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Review on the Brownian Dynamics Simulation
of Bead-Rod-Spring Models Encountered in Computational

Rheology

C. Cruz - F. Chinesta - G. Régnier

Abstract Kinetic theory is a mathematical framework in-
tended to relate directly the most relevant characteristics of
the molecular structure to the rheological behavior of the
bulk system. In other words, kinetic theory is a micro-to-
macro approach for solving the flow of complex fluids that
circumvents the use of closure relations and offers a better
physical description of the phenomena involved in the flow
processes. Cornerstone models in kinetic theory employ
beads, rods and springs for mimicking the molecular struc-
ture of the complex fluid. The generalized bead-rod-spring
chain includes the most basic models in kinetic theory: the
freely jointed bead-spring chain and the freely-jointed bead-
rod chain. Configuration of simple coarse-grained models
can be represented by an equivalent Fokker-Planck (FP) dif-
fusion equation, which describes the evolution of the con-
figuration distribution function in the physical and configu-
rational spaces. FP equation can be a complex mathematical
object, given its multidimensionality, and solving it explic-
itly can become a difficult task. Even more, in some cases,
obtaining an equivalent FP equation is not possible given the
complexity of the coarse-grained molecular model. Brown-
ian dynamics can be employed as an alternative extensive
numerical method for approaching the configuration distri-
bution function of a given kinetic-theory model that avoid
obtaining and/or resolving explicitly an equivalent FP equa-
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tion. The validity of this discrete approach is based on the
mathematical equivalence between a continuous diffusion
equation and a stochastic differential equation as demon-
strated by Itd in the 1940s. This paper presents a review
of the fundamental issues in the BD simulation of the lin-
ear viscoelastic behavior of bead-rod-spring coarse grained
models in dilute solution. In the first part of this work, the
BD numerical technique is introduced. An overview of the
mathematical framework of the BD and a review of the
scope of applications are presented. Subsequently, the links
between the rheology of complex fluids, the kinetic theory
and the BD technique are established at the light of the
stochastic nature of the bead-rod-spring models. Finally, the
pertinence of the present state-of-the-art review is explained
in terms of the increasing interest for the stochastic micro-
to-macro approaches for solving complex fluids problems.
In the second part of this paper, a detailed description of the
BD algorithm used for simulating a small-amplitude oscilla-
tory deformation test is given. Dynamic properties are em-
ployed throughout this work to characterise the linear vis-
coelastic behavior of bead-rod-spring models in dilute solu-
tion. In the third and fourth part of this article, an extensive
discussion about the main issues of a BD simulation in lin-
ear viscoelasticity of diluted suspensions is tackled at the
light of the classical multi-bead-spring chain model and the
multi-bead-rod chain model, respectively. Kinematic formu-
lations, integration schemes and expressions to calculate the
stress tensor are revised for several classical models: Rouse
and Zimm theories in the case of multi-bead-spring chains,
and Kramers chain and semi-flexible filaments in the case of
multi-bead-rod chains. The implemented BD technique is,
on the one hand, validated in front of the analytical or exact
numerical solutions known of the equivalent FP equations
for those classic kinetic theory models; and, on the other
hand, is control-set thanks to the analysis of the main numer-
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ical issues involved in a BD simulation. Finally, the review
paper is closed by some concluding remarks.

Notes on Notation

Scalars Lightface

Vectors and Tensors Boldface

(A)Y Component ij of tensor A
(A); Tensor or vector A at instant ¢

1 Introduction

This paper presents a state-of-the-art review of the numeri-
cal methods in Brownian dynamics used to model the rhe-
ological behavior of bead-rod-spring models. Generalized
bead-rod-spring models are coarse-grained representations
of the molecular structure of complex fluids. In addition,
bead-rod-spring models are the cornerstone of the kinetic
theory, a formal framework that try to explain the flow dy-
namics of non-Newtonian fluids by relating the molecular
structure with the bulk flow behavior. In order to reveal the
intrinsic dynamic response of those coarse-grained models
this article focuses on the linear viscoelastic behavior of
their dilute solutions, where inter-molecular interactions are
neglected.

This introductory section is decomposed in three parts.
In the first one, a general view of the Brownian dynamics
framework and its scope of applications are presented. In the
second section, a brief outline about the rheology of com-
plex fluids followed by its relation with the kinetic theory
is presented. The inherent stochastic nature of the coarse-
grained models is revealed establishing a connection with
the Brownian dynamics technique. Finally, in the third sec-
tion a line of argument is developed to show the interest of
using the stochastic approach when solving kinetic theory
problems.

1.1 Brownian Dynamics Modelling

A mathematical representation of all physical phenom-
ena occurring in the physical world cannot be treated ef-
ficiently using only one kind of model. In general, the
choice of a given modelling approach depends on the time
and length scales involved in the phenomenon. For ex-
ample, quantum physics is a suitable model for repre-
senting the phenomena occurring at the level of quantum
particles, but probably the quantum physics framework is
not the more convenient choice to model a tensile relax-
ation test in a polyethylene film. Today, quantum physics
is the finest description of the matter (or energy). Going
up in length and time scales of modelling requires differ-
ent mathematical formulations with the aim of encapsu-
late the phenomena occurring at finer scales. For exam-

ple, between the molecular and macroscopic scales, mod-
els must contain a mathematical architecture taking into ac-
count the rapid oscillations occurring at lower scales (i.e.
atoms, smaller molecules or smaller particles). Brownian
dynamics (BD) is precisely one of the mathematical frame-
works employed for representing the physics at the micro-
meso scale (1 nm—10 pm). In BD the rapid thermal os-
cillations at lower scales are tackled as a stochastic vari-
able [1].

The historical motivation that inspired the development
the Brownian dynamics framework was the publication of
the Robert Brown’s observations about the random motion
of pollen particles in water. The irregular path described by
those pollen particles was explained afterwards as the re-
sult of random thermal collisions between pollen particles
and water molecules. By the way, a mathematic formalism
describing the motion of a particle submitted to stochastic
forces was introduced by the French physicist Paul Langevin
[2]. In fact, a general differential stochastic equation is also
known as a Langevin equation. Considering a Brownian par-
ticle (in the large sense, i.e. a discrete portion of matter sub-
mitted to stochastic forces coming from the surrounding ho-
mogeneous media) of mass M, the instantaneous general
Langevin equation of motion writes:

Mi{=—VU(r) — ¢ Mt + ¢ Mk(r) + F? (1)

where r is the particle position, ¢ is the specific friction
coefficient, k is the homogenous velocity gradient coming
from the suspension at the position of the particle, U is the
sum of all the particle interaction potentials (e.g. mechani-
cal, electrostatic, magnetic) and F® is the Brownian force
acting on the particle. This last variable confers to the dif-
ferential equation its stochastic nature. Keeping in mind that
F® is originated from independent thermal collisions with
the surrounding particles; the central limit theorem conduct
intuitively to think that F®*) behaves following a Gaussian
process. A formal definition of F®¥) in coherence with the
stochastic calculus framework writes as follows:
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where kg is the Boltzmann’s constant, 7 is the absolute tem-
perature and (W); is a Wiener process at instant . (W); is
a well-defined Gaussian process itself, hence can be defined
by the first and second moments of its distribution:

(W))=0 3
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where (.. .) represents an ensemble average and § is the unit

tensor. In a BD simulation, we are rather interested in the nu-
merical implementation of a multi-dimensional increment of



a Wiener process AW, = (W); — (W),. Using the central
limit theorem, it can be demonstrated that those increments
are independent and follow also a Gaussian distribution with
the next moments:

(W), = (W),)=0 )
(W), = (W)) ® (W), — (W) = |1 —']3 ©)

When implementing an explicit integration of a D-dimen-
sional Wiener process (defined in an orthogonal basis) in the
time interval [0, #,], equi-partitioned in n intervals of size
At =t; — t;j_1, it is just necessary to define the initial value
of the Wiener process, (W)g = 0, and calculate iteratively
the increments as follows: (W);, = (W), | + (AW); .,
where each component of AW;, ;. , is obtained from an in-
dependent one-dimension normal distribution N(0, At).

Definition of the stochastic Brownian force given in (2)
is coherent with the principle of equi-partition of energy, the
fluctuation-dissipation theorem (in the sense that frictional
force depends only on the instantaneous local velocity) and
the formalisms of stochastic calculus [3].

Brownian dynamics is a limit case of the Langevin dy-
namics framework. In BD the inertial effects are neglected;
in other words, BD supposes that no average acceleration
takes place on the Brownian particle. In some physical sci-
ences Brownian dynamics is also known as overdamped
Langevin dynamics. Non-inertia assumption is justified in
the insignificance of the inertial forces coming from small-
mass particles in front of the viscous and thermal forces act-
ing on the same particle. Brownian dynamics equation of
motion for a Brownian particle writes therefore as follows:

d(W),
dt )
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Defining ¢ = M¢ as the friction coefficient and D =
kpT /¢ as the diffusion coefficient of the particle, the in-
stantaneous velocity of the Brownian particle can be written
as follows:

. %U(") () + Jde(X)’ ®

Brownian dynamics simulations have been used inten-
sively to study the physics of different kind of macro-
molecules and soft matter systems [4], as for example, the
rheological behavior of polymer [5-10], the dynamics of
proteins and DNA [11-14], the flow behavior of colloids
[15-21], the structural dynamics of liquid-crystals [22, 23]
and the dynamics of carbon nanotubes [24-27].

1.2 Rheology of Complex Fluids and Kinetic Theory
A comprehensive theoretical modelling of the problems in

fluid dynamics requires a suitable formulation of the consti-
tutive equation for the momentum flux or stress tensor. Flow

of complex fluids differs from that one occurring in classical
Newtonian fluids because it cannot be described by using a
simple viscous constitutive equation. In fact, the mechanical
response of a complex fluid to a given deformation appears
to be viscoelastic, in other words, the complex fluid exhibits
a mechanical behavior intermediate between perfect elastic
solid and a perfect viscous liquid. Two viscoelastic regimes
can be identified in function of the imposed strain. If the vis-
coelastic response is independent of the applied strain then
we assist to the linear viscoelastic behavior. This mechanical
regime is typically associated with very small deformations.
On the other hand, when the viscoelastic response depends
on the applied strain, then we deal with the non-linear vis-
coelastic regime. This paper is particularly focused on linear
viscoelasticity because this mechanical regime constitutes
the natural first approach in a rheological modelling frame-
work.

The main aim of rheology consists to establish a suitable
constitutive equation that relates stress and strain tensors for
a given fluid and, sometimes, for a particular kind of flow.
Kinetic theory in complex fluids is an exhaustive mathemat-
ical framework that looks for explaining the bulk flow phe-
nomena based on the molecular structure of the fluid system.
In that sense, kinetic theory is one of the tools employed by
rheologists for generating suitable constitutive equations for
non-Newtonian fluids. Formal framework in kinetic theory
is built on coarse-grained representations of the molecular
structure involved in the flow phenomena. Historically, the
former coarse-grained molecular models appeared to em-
ulate the polymer molecular structure. That explains why
frequently the literature makes reference to polymer kinetic
theory.

The coarse-grained molecular models in kinetic theory
constitute a first attempt to relate the molecular structure to
the bulk flow mechanics. Basic coarse-grained models emu-
late the most relevant characteristics of the molecular struc-
ture using beads, rods and springs as constitutive blocks. In
what follows, an overview about the origins of bead-rod and
the bead-spring models is illustrated based on the descrip-
tions made by Bird et al. elsewhere [28].

1.2.1 Bead-Rod Model

Bead-rod models were proposed to emulate the structure of
linear polymer chains. The first natural representation con-
sisted in neglecting the pendant atoms or groups linked to
the central chain and replacing this central chain by a se-
ries of beads and mass-less rods, where beads represent the
constitutive atoms of the central chain and rods represent
the chemical bonds between them. At this level of repre-
sentation, the stochastic nature of the coarse-grained model
emerges because all possible thermal interactions with the
solvent molecules are reduced to an instantaneous stochastic



rod

Fig. 1 Freely-jointed multi-bead-rod model composed of n beads and
n — 1 rods of length a

force acting on each bead. Adjacent bonds in a linear poly-
mer chain are restricted to very narrow intervals of solid an-
gle values due to sterical hindering [29]. Based on this phys-
ical argument bead-rod chain model with fixed solid angles
and restricted bond-rotation was proposed.

A simpler model considers that the rotational hindrances
can be neglected, but the solid angles between adjacent rods
are maintained. This representation is known as the freely
rotating chain model. A complete series of articles about the
non-equilibrium dynamics of the freely rotating chain model
has been published before [30].

