International Journal of

EXERCISE SCIENCE

Use of Heart Rate Index to Predict Oxygen Uptake - A Validation Study

JIE KANG ${ }^{1}$, NICHOLAS A. RATAMESS ${ }^{1}$, AVERY D. FAIGENBAUM $\neq 1$, JILL A. BUSH ${ }^{1}{ }^{1}$, CHRISTOPHER ROSER*1, DEVYN MONTEMARANO*1, HANNAH MERCADO*1, MORGAN CHOMA*1, CHRISTIAN MENDEZ*1, and MATTHEW POLLOCK*1
${ }^{1}$ Human Performance Laboratory, The College of New Jersey, Ewing, New Jersey, USA
*Denotes undergraduate student author, \ddagger Denotes professional author

Abstract

International Journal of Exercise Science 13(7): 1705-1717, 2020. An equation that uses heart rate index (HRI) defined as HR/HRrest to predict oxygen uptake $\left(\mathrm{VO}_{2}\right)$ in METs (e.g., METs $=6 \times \mathrm{HRI}-5$) has been developed retrospectively from aggregate data of 60 published studies. However, the prediction error of this model as used by an individual has not been established. Therefore, the purpose of this study was to examine the predictive validity of the HRI equation by comparing submaximal and maximal VO_{2} predicted by the equation $\left(\mathrm{VO}_{2}\right.$-Pred) with that measured by indirect calorimetry (VO_{2}-Meas). Sixty healthy adults (age 20.5 ± 2.4 yr., body mass $69.4 \pm$ 13.4 kg , height $1.7 \pm 0.1 \mathrm{~m}$) underwent a VO_{2} max test and an experimental trial consisting of a $15-\mathrm{min}$ resting measurement and three successive $10-\mathrm{min}$ treadmill exercise bouts performed at $40 \%, 60 \%$ and $80 \% \mathrm{VO}_{2}$ max. VO_{2} and HR were recorded during both the submaximal and maximal exercises and used to obtain VO_{2}-Pred and VO_{2}-Meas for each intensity and for VO_{2} max. Validation was carried out by paired t-test, regression analysis, and Bland-Altman plots. A modest but significant ($p<0.05$) correlation was observed between VO_{2}-Meas and VO_{2}-Pred at $40 \%(r=0.58), 60 \%(r=0.53)$, and 80% of $\mathrm{VO}_{2} \max (r=0.56)$ and at $\mathrm{VO}_{2} \max (r=0.50)$. No differences between VO_{2}-Pred and VO_{2}-Meas were found at 40% ($5.53 \pm 1.21 \mathrm{vs} .5 .28 \pm 0.98$ METs, respectively) of VO_{2} max, but $\mathrm{VO}_{2}-$ Pred was higher $(p<0.05)$ than VO_{2}-Meas at $60 \%(8.42 \pm 1.77 \mathrm{vs} .7 .96 \pm 1.39 \mathrm{METs}$, respectively) and 80% ($10.79 \pm$ 2.13 vs. 10.29 ± 1.81 METs, respectively) of VO_{2} max. In contrast, VO_{2}-Pred was lower ($p<0.05$) than VO_{2}-Meas at $\mathrm{VO}_{2} \max (12.32 \pm 2.30 \mathrm{vs} .13 .38 \pm 2.24 \mathrm{METs}$, respectively). Standard errors of the estimate were $0.81,1.20,1.54$, and 1.97 METs at $40 \%, 60 \%, 80 \%$ of $\mathrm{VO}_{2} \max$ and at $\mathrm{VO}_{2} \max$, respectively. These results suggest that further investigation aimed to establish the accuracy of using HRI to predict VO_{2} is warranted.

KEY WORDS: Validity, prediction accuracy, metabolic equivalent, submaximal exercise, maximal oxygen uptake

INTRODUCTION

Using heart rate (HR) to estimate energy expenditure and maximal oxygen uptake $\left(\mathrm{VO}_{2 \max }\right)$ has been extensively investigated on the basis of the well-known linear relationship between HR and oxygen uptake $\left(\mathrm{VO}_{2}\right)(8,30)$. The method is, however, subject to the limitation that HR-VO relationship can be affected by factors such as age, sex, fitness, exercise modality, and environmental conditions $(1,3,22)$. In attempting to mitigate the effect of these variables, the use of HR index (HRI), which is equal to a given HR divided by resting $\mathrm{HR}\left(\mathrm{HR}_{\text {rest }}\right)$ has been
purposed $(19,25,26,28,29)$. It is considered that this HR-based ratio scale that includes $\mathrm{HR}_{\text {rest }}$ can potentially remove the need for individual calibration often required for tracking daily activity using HR $(26,28)$. Recently, HRI has been shown to correlate with levels of habitual physical activity in adults (27).

