and δ
(l)
k = h

(l)
k (1− h(l)

k )
∑
j

W
(l−1)
kj δ

(l−1)
j (3.4)

W
(0)
k →W

(0)
k + ηδ(O)h

(2)
k

W
(2)
jk →W

(2)
jk + ηδ

(2)
j h

(1)
k

W
(1)
jk →W

(1)
jk + ηδ

(1)
j εk (3.5)

where η is a small parameter called the learning rate.

We used several well-known tricks to make this algorithm more efficient. First, instead of

updating the weights after each jet εi, we used what is known as batch gradient descent so

that the update on the weights is only done after all the jets in the training set have been

processed. In that scenario, the updates on the weights are an average of the individual

updates caused by each jet. Moreover, to reduce the odds of getting stuck at local minima

we add what is known as a “momentum” to the updates. This means that the weights at

iteration t, W t
ij , are still being pushed by the update from the previous iteration ∆W t−1

ij ,

for example

W t
ij → W t

ij + ηδ
(l)
i h

(l−1)
j + α∆W t−1

ij (3.6)

where α ∈ (0, 1) is a fixed parameter.

A major concern in using ANN classifiers is over-fitting the network to the training

data. Over-fitting is a common problem in machine learning, in which the training pro-

cedure produces a classifier that emphasizes random fluctuations in the training data set,

as opposed to the underlying trend. An over-fitted classifier would achieve excellent per-

formance on the training set, but this will not generalize well to data sets which were not

part of the training set, rendering it useless. Many techniques for avoiding over-fitting

have been proposed in the literature. However, over several experiments we found that it

was easier to avoid over-fitting simply by using more training data and ensembling several

neural networks together. To determine the size of the training set Ntr needed to saturate

the learning of our neural network, we studied the performance of the trained network on a

cross-validation set of 50000 top and QCD jets, as a function of Ntr. For this analysis, the

performance is characterized by the ROC AUC (area under the receiver operating char-

acteristic curve) performance metric, which assigns a value of 0.5 to a random classifier

and a value of 1.0 to a perfect classifier.3 As can be seen on figure 2, performance steadily

3ROC AUC is a metric for quantifying performance of binary classifiers, widely used in machine learning

literature. The ROC curve is identical to the “Efficiency vs. Mis-tag” curve familiar to particle physicists.

The probability of a false positive (“mis-tag”) is plotted on the horizontal axis, while the probability of a

true positive (“efficiency”) is plotted on the vertical axis. Changing the threshold of the classifier observable,

in our case O, maps out a curve in the [0, 1] ranges on both axes; this is the ROC curve. The area under

this curve is ROC AUC.
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jets in the training sample

Figure 2. ROC AUC (area under the receiver operating characteristic curve) on a cross-validation

set of 50 000 jets, vs. number of jets in the training set.

improves with the training set size until Ntr ≈ 40000 (i.e. 20000 top images and 20000 dijet

images), after which convergence is achieved. This indicates minimal over-fitting beyond

that point.

To further improve the performance of our tagger, we ensembled multiple neural net-

works together. The idea is to train B neural networks together, with the output given by

the average of their outputs,

O =
1

B

B∑
i=1

Yi. (3.7)

In our application, B = 10. All networks are trained using the same training set, but

the jets are weighted. For the first network, all weights are set to one. Jets which are

heavily misclassified by the first network are then assigned a larger weight, while jets

which are correctly classified are assigned a smaller weight. This re-weighted training set

is then used to train the second network, and so on. This procedure allows the training

algorithm to focus on specific events that are particularly arduous to classify, improving

overall performance. For some parameter choices, this method can be mapped to boosted

methods such as ADAboost [52], where the weak classifiers are feed-forward ANNs.