An even coarse-grained bead-rod model neglect any ro-
tating and bending hindering between adjacent rods. This
model is known as the freely jointed multi-bead-rod chain
or, simply, Kramers chain. In this case, beads do not repre-
sent central chain atoms, but a portion of the polymer chain,
typically 10-20 monomer units. In short, a Kramers chain
can be described as an ensemble of n beads linked by n — 1
rods of length a (see Fig. 1), where each bead is charac-
terised by a drag coefficient ¢.

It has been demonstrated that supposing a random-walk
distribution for the Kramers chain configuration the mean-
square end-to-end distance of the chain at equilibrium writes
(see for example [31]):

(%), =a*(n—1) )

On the other hand, using a thermodynamic approach, it
was shown that the average tension in a Kramers chain sus-
pended in a solvent bath at temperature 7 and extended to a
fixed end-to-end vector r (whose norm does not exceed one
half of the contour length of the bead-rod chain) writes as
follows [28]:

: 3kgT
F(r) = _
® a’(n—1) r

It is important to point out that previous expression is
only exact when supposing a random-walk distribution for
the configuration distribution function of the constitutive

(10)
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Fig. 2 Freely-jointed multi-bead-spring model composed of n beads
and n — 1 springs (T > 0 K)

rods. In fact, this condition is only true for a large number
of beads n [28]. It means that a 3-dimensional freely-jointed
multi-bead-rod model behaves mechanically as a Hookean
spring of null natural length with a spring constant H equals
to:

_ 3kgT _ 3kgT
B a*(n—1) B <r2>eq

1.2.2 Bead-Spring Model

an

Based on the characteristics of the mechanical behavior of
a freely-jointed multi-bead-rod chain, it seemed natural to
propose another up-level of coarse-graining for represent-
ing the structure of linear polymer chains. Actually, a lin-
ear polymer chain can be modelled as a series of springs,
where each spring represents several hundreds of central
chain atoms. Springs are linked by beads that concentrate
masses and friction effects associated to the replaced cen-
tral chain atoms. This model is called the freely-jointed
multi-bead-spring chain (see Fig. 2). In principle, constitu-
tive springs have null natural length, but simulations with
non-zero natural length springs (e.g. Fraenkel-type) are also
frequently employed. Several disadvantages appear at this
level of coarse-graining; for instance, contour length is no
more constant and, furthermore, if the spring potential is
supposed Hookean, the chain can be infinitely extended,
something that is physically unrealistic.

Considering a freely-jointed multi-bead-spring chain
constituted of n beads linked by n — 1 springs, it results
not surprising that the average end-to-end distance at equi-
librium be an extension of the analogue expression derived
for the freely-jointed multi-bead-rod model:

o 3kpT(n—1)
(r*)ey = — g (12)

In spite of the multi-bead-rod-spring models were initially
developed in the framework of the polymer kinetic theory,



those coarse-grained representations has been extended to
model a vast kind of systems, including proteins, DNA, virus
and carbon nanotubes. As mentioned before, this article will
be focused on the BD simulation of the linear viscoelastic
behavior of the bead-rod-spring models in absence of inter-
molecular interactions (hypothesis of infinitely diluted solu-
tion).

One can consider two different approaches when tackling
with kinetic theory models in micro-to-macro simulations: a
deterministic and a stochastic one. On the one hand, the de-
terministic approach deals with the direct solving of the FP
equation at the expense of that the FP equation can be effec-
tively formulated. FP or diffusion equation is a deterministic
partial differential equation describing the evolution of the
probability density function (in configurational space) of a
given coarse-grained model. On the other hand, the stochas-
tic approach proposes an extensive analysis of a representa-
tive population of coarse-grained models and the estimation
of macroscopic properties by properly averaging the phys-
ical state of the population under consideration. Stochastic
approach is conceivable for all coarse-grained kinetic the-
ory models, even for those that do not have an equivalent FP
equation. This paper presents the main issues of the latter
approach by using a BD simulation tool for predicting the
dynamic behavior of bead-rod-spring models in solution.

1.3 The Interest of the Stochastic Approach

A natural question that appears when dealing with flows of
complex fluids is why to prefer using an extensive (and prob-
ably costly) method for integrating the FP diffusion equa-
tion of a given molecular model. An immediate answer to
such question is simply that in some cases a FP diffusion
equation is not available given the complexity of the coarse-
grained model and, hence, the stochastic approach is the
only method for accessing to the dynamic behavior of the
molecular model.

On the other hand, in the classical framework of the ki-
netic theory, the equations of motion for the different consti-
tutive blocks in a given coarse-grained model (beads, rods,
springs) added to the continuity equation for the configura-
tional distribution function can be used to build a FP dif-
fusion equation. The common utility of this deterministic
diffusion equation consists in recover the exact physical re-
sponse of the system when submitted to a given external
flow field by integrating the FP equation in the configura-
tional space and in time (if looking for dynamic proper-
ties) in order to develop constitutive equations. Normally,
those constitutive equations are employed a posteriori to
calculate more complex flows by using a continuum me-
chanics framework. The crucial point in the previously de-
scribed process lies on the mathematical method employed
for integrating the diffusion equation given its multidimen-
sional character. FP equation is a multidimensional function

that depends on time and all the space coordinates chosen
to define the configuration of the coarse-grained molecular
model. It is necessary to point out that there is a vast col-
lection of numerical strategies developed to solve this prob-
lematic integration [32—49].

However, it appears that the stochastic approach for solv-
ing the dynamics of coarse-grained models (even for those
that have an equivalent FP diffusion equation) is employed
more and more. In this case, we deal directly with the
stochastic differential equation of motion for each coarse-
grained system. In order to evaluate a given physical prop-
erty, an average over a finite population of model systems
has to be performed (in analogy to the integration of an
equivalent FP equation in the configurational space). The
main difficulties emerging with this approach are the as-
sociated stochastic noise, the low convergence order and
the computational cost required to overcome the first two
mentioned issues. Nevertheless, the growing-up leaning for
tackling with the stochastic approach is due mainly to four
reasons: (1) the dealing with complex coarse-grained struc-
tural descriptions that have not an equivalent FP formula-
tion, (2) the enhanced possibility of enrich a given coarse-
grained model by analyzing its configurational evolution un-
der designed flow conditions, (3) the raising capacities of the
computational tools that reduce simulation times, and (4) the
interesting idea of resolving viscoelastic flow engineering
problems without resorting to closed-forms of the constitu-
tive equations for the stress tensor. This last idea means to
establish micro-to-macro simulations where the configura-
tion state of a population of coarsed-grained systems lets
to calculate the stress field, allowing to compute the evolu-
tion of the flow field and, subsequently, to update the con-
figurational space of coarse-grained models by solving the
stochastic differential equations of motion [50-56].

Given the actual interest in the stochastic approach for
solving the micro-to-macro modelling of viscoelastic flows,
it is pertinent to review the fundamental numerical aspects
associated with the solution of the differential stochastic
equations for the simplest models in the kinetic theory
framework. In that way, this paper analyses the main issues
about the implementation of BD simulations for the bead-
spring and bead-rod models. BD simulations in this paper
are focused on predicting the dynamic response of dilute so-
lutions of those coarse-grained kinetic theory models in the
framework of linear viscoelasticity.

2 A Brownian Dynamics Algorithm for Simulating
Linear Viscoelastic Behavior

From now on, an extensive Brownian dynamics modelling
is systematically used to predict the dynamic response of
a given bead-rod-spring chain model highly diluted within



a Newtonian solvent. A classical rheological test used in
linear viscoelasticity is simulated: a dynamic test of small-
amplitude oscillatory deformation. Suspension is supposed
confined between two parallel infinite-plates in the case of
3D simulations (see Fig. 3). In the case of 2D simulations,
bead-rod-spring chain models are supposed confined in a
plane xz of Fig. 3.

Oscillatory strain function is imposed by the relative slid-
ing movement of the plates (or bars); inducing a homoge-
neous deformation within the suspension confined between
the plates (or bars). Rheological response is supposed com-

Fig. 3 Parallel infinite plates where BD simulations in shear rheology
are carried out. Upper plate slides in relation to the lower one along
the x axis for homogeneously shearing the fluid confined in between

Fig. 4 Flowchart of the general
BD algorithm for simulating a
small-amplitude oscillatory
deformation test

ing mainly from the bulk of the suspension, therefore wall
and free-surface effects are ignored. Rheological properties
are calculated from a properly defined average over N chain
models, where N is the number of bead-rod-spring elements
in the stochastic simulation. By the way, number of free-
dom degrees in the Brownian dynamics simulation is pro-
portional to N. As suspension is supposed highly diluted,
no interaction effects are considered between chain models
and, hence, no computational storage of the relative posi-
tions between chains is necessary. A general flowchart of
the algorithm intended to simulate a frequency sweep test in
linear regime is presented in Fig. 4.

The first step consists to obtain a configuration in ther-
mal equilibrium. No external flow is imposed. Configura-
tion of the BD system (N bead-rod-spring models) evolves
in time under the action of the forces coming from the fric-
tion with the solvent, the internal energy potentials and the
thermal interaction with the solvent molecules (Brownian
effect). Time integration in this equilibrium stage is carried
out until at least one of two criteria is satisfied: stabiliza-
tion of the stored internal energy (when it can be estimated)
or integration during at least three times the longest charac-
teristic time associated with an equivalent bead-rod-spring
chain whose FP equation has an analytical solution. For in-
stance, as internal energy is not accessible for freely-jointed
bead-rod models, equilibrium step is carried out during three
times the rotational time of an equivalent multi-bead rigid-
rod with the same length.

equilibrium
step
i

¥= ypsin @t }

for w, = w:w,

i

stabilization
step

analytical
step

¥

fitting
toolbox




Once the equilibrium configuration of the BD system has
been obtained, the dynamic strain function y = ypsinwt
can be applied, where yq is a deformation within the lin-
ear regime. Frequency sweep test is carried out on a finite
number of frequencies homogeneously distributed in loga-
rithmic scale between the lowest frequency w; and the high-
est frequency w,,. The BD prediction of the complex modu-
lus at each tested frequency is composed of two steps. First,
a dynamic stabilisation of the BD system is carried out ei-
ther until internal energy dynamic stabilization or during at
least three times the longest characteristic time of an equiva-
lent bead-rod-spring model before starting the second stage,
called analytical step, in which the BD-calculated shear-
stress signal is stored during one-and-a-half periodic oscilla-
tions. This signal is used as entry variable in a fitting toolbox
with the aim to determine the parameters (7, §) of a smooth
shear-stress function T = 7 sin(wt + §) by using a Newton-
based error-minimization methodology. Dynamic complex
modulus at each frequency is then computed easily in the
next way:

* _ / . " _ E E .
G (w)=G(w)+iG"(w) = —cosé +i—sind (13)
Yo Y0

where G’ is the storage modulus and G” is the loss modulus.

3 BD of Generalized Bead-Spring Models

Even though the multi-bead-rod model appeared chrono-
logically earlier than the multi-bead-spring model, this lat-
ter is tackled preliminarily here because it offers a simpler
mathematical structure that is reflected on the simplicity of
the BD numerical methods associated with. In addition, due
probably to the simpler mathematic formalisms, the multi-
spring-bead model has been more recurrently employed to
model the dynamics of complex fluids.

3.1 Kinematic and Dynamic Formulation

Let consider the multi-bead-spring chain model in Fig. 2. In
what follows, a multi-bead-spring chain is constituted of n
beads joined by n — 1 non-bendable springs. The instanta-
neous position of each bead is defined in a coordinate refer-
ence system by the vector r;. An alternative way for describ-
ing the position and the orientation of the multi-bead-spring
chain is possible defining the center of masses of the chain,
r. and the connector vector Q; between consecutive beads:

1 n
re=— Zr,- (14)

i=1
Qi=rip1—r; (15)

Multi-bead-spring chain is supposed suspended into a
solvent at temperature 7. Solvent is considered a Newtonian

fluid with viscosity ns. Concentration of the multi-bead-
spring chains is defined in terms of the density of chains,
¢ chains per volume unit. As the solution is supposed highly
diluted no interaction between multi-bead-spring chains is
considered. Moreover, flow field in the overall suspension
is supposed homogeneous, in the meaning that the rate-of-
strain tensor is the same in all points of the flow field or, at
least, in the scale of twice the contour length of the multi-
bead-spring chain [28].