The utility of HRI was further examined in a retrospective study that extracted the data from 60 published studies to explore the relationship between various HR measures and VO_{2} under both submaximal and maximal conditions (28). In this study, Wicks et al. (28) developed a prediction equation that uses HRI as an independent variable to estimate mass-specific VO_{2} or MET: METs $=6 \times \mathrm{HRI}-5$, where a MET equals $3.5 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$ of VO_{2} (2). As the dataset includes diverse populations, different modes of exercise, and both submaximal and maximal data, the authors claimed that the equation has the potential to allow for inter-individual comparisons without individual calibration (28). An equation that involves $\mathrm{HR}_{\text {net }}$ (i.e., $\mathrm{HR}-\mathrm{HR}_{\text {rest }}$) was also evaluated in the same study. However, the authors found that the model that involves $\mathrm{HR}_{\text {net }}$ (i.e., METs $=$ $0.09 \times \mathrm{HRI}+1$) could underestimate VO_{2} especially in endurance-trained individuals with higher levels of $\mathrm{VO}_{2 \max }$ (28). Given that the HRI equation was developed based off aggregate analysis, this study could not determine its prediction accuracy when applied on an individual basis. Interestingly, in a study that attempted to cross-validate this predictive model among a group of college-aged men, Haller et al. (13) found that the equation significantly underestimated $\mathrm{VO}_{2 \max }$ by an average of $5.1 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$.

Using the HRI equation that involves only two simple measurements, resting HR and activity HR (either submaximal or maximal), to assess both energy expenditure and cardiorespiratory fitness can be attractive to clinicians and fitness professionals. However, evidence concerning its predictive validity remains both scarce and inconsistent. Hence, the present investigation was designed to cross-validate the HRI equation proposed by Wicks et al. (28) by employing both submaximal and maximal exercise protocols. We hypothesized that VO_{2} predicted from the HRI equation would be comparable to VO_{2} measured by indirect calorimetry regardless of exercise intensity.

METHODS

Participants

Sixty healthy young adults including 28 males and 32 females participated in this study. These participants were healthy, free of any orthopedic injury, and have not taken any medications, anabolic steroids, or nutritional supplements known to affect exercise performance as revealed by their responses to a medical and physical activity questionnaire. The sample size was determined by the G*Power software program (version 3.0.10) using the data reported by Haller et al. (13). In this study, effect sizes ranged from 0.37 to 0.92 for the three treadmill protocols employed, which indicated that a largest sample size needed to achieve an 80% power at 0.05 is 60.20% of these participants were involved in varsity sports such as baseball, basketball, field hockey, soccer, swimming, and track/cross-country, whereas the remaining participants were considered physically active but did not participate in an organized training program for more than three months. Participants were informed of the purpose and testing procedures of the
study and each gave their written consent to participate. All experimental procedures were evaluated and approved by the Institutional Review Board for Human Subjects Experimentation. This research was carried out fully in accordance to the ethical standards of the International Journal of Exercise Science (21). The physical and physiological characteristics of participants are presented in Table 1.

Table 1. Physical and physiological characteristics of subjects.

Variables	Men $(\mathrm{n}=28)$	Women $(\mathrm{n}=32)$	Both Sexes $(\mathrm{n}=60)$
Age (yr.)	20.5 ± 1.6	20.5 ± 2.9	20.5 ± 2.4
Body mass (kg)	79.46 ± 11.82	60.54 ± 6.91	69.37 ± 13.40
$\mathrm{Height}(\mathrm{m})$	1.79 ± 0.10	1.65 ± 0.06	1.72 ± 0.10
\% Fat	12.94 ± 5.91	25.02 ± 5.10	19.38 ± 8.16
$\mathrm{VO}_{2 \text { rest }}\left(\mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	3.81 ± 0.65	3.58 ± 0.41	3.68 ± 0.54
$\mathrm{VO}_{2 \max }\left(\mathrm{ml} \cdot \mathrm{kgg}^{-1} \cdot \mathrm{~min}^{-1}\right)$	51.71 ± 6.95	42.58 ± 6.06	46.84 ± 7.91
$\mathrm{VO}_{2 \max }\left(1 \cdot \mathrm{~min}^{-1}\right)$	3.95 ± 0.96	2.57 ± 0.41	3.21 ± 1.00
$\mathrm{HR}_{\text {rest }}\left(\right.$ beats $\left.\cdot \mathrm{min}^{-1}\right)$	64.51 ± 6.26	74.4 ± 10.50	69.78 ± 10.07
$\mathrm{HR}_{\max }\left(\right.$ beats $\left.\cdot \mathrm{min}^{-1}\right)$	197.75 ± 7.03	197.00 ± 6.18	197.68 ± 6.13
$\mathrm{HRI}_{\max }$	3.09 ± 0.28	2.71 ± 0.37	2.89 ± 0.38
$\mathrm{RER}_{\max }$	1.16 ± 0.07	1.12 ± 0.07	1.14 ± 0.07
$\mathrm{~V}_{\text {Emax }}\left(1 \cdot \mathrm{~min}^{-1}\right)$	131.46 ± 23.44	87.11 ± 15.53	107.81 ± 29.60

Data are means \pm SD. VO_{2} : oxygen uptake; HR: heart rate; HRI: heart rate index defined as $\mathrm{HR} / \mathrm{HR}_{\text {rest }}$ RER: respiratory exchange ratio; $\mathrm{V}_{\text {Emax }}$: maximal expiratory ventilation.