4 Results

The ensemble of ANNs described above has been trained on sets of about 50,000 top

and QCD jets each, in each of the three pT bins, 500–600 GeV, 800–900 GeV, and

1100–1200 GeV. These sets are large enough to avoid over-fitting, see figure 2. The ANN

ensemble has then been applied to test sets consisting of about 15,000 top and QCD jets

each, in the same pT bins.4 The distribution of the neural network output O on the test

sets is shown in figure 3. The classification power of this observable is clear from the figure:

4The CPU time required to train the network ensemble for each pT bin is about 12 hrs on a 2.4 GHz

CPU, and processing time is about 0.01 sec per jet.
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top jets are predominantly assigned O ≈ 1.0, while QCD jets are predominantly assigned

O ≈ 0.0. To use the ANN ensemble as a top-tagger, we simply choose a threshold value

Oth, and assign the “top tag” to any jet with O ≥ Oth and the “QCD tag” to any jet

with O < Oth.

To discuss the performance of the ANN tagger, it is convenient to define efficiency and

mis-tag rates as follows:

Eff =
N top

top

Ntop
, Mistag =

N top
QCD

NQCD
, (4.1)

where Ntop and NQCD are the total number of jets in the top and QCD jet samples,

respectively, and N b
a is the number of jets in sample a tagged as jets of type b (a, b =top,

QCD). Efficiency and mis-tag rates can be varied by varying the threshold Oth. The

performance of the ANN tagger is shown in figure 4, where for comparison we also show

the performance of three representative existing taggers, described in the appendix. In

all cases, the ANN tagger outperforms the existing taggers, achieving lower mis-tag rates

for the same tagging efficiency. The improvement is especially dramatic for high jet pT :

for example, for jets with pT ∈ [1.1, 1.2] TeV range, the ANN tagger achieves 60% tagging

efficiency with about 4% mis-tag rate, about a factor of 2 lower than the best of the

existing taggers in our comparison pool. This clearly demonstrates the promise of the

ANN-based approach.

What physical features of the jet are identified by the ANN as the primary character-

istics of a top jet? Some insight is provided by the energy deposit patterns of the highest-

scoring and lowest-scoring jets, according to the ANN output O, in the top sample. These

are shown in figure 5. It is clear that the jets receiving high scores are characterized by

well-defined three-prong structure, with each of the three quarks from top decay forming a

well-defined, relatively isolated subjet. The lowest-scoring jets are those where either the

quarks are nearly collinear, or one of them is much softer than the other two (in the de-

tector frame). Likewise, the QCD jets receiving the highest scores, and thus most likely to

be mis-identified as tops, have well-defined, isolated subjets, while the QCD jets correctly

tagged as such do not: see figure 6.

To gain further insight, we studied correlations of rankings based on the ANN scores

with other observables used to tag tops. table 1 contains the ranking correlation coefficients

between the ANN score and the output of the other taggers in our comparison pool, on

a variety of samples used in our analysis. (The correlation coefficients are normalized so

that 1.0 indicates perfect correlation and −1.0 perfect anti-correlation, while 0 indicates

absence of correlation.) In all cases, we observe significant, though far from perfect, positive

correlations, with coefficients ranging from about 0.3 to 0.7. A visual illustration is provided

by figure 7, which shows that the ranking of jets according to the ANN score and the N -

subjettiness are indeed correlated, in both top and light-jet samples; correlation plots for

all other taggers and pT ranges look very similar. This should not be surprising since all

top taggers to some extent exploit the same physical characteristics of the boosted top

jets. Nevertheless, as noted above, ANN systematically outperforms the other taggers in

terms of tagging efficiency vs. mistag rates, indicating that the complicated non-linear
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Figure 3. Distributions of the ANN output O on top (red) and QCD (blue) jet samples in three

representative pT ranges. All distributions are normalized to unit area.
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Figure 4. Efficiency vs. Mis-tag rate curves for the ANN tagger (blue/solid lines), for jets in three

representative pT ranges. For comparison, corresponding curves for three existing top taggers are

also shown: d12 tagger (yellow/dashed), top template tagger (green/dotted), and N-subjettiness

τ32 = τ3/τ2 (red/dash-dotted).
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Figure 5. Energy deposit patterns for three jets with the highest (top row) and lowest (bottom

row) ANN scores in the top sample with pT ∈ [800, 900] GeV. Color coding represents the fraction

of the total jet energy found in a cell.