In the kinematic formulation of this kind of coarse-
grained model is presumed that all changes of momentum
are concentrated on beads. Furthermore, an assumption of
inertia-less is employed; due to the insignificance of inertial
forces (small masses) with respect to friction and thermal
forces acting on them. In what follows a detailed descrip-
tion of the forces acting on beads is presented.

e Hydrodynamic drag force acting on bead i, Fl(h)

This force describes the resistance experienced by the
bead as it moves through the fluid. One of the simplest
ways to express this force is given by the Stoke’s law,
which considers the hydrodynamic drag force propor-
tional to the difference between the fluid velocity at the
bead position and the averaged bead velocity. A more gen-
eral expression takes into account a hydrodynamic inter-
action component that comes from the physical perturba-
tion of the local flow field due to the global chain move-
ment. Hydrodynamic drag force acting on bead i writes
as follows:

Fl(h)ZC(IC(I‘i)-I'i-FV; — 1) (16)

where ¢ is a second-order friction tensor, k is the gradient
of the bulk velocity field and r; is the averaged instanta-
neous bead velocity. On the other hand, V; accounts for
the variation in the local flow field around r; due to the
motion of the other beads in the same chain.

In polymer kinetic theory, Rouse model neglects this
intra-molecular interaction (i.e. V; = 0); resorting to the
well-known free draining motion hypothesis [57]. On the
other hand, theories taking into account the hydrody-
namic interaction suppose that the bead velocity v, de-
pends linearly on the hydrodynamic forces acting on the
others beads inside the chain:

vi=—> 2;-F/ (17)
j

where £2;; is the Oseen-Burgers hydrodynamic interac-
tion tensor associated with a given pair of beads i and j.
Say that the perturbation of a velocity field in a given
point of the space depends linearly on the hydrodynamic
forces acting in the surroundings of that point presup-
poses a Maxwellian velocity distribution [28]. Oseen-



Burgers hydrodynamic tensor writes as follows:

1 rj ®rj;
Q= ( /’@2’ J’) fori # j (18)
SJT)’]Srji rji
where rj; =r; —r; and rj; = |rj;|. On the other hand,
2;; = 0. Zimm model, in the context of polymer Kinetic

theory, takes into account the hydrodynamic interaction
effect using the equilibrium-averaged Oseen-Burgers ten-
sor [58]:

(@iles =) & fori# ] (19)
eq

6mns \7ji

where §;; is the Kronecker delta.
Intra-molecular force acting on bead i, Fl@)

This force corresponds to the sum of all the spring
forces acting on bead i. In a multi-bead-spring chain, total

intra-molecular force on bead i writes as follows:

n—1
F? =" (6ij — 6 j+)FY
j=1

(20)

where F;c) = 0¢;/0Q); is the connector force acting on
bead j along spring j, defined as the gradient of the
spring potential energy ¢;. Linear force law is the sim-
plest connector force:

3N 5 4 )
Q0 ~ 30, (EH(\/QI' Qi) )=HQi (21)

Previous Hookean-type law force is based on the entropic
analysis over a tighten random-walk polymer chain. H
is a Hookean spring constant that can be related to tem-
perature and some molecular structural parameters (see
Sect. 1.2.1). The linear law force is only valid for large
polymer chains and small strain regimes. Hence, Hookean
law force is inadequate for processes involving large de-
formations. This fact motivated the use of non-linear force
laws, for instance:

— Finite extensible non-linear elastic (FENE) force law

[59]

(H) _
F =

(FENE) _ HQ; 22)
! 1—-(Qi/Qi0)?

where Q; = ||Q;|| and Q; ¢ is the maximal extension

of the spring.

— Inverse Langevin (IL) force law [60]
kgT ;

pan _ k8T oy Q; 23)

! a’ Qi

where @’ is typically twice the persistence length 7,
and the Langevin function £ is given by L(x) =

14 T
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Fig. 5 Curves of the spring connector force |[F®| in function of the
reduced spring extension for several spring force laws employed in
polymer kinetic theory

coth(x) —x~!. Persistence length in a polymer molecule
is a measure of the flexibility of the chain; in other
terms, the direction of the chain-axis in a quiescent
polymer molecule is uncorrelated only along contour
length distances equal or higher than 2/,,.

— Worm-like chain (WLC) force law [61]

P S
i a [2(1-0i/0i0)? 2 Qio
Q;
<t 24
x 0Oio .

A comparison of the various spring-force laws is pre-
sented in Fig. 5. Observe that FENE-like force laws are
linear at small extensions and tends to infinite when ex-
tension approaches the finite maximal length.

e Brownian force acting on bead i, ng)

The Brownian force accounts for the change of mo-
mentum at each bead (supposed as Brownian particles)
due to the ensemble of instantaneous collisions of the sol-
vent molecules against it. In nature, those collisions are
faster than the bead motion, that is why Brownian forces
are considered as stochastic variables in the BD time
scale. Due to the isotropic condition of those collisions,
Brownian force is treated mathematically as a quantity
with zero mean in time and space (ergodicity principle).
On the other hand, the second-moment of the distribution
of Brownian forces must equilibrate the dissipative forces
[3]. In short, an “instantaneous” Brownian force distri-
bution in a BD simulation is characterised as a Gaussian
process with the next first and second moments:

FP @) =0 (25)
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FP 0 ® FE.”) (t + An) = ¢ (26)
where At is a discrete approximation of a differential in
time. It is important to mention that in an orthogonal ba-
sis (D dimensions) the multi-dimensional Gaussian pro-
cess can be decoupled in D independent uni-dimensional
Gaussian processes [3].

e External forces acting on bead i, Fl@

Gravitational and electromagnetic fields can induce
non-negligible external forces over the beads of the sys-
tem. Nevertheless, these forces are not considered here.

Taking into account that beads are considered as Brownian
particles, the inertial effects are neglected. In such context,
the force balance must to be satisfied at each time and at
each bead i:

F 4+ F? 4 FY 459 =0 27

Using the definition of the hydrodynamic drag force, pre-
vious differential stochastic equation can be transformed to
explicit the bead velocity:

dr; _ —1q(b
=it e ]+ e E g EY

+¢7'F (28)

Integration in time of previous stochastic equation gov-
erns the kinematic evolution of the bead-spring system. As
any numerical method, in a BD simulation time is treated as
a discrete variable and, hence, different numerical integra-
tion schemes can be proposed.

3.2 Integration Schemes

Given the structure of Eq. (28) a simple explicit integration
scheme inspired by the numerical resolution of ordinary dif-
ferential equations appears as a natural integration scheme.
In fact, the Euler-Maruyama method is the simplest way to
integrate numerically Eq. (28). Given an initial configuration
at time ¢, (rj);, it is possible to estimate (r;);4+a; by using
the next formula:

@)esar = @) + (V; + [k@r) x| + ;_1F§¢))1At

+ (\/2kpTE 1) AW, (29)

where AW is a random increment following a multi-
dimensional Wiener process. This random Wiener process
follows a normal distribution with the next first and second
moments:

(AW;) =0 (30)
((AW)); ® (AW ) 4ar) = ALS (31)

Rewriting Eq. (29) only in terms of the time step At we
have:

() ivar = (60 + (v, + [0 -1 ] + ¢ ' FD) Ar

+ (y/2kgT¢ =1 At) AN; (0, 1) (32)

where AN; (0, 1) is a multi-dimensional Gaussian incre-
ment of mean 0 and variance 1. Performance of the Euler-
Maruyama method is extremely sensitive to the time step
employed. In fact, convergence of the integration scheme is
only guaranteed when At — 0 [62]. Suppose a stochastic
differential equation with the next general form:

dX = A(X)dt + B(X)dW (33)

An integration scheme converges strongly with order v
at time fyax if the next condition is satisfied:

(|X([max) - Xtrue(tmax)|2>1/2 = C(At)v (34)

for all time step lengths equal or inferior to At and C be-
ing a positive constant. It has been proven that the Euler-
Maruyama method exhibit a low order of strong conver-
gence v = 1/2 [3]. Identification of the maximal time step
satisfying the strong convergence criteria for a specific C
value is normally done by trial and error and plotting the er-
ror in function of the time step. In spite of the low order of
convergence, when the drift and diffusive coefficients (A(X)
and B(X) in Eq. (33) respectively) are almost constants,
the Euler-Maruyama method is the most frequently used in-
tegration scheme. Thus, this explicit integration scheme is
widely used in BD simulations for bead-spring systems with
Hookean-springs.

Now, when the drift and diffusion coefficients become
more complex, the fully explicit method is not satisfying and
high order integration schemes are required. Such is the case
when non-linear spring potentials are employed to guarantee
a finite spring extensibility. In fact, the main difficulty ap-
pearing with the numerical temporal integration of this kind
of bead-spring systems is that the bead displacements have
to be bounded in order to not exceed the maximal spring
extension. For describing those high-order integration algo-
rithms is better to express the bead-spring chain dynamics
(given in Eq. (28)) in terms of the connector vector Q;:

dQ; / / -
42 = (Vi1 —v}) + [ - Q] + ¢ (B, — )

o7 (60, ) 3

A first approximation to solve the previous equation
containing non-linear spring forces consists in use a con-
ventional explicit scheme (Euler-Maruyama method) and
just reject the updating step that produces a not-physical
displacement (maximal spring extension exceeded). Some



practical rejection criteria and useful advices for the choice
of the time step are given elsewhere [3].

More appropriate methods to integrate Eq. (35) are based
on implicit schemes. For example, Somasi et al. [63] pro-
posed a fully implicit scheme inspired in the two-step semi-
implicit algorithm proposed by Ottinger for FENE dumb-
bells [3]. In general, at each time step, those implicit meth-
ods are composed of a predictor step followed by a corrector
one. Given a bead-spring configuration at the time #, (Q;);,
the configuration after one time step is generated as follows:

e Predictor step. Using a conventional explicit scheme a
test configuration Q7 is calculated as follows:

Q' =(Qi)+ [( Vil — ) [K(l'z) (Qt)t]
+§_1(Fz(f-)l Fl@))z +;_](Fz(ﬁ-)1 Fl@)z]m
(36)

e Corrector step. Rewriting the spring potential forces in
terms of the connector forces (Eq. (20)) and using the
test configuration obtained in the predictor step to average
the flow-field contribution to the drag forces is possible to
write a corrector step as follows:

Q +27'F A

= Qi)+ —[x(r,-) Qi) + k() - QF]At

+¢ (Fl(c—)l + (Fz(i)l) )At

+¢7 ' (FE, —F") At 37)
where spring forces for connectors i and i — 1 are
treated implicitly when solving for Q;. Rearrangement
of Eq. (37) generates a cubic equation for the magnitude
of Q;, whose unique root is inferior to the maximal spring
extensibility. In the final stage of the corrector step, spring
force of the connector i 4 1 is given by Eq. (37) and spring
forces for connectors i and i — 1 are tackled implicitly
again:

~lnl

Q +2C_l( (C))[n]A
= Q) + [:«(rl) Q) + 1) - Q" At
+ ¢ (F)" +F ) A
+¢7 ' (FE, —F") At (38)

Previous equation gives also a cubic equation for the nth
approximation of 6!»"] and, hence, an iterative process can
be formulated (doing 61[-"_1] equal to 61[-"]) until differ-
ence between consecutive solutions is inferior to a speci-

fied tolerance &:

n—1

Z (61["1] . 6[[11—1])2 <e (39)

i=1
Once the iterative process converges, Ql[n] is said to be
the spring configuration at time ¢t + Az, (Q;)r+as, With
the guarantee that the lengths of the connector vectors are
allowed physical ones.

In spite of the heavier calculus involved at each time step
in relation to the explicit algorithm, the advantage of the im-
plicit schemes is that larger time steps can be employed. For
such reason, each modelling requires a particular analysis
for determining which integration method produces a more
efficient BD simulation.

Several studies about the numerical integration of non-
linear stochastic equations and time step width control
are found elsewhere, as well as, relevant examples of BD
simulations of bead-spring systems with finite-extensibility
spring potentials [64—66].