Protocol

Design: Each participant completed a familiarization session, a $\mathrm{VO}_{2 \max }$ test, and an experimental trial on three separate days. Participants' body mass and body composition were determined during the familiarization session. During $\mathrm{VO}_{2} \max$ tests, participants performed an incremental exercise on a treadmill until volitional exhaustion. The experimental trial consisted of a 15-min resting period and three successive 10-min treadmill exercise bouts performed at $40 \%, 60 \%$ and 80% of VO_{2} max in an ascending order, respectively. VO_{2} and HR were measured continuously during both the rest and exercise periods. Data from these measurements allowed for predicting VO_{2} from HRI using the equation developed by Wicks et al. (28): METs $=6 \times \mathrm{HRI}-5$. The predicted VO_{2} values were then compared with VO_{2} directly measured by indirect calorimetry at submaximal and maximal levels.

Both the $\mathrm{VO}_{2 \max }$ tests and the experimental trials were conducted in a 3-hour post-absorptive state and separated by at least 48 hours between testing sessions. On the day prior to each testing session, subjects were instructed to avoid any vigorous physical activities, to refrain from alcohol and caffeine consumption, and to follow their usual diets. All tests took place in a thermoneutral laboratory where the mean ambient temperature and relative humidity were maintained between $22-24^{\circ} \mathrm{C}$ and $48-50 \%$, respectively.

Familiarization Session: Subjects attended a familiarization session prior to the start of the study. During this session, instructions regarding the testing protocols, instrumentation, and measurement were provided. Subjects' body mass, height, and percent body fat were also
determined. Height and body mass were measured to the nearest 0.1 cm and 0.1 kg using a wallmounted stadiometer and an electronic weight scale, respectively. Percent body fat was measured by the same researcher who had experience in using the Lange caliper and the sex specific 3-site skinfold techniques as described by Jackson et al $(17,18)$. Participants were given the opportunity to practice incline running on a treadmill up to $\sim 75 \%$ of their age-predicted maximal $H R\left(H R_{\max }\right)$. In this session, subjects also received instructions regarding physical activity and dietary guidelines that they would need to follow prior to the subsequent tests.
$V O_{2 \max }$ Tests: $\mathrm{VO}_{2 \max }$ was assessed using a progressive, multi-stage protocol on a treadmill in conjunction with a metabolic system. The protocol consisted of a general warm-up of walking at 3.5 mph followed by running at a constant speed (i.e., between 5 and 6 miles $\cdot \mathrm{hr}^{-1}$) with percent grade increased by 2.5% every 2 minutes (4). All subjects were verbally encouraged to continue exercise until volitional exhaustion. The test was considered valid when the subjects met at least two of the following three criteria: an increase in VO_{2} of less than $150 \mathrm{ml} \mathrm{min}{ }^{-1}$ despite an increase in work load, a RER value greater than 1.15, and a HR reaching within 10% of agepredicted maximal HR (15). Throughout the test, VO_{2} was obtained breath-by-breath, while HR was recorded every second. Both VO_{2} and HR were then averaged over 30 second intervals, and $\mathrm{VO}_{2 \max }$ and $\mathrm{HR}_{\max }$ were identified as the highest 30 -second average from each respective measurement. Upon completion of the test, a best-fit linear regression analysis in which treadmill stage was plotted as a function of VO_{2} was calculated. This analysis provided the estimated treadmill speeds and inclines that were used to produce intensities corresponding to $40 \%, 60 \%$, and 80% of $\mathrm{VO}_{2 \max }$ during the experimental trials.

Experimental Trials: The experimental session consisted of a 15-min resting period and three 10min treadmill exercise bouts performed at $40 \%, 60 \%$ and 80% of VO_{2} max. Upon arrival, subjects sat quietly for 10 minutes before resting measurements. Resting VO_{2} and HR were measured in a quiet room with dim lights when participants were in a semi-recumbent position. Participants then proceeded with running/walking on a motor-driven treadmill at intensities that elicited $40 \%, 60 \%$, and 80% of $\mathrm{VO}_{2 \max }$ in an ascending order. These target intensities were achieved via an initial adjustment made to both speed and incline during the first 2 min of each 10-min exercise period. All subjects began level walking at 4 miles $\cdot \mathrm{hr}^{-1}$ followed by a gradual increase in speed and/or incline until a desired level of VO_{2} was achieved. Thereafter, VO_{2} responses were strictly monitored, and a further adjustment was made to speed and/or incline if necessary in order to maintain the target VO_{2}. Each level of intensity lasted 10 min , so the entire exercise session was 30 min in duration. The three levels of intensities were given successively without a rest period in between intensities. This protocol was chosen in order to simply produce various levels of exertion so that multiple pairs of VO_{2} and HR across a wide range of the intensity spectrum could be recorded and used for prediction by the HRI equation.