Figure 6. Energy deposit patterns for three jets with the lowest (top row) and highest (bottom

row) ANN scores in the QCD jet sample with pT ∈ [800, 900] GeV. Color coding represents the

fraction of the total jet energy found in a cell.
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Tagger Top Dijet

pT ∈ [500, 600] pT ∈ [1100, 1200] pT ∈ [500, 600] pT ∈ [1100, 1200]

TOM 0.50 0.52 0.52 0.65

N -sub. τ32 0.59 0.52 0.48 0.31

d12 0.33 0.44 0.42 0.72

Table 1. Ranking correlation coefficients between the ANN score and the output of alternative

taggers, in a variety of samples.

Figure 7. Correlation between the rankings of jets according to N -subjettiness τ32 (horizontal

axis) and ANN score (vertical axis). Left: top sample, pT ∈ [1100, 1200] GeV. Right: QCD jet

sample, same pT range. Jets are ranked in order of increasing “topness” for both samples.

observable created by the ANN learning process captures the information present in the

jet substructure in a more optimal way. In other words, it seems that all taggers find

roughly the same subset of jets to be “easily classifiable”, and all have a very good success

rate on this subset. However, the ANN tagger seems to be able to correctly classify a

higher fraction of the jets outside of this subset, leading to higher overall success rate.

Another interesting question is how the ANN performance varies with the jet mass

mJ . The training samples and test samples in all plots shown so far only contain jets in

a 130 . . . 210 GeV mass window, where most top jets are expected to lie. We also applied

the ANN tagger to the full sample of jets in the [800, 900] GeV pT range, without the mass

cut. The jet mass distributions in this sample, before and after the ANN tagger is applied,

as well as the tagging probability as a function of the jet mass, are shown in figure 8. (The

cut on the ANN output used in the figure corresponds to the overall tag efficiency in the

mJ = 130 . . . 210 GeV window of 70%.) For jet mass below 130 GeV, the probability of

a positive top tag drops rapidly, for both top and QCD jets. This is presumably due to

the fact that jets with a clear three-prong structure are unlikely to have a low mass. On

the other hand, for jet mass above 210 GeV, the probability of a top jet being correctly

identified is roughly independent of mJ , while the probability of a QCD jet being mis-

identified as a top grows linearly with mJ , presumably because large-mass QCD jets are

more likely to have a top-like multi-prong structure. It should also be noted that the tag
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QCD Jet

P

m [GeV]

Figure 8. Left: jet mass distributions for top (blue) and dijet (red) samples with pT ∈
[800, 900] GeV window, and no mass cut. Dashed lines: all jets; solid lines: jets tagged as tops

by the ANN tagger. All distributions are normalized to unit total area. Right: probabilities for a

jet in the top (blue) and dijet (red) samples to be tagged as a top jet by the ANN tagger.

probability is smooth on the boundaries of the mass window selected for training, indicating

that there is no strong dependence on the choice of the training sample. The ability of

the ANN tagger to reject jets with low invariant mass may be useful in reducing effects of

the pile-up.

The final issue we address is the IR-safety of the ANN output. As any observable

in jet physics, the ANN score must be IR-safe (or at least Sudakov-safe [53]) to be use-

ful. Canonically, IR-safety simply requires that the observable be unchanged by exactly

collinear 1 → 2 parton splitting, or an emission of an infinitely soft gluon. Since neither

process affects the energy deposits in calorimeter cells εab, and since those energy deposits

are the only information used by the ANN, its output is manifestly IR-safe by this defi-

nition. As a practical matter, however, one might still worry about the sensitivity of the

output to non-perturbative physics involved in splittings at small, but finite, angles, and

emission of gluons with small, but finite, energy. The modeling of this physics in MC gen-

erators such as Pythia involves approximations with poorly understood systematic errors,

and if the ANN output were determined predominantly by features that depend strongly

on the showering model, MC studies would clearly be of very limited utility in assessing

the ANN performance on real data. To address this concern, we applied the ANN tag-

ger, trained as described above on jet samples showered with Pythia 6, to alternative jet

samples generated with the same physics inputs but showered with Pythia 8. Pythia