3.3 Stress Tensor Calculation

In order to obtain the rheological behavior of any coarse-
grained molecular model it is necessary to extract the stress
tensor information from its mechanical balance at each in-
stant. Total shear-stress tensor T in a suspension is supposed
to be the sum of the contribution coming from the solvent
T, and another one coming from the suspended entities 7,
(in this case, the multi-bead-spring chains) [28]:

T=1,+71, (40)

It is important to notice that at equilibrium (i.e. no exter-
nal forces and no external-flow field), the total shear stress
tensor 7 is zero. Assuming that the solvent is a Newtonian
fluid, then previous Eq. (40) can be rewritten as follows:

T:ns}""‘rp 41

where 7; is the solvent viscosity and p is the homogeneous
rate-of-strain tensor. Anyway, to model the intrinsic rheo-
logical response of the bead-spring chain, one is particu-
larly interested on the shear stress contribution coming from
the suspended particles 7. In the early literature of poly-
mer kinetic theory there are several formal derivations of
expressions accounting for the shear stress tensor contribu-
tion coming from multi-bead-spring chains suspended in lig-
uid media [67, 68]. According to those developments in a
bead-spring chain there are three principal physical effects
contributing to the total shear stress tensor: (1) the intra-
molecular forces across the connector vectors; (2) the ex-
ternal forces acting on beads and (3) the transport of mo-
mentum caused by the displacement of the beads. Those are



not the only sources contributing to the physical mechanical
state of the system, but in the framework of a standard rheo-
logical test those described mechanisms are definitively the
most important.

Based on this deduction guideline, the Kramers expres-
sion for the shear-stress tensor contribution coming from a
multi-bead-spring chain writes as follows:

n—1 n n—1
T, = CZ(Qk ® F,(f)) - CZZ By (Qr ® F)
k=1 v=1k=1
— (n— 1)ckgT$ 42)

where By is a scalar operator associated with bead v and
spring k given by [28]:

B — 5 k<n
vk = k (43)
—[1=51 k=n

In fact, the configuration of a bead-spring chain can be
specified alternatively by the position of the center of mass
of the chain r. and the n — 1 connector vectors Qy as fol-
lows:

n—1

ry=r.+ Y BuQ: (44)

k=1

In the right side of Kramers expression in Eq. (42) are
easily identifiable the three mentioned physical effects con-
tributing to the shear-stress tensor: the first term corresponds
to the intra-molecular forces contribution, the second one
represents the contribution of the external forces and the
third one accounts for the momentum transfer of beads
(Brownian contribution). This last term is an isotropic con-
tribution to the shear stress tensor based on the supposition
of a Maxwellian velocity distribution.

Kramers expression can be slightly transformed by writ-
ing the spring-bead chain conformation in terms of the dis-
tance of each bead to the center of mass of the chain,
R, =r, —r, and by using the expression relating the intra-
molecular force acting on bead v, F§,¢), with the connector
force F,(f) associated to spring k (Eq. (20)). Such form is
known as the modified-Kramers expression for the shear-
stress tensor contribution of a bead-spring chain:

n
1,=—c) (Ry® (F¥ +FY))
v=1

—(n—1)ckpTé (45)

Now, combining previous equation with the bead force
balance in a multi-bead-spring chain given in Eq. (27) and
neglecting any external force a much simpler expression for

the shear stress tensor can be obtained:
n
t,=c) (R, ®F) (46)
v=1

where the result,

Z(RU ®FP)=(n— DkpT$§ (47)

v=1

has been employed supposing again a Maxwellian velocity
distribution. Shear-stress tensor contribution in Eq. (46) is
known as the Kramers-Kirkwood expression [30, 67].

Non intuitively, BD simulations with bead-spring models
in 2D and 3D produced the same results. In what follows of
the current Sect. 3, only the predictions in 3D are given.

3.4 The Rouse Model

Rouse model is a polymer kinetic theory model that mim-
ics the structure of a linear polymer chain using a multi-
bead-spring chain, where intra-molecular interactions are
neglected. Springs in the Rouse model follows a Hookean
law, based on the results of the end-to-end entropic tension
experimented by a freely-jointed Kramers chain (follow-
ing a Gaussian distribution configuration) suspended in an
isothermal solvent bath (see Sect. 1.2.1). No external forces
are considered. A formal compendium of the theory can be
found in the recognized publication of Rouse in 1953 [57].

3.4.1 The Hookean-Dumbbell

The simplest version of the Rouse model is the (two-
beads)—(one-spring) system or, better known as, the elastic-
dumbbell model. It has been found that the mechanical re-
sponse of the dumbbell model is equivalent to that one of a
Maxwell element (spring-dashpot in series) used by rheolo-
gists to model a general linear viscoelastic behavior [69].

Given the simplicity of the dumbbell model, it will be
used to study the main numerical issues of the BD simula-
tions for bead-spring models. An explicit integration scheme
has been employed in a three-dimensional BD simulation. In
what follows, the equilibrium properties and dynamical be-
havior are analysed in detail.

Equilibrium Properties A (two-beads)—(Hookean-spring)
system at thermal equilibrium and in absence of an external-
flow field has an average square end-to-end distance (rz)eq
equal to:

(V )eq - H

(48)

An important aspect in BD simulations is the number of
entities (or trajectories) required to converge to the central
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Fig. 6 Statistics of the square end-to-end distance of a Hookean dumb-
bell in thermal equilibrium (during 1500 time steps) in function of the
BD population. H, ¢ and ckpT are fixed to 1 in a consistent system of
units. Square end-to-end distance at equilibrium is equal to 3 according
to the kinetic theory. A time step equal to Ay /250 has been employed

values with satisfactory statistics. In Fig. 6 the BD perfor-
mance to estimate the square end-to-end distance in function
of the population considered is presented.

The simulated Hookean dumbbell has a square end-to-
end distance at equilibrium equal to 3 (given by Eq. (48))
and a relaxation time of Ay = 0.25 according to the kinetic
theory framework. A short time step (Ar = Ag/250) was
employed in the simulation in order to marginalize the effect
of the integration scheme convergence. BD performance is
measured as the dispersion of the average square end-to-end
distance (95 % of confidence) for 1500 time steps once the
system has reached an equilibrium configuration (i.e. after at
least 3 times the relaxation time). A reduction of the relative
dispersion with respect to the central value is observed from
18.5 % for a population of 10> dumbbells to 1.1 % for a pop-
ulation of 10* dumbbells. As expected, a linear evolution of
the computational time (Intel® Core™ T7300 2.00 GHz) in
function of the number of dumbbells simulated is noticed.
For this particular case, a good compromise between simu-
lation accuracy and computational time is obtained for pop-
ulations between of 10° and 5 x 103 dumbbells.

Another important issue in BD simulations, especially
when employing an explicit integration scheme, is time step.
In Fig. 7 the influence of the time step on the convergence of
the integration scheme is revealed. In this case a population
of 10* dumbbells is employed with the aim to attenuate the
noise coming from the random number generation of statis-
tical distributions and isolate the effects originated by the
integration scheme.

In Fig. 7 the evolution of the squared end-to-end distance
of a Hookean dumbbell, after a sudden thermal activation,
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Fig.7 Evolution of the reduced square end-to-end distance of a dumb-
bell after sudden thermal activation for different time steps in the BD
simulation. H, ¢ and ckpT are fixed to 1 in a consistent system of
units. Square end-to-end distance is made dimensionless using the
equilibrium value given by the kinetic theory. A population of 10*
dumbbells has been employed

is presented for different time steps. In absence of temper-
ature, the end-to-end distance of a dumbbell is null. That is
the reason why all curves begin at the origin. According to
the kinetic theory, a time equal to four times the relaxation
time is more than enough for a Hookean dumbbell model to
reach the equilibrium end-to-end distance at constant tem-
perature. From Fig. 7, a complete divergence of the integra-
tion scheme is observed when a time step bigger than the
main relaxation time is employed. For a time step equal to
the relaxation time and equal to a quarter of the relaxation,
the integration scheme does not diverge, but the steady val-
ues are inaccurate regarding the exact solution. On the other
hand, a finer convergence towards the central values is ob-
served as the time step gets smaller than a tenth of the relax-
ation time.

At thermal equilibrium the shear-stress tensor is zero,
so for a Hookean dumbbell Kramers expression (Eq. (42))
writes:

Tpeg=Cc(Q®F) —ckpT§=0 (49)

which could be written also as:

(Q®F©),,

K5 T =4 (50)

Using a time step equal to Ay /100 and an equilibrated
population of 10° dumbbells (i.e. a BD system equilibrated
during a time equal to three times the main relaxation time),
the simulation produces a stable shear stress tensor. Third
of the trace of the tensor in the left member of Eq. (50) has



20 S— , :
ooy * mean values
% -—dispersion limits
\.‘.
- '
- L)
T 1.5 “ |
o "\‘
g
.S .
= * L it S
n !,"
& o
UQ 9 ./"”
: @ o5t ! |
i
H
1]
!
!
!
h i . ) . .
10? 10" 10° 10’ 10° 10°
1/2
7ol (Proc

Fig. 8 BD prediction of the loss modulus at the characteristic fre-
quency for a Hookean dumbbell model in function of the maximal
shear strain applied. Maximal shear strain is normalized by the equi-
librium end-to-end distance of a Hookean dumbbell model. H, ¢ and
ckpT are fixed to 1 in a consistent system of units. A population of 103
dumbbells and a time step equal to Ay /100 have been employed

a mean value equal to 0.99 £ 0.03 (95 % confidence) dur-
ing 600 times steps. On the other hand, the out-of-diagonal
components of the same tensor have an absolute mean value
equal to 0.005 £ 0.063 (95 % confidence) during 600 itera-
tions.

Dynamic Properties The linear viscoelastic behavior of a
Hookean-dumbbell dilute solution can be obtained analyti-
cally. The constitutive equation of such system has a well-
known solution, that results to be the same of a convected
Jeffreys model, also known as the Oldroyd-B model [28].
Using such constitutive equation, the complex modulus of a
Hookean-dumbbell dilute solution writes as follows:

;L ckpT A%, 0? 51)
14 (Agw)?
ckpTAgw
G’ —nyw=—""— 52
BE T Gnw)? (452

The BD algorithm employed to estimate the dynamic re-
sponse of a suspension submitted to a small-amplitude os-
cillatory strain was previously described in Sect. 2. An ex-
plicit integration scheme is implemented in the BD simula-
tion and the Kramers expression is employed to compute the
shear stress tensor. Using a time step equal to Ay /100 and a
population of 10% dumbbells (convergent simulation param-
eters at no-flow conditions), the BD performance is checked
in Fig. 8 by plotting the loss modulus at the characteristic
frequency (w = A;,l) in function of the maximal imposed
strain.

0.9=—= T T

0.8 ]
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Fig. 9 Relative error of the BD prediction for the loss modu-
lus at high frequencies in function of the time step. H, ¢ and
ckpT are fixed to 1 in a consistent system of units. A pop-
ulation of 10° dumbbells has been employed. Relative error is
defined as follows: |(log Ggp(wg) —log Gy (wr))/log®|, where
O = G!, (wg = 10%)/ G, (wg = 10%) is the maximal interval of com-
plex modulus variation in the tested frequency interval

Bead-spring models are not able to describe the decrease
of viscosity when shear rate is enhanced [28]. This fact is
confirmed by Fig. 8 where the BD estimation of the loss
modulus at the characteristic frequency appears independent
of the maximal shear strain applied. However, a huge nu-
merical dispersion is observed at low strains. This numeri-
cal noise is given by the stochastic nature of the Brownian
forces when the magnitude of those ones is equal or higher
than the magnitude of the flow-induced forces. In fact a nar-
rower dispersion was obtained when implementing a more
precise random number generation algorithm.

At low frequencies the convergence of the integration
scheme is guaranteed by the criteria obtained for the no-flow
conditions. That is truth because at low frequencies, system
motion is controlled essentially by the thermal activity. At
high frequencies, nevertheless, additional considerations are
needed in order to satisfy the convergence of the integration
scheme. In fact, at higher frequencies than the characteris-
tic one, flow-induced forces become the controlling factor
of the kinematics of the system and the relative importance
of the stochastic forces is progressively reduced. For that
reason at high frequencies, as the intensity of the flow field
increases time step must to be gradually refined in order to
guarantee convergence towards the central values. To show
this fact, in Fig. 9 the BD convergence at two high frequen-
cies (wg = 10 and wg = 10?) is deployed by plotting the
relative error of the loss modulus estimation for a population
of 10% dumbbells with respect to the time step implemented.
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Fig. 10 Mean relative error of the BD prediction of the storage and
loss modulus (for a Hookean dumbbell model) and total computational
time in function of the time step implemented. Mean relative errors
are calculated as the average of 34 points distributed homogeneously
in a reduced frequency range going from 102 to 10%. Relative error
is defined as follows: |(log Gp(wg) —log G}, (wr))/log ©|, where
0 =G, (wg = 10%)/ G}, (wg = 1072) is the maximal interval of com-
plex modulus variation in the tested frequency interval. H, ¢ and ckpT
are fixed to 1 in a consistent system of units. A population of 5000
dumbbells has been employed

From Fig. 9, at a reciprocal frequency equal to 107,
a diminution of the relative error from 16 % to 0.7 % is
appreciated when the time step is reduced from Ay /100 to
Az/10*. An even more pronounced effect of the time step is
observed for a reciprocal frequency of 102, given the high
sensitivity of the sine function around zero (phase angle
tends to zero as frequency increases). In that case, a diminu-
tion of the relative error from 84 % to 4 % is noticed for
the same refining of the time step. On the other hand, stor-
age modulus is much less sensitive to the time step than the
loss modulus in the high frequency regime because of the
less variability of the cosine function with respect to the sine
function around zero. For example, at wg = 102, a reduction
of the relative error going from 1.6 % to less than 0.1 % is
observed when the time step is diminished from A g /100 to
Ar/10%,

In Fig. 10 the global BD performance to predict the com-
plex modulus in a frequency sweep test within a representa-
tive frequency interval is presented.