Dependent variables including VO_{2} and HR were measured continuously during the 15-min rest period and throughout the three stages of exercise. VO_{2} was obtained breath-by-breath, while HR was recorded every second. Both VO_{2} and HR were then averaged over 30 -second intervals. Resting VO_{2} and HR were identified as an average of the two lowest 30 -second measures collected during the last 5 min of the rest period. Exercising VO_{2} and HR were
determined for $40 \%, 60 \%$, and 80% of $\mathrm{VO}_{2 \max }$ separately by averaging the last 5-min of each 10min measurement period.

Measurement and Instrumentation: VO_{2} was measured in real time breath-by-breath during both the VO_{2} max tests and the experimental trials using the MedGraphics ULTIMA metabolic system (MedGraphics Corporation, St. Paul, MN). Prior to each testing session, ambient temperature and pressure was checked and gas and volume calibration were performed. The subject wore a face-fitting respiratory mask that was fastened and carefully checked for proper sealing. Gas analyzers were calibrated before each test using gases provided by MedGraphics Corporation: 1) calibration gas: $5 \% \mathrm{CO}_{2}, 12 \% \mathrm{O}_{2}$, balance N_{2}; and 2) reference gas: $21 \% \mathrm{O}_{2}$, balance N_{2}.

HR was recorded every second throughout the testing session with a wireless Polar® HR monitor (Model A300, Polar Electro Inc., Finland) that determined HR based on R-R intervals. Before each test, the subject was fitted snugly with a HR strap around their chest. Upon completing a test, HR data were downloaded and aligned with VO_{2} data temporally.

Calculations: HRI was calculated as an intensity-specific HR or $\mathrm{HR}_{\max }$ divided by $\mathrm{HR}_{\text {rest }}$ for exercise performed at $40 \%, 60 \%, 80 \%$ of $\mathrm{VO}_{2 \max }$ and at $\mathrm{VO}_{2 \max }$ separately. VO_{2} in MET was then predicted from HRI using the equation proposed by Wicks et al. (28), i.e., MET $=6 \times \mathrm{HRI}-5$. The validity of using HRI to predict energy expenditure and cardiorespiratory fitness was carried out by comparing VO_{2} predicted $\left(\mathrm{VO}_{2}\right.$-Pred) with that measured by indirect calorimetry (VO_{2}-Meas) at each level of submaximal intensity and at $\mathrm{VO}_{2 \text { max }}$.

Statistical Analysis

Data were first analyzed for its normality using the Shapiro-Wilk test. The prediction accuracy was examined by carrying out paired t-tests of the measured and predicted VO_{2} values and the regression analysis that provided correlation coefficients and standard error of the estimate (SEE). In addition, Bland-Altman plots (6) were constructed to provide information regarding the systematic bias and upper and lower limits of agreement between VO_{2}-Pred and VO_{2}-Meas for both the submaximal and maximal exercises. For all statistical tests, a probability level of 0.05 was established to denote statistical significance. Statistical analyses were carried out using the Statistical Package for the Social Sciences (Version 25.0, SPSS, Inc. Chicago, IL).

RESULTS

No differences between VO_{2}-Pred and VO_{2}-Meas were observed at 40% of $\mathrm{VO}_{2 \max }$ (Table 2). However, VO_{2}-Pred was higher $(p<0.05)$ than VO_{2}-Meas at 60 and 80% of $\mathrm{VO}_{2 \text { max }}$. There was a significant ($p<0.05$) correlation coefficient between VO_{2}-Pred and VO_{2}-Meas at $40 \%(r=0.58)$, $60 \%(r=0.53)$, and 80% of $\mathrm{VO}_{2 \max }(r=0.56)$. Prediction error as measured by SEE were $0.81,1.20$, to 1.54 METs, representing $14.6,14.3$, and 14.3% of the estimated VO_{2} at $40 \%, 60 \%$, and 80% of $\mathrm{VO}_{2 \text { max, }}$, respectively. Bland and Altman analysis revealed that the mean of the differences between VO_{2}-Pred and VO_{2}-Meas and the upper/lower limits of agreement were +0.25 and 2.25 $/-1.75$ METs, +0.46 and $3.52 /-2.61$ METs, and +0.50 and $4.18 /-3.19$ METs at $40 \%, 60 \%$, and 80% of $\mathrm{VO}_{2 \max }$, respectively (Figure 1).

Table 2. Comparisons of VO_{2} predicted $\left(\mathrm{VO}_{2}\right.$-Pred) and VO_{2} measured $\left(\mathrm{VO}_{2}\right.$-Meas) during submaximal and maximal exercise.