8 implements pT -ordered showering, while the version of Pythia 6 used throughout this

paper uses the invariant mass as the evolution variable. There are also significant differ-

ences in the modeling of multiple interactions and initial state radiation between the two

versions. We applied the ANN and the three taggers in our comparison pool to the same

samples. The result is shown in figure 9. The ANN tagger continues to perform well on

test samples generated with a showering model different from the one used in the training

set. This indicates that the features ANN uses to classify jets are physical, rather than

– 13 –
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Figure 9. Efficiency vs. Mis-tag rate curves for the ANN tagger (blue/solid lines), on jet sam-

ples generated with Pythia 6 (left) and Pythia 8 (right). For comparison, corresponding curves

for three existing top taggers are also shown: d12 tagger (yellow/dashed), top template tagger

(green/dotted), and N-subjettiness (red/dash-dotted).

artifacts of a particular showering model. Moreover, while there is a non-trivial dependence

of the efficiency/mis-tag rate curves on the generator, the effect is of the same size for all

taggers considered here. In other words, ANN does not appear to be unusually sensitive

in this regard.

5 Discussion

In this paper, we proposed and explored a new approach to the analysis of jet substructure,

specifically top-jet tagging, based on Artificial Neural Network (ANN). The main result of

the analysis is captured in figure 4: the ANN tagger significantly outperforms traditional

taggers on the MC “datasets” used in our study. In a sense, this should not come as a

surprise: while the ANN uses the same input information as any other tagger, the training

procedure constructs a non-linear function of these inputs which is specifically chosen to

maximize its power to classify jets. This maximization takes place on a restricted but

extremely broad set of functions, encoded in figure 1 or eq. (3.1), and the resulting observ-

able is probably not far away from the theoretical upper limit on classification performance,

given the angular resolution fixed by the calorimeter cell size (in our study, 0.1×0.1). If this

is indeed the case, the ANN can be useful in theoretical studies, serving as a benchmark

for other observables used for boosted top tagging.

Being the first study of this novel approach to top tagging, the analysis presented here

does not yet fully capture the complexity of the problem in a realistic experimental environ-

ment. The very promising results of this analysis strongly motivate further explorations.

Some of the important outstanding issues include:

• The jets were extracted from event samples including only leading-order SM pro-

cesses, tt̄ and dijet. Subleading processes need to be included. In spite of their

smaller rate, they may have outsize effect on the tagger performance: for example,
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pure QCD processes with high multiplicity of partons in the final state can create

“accidental substructure” [54, 55], and the ANN would need to learn to distinguish

it from real top jets.

• Pile-up has not been included in our simulations. While many methods to reduce the

effects of pile-up have been suggested [20, 21], their interaction with the ANN tagger

needs to be explored.

• Our study did not include detector simulation, which is needed, for example, to assess

the impact of magnetic field.

• Before the method can be applied to real data, concerns about possible MC biases in

training the ANN need to be addressed. A preliminary study of this issue suggests

that the features that determine the ANN output are not strongly MC-dependent,

see figure 9. However, a more extensive study of this issue is needed, ideally using

control/validation samples from real LHC data. In principle, it may even be possible

to train the ANN directly on real data, assuming that sufficiently robust training

samples can be extracted. This approach would entirely remove concerns about MC

biases, and warrants further investigation.

We plan to address some of these issues in future work.

Another important direction is to further improve the tagger performance. A clear

limitation of our tagger is that it only uses HCAL information. Other pieces of informa-

tion are highly relevant for top tagging, the most obvious one being a sub-jet b-tag. This

information can certainly be combined with the algorithm presented here to construct an

even more powerful tagger. Also, the tagger presented here is based on a rather simple NN

architecture and training procedure; more advanced techniques, such as using a convolu-

tional neural network or pre-training the neural network with unsupervised techniques, may

result in improved performance. Likewise, it may be possible to further optimize jet pre-

processing (section 2) to improve performance and/or reduce the required training set size.