BD performance is depicted by plotting the mean relative
error for the storage and loss modulus for 34 frequencies ho-
mogeneously distributed within an interval of reduced fre-
quencies going from 1072 to 10? in function of the time
step. A population of 5000 dumbbells is used in the BD sim-
ulations. In all the sweep frequency tests a practically con-
stant mean relative error for the storage modulus is obtained

(~2 %). This inaccuracy in the prediction of the storage
modulus is coming mainly from the low frequencies regime
(1072 < wg < 107") given the high variability of the cosine
function approaching /2 (phase angle tends to this value as
frequency diminishes). No improvement in convergence to
the central values is appreciated when refining the time step
because the origin of the dispersion is not associated with the
integration scheme, but with the natural fluctuations of the
stochastic forces that control the kinematics of the dumb-
bell at low velocities. Implementation of a more sophisti-
cated algorithm for generating random numbers is required
to improve the convergence of the storage modulus at low
frequencies. In fact, the list of pseudo-random numbers gen-
erators is continuously growing as reflect of the remaining
challenges in this computational art [3, 70]. On the contrary,
a considerable improvement in the loss modulus prediction
is checked as smaller time steps are employed. A reduction
of the mean relative error from 3.0 % to 0.6 % is obtained
when time step is shortened from Az /100 to Ay /103, This
improvement in convergence for the loss modulus is related
directly to the better accuracy at high frequencies, as showed
before in Fig. 9. As expected, a linear increment on the com-
putational time (4 x Intel Itanium® 2 Monticito 1400 MHz)
is observed as the time step is shortened.

3.4.2 The Multi-Bead-Spring Chain

The analytical expression of the constitutive equation for
the Rouse model (composed of n — 1 Hookean springs) is
well-known. It results to be the linear superposition of n — 1
Hookean dumbbells with a spectrum of relaxation times A

following the next normal modes [28]:
2H
P—TE (53)
4sin“(jm/2n)

When a dilute solution of Rouse chains is submitted to
a small-amplitude oscillatory deformation test, the complex
modulus contribution given by the chains writes as follows:

n—1 )\20)2
G/ZCkBT;m (54)
n—1 A
GN — Ny = CkBT ‘/2_; H_(]W (55)

In principle, the numerical considerations extracted from
the BD simulations with Hookean-dumbbells can be extrap-
olated to the BD simulations of multi-bead-spring chains. In
Figs. 11 and 12 the BD predictions for the complex mod-
ulus of Rouse chains with 1, 10 and 50 springs are com-
pared. All BD simulations are carried out using a population
of 5000 chains, a number proved to provide a good compro-
mise between prediction accuracy and computational time
(see Fig. 6). A frequency sweep test is carried out on 34
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Fig. 11 BD prediction of the storage modulus in function of the re-
duced frequency for three Rouse chains: 1-spring, 10-springs and
50-springs. Analytical curves are represented by solid lines. H, { and
ckpT are fixed to 1 in a consistent system of units. A population of
5000 chains has been employed

points homogeneously distributed in a reciprocal frequency
interval going from 10~! to 10%. A constant time step equal
to Ap—1/500 was implemented, where X, is the shortest
time of the relaxation times spectra. This length of the time
step was demonstrated to provide also a good compromise
between accuracy and computational cost (see Fig. 10).

From Fig. 11 is observed that the prediction of the storage
modulus is less accurate at low frequencies. It was already
mentioned that the inaccuracy at low frequencies comes
from the random number generation; hence improvement in
the accuracy of the BD prediction is subjected to the im-
plementation of more sophisticated algorithms of random
number generation. Quality of the random number gener-
ation is only reflected at low frequencies because, at this
regime of flow, the dynamics of the multi-bead-spring chain
is governed by the randomizing thermal forces; whereas at
high frequencies the statistical errors of the computational
random number generation are masked by the effects of the
external-imposed flow-field.

Mean relative errors for the BD prediction of the storage
modulus are 0.9 %, 0.2 % and 0.1 % for the single Hookean
dumbbell, the 10-springs and the 50-springs chain respec-
tively. BD simulations are capable to predict the apparition
of new relaxation processes when increasing the number of
springs. Notice the elastic enhancement at high frequencies,
going from the characteristic plateau of the Hookean dumb-
bell model to non-zero slopes of the storage modulus in
function of the frequency; for instance 0.6 for the 10-springs
and 50-springs chain around a reduced frequency of 10. It is
worth to mention that Rouse theory predicts a storage mod-
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Fig. 12 BD prediction of the loss modulus in function of the reduced
frequency for three Rouse chains: 1-spring, 10-springs and 50-springs.
Analytical curves are represented in solid lines. H, ¢ and ckpT are
fixed to 1 in a consistent system of units. A population of 5000 chains
has been employed

ulus evolving with w® for very long chains (n > 300). Ten-
dency towards this limiting value has been registered by the
BD simulations; a slight reduction of the storage modulus
slope in the high frequency range is appreciated when going
from 0.65 for the 10-springs chain to 0.61 for the 50-springs
one.

In Fig. 12 the BD predictions of the loss modulus in func-
tion of the frequency are plotted for the same Rouse chains
presented in Fig. 11. For the Hookean dumbbell system, in-
accuracy in the BD prediction is concentrated at high fre-
quencies, on the contrary of the storage modulus. In this
case, given the low values of loss modulus at high frequen-
cies, error is coming from a bad resolution of the integration
scheme when the phase angle approaches 0. Shorter time
steps are required in this frequency window (10! to 10?),
but it is important to say that the model response at those
frequencies lacks of physical meaning too.

BD simulations are able to correctly predict the evolution
of the loss modulus in the high frequency range. Observe,
for instance, the linear decrease of the loss modulus for the
dumbbell system and the linear increases of the loss mod-
ulus for the 10-springs and 50-springs chains at high fre-
quencies. In the high frequency range, the predicted slopes
of 0.42 and 0.49 for the 10-springs and 50-springs chains
respectively, are also consistent with the maximal limiting
value of 0.5 given by the Rouse theory. BD simulations
show that when increasing the number of springs, storage
and loss moduli tend converging towards the same values in
the high frequency range, as predicted by Rouse theory for
large number of springs (n > 300).



Mean relative errors for the loss modulus prediction are
1.6 %, 0.3 % and 0.7 % for the Hookean dumbbell, the 10-
springs and the 50-springs chain respectively. CPU! time
(4x Intel Itanium® 2 Monticito 1400 MHz) goes up from
15 minutes to 10 hours when passing from 1-spring to
10-springs, an impressive increment of the computational
cost. This fact is explained by the longer main relaxation
times when dealing with bigger number of springs that are
traduced in longer stabilization steps in the BD algorithm
given in Sect. 2, specially in the high frequency range. Ad-
ditionally, the short time steps required in an explicit in-
tegration scheme imply longer analytical steps in the im-
plemented BD algorithm, specially in the low frequency
range.

3.5 The Zimm Model

Unlike the Rouse model, in Zimm theory hydrodynamic in-
teraction is taken into account. From a formal point of view,
the kinematic description is exactly the same as that one of
the Rouse model, except for the hydrodynamic drag force,
where an additional term is considered to account for the
local variation in the bulk flow field caused by the motion
of the other beads in the multi-bead-spring chain. Pioneer
works on hydrodynamic interaction inside flexible macro-
molecules are attributed to Kirkwood and Riseman [30, 71].
Zimm adapted the Kirkwood’s results in hydrodynamic in-
teraction to the multi-bead-spring model in order to estimate
the viscoelastic, birefringence and dielectric properties of
dilute polymer solutions. Zimm found the analytical solu-
tion of the model by using a transformation to normal coor-
dinates [58].

The particularities of the implementation of a BD sim-
ulation for a multi-bead-spring model with hydrodynamic
interaction can be revealed by transforming the general ex-
pression for the bead velocity given in Eq. (28). Neglecting
external forces and supposing an isotropic friction tensor,
the generalized stochastic differential equation in Eq. (28)
can be rewritten as follows:

@ p®)

dr; F: F;

d—;:—E:Qi./~F§h)+[K(r,~)-r,’]+ § + ; (56)
j

where the local hydrodynamic interaction term v; has been
approximated by using the Oseen-Burgers hydrodynamic
tensor. As the balance of forces over each bead is zero (in-
ertialess Langevin equation) the hydrodynamic force in Eq.
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(56) can be written in terms of the other forces:
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J
where HI;; = §;; 6 4 ¢ £2;; is called the Hydrodynamic In-
teraction (HI) matrix associated with a given pair of beads
i and j inside the chain. Finally, through the fluctuation-
dissipation theorem the stochastic differential Eq. (58) for
the bead velocity in a multi-bead-spring chain with hydro-
dynamic interaction takes the form [1]:

dr; 1
d_tl = [w(;) r;]+ 3 ;Hlij 'F§»¢)
2kpT dW,;
R ;CU = (59)

where HI;; = C;; - CIT] Hydrodynamic interaction in multi-
bead-spring chains is tackled rigorously with Eq. (59), but at
present it cannot be solved in closed form [1]. To circumvent
this difficulty, Zimm theory replaces the variable Oseen-
Burgers tensors by their equilibrium averages. By using
the equilibrium-averaged distance between two beads inside
a Rouse chain (r;j)., (see [28]) the equilibrium-averaged
Oseen-Burgers hydrodynamic tensor given in Sect. 3.1 can
also be expressed as follows [58]:

1 -6 2H
677 1)

(Szij>eq = § fori FJ (60)

mkpTli — jl

When introducing Eq. (60) into Eq. (59) it is found that
HI; = HI and C;; = C where HI = C - CT. As noticed,
in Zimm theory HI tensor becomes a n x n constant matrix
whose components (HI)" are given by the next formula:

2 61)

HDY =§;; + (1 — 8;;)h* T

where A* is the hydrodynamic interaction parameter accord-
ing to Thurston and Peterlin [72]:

¢ | H
W= — 62
ns \| 3673kpT (62)



where ¢ is the bead friction coefficient, 7, is the solvent vis-
cosity and H is the Hookean-spring constant. The hydrody-
namic interaction parameter 4* can be expressed also as the
ratio of the bead radius to the root-mean-square distance be-
tween two beads linked by a spring at equilibrium. In that
context, it is expected that 4* is lower than 0.5 [1]. From
a practical point of view, experimental viscoelastic data for
several polymer solutions are generally well represented by
Zimm chains of several hundreds of beads with hydrody-
namic interaction parameters between 0.1 and 0.2 [73].

From a numerical point of view (BD approach) integra-
tion of the stochastic differential equation for a Zimm chain
(Eq. (59)) does not represent an additional cost with respect
to the Rouse chains (Zimm hydrodynamic interaction matrix
is constant). In addition, equations employed to describe the
kinematics and to compute the shear-stress tensor are quite
similar for both models. Hence, the numerical considera-
tions about the number of trajectories required and the time
step (in an explicit integration scheme) inferred for Rouse
chains can, in principle, be extended to the BD simulations
of Zimm chains.

It seems that the calculation of the matrix C;; has a nu-
merical relevance when general hydrodynamic interaction
(i.e. based on the general expression of the Oseen-Burgers
tensor) for chains with large number of beads (rn > 300)
is considered, owing to the fact that the hydrodynamic in-
teraction matrix is recalculated at each time step. Classi-
cal Cholesky decomposition is expensive, scaling with the
cube of the number of beads [1]. In response, Fixman pro-
posed two alternative numerical methods to calculate the
square-root of the hydrodynamic interaction matrix: one by
Newton iteration and the other one by Chebyshev polyno-
mial decomposition [74]. Implementation of the last poly-
nomial approximation for the square-root of the hydrody-
namic interaction matrix in a BD framework is detailed else-
where [1]; this method roughly scales with n%/4 per time
step. In any case, previous numerical issue has a reduced
impact on the BD simulation of Zimm chains due to the fact
that the equilibrium-averaged hydrodynamic interaction ma-
trix is constant and the required decomposition is carried out
just one time for all the simulation.