Exercise Intensity	$\begin{gathered} \mathrm{VO}_{2} \text {-Pred } \\ (\mathrm{MET})(\mathrm{CV}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{VO}_{2} \text {-Meas } \\ & \text { (MET) (CV) } \end{aligned}$	$\begin{aligned} & \hline \text { T-test }(p \\ & \text { value) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Mean Bias } \\ \text { (MET)(95\% CI) } \end{gathered}$	CC (r)	SEE (MET)
$40 \% \mathrm{VO}_{2 \text { max }}$	$\begin{gathered} 5.53 \pm 1.21 \\ (21.88 \%) \end{gathered}$	$\begin{gathered} 5.28 \pm 0.98 \\ (18.56 \%) \end{gathered}$	0.064	$\begin{gathered} +0.25 \\ (-1.75,2.25) \end{gathered}$	0.583\#	0.81
$60 \% \mathrm{VO}_{2 \text { max }}$	$\begin{gathered} 8.42 \pm 1.77 \\ (21.02 \%) \end{gathered}$	$\begin{gathered} 7.96 \pm 1.39^{*} \\ (17.46 \%) \end{gathered}$	0.029	$\begin{gathered} +0.46 \\ (-2.61,3.52) \end{gathered}$	0.533\#	1.20
$80 \% \mathrm{VO}_{2 \text { max }}$	$\begin{gathered} 10.79 \pm 2.13 \\ (19.74 \%) \end{gathered}$	$\begin{gathered} 10.29 \pm 1.81^{*} \\ (17.59 \%) \end{gathered}$	0.044	$\begin{gathered} +0.50 \\ (-3.19,4.18) \end{gathered}$	0.555\#	1.54
$\mathrm{VO}_{2 \text { max }}$	$\begin{gathered} 12.32 \pm 2.30 \\ (18.67 \%) \\ \hline \end{gathered}$	$\begin{gathered} 13.38 \pm 2.24^{*} \\ (16.74 \%) \end{gathered}$	0.001	$\begin{gathered} -1.06 \\ (-5.51,3.38) \end{gathered}$	0.501\#	1.97

Data are means \pm SD; MET: Metabolic equivalent of task; CV: coefficient of variation expressed as percentage; Bias: VO_{2}-Pred - VO_{2}-Meas; CI: Confidence Interval; CC: correlation coefficient; SEE: standard error of the estimates.
*Significant difference between VO_{2}-Pred and VO_{2}-Meas, $p<0.05$. \#Significant correlation coefficient between VO_{2} Pred and VO_{2}-Meas, $p<0.05$.

As for the maximal exercise, VO_{2}-Pred was significantly ($p<0.05$) lower than VO_{2}-Meas at $\mathrm{VO}_{2 \text { max }}$ (Table 2). There was a weaker but still significant correlation ($r=0.50, p<0.05$) between VO_{2}-Pred and VO_{2}-Meas at $\mathrm{VO}_{2 \max }$. Prediction errors as measured by SEE was 1.97 METs and this value represented 16% of the estimated $\mathrm{VO}_{2 \max }$. The mean of the differences between $\mathrm{VO}_{2^{-}}$ Pred and VO_{2}-Meas was -1.06 METs with the upper and lower limits of agreement being 3.38 and -5.51 METs, respectively (Figure 2).

Figure 1. Bland-Altman plots of the differences between VO_{2} predicted and VO_{2} measured (y axis) against their means (x axis) at $40 \%, 60 \%$, and 80% of VO_{2} max. The bias (solid line: mean difference) and limits of agreement (dash lines: mean difference $\pm 1.96 \mathrm{SD}$) are displayed.

Mean of Predicted and Measured VO2max (MET)
Figure 2. Bland-Altman plot of the differences between VO_{2} predicted and VO_{2} measured (y axis) against their means (x axis) at VO_{2} max. The bias (solid line: mean difference) and limits of agreement (dash lines: mean difference $\pm 1.96 \mathrm{SD}$) are displayed.

DISCUSSION

It appears that a positive relationship exists between VO_{2} calculated by the HRI equation and VO_{2} measured during both submaximal and maximal exercise in healthy young adults. This can be evidenced by a statistically significant correlation coefficient found at each submaximal intensity as well as at $\mathrm{VO}_{2 \text { max. }}$. The equation, however, yields mixed results on prediction outcome. Although there were no significant differences between VO_{2}-Pred and VO_{2}-Meas at 40% of $\mathrm{VO}_{2 \text { max, }} \mathrm{VO}_{2}$-Pred was significantly higher $(p<0.05)$ than VO_{2}-Meas at 60% and 80% of $\mathrm{VO}_{2 \max }$. The prediction agreement shown at 40% of $\mathrm{VO}_{2 \max }$ is encouraging as this intensity (~ 5 METs) represents a level of exertion often experienced in leisure physical activities (2). However, there was a significant overestimation by ~ 0.5 METs when exercise was performed at 60 and 80% of $\mathrm{VO}_{2 \max }$. One possible explanation for this prediction bias could be the difference in testing protocols used between the two studies. Data used for developing the equation was mainly based on incremental protocols in which each stage is usually short lasting 2-3 min, whereas the protocol used in our investigation involved three stages of $10-\mathrm{min}$ steady-state exercise. As shown in Figure 3, there was a continued incline in VO_{2} and HR until 5-6 min into each stage with VO_{2} showing a more noticeable steady-state pattern. In this context, it is likely that the HRVO_{2} relation depicted by the equation may not reflect how VO_{2} and HR have responded at higher intensities in the present study. Exercise at higher intensities (i.e., > lactate threshold) of sufficient duration (i.e., $>3 \mathrm{~min}$) has been associated with a disproportional rise in VO_{2} and HR due to increased muscular fatigue (11). Recently, it has been shown that the upward drift of HR
(or HR slow component) would occur at lower intensity and in a greater magnitude as compared to VO_{2} slow component (32).