Finally, while in this paper we focused exclusively on tops, this approach can equally

well be applied to other boosted-object jets, such as W and h. It would be interesting to

see if performance improvements with respect to traditional taggers can also be achieved

in those cases.

In summary, the novel approach to jet tagging based on pattern-recognition techniques,

specifically Artificial Neural Networks, shows promise of significant improvements in tagger

performance. While the analysis presented in this paper is only the first step, we hope that

this approach will eventually become a useful tool in experimental searches for new physics.
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A A brief description of top taggers used for benchmarking

For the purpose of comparison of the ANN tagger to the existing algorithms, we have chosen

three existing methods, each one exploiting a different approach to boosted top tagging. In

the following list, we give a brief description of the algorithms and the parameters we use

for the analysis, while we refer the reader to the references within for detailed discussions.

• Template Overlap Method (TOM). TOM [26–29] is a jet substructure algorithm

which aims to match the energy distribution of a fat jet to a partonic structure

which models the decay of a heavy boosted particle. TOM algorithm proceeds by

comparing libraries of kinematically allowed parton level decays of massive particles

(“templates”) to the energy distribution of a fat jet. The quality of a match is

quantified by the overlap function Ov, which minimises the difference between the

parton transverse momenta and the amount of pT deposited in small angular regions

around the template patrons (“template sub cones”). An Ov ∼ 1 score signals a

top like jet, while a Ov ∼ 0 is characteristic of light QCD jets. Here we use the

TemplateTagger v.1.0 [56] implementation of the TOM algorithm.

There are many ways generation of template libraries can be implemented. For

simplicity and processing speed, here we consider templates at fixed total transverse

momentum matched to the mid-point in each fat jet pT bin of the event samples

(e.g. 550 GeV for fat jet pT = 500–600 GeV). We generate the template states using

a sequential scan of 40 steps in η, φ over the angular region of R = 1.0 around

the fat jet axis. We match the template libraries to the energy distribution of the

fat jet using fixed template sub cones of size r3 = 0.1, 0.15, 0.2 for template pT =

1150, 850, 550 GeV respectively, while we allow for the template resolution parameter

σa = pT, a/3, where pT, a is the transverse momentum of an individual template

parton.

• N-subjettiness. Perhaps the most notable example of a “prong” tagger is N -

subjettiness [24, 25]. The algorithm is based on calculating moments τN , which

serve as estimates of how well the jet energy distribution can be divided into N

regions. The τN are calculated by minimizing the pT weighted distances between

calorimeter energy depositions and trial axes which divide the distribution into N

regions, over the space of possible axis configurations. The N -subjettiness tagger

used in our comparisons is the version publicly available on HepForge.5

For the purpose of top tagging the most useful observable is typically the ratio τ3/τ2,

where a low score means that a jet distribution is described better by a three prong

5See http://fastjet.hepforge.org/contrib/contents/latest.html.
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configuration. Conversely, a high τ3/τ2 score is characteristic of two prong jets. Note

that in the analysis of this paper we used the angular weight exponent β = 1 in

calculations of τN moments, as suggested in ref. [25].

• ATLAS top tagger. Jet clustering history can provide useful insight into jet sub-

structure. A notable example is the ATLAS top tagger [57] which utilises the differ-

ences between the top and light jets in the last step of jet clustering. The observable

ATLAS uses is the “kT splitting scale” d12, defined as the value of the kT norm at the

clustering step which goes from two subjects to one final jet. The d12 observable is

sensitive to the dynamics of hard splittings within the fat jet. The highly asymmetric

splittings of typical light jets tend to be characterised by low values of d12 with a

distribution which falls off sharply with the increase in d12, while we expect typical

top jets to be characterised by d12 ∼ m2
t /4.

In addition to d12, ATLAS also imposes a lower cut on the trimmed jet mass of

mj > 130 GeV. Unless otherwise noted, here we omit the lower mass cut as the data

samples we use for comparison are already restricted to a jet mass window in eq. (2.1).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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