Given the fact that hydrodynamic interaction is approx-
imated by the equilibrium averaged Oseen-Burgers tensor,
a close-form of the constitutive equation can be derived for
the Zimm model in total analogy with that one of the Rouse
model [3, 28]. For that reason, expressions for the contribu-
tion of Zimm chains to the complex modulus of their dilute
suspensions have the same form that the equations for Rouse
chains (Eqgs. (54) and (55)):
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Fig. 13 BD prediction of the storage modulus in function of the re-
duced frequency for two 50-springs Zimm chains with high hydrody-
namic interaction (h* = 0.303) and very low hydrodynamic interaction
(h* = 0.003). Analytical curves are represented in solid lines. H, ¢ and
ckpT are fixed to 1 in a consistent system of units. A population of 10*
dumbbells has been employed

" e _ckBTZIJF(A e (64)

The only difference lies on the relaxation time spectra. In
the Zimm model the time constants are dictated by:

P
J 2Ht~lj

(65)

where a; are the eigenvalues of the modified Rouse matrix
A whose components (A) are given by:

(A7 =%">" Biy(HD)™ By, (66)

and B,, is a scalar operator following the next formula [28]:
Bvu = 5v+1 u 81} u (67)

This analytical solution allows us to evaluate easily the
performance of the BD simulation predicting the linear
viscoelastic behavior of multi bead-spring systems with
equilibrium-averaged hydrodynamic interaction. Figures 13
and 14 compare the BD predictions of the complex modu-
lus for a 50-springs Zimm chain with two different hydro-
dynamic interaction parameters. A frequency sweep test is
carried out over 25 points homogeneously distributed in a
reduced frequency interval going from 10~! to 102

From Fig. 13 is observed that the BD prediction of the
storage modulus is more accurate for the high hydrodynamic
interaction case than the low one. In fact, the mean relative
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Fig. 14 BD prediction of the loss modulus in function of the re-
duced frequency for two 50-springs Zimm chains with high hydrody-
namic interaction (h* = 0.303) and very low hydrodynamic interaction
(h* =0.003). Analytical curves are represented in solid lines. H, ¢ and
ckpT are fixed to 1 in a consistent system of units. A population of 10*
dumbbells has been employed

error for the low value of ~* is about 2.7 % in comparison
with the mean relative error of 0.8 % for the case of high /*.
The main source of inaccuracy is coming from the low fre-
quency range. This is explained, as in the BD simulations
with Rouse chains, by the statistical deviations originated in
the numerical computation of the stochastic forces coupled
with the relative dominance of the thermal forces as driv-
ing mechanism of the chain kinematics in the low frequency
range. As a consequence, improvement of the accuracy at
low frequencies depends on the implementation of more so-
phisticated random numbers generators.

On the other hand, BD simulations correctly predict the
evolution of the storage modulus at high frequencies. Fig-
ure 13 shows the increase of the slope of G’ going from
0.6 for the low hydrodynamic interaction case (h* = 0.003)
to 0.7 for the high hydrodynamic interaction case (h* =
0.303), within the reduced frequency interval between 10!
and 102,

In Fig. 14 the BD prediction of the loss modulus versus
the frequency is plotted for the same Zimm chains presented
in Fig. 13. Again better accuracy is obtained for the chain
with higher hydrodynamic interaction. In fact, mean rela-
tive error goes down from 1.6 % to near 0.3 % when h* is
increased from 0.003 to 0.303. As observed for the storage
modulus prediction, main source of error is coming from the
low frequency regime.

BD performance at high frequencies is quite better. Sim-
ulations are able to correctly predict the change in the loss
modulus slope when varying the relative importance of the

hydrodynamic interaction. At low hydrodynamic interaction
a Rouse-type slope is observed, whereas at high hydrody-
namic interaction (h* = 0.303), the slope of the loss modu-
lus reaches a maximal value of 0.64 around a reduced fre-
quency of 10. This prediction is consistent with the Zimm
theory for very long chains (i.e. n > 300) and high hydro-
dynamic interaction (for instance, 7* = 0.3), where stor-
age and loss moduli evolve linearly with w?/3 [75]. On the
other hand, in our BD simulation of 50-springs chains with
high hydrodynamic interaction (A* = 0.303) we have found
(G” — nyw)/G’ = 1.67 around a reduced frequency of 10,
a result also in coherence with Zimm theory where a con-
stant ratio (G” — nyw)/ G’ = +/3 is predicted in the high fre-
quency range.

4 BD of Generalized Bead-Rod Models

The fundamental difference between the bead-rod model
and the bead-spring model lies in that the former has a fi-
nite contour length. This simple, but important fact is tra-
duced directly in different rheological responses. On the
other hand, a physical model with a finite contour length
imposes subtle, but important numerical issues that are re-
flected in the BD implementation.

As mentioned in Sect. 1.2.1, historically bead-rod mod-
els were first proposed to emulate the structure of linear
polymers in a coarse-grained fashion. Bead-rod model with
fixed adjacent angles (as proposed by Flory [29]) constitute
the first stage of coarse-graining in kinetic theory. In that
model, rods are supposed to represent the bond length be-
tween two consecutive atoms in the backbone of the poly-
mer chain. Simpler representations with fewer degrees of
freedom have been extensively proposed. For instance, some
polymer chains are quite bendable along certain number of
monomer units, in those cases from 3 to 5 monomer units
can be replaced by one non-bendable rod. Polymer flexi-
bility is then mimicked by introducing some kind of bend-
ing potential between consecutive rods. Continuous version
of this model is known as the worm-like chain, in which
the thermal equilibrium configuration is a perfect straight
filament. An even coarser model replaces from 10 to 20
monomer units by one rigid-rod; any notion of flexion hin-
dering at this rod-scale is lost and the polymer chain is repre-
sented then by a freely-jointed multi-rod chain [28]. An ulti-
mate scale in the coarse-graining process replaces a hundred
of backbone atoms (or a ten of rods from the freely-jointed
multi-rod model) by an entropic spring, so mechanical be-
havior of the macromolecule is represented by a multi-bead-
spring chain model (showed in the previous Sect. 3). De-
spite that the historical motivation for the bead-rod model is
linked to the polymer science, this representation has been
extensible applied to emulate the mechanical behavior of



other structures as short DNA, rod-like virus, collagen fib-
rils, synthetic polymers and CNTs.

Bead-rod models have escaped from a deeply develop-
ment in the kinetic theory framework with respect to the
bead-spring counterparts because the inextensibility condi-
tion imposes the use of generalized coordinates [76]. This
mathematical complexity explains why only some results in
zero-shear, steady and linear unsteady flows have been ob-
tained for this model [77, 78].

In the case of bead-rod models, BD simulations appear
as an interesting alternative approach to by-pass the com-
plex mathematical-treatment of the diffusion equation. Any-
way, the use of constraints also implies to be careful during a
BD implementation, particularly in terms of the integration
scheme and the stochastic forces generation.

Bead-rod models have been particularly studied for ap-
proaching the mechanical behavior of bead-spring chains
with very stiff Fraenkel-typesprings (non-zero natural
length). Intuitively a very stiff Fraenkel spring could be re-
placed by a rigid rod for the sake of mathematical simplicity.
However, it is found that this limit is a very singular one. In
fact, bead-rod chains and bead-spring chains differ even in
the limit of infinitely stiff springs. For instance, the con-
figurational distribution of a freely-jointed multi-bead-rod
chain at thermal equilibrium is found to be different from
a random-walk distribution, which is typical for a freely-
jointed multi-bead-spring chain [28]. This difference has
been confirmed by molecular and Brownian dynamics sim-
ulations [5, 79-81] and statistical mechanics calculations
[82, 83]. On the other hand, it has been showed that intro-
ducing a corrective potential force (function of the chain
configuration) into the multi-bead-rod chain formulation is
possible to mimic the behavior of multi-bead-spring chains
[82, 84]. This result strongly promoted the use of BD simu-
lations for studying the dynamical behavior of polymers by
using the multi-bead-rod model and the corrective potential
approach [66, 74, 85-89]. In this work, the intrinsic behavior
of multi-bead-rod models is tackled; the bead-spring chain
statistics is not intended to be mimicked.

In what follows, the basis of a BD implementation for a
generalized multi-bead-rod chain with an isotropic friction
tensor and in absence of hydrodynamic interaction is pre-
sented. We focus in two classical cases: the freely-jointed
chain or Kramers model and the non freely jointed chain
that corresponds to a discrete version of the worm-like chain
model.

4.1 Kinematic and Dynamic Formulation

Constraints can be treated mathematically in a generalized
coordinate system (based on the configuration of the chain)
or in a Cartesian coordinate system, case in which constraint
forces are required to complement the kinematic descrip-
tion. Going and coming back between those two frameworks

Fig. 15 Non-freely jointed multi-bead-rod model composed of n
beads and n — 1 rods of length a. Bending potential between rods in
the multi-bead-rod chain model is mimicked with a hypothetical flex-
ion spring

requires a lot of care in order to conserve a proper equiva-
lence at the levels of the FP equation and the differential
stochastic equation [3].

From a formal point of view a general, expression of the
FP equation for a multi-bead-rod model with no internal po-
tentials, including hydrodynamic interaction and anisotropic
friction tensor, was given by Curtiss using generalized co-
ordinates [28]. This diffusion equation is coherent with the
equilibrium statistical mechanics for a real bead-rod chain
with equal bead masses. A detailed description of the devel-
opment of an equivalent stochastic differential equation in
the strong sense was given by Ottinger [3]. He also showed a
particular transformation of that differential stochastic equa-
tion from generalized to Cartesian coordinates. In doing so,
not only an explicit definition of the rod inextensibility is
required, but also a metric potential force, depending on the
chain configuration, has to be considered in order to respect
the equivalence (at least in a weak sense) with the FP equa-
tion developed by Curtiss. Interestingly, it is found that the
negative of such metric force is equal to the corrective po-
tential force added in the BD numerical algorithms of multi-
bead-rod chains intended to mimic the behavior of multi-
bead-spring chains.

For the sake of simplicity, BD implementation in a Carte-
sian coordinate system is employed in this paper. Metric po-
tential forces are neglected without incurring in error be-
cause, in one hand, the drag acting on the simulated multi-
bead-rod chain is supposed characterized by an isotropic
friction tensor and, on the other hand, no hydrodynamic in-
teractions are considered.

Let us consider the multi-bead-rod chain model showed
in Fig. 15. Multi-bead-rod chain is constituted of n beads
joined by n — 1 non-bendable rigid rods of length a.