Figure 3. Responses of oxygen uptake and heart rate during the experimental trial. Data are means $\pm \mathrm{SE}$.
In the present study, the three levels of intensity were given in an ascending order without a rest period in between intensities. This protocol was chosen simply because we wanted to create various levels of exertion during a 30-min period so that multiple pairs of VO_{2} and HR across a wide range of the intensity spectrum could be recorded and used for prediction by the equation. Although high-intensity exercises should be preceded by low-intensity warm-ups, it is possible that the current protocol being incremental yet continuous and longer per stage (i.e., 10 min) could have added effects of fatigue during later stages of the protocol when intensity increases. One such effect is the cardiovascular drift in which HR can increase without a concomitant increase in VO_{2} (31). As shown in Figure 3, at each level of intensity HR appeared to still drift up despite the fact that VO_{2} was stabilized. This limitation can be overcome by performing exercise bouts of various intensity on separate days so that one could expect less accumulated fatigue during high-intensity trials, although cardiovascular drift may not be preventable if a high intensity exercise is to last for more than 3 min (32).

The HRI equation underpredicted $\mathrm{VO}_{2 \max }$ by ~ 1 MET in our investigation. This finding is somewhat surprising because based on VO_{2} being overpredicted at submaximal intensities, one would assume that the same bias should also occur at the maximal level. An underestimation of $\mathrm{VO}_{2 \max }$ by an average of $5.1 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}(\sim 1.4 \mathrm{METs})$ was also reported by Haller et al. (13) who evaluated the same HRI model among young and fit men. In this latter study, the authors compared $\mathrm{VO}_{2 \max }$ predicted from the equation with $\mathrm{VO}_{2 \max }$ measured by five incremental protocols and found that $\mathrm{VO}_{2 \max }$ was consistently underestimated, with the Bruce protocol demonstrating the greatest error (i.e. $-8.3 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-1}$). In the present study, $\mathrm{VO}_{2 \max }$ was measured with the Astrand and Rodahl protocol (4) that requires a progressive increase in treadmill incline by 2.5% every 2 min . It is likely that the high incline achieved during both the Bruce and Åstrand protocols may have resulted in disproportional responses between VO_{2} and HR later in the test. While a linearity of $\mathrm{HR}-\mathrm{VO}_{2}$ relation on which the HRI equation is based generally holds, there is evidence suggesting that at the near-maximal workloads, VO_{2} can increase to a greater extent relative to an increase in $\operatorname{HR}(5,9)$, and this nonlinear response is more prevalent among fitter individuals (5). In fact, a loss of linearity between HR and VO_{2} at high intensities has been considered a major limitation for using submaximal HR to predict $\mathrm{VO}_{2 \text { max }}$ (15).

The underprediction of $\mathrm{VO}_{2 \max }$ by the HRI equation may also be explained by the fact that our participants are generally younger and fitter than those used to establish the equation. Indeed, the average $\mathrm{VO}_{2 \text { max }}$ in the present study was ~ 13.4 METs, whereas the highest $\mathrm{VO}_{2 \text { max }}$ of the entire sample cohort of 11257 participants was ~ 14 METs (28). In fact, among the 60 studies chosen to develop the equation, 38 of them used individuals with chronic conditions such as coronary heart disease, congestive heart failure, diabetes, and pulmonary disorders (28). It is quite likely that most of the $\mathrm{VO}_{2 \max }$ values we obtained were beyond the highest VO_{2} used for establishing the equation, and this could result in error in predictions. The HRI equation has been claimed to be able to predict VO_{2} independent of age, sex, body mass, and fitness (28). However, this may not be the case when the equation is used to predict $\mathrm{VO}_{2 \max }$ of highly fit individuals.
$H R_{\text {rest }}$ is another predictor in this equation, but how $\mathrm{HR}_{\text {rest }}$ was determined in the study that developed the equation was not clearly defined. For example, only 20% of the 60 chosen studies indicated the methods used to obtain $\mathrm{HR}_{\text {rest }}$ yet specific procedures varied significantly with resting periods from 2 to 90 min in either seated or supine position (28). For this reason, the authors who developed the equation recommended that $\mathrm{HR}_{\text {rest }}$ be measured after 20 min of rest in a seated position in a quiet and thermoneutral environment with a 1-min recording of HR being repeated twice and averaged (28). The method for obtaining $H R_{\text {rest }}$ in the present study followed this recommendation. $\mathrm{HR}_{\text {rest }}$ used for analysis was after the participants completed 10 min of quite sitting and 10 min of resting measurement. The mean $\mathrm{HR}_{\text {rest }}$ of males and females were 64.51 ± 6.37 and 73.4 ± 8.67 beats• min^{-1}, respectively. These values are consistent with subjects' fitness status and similar to the sex-specific means reported in the study that validated the same HRI equation (27). One may argue that $\mathrm{HR}_{\text {rest }}$ should be best measured in the morning when the person wakes naturally. HR measured in supine position is usually about 5-10 beats lower compared to sitting (16), and this could raise $\mathrm{VO}_{2 \max }$ values and thus reduce the prediction
bias. However, it is difficult to determine the role $\mathrm{HR}_{\text {rest }}$ plays in this prediction model as methods for obtaining $\mathrm{HR}_{\text {rest }}$ were inconsistent in studies that were selected to develop the equation. One unique aspect of the HRI equation is that it can predict one's $\mathrm{VO}_{2 \max }$ without having to measure gas exchange parameters. However, this would require both $\mathrm{HR}_{\text {rest }}$ and $H R_{\text {max }}$ to be measured accurately and consistently.

It appears that prediction with the HRI equation is also associated with a relatively large variance. In the present study, SEEs were $0.81,1.20$, and 1.54 METs at $40 \%, 60 \%$, and 80% of $\mathrm{VO}_{2 \text { max }}$, respectively. The SEEs found presently represented $14-15 \%$ of the actual means, yet a relative SEE of $<10 \%$ has been considered statistically acceptable in studies that validated HR monitoring against indirect calorimetry ($7,20,23$). This raises an additional question concerning the use of the HRI equation even at a low intensity where a prediction agreement was found. SEEs found at lower intensities (i.e., 40% of $\mathrm{VO}_{2 \max }$) in this study compared favorably with those of Lee et al. (19) who reported a SEE of 1.1 METs as they cross-validated a HRI equation (i.e., MET $=2.49$ HRI -0.99) designed for paraplegic individuals, although, in this latter study, a much higher accuracy was found when the prediction was made by using individualized equations. With regard to $\mathrm{VO}_{2 \max }$, the prediction error appears much larger as evidenced by a wider dispersion of prediction errors as shown in the Bland and Altman plots and a higher SEE (i.e., 1.97 METs) associated with $\mathrm{VO}_{2 \text { max. }}$. Relatively large SEEs (i.e., 1.3-2.3 METs) were also reported by Haller et al. (13) who demonstrated a similar bias against $\mathrm{VO}_{2 \text { max. }}$. Most submaximal exercise tests used for predicting $\mathrm{VO}_{2 \max }$ have been associated with SEEs of $2.1-4.9 \mathrm{ml} \cdot \mathrm{kg}^{-1} \cdot \mathrm{~min}^{-}$ ${ }^{1}$ or 0.6-1.4 METs ($10,12,14,24$). While the large variation found in our investigation may be attributable to the methodological issues discussed earlier, it appears that a predictive model that uses HRI may still bear some level of variation associated with HR recording even though $H R_{\text {rest }}$ is already figured in.

There are a few limitations in this study. The fact that this study used treadmill exercises at relatively large inclines could limit the generalizability of the study as this type of exercise is not the form of physical activity commonly chosen by the general population. In the present study, we did not assess the test-retest reliability of $\mathrm{VO}_{2 \max }$ tests, and as such we cannot rule out the possibility that our results may be affected by the normal day-to-day variations associated with cardiorespiratory responses. In addition, the female participants were not controlled for their menstrual cycle and the use of contraceptives. It is likely that hormonal changes and their effect on water retention during various phases of menstrual cycle can influence exercise responses especially at high intensities.

In conclusion, the HRI equation yielded mixed results on prediction outcome during submaximal and maximal exercise in healthy young adults. Although the equation provided a reasonable estimate of metabolic demand at lower intensities, its utility at higher intensities remains questionable. Caution should be taken also because this predictive approach is associated with a relatively large variance. Future studies may consider assessing validity and reliability of the equation using a different experimental approach, and this may include using a sample of less active or older individuals and leisure physical activities of varying intensities. In addition, the proper procedure of how $\mathrm{HR}_{\text {rest }}$ is best measured should also be addressed.