Position of the bead-rod chain can be instantaneously de-
fined in a Cartesian reference system by the ensemble of
bead positions r; and the center of mass of the chain r. (see



Eq. (14)). Orientation of each rod is given by the vector u;,
which is a unit vector collinear to the rod connecting beads
jand j + 1. u; is defined as follows:

u; =(rj1 —rj;)/a (68)

Rods are supposed infinitely rigid. Physical length of the
system is equivalent to the total length of the multi-bead-rod
chain (n — 1)a. Existence of an internal bending potential,
coming from a hypothetical flexion spring between each pair
of rods, is considered with the purpose of mimic the bending
flexibility of the filament-like system. Introduction of a non-
zero bending potential complicates the FP formulation and
make of the BD simulation a privileged numerical approach.
On the other hand, multi-bead-rod chains are supposed sus-
pended into a Newtonian solvent (viscosity 7,) at tempera-
ture 7. Concentration of the bead-rod chains is defined in
terms of ¢ chains per volume unit. High dilution hypothesis
is made, so no inter-chain interaction is considered. More-
over, flow field acting on the suspension is assumed to be
homogeneous. Beads are considered the centers of hydrody-
namic resistance; so all forces are concentrated on beads. In
what follows, forces acting on the multi-bead-rod chains are
described in more detail.

e Hydrodynamic drag force acting on bead i, Fl(h)

Physical origin and mathematical description of this
force are the same given for the multi-bead-spring model
(see Sect. 3.1). As mentioned before, hydrodynamic in-
teraction is neglected and an isotropic friction coefficient
is supposed in order to avoid the calculation of metric po-
tential forces.

o Constraint forces acting on bead i, Ff)‘)

This force takes into account the sum of rod tensions
acting on each bead i. Rod tension A ; corresponds to the
module of the instantaneous force emerging on bead j
for maintaining the distance between beads j and j + 1
at a constant value a. This force is transmitted along the
rigid-rod and is manifested on bead j + 1 with an opposite
sign. Mathematically, total constraint force on bead i can
be expressed as follows:

n—1
Fl@) = — Znijkj (69)
j=1

where n;; is a linear operator defined as follows:
n;; =u;(G j+1 —6i ) (70)

¢ Internal bending potential force acting on bead i, Fl@)
Based on the viscoelastic theory of concentrated solu-
tions of semi-flexible polymers [90], Pasquali and Morse
defined a discrete bending potential for a multi-bead-
rod model based on the worm-like chain continuous

model [87]:

Kb n—1
¢>=—7 u;u; (71)

i=2

where ¢ is the internal-bending potential and K is a
bending rigidity constant. The bending potential defined
in Eq. (71) can be understood as coming from the me-
chanical action of a torsion spring between two consecu-
tive rods. In this case, local bending energy is proportional
to the cosine of the internal angle between two consecu-
tive rods. In other words, minimal internal bending energy
state is achieved when all rods are completely aligned.
Usually, this linear relationship is restricted to small flex-
ion angles. Obviously, definitions of non-linear bending
potentials are required for large deformation scenarios.
Bending force acting on bead k can be obtained as the
derivate of the bending potential in Eq. (71) with respect
to the position of bead k:

-1
3¢  Kp < 0(u; -u_1)

FO =0 - SN O Tl (72)
ory a5 Jarg

To simplify the derivate on the right side of Eq. (72), next
identity is employed [87]:
0

1
Fr 0 = —(Oki+1 — )@ —w; @u;) (73)
Iy a

Brownian force acting on bead i, ng)

As in all coarse-grained models, Brownian forces ap-
proach the change of momentum of a bead i coming from
the thermal activity of the solvent molecules surrounding
bead i. Accounting for faster processes than the coarse-
grained model motion, Brownian forces are computed as
an stochastic process. In a model without constraints (free
particles, bead-spring chains), Brownian forces follow a
normal distribution with first and second moments de-
fined previously by Egs. (25) and (26), respectively. How-
ever, as the generalized friction of the bead-rod system is
modified by the presence of constraints, random forces
must reflect the inextensibility of rods [86].

An algorithm proposed to tackle properly last issue re-
quires that Brownian forces are geometrically projected
random forces. Geometrical projection of random forces
on bead-rod chains is absolutely necessary when the
bead-spring statistics want to be mimicked (using of cor-
rective potential forces and a mid-step integration algo-
rithm) or an anisotropic friction tensor is considered [89].

On the other hand, when dealing with free-draining
bead-rod chains in which each bead is characterized by
an isotropic friction coefficient ¢, geometrical projection
of Brownian forces is redundant [89] and same kinemat-
ics is obtained by using unprojected Brownian forces. To



show last fact (and present in parallel the structure of the
geometrical projection algorithm), let us take the exam-
ple of one single rigid rod embedded into a solvent bath
at temperature T, no external flow is imposed. Supposing
an isotropic friction coefficient, the force balances on the
two mass-less beads write:

—ctp —nph +FY =mi =0 (74)
—¢iy —mA + Féb) =moi =0 (75)

In order to satisfy the inextensibility of the rigid-rod, next
condition has to be imposed over the bead velocities:

2
0= F-mi=(—F) w (76)

i=1

Placing the bead velocities from Egs. (74) and (75) into
Eq. (76) we obtain:

1
E(—Xlul —}—F;b) —Au; — ng)) -u; =0 )

Equation (77) can be rewritten also as follows:

2
20 =Y F .nj = (F —F)-u (78)
i=1

Previous equation resumes the conditions imposed over
the Brownian forces in order to satisfy the inextensibil-
ity condition. Two numerical algorithms for the random
forces generation can be considered at this point. The first
takes into account the contribution of random forces to
the rod tensions and implies to calculate A at each time
step from Eq. (78). In this case, random forces are gener-
ated like in the BD simulations of bead-spring models and
the predictor-corrector integration scheme (Sect. 4.2.2) is
required. In the second, contributions of random forces to
the rod tension are neglected (A1 = 0) and unconstrained
random forces have to be projected in order to satisfy
0= 21'2=1 ng) -n;1. This last expression determines the
starting point of the geometrical projection algorithm. In
order to obtain projected random forces F}b)/, it is nec-
essary to substrate the “hard” component of the uncon-
strained Brownian forces 7; along the rod direction as
follows:

by b ~
F” =F" - (79)

The “hard” component of the unconstrained Brownian
forces can be obtained from the solution of the next equa-
tion [89]:

2
Gii=> F . (80)

i=1

R’

Fig. 16 Example of the geometrical projection of Brownian forces
in a quiescent bi-dimensional single rigid-rod (no external-flow). An
isotropic friction coefficient is supposed. In the upper rod no geomet-
rical projection has been carried out, hence tension force is considered.
In the lower rod, geometrical projection of Brownian forces absorbs
the rod tension; observe that hydrodynamic forces are not modified

where G = Zi n; - n;; = 2. From Egs. (78) and (80) is
easily inferred that 7; = A1. Hence, projected Brownian
forces are F(lb)/ = F(lb) + Aqu; and Féh)/ = Féb) — Aluy.
A graphic example of this projection in a bi-dimensional
framework is showed in Fig. 16. Extension of previous
algorithm for a multi-bead-rod case is straightforward and
has been detailed elsewhere [85, 86].

Nevertheless, as mentioned before, geometrical pro-
jection of Brownian forces for a constrained system with
an isotropic friction tensor is redundant because, as ob-
served for the one-rod example in Fig. 16, projection of
random forces has no consequences on the rod kinemat-
ics as hydrodynamic forces and rod velocity are not al-
tered. In other words, considering a constant friction co-
efficient, rod kinematics depends exclusively on the or-
thogonal component of the Brownian forces with respect
to the rod vector and this component is not modified by
the geometrical projection algorithm.

e External forces acting on bead i, Fl@

As mentioned before, gravitational and electromag-
netic forces can be considered in function of the particular
scenario of modelling. In this article, external forces are
neglected.

Taking into account that inertia is neglected, forces bal-
ance on each bead i writes:

F 4 FY 4+ FO 47+ F =0 (81)

Given the definition of the hydrodynamic drag force, an
explicit stochastic expression for the bead velocity can be



obtained:
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Geometrical projected random forces guarantee the inex-
tensibility condition when no external fields are imposed. In
other scenario, constraints on the rod lengths have to be con-
sidered. For instance, in a Cartesian coordinates system we
have:

n
ozzl'-,--n,-j forj=1,...,n—1 (83)

i=1

Putting together Egs. (82) and (83) a linear system of
equations describing the kinematics of a non-freely-jointed
multi-bead-rod model is constituted, where the unknown
variables are n bead velocities ¥; and n — 1 rod tensions A ;.

4.2 Integration Schemes

Several numerical integration schemes have been proposed
to integrate the differential stochastic equation equivalent
to the FP equation given by Curtiss for the general multi-
bead-rod chain in both generalized coordinate systems and
Cartesian reference systems. In the case of generalized co-
ordinates, the task is feasible if the number of degrees of
freedom is small, otherwise the numerical complexity makes
this option impractical [3]. Some simulations at equilib-
rium using a numerical integration in generalized coordi-
nates were made by Pear and Weiner [5, 81]. The possi-
bilities for integrating numerically in a Cartesian space are
more varied and, in principle, the numerical methods em-
ployed for the bead-spring models are applicable, but addi-
tional controls are required for satisfying the constraints rig-
orously, specially in simulations for large time intervals [3].

Another integration numerical method for systems in-
cluding constraints was given by Allison and McCammon
under the name of SHAKE-HI algorithm [91]. In the general
form of the algorithm, bead positions are calculated in two
steps: an unconstrained step followed by a constrained one.
Two particular versions of the SHAKE-HI algorithm are the
most cited numerical schemes employed to integrate the dif-
ferential stochastic equation for a multi-bead-rod model in
a Cartesian space: the mid-point stepping scheme proposed
by Fixman [82, 85] and the predictor-corrector scheme de-
veloped by Liu [63, 76].

4.2.1 Mid-Point Algorithm

In 1978 Ermak and McCammon showed that the gradient
of the diffusivity must to be incorporated into a BD algo-
rithm when the bead diffusivity depends on the configura-
tion of the Brownian system [92]. It has been shown that the

diffusivity of a multi-bead-rod chain is variable because of
the presence of rigid constraints and, also, as consequence
of considering hydrodynamic interaction [85]. A clever way
to counteract the wrong drift produced by the variable dif-
fusivity in a BD algorithm was proposed by Fixman [82].
He suggested employing a second-order time step to inte-
grate the stochastic differential equation. In fact, any higher
order time step is able to handle correctly the variable dif-
fusivity. In this numerical algorithm the use of potential
metric forces Fgm) is required and has to be added to the
left term of Eq. (81). In brief, potential metric forces are
function of the constrained configuration of the chain. Ex-
tended descriptions and detailed definitions for this “extra”
metric force can be found elsewhere [3, 84, 89]. From a
global point of view, this algorithm is able to deal with hy-
drodynamic interaction and anisotropic friction tensors. For
the particular multi-bead-rod chain model presented in this
work, the differential stochastic equation required for the
mid-step scheme writes as follows:

. :
= (FY +F + 7 (84)

where Fg"c) =) 1] + F[@ + Fl@ + Fl(m) . Keeping
in mind that hydrodynamic interaction is neglected and an
isotropic friction tensor is supposed, then a single time step
[, t + At] for the mid-step algorithm is constituted by the
following sub-steps:

1. Generation of geometrical projected random forces at the
beginning of the time step Fl@/(t) following the com-
plete algorithm describe by Hinch and co-workers [84—
86].

2. Calculate the mid-step position as follows:

il At—~t ‘~tAt 85
r,<+7>—rl()+r,()7 (85)

where the initial-step velocity I; (¢) is calculated neglect-
ing the constraints on the rod lengths:

i (1) = %(Fﬁ‘“) O +F (1)) (86)

3. Calculate the end-step position by using the next equa-
tion:

r;(t + At) =1;(t) + 1 (%) At 87)

where the mid-step velocity is obtained from the solution
of the linear system:

. 1 ) At (uc) At
r; (%) ZEI:FI (t + 7) -|'FiuC t+ 5

+E (r)} (88)
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i=1

where 1; () is the constrained bead velocity at the mid-
step, but calculated with the random stochastic forces
generated at the beginning of the time step. This proce-
dure is coherent with the Stratonovich interpretation of
the stochastic random forces [3, 93]. This algorithm does
not guarantee an invariable rod length at the end of the
time step, for that reason a truncation error is employed.
Once the rod length at the end of a given time step ex-
ceeds certain tolerance, the inter-bead distances are reset
to the constant value, conserving the rod orientations.

4.2.2 Predictor-Corrector Scheme

The predictor-corrector scheme is a singular and limiting
case of the SHAKE-HI algorithm. One can say that is sin-
gular because it requires absolutely neglecting the hydro-
dynamic interaction and dealing with an isotropic friction
tensor. On the other hand, this algorithm is limiting because
the two-step procedure is merged in an iterative single-step.
The predictor-corrector scheme was employed by Liu for
simulating the dynamics of a Kramers chain submitted to
steady potential flows [76]. Doyle demonstrated that both
the predictor-corrector scheme and the Fixman’s mid-step
algorithm generate the same trajectories for a dilute Kramers
bead-rod chain with an isotropic friction tensor and in ab-
sence of hydrodynamic interaction [93]. It is emphasized
that neglecting the hydrodynamic interactions, supposing an
isotropic friction tensor and employing this limiting case
of the SHAKE-HI algorithm are necessary conditions for
eliminating the metric potential forces from the differential
stochastic equation in Cartesian coordinates without incur-
ring in deviations from the FP equation for the multi-bead-
rod model [3].

For a time step [¢, ¢ 4+ At], displacement of bead i is ob-
tained in two stages. The first one, called predictor step, is
given by an unconstrained movement:

vt + A =1 () + 1 (D) A (90)
where

i () = %(F}“C) O +F? (1)) and

FU) = ¢[ie(r) -] +FP +F©.