REFERENCES

1. Achten J, Jeukendrup A. Heart rate monitoring: Applications and limitations. Sports Med 33(7): 517-538, 2003.
2. Ainsworth BE, Haskell WL, Leon AS, Jacobs DR, Montoye HJ, Sallis JF, Paffenbarger RS. Compendium of physical activities: Classification of energy costs of human physical activities. Med Sci Sports Exerc 25(1): 71-80, 1993.
3. Andrews RB. Net heart rate as a substitute for respiratory calorimetry. Am J Clin Nutr 24(9): 1139-1147, 1971.
4. Åstrand PO, Rodahl K. Textbook of work physiology. McGraw Hill Publisher; 1986.
5. Beck KC, Randolph LN, Bailey KR, Wood CM, Snyder EM, Johnson BD. Relationship between cardiac output and oxygen consumption during upright cycle exercise in healthy humans. J Appl Physiol 101(5): 1474-80, 2006.
6. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1 (8476): 307-310, 1986.
7. Ceesay SM, Prentice AM, Day KC, Murgatroyd PR, Goldberg GR, Scott W, Spurr GB. The use of heart rate monitoring in the estimation of energy expenditure: A validation study using indirect whole-body calorimetry. Br J Nutr 61(2): 175-86, 1989.
8. Christensen CC, Frey HM, Foenstelien E, Aadland E, Refsum HE. A critical evaluation of energy expenditure estimates based on individual O_{2} consumption/heart rate curves and average daily heart rate. Am J Clin Nutr 37(3): 468-472, 1983.
9. Drescher U, Koschate J, Hoffmann U. Oxygen uptake and heart rate kinetics during dynamic upper and lower body exercise: An investigation by time-series analysis. Eur J Appl Physiol 115(8): 1665-1672, 2015.
10. Ebbeling CB, Ward A, Puleo EM, Widrick J, Rippe JM. Development of a single-stage submaximal treadmill walking test. Med Sci Sports Exerc 23(8): 966-973, 1991.
11. Gaesser GA, Poole DC. The slow component of oxygen uptake kinetics in humans. Exerc Sport Sci Rev 24: 3570, 1996.
12. George JD, Vehrs PR, Allsen PE, Fellingham GW, Fisher AG. Development of a submaximal treadmill jogging test for fit college-aged individuals. Med Sci Sports Exerc 25(5): 643-647, 1993.
13. Haller JM, Fehling PC, Barr DA, Storer TW, Cooper CB, Smith DL. Use of the HR index to predict maximal oxygen uptake during different exercise protocols. Physiol Rep 1(5): e00124, 2013.
14. Hartung GH, Blancq RJ, Lally DA, Krock LP. Estimation of aerobic capacity from submaximal cycle ergometry in women. Med Sci Sports Exerc 127(3): 452-457, 1995.
15. Heyward VH. Advanced fitness assessment and exercise prescription. Human Kinetics Publisher; 2010.
16. Hnatkova K, Sisakova M, Smetana P, Toman O, Huster KM, Novotny T, Schmidt G, Malik M. Sex differences in heart rate responses to postural provocations. Int J Cardiol 297: 126-134, 2019.
17. Jackson A, Pollock M, Ward A. Generalized equations for predicting body density of women. Med Sci Sports Exerc 12: 175-182, 1980.
18. Jackson A, Pollock M. Generalized equations for predicting body density of men. Br J Nutr, 40: 497-504, 1978.
19. Lee M, Zhu W, Hedrick B, Fernhall B. Estimating MET values using the ratio of HR for persons with paraplegia. Med Sci Sports Exerc 42(5): 985-990, 2010.
20. Leonard WR. Measuring human energy expenditure: What have we learned from the flex-heart rate method? Am J Hum Biol 15(4): 479-89, 2003.
21. Navalta JW, Stone WJ, Lyons TS. Ethical issues relating to scientific discovery in exercise science. Int J Exerc Sci 12(1): 1-8, 2019.

International Journal of Exercise Science
22. Rodahl K. Occupational health conditions in extreme environments. Ann Occup Hyg 47(3): 241-252, 2003.
23. Spurr GB, Prentice AM, Murgatroyd PR, Goldberg GR, Reina JC, Christman NT. Energy expenditure from minute-by-minute heart-rate recording: Comparison with indirect calorimetry. Am J Clin Nutr 48(3): 552-9, 1988.
24. Tönis TM, Gorter K, Vollenbroek-Hutten MMR, Hermens H. Comparing $\mathrm{VO}_{2 \text { max }}$ determined by using the relation between heart rate and accelerometry with submaximal estimated $\mathrm{VO}_{2 \text { max. }}$. J Sports Med Phys Fitness 52(4): 337-343, 2012.
25. Uth N, Sørensen H, Overgaard K, Pedersen PK. Estimation of $\mathrm{VO}_{2 \max }$ from the ratio between HRmax and HRrest - the heart rate ratio method. Eur J Appl Physiol 91(1): 111-115, 2004.
26. Uth N . Gender difference in the proportionality factor between the mass specific $\mathrm{VO}_{2 \text { max }}$ and the ratio between HR(max) and HR(rest). Int J Sports Med 26(9): 763-767, 2005.
27. Wicks J, McKenna K, McSorley S, Craig D. Heart rate index corrects for the limitations of heart rate assessment of occupational physical activity. Exerc Med 2: 14, 2018.
28. Wicks JR, Oldridge NB, Nielsen LK, Vickers CE. HR index-a simple method for the prediction of oxygen uptake. Med Sci Sports Exerc 43: 2005-2012, 2011.
29. Wicks JR, Oldridge NB. How accurate is the prediction of maximal oxygen uptake with treadmill testing? PLoS One 11(11): e0166608, 2016.
30. Wilmore JH, Haskell WL. Use of the heart rate-energy expenditure relationship in the individualized prescription of exercise. Am J Clin Nutr 24(9): 1186-1192, 1971.
31. Wingo JE, Ganio MS, Cureton KJ. Cardiovascular drift during heat stress: implications for exercise prescription. Exerc Sport Sci Rev 40(2): 88-94, 2012.
32. Zuccarelli L, Porcelli S, Rasica L, Marzorati M, Grassi B. Comparison between slow components of HR and VO_{2} kinetics: Functional significance. Med Sci Sports Exerc 50(8): 1649-1657, 2018.