Subsequently, an iterative corrector step is required for tak-
ing into account the inextensibility of rods:

) — l )
ri(t+ A1) =r;(t+ At + {'Fi At 91

where Ff)“) is given by Eq. (69). The Lagrange multipliers
A; are calculated so that inter-bead distances are satisfied
within a certain tolerance:

(011t + AD =1 (1 + AD)® —a? = &2 92)

Combining Egs. (91) and (92), a system of quadratic
equations for A; is generated. This system has the general
form:

2At
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where b; =17 | —r} and kl["] is the nth approximation of
the Lagrange multiplier associated to rod i. Previous set of
non-linear equations can be solved iteratively by a Picard’s
method by supposing the non-linear term (last term on the
right-hand side) to be small in comparison with the linear
terms (left-hand side). The iterative procedure is initiated
with Al[o] = 0 and is executed until the constraints are sat-
isfied with regard to a certain truncation error 2. Once the
iterative procedure has finished, the bead positions at the end
of the time step are corrected using Eq. (91).

Additional to the Picard’s method invoked to solve Eq.
(93), an iterative Newton’s method can converge faster than
the Picard’s one, but involving the calculation of a Jacobian
matrix every time step [63].

4.3 Stress Tensor Calculation

From a formal point of view, deduction of a stress formula
for bead-rod chains is not as straightforward as in the case
of bead-spring models, where the physical configuration is
an intimate reflect of the instantaneous mechanical state of
the system. In the case of bead-rod chains, the pictorial argu-
ments used for the bead-spring models are not enough and,
in consequence, a deeper physical explanation is required.

There is a general consensus accepting that the modified
Kramers expression (Eq. (46)) accounts for the contribution
to the total shear stress coming from a diluted model sys-
tem whose total change in momentum can be discretized on
certain points, as is the case for a general bead-rod-spring
model. A detailed derivation of this stress tensor formula
using a general phase-space Kinetic theory can be examined
in Chaps. 17 and 18 of [28].

Care must be taken also when calculating numerically the
stress tensor for systems containing constraints. Given the
numerical singularities originated by the presence of con-
straints, one is particularly interested in the correct imple-
mentation of a stress tensor formula into the BD algorithm.



It is found that a correct estimation of the stress tensor must
to be closely linked to the integration scheme used in the
simulation.

In order to account rigorously for the Brownian effects on
the stress tensor, the algorithm estimating the stress tensor
must to consider the discontinuity of the Brownian forces
during a given time step [86, 93], specially when no-flow
conditions are being simulated. To do this, the modified
Kramers formula has to be interpreted as an average in time.
For a mid-step algorithm, for example, the average has to be
carried out using the beginning and the end of the time step
[94]:

T,(0) =

SR OFP ()

v=1

+R,(t + A @F (1 + A1) (94)

Doyle demonstrated that two iterations of the predictor-
corrector scheme producing an increment of At are equiva-
lent to one time-step of the mid-step algorithm [93]. Based
on the previous fact, it can be easily showed that Eq. (94)
is also a correct interpretation of the virial tensor for the
predictor-corrector algorithm.

An alternative way to correctly account for the Brown-
ian contribution in a first order integration scheme (as the
predictor-corrector algorithm), considering a “long-lasting”
action of the random forces, can be envisaged using the next
algorithm:

1. Update the bead-rod position by executing one explicit
time step from ¢ to t + At.

2. Using the same Brownian forces used at time ¢, recalcu-
lation of the hydrodynamic drag forces ﬁf,h) (t + At) with
the updated configuration at ¢ + At.

3. Determination of the shear-stress tensor at time ¢ by com-
puting:

T, =cY (Ry(t+ AN @FP(t + Ar)) (95)

In previous algorithm Brownian forces are interpreted in
the Stratonovich sense, which is equivalent to stating that
the stochastic forcing occurs throughout the entire time step
[93]. This interpretation of the Brownian forces is partic-
ularly important in the systems containing constraints be-
cause has direct consequences in both integration schemes
(as observed clearly in the mid-step algorithm) and stress
tensor calculations. A simple example showing the impact of
the interpretation of the Brownian nature in the shear-stress
tensor calculation is given next. Consider a diluted 2D fibre
aligned with the x axis at time ¢ as show in Fig. 17. Friction
acting on beads is supposed isotropic. No external flow is
considered, only Brownian and drag forces take place.
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Fig. 17 Example of the “long-lasting” action of Brownian forces over
a quiescent 2D single rod throughout a time step. An isotropic friction
coefficient is supposed. Upper rod corresponds to the configuration
at time ¢, lower rod corresponds to the configuration at time ¢ + Af.
Observe that hydrodynamic forces at the end of the time step present
non-null projections on the fibre axis

It can be easily demonstrated, from the example of the ge-
ometrical projection of Brownian forces given in Sect. 4.1,
that effective random forces in such configuration only oc-
curs perpendicularly to the fibre axis, explaining why Brow-
nian forces depicted in Fig. 17 at time ¢ are perpendicular to
fibre axis. If Brownian forces acting at time ¢ are interpreted
as instantaneous and stress tensor calculation is based ex-
clusively on the mechanical balance obtained at time ¢ then
the contribution of the fibre to the shear-stress tensor would
be null (z, = 0), as hydrodynamic forces F,()h) (t) are always
perpendicular to the connector vectors Ry (7).

Suppose now that Brownian forces at time ¢ occurs con-
tinuously until the end of the time step ¢ 4+ At as showed
in Fig. 17, where Brownian forces conserve magnitude and
direction for the updated fibre configuration at time # + Af.
In that case, the contribution of the fibre to the shear-stress
must include the configuration and mechanical balance of
the fibre at the end of the time step. By employing the “long-
lasting” Brownian forces algorithm, the shear-stress tensor
contribution of a representative ensemble of fibres initially
aligned with the x axis converges to the next form:

T,=«a <(l) _()1> 96)

where « is a constant function of the temperature. Previous
shear-stress tensor is in coherence with the results in theo-
retical mechanics for a quiescent rigid fibre immersed in a
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Fig. 18 Ratio between the out-of-diagonal and diagonal components
of the first time step shear-stress tensor in function of the BD popu-
lation of 2D rigid-fibres initially aligned with the x axis. Shear-stress
tensor has been made symmetrical by Eq. (97). Vertical dotted line
marks the minimum required population for obtaining acceptable con-
vergence to the central values in absence of external flow. Consider that
in the current case the ratio (t12/711)sym is theoretically equal to zero

solvent, in which fibre experiences tension along its axis and
compression in the normal direction.

Symmetry is another important issue when using the
Kramers-Kirkwood expression for estimating the contribu-
tion of a given micro-mechanical model to the shear-stress
tensor. Diluted bead-rod chains submitted to a homogeneous
velocity field, in absence of external forces F,(f), are intended
to produce a symmetric contribution to the total shear-stress.
In a BD approach, symmetry is reached from the average of
progressively bigger populations of bead-rod chains and/or
the use of improved random number generators. In our BD
simulation, limited by the size of the BD system, the esti-
mated shear-stress tensor at each time 7,(t), is made sym-
metrical in order to calculate the rheological properties fol-
lowing the next formula:

(1] = 5 (1] + [£50)]) ©7)

As expected, convergence of the previous expression to
the central values of shear-stress strongly depends on the
size of the BD population. For example, considering the 2D
rigid-fibre aligned with the x axis presented previously, in
Fig. 18 the progressively convergence of the out-of-diagonal
component of the shear-stress tensor can be appreciated as
the size of the BD population is increased.

Notice that, in absence of flow, at least a population of
10* systems is required to converge to the central values.
Otherwise, aberrant values for the out-of-diagonal compo-
nent of the shear-stress tensor can be obtained.

4.4 The Trimer Chain

In order to study the generalities of the BD simulations
for multi-bead-rod models it was decided to use the freely-
jointed (three-beads)—(two-rods) model, also known as the
trumbbell or trimer system. This model is composed of three
beads with isotropic friction coefficient { connected by two
freely jointed rigid mass-less rods of length a. Hydrody-
namic interaction is neglected.

Trimer chain is a better testing model than the rigid
dumbbell because a more rigorously evaluation of the inte-
gration algorithms can be carried out given the presence of
two adjacent constraints. On the other hand, an exact numer-
ical expression for the dynamic response of a dilute solution
of trimer systems was obtained separately by Fixman and
Hassager [77, 95]. This numerical solution is in coherence
with the FP equation for a multi-bead-rod chain in polymer
kinetic theory [28, 67], actually deviated from that one for
multi-bead-spring chains [80]. In the Hassager’s solution,
dynamic modulus of the trimer system is described using
four relaxation times Af’ of which the longest one writes:

H ¢a?

A= 98
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With the aim to compare properly with the BD predic-
tions, time scales for the theoretical data are rescaled us-
ing Afl .

In a trimer chain hydrodynamic interaction is neglected
and friction is supposed isotropic. For that reason, a first-
order integration scheme in coherence with the predictor
corrector algorithm can be implemented in the BD simu-
lation of trimer chains avoiding the use of metric poten-
tial forces. In this paper, shear-stress tensor contribution is
estimated with the modified Kramers-Kirkwood expression
using the “long-lasting” Brownian forces algorithm. From
now on, bi-dimensional BD simulations are implemented
because we have found that this modelling correctly ap-
proaches the analytic solution of the FP equation for a trimer
system. Time scale in the BD simulations is made dimen-
sionless using the longest relaxation time (or rotational dif-
fusion time) of an equal-length (n-bead)—(rigid-rod) system
given by [28]:

L+ D)

T 720 — DkgT ©9)

n
where L = a(n — 1). It means that for a trimer system,
where n = 3, time is scaled using A3 = ¢a?/3kgT. Time
step, instead, needs to be scaled with regard to the shortest
relaxation time; bead diffusion time is normally employed,
Abead = {az/kBT.

As showed in the analysis of the Hookean-dumbbell
model (Sect. 3.4.1), the BD considerations when estimating



. O S —
°
¢
10’ 1
s
qa linear regime
x d
L
e
(U]
B T L S, Bl oggernsanrnrarnnnnansnnannnas o
10 | ] -
]
m o= 1
— 2
" ® = 10 ]
10" 10° 10'
}fo/a

Fig. 19 Identification of the limit of the linear viscoelastic regime for
a dilute suspension of trimers by BD simulation. Absolute value of
the complex modulus in function of the maximal deformation applied
for two reduced frequencies: wg =1 and wg = 10%. Horizontal dot-
ted lines correspond to the theoretical values calculated by Hassager.
Dashed vertical line marks the limit of the linear viscoelastic regime

the equilibrium properties (in absence of flow) are analogues
to those ones obtained under linear dynamic solicitation at
the characteristic frequency, i.e. at wg = 1. For that reason,
no-flow properties are skipped and linear dynamic response
of the system is studied directly.

BD simulations of the small-amplitude oscillatory defor-
mation tests are carried out according to the algorithm ex-
plained in Sect. 2. First of all, the limit of the linear vis-
coelastic regime needs to be determined. In order to extract
this information from the BD simulations, the norm of the
complex modulus at the characteristic frequency is plotted in
function of the maximal applied strain. In order to marginal-
ize the numerical issues of the BD simulation, a population
of 10* chains and a time step equivalent to Apead /105 are
employed.

Figure 19 shows that the limit of the linear viscoelas-
tic regime for a dilute solution of trimer systems corre-
sponds to a maximal deformation y ~ 1.33a. At lower val-
ues, dynamic moduli obtained by BD simulations are inde-
pendent of the maximal deformation imposed. On the other
hand, Fig. 19 evidences that multi-bead-rod models exhibit
a shear-thinning behavior, contrary to the multi-bead-spring
counterparts. Using a constant BD population (10* trimers)
and a constant time step (Apead/ 105), computational time
(2x Quad-Core AMD Opteron™ 2376 (2300 MHz)) em-
ployed to predict the complex modulus at wg = 1 was
found 8.7 times longer than the computational time used
at wg = 10%. This fact is explained by the higher number
of time steps required at low frequencies for sweeping one-
and-a-half period of oscillation and determining the maxi-
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Fig. 20 Mean relative error of the BD prediction of the com-
plex modulus for a trimer system in function of the time step.
Mean relative error is the average of the relative errors for
storage and loss modules. Relative error is defined as follows:

|(log Gyp(wr) —log G}, (wRr))/log O, where @ = G}, (wg = 103%)/

G;h (wr = 1) is the maximal interval of complex modulus variation in
the tested frequency interval. A population of 10* trimers has been
employed

mal shear-stress and phase angle between strain and stress
signals.

In the current BD approach, a first-order integration
scheme was implemented and, therefore, time step strongly
influences the convergence of the simulation towards the
central values. In Fig. 20 the effect of the time step on the
convergence of th