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a b s t r a c t 

The kinetic model previously established for describing the thermal oxidation of polymethylenic sub- 

strates has been successfully generalized to a series of six epoxy-diamine networks (EPO-DA) character- 

ized by very different glass transition temperatures. This model is derived from the so-called “closed- 

loop” mechanistic scheme which consists in a radical chain reaction initiated by the decomposition of

hydroperoxides and propagating via the C-H bonds located in α of heteroatoms (N and O). The numer- 

ous model parameters were determined by applying a “step by step” procedure combining experiment

and simulation. On the one hand, oxygen transport properties (i.e. coefficients of oxygen diffusion and

solubility) were estimated from a compilation of literature data. On the other hand, rate constants and

formation yields were determined by inverse solving method from the measurements of oxygen con- 

sumption and carbonyl build-up performed on six different EPO-DA networks between 25 and 200 °C 
and between 0.16 and 20 bars of oxygen partial pressure in our laboratory or in the literature. It was

found that the molecular mobility mainly affects the rate constants of the elementary reactions involv- 

ing the reactive species in the lowest concentration, i.e. peroxy radicals. In fact, the rate constant k 6 of 

the apparent termination of peroxy radicals is reduced by about five orders of magnitude when passing

from rubbery to glassy state due to the freezing of large amplitude cooperative molecular movements.

In contrast, the rate constant k 3 of the propagation of oxidation, involving peroxy radicals but also the 

polymer substrate, is only changed by one order of magnitude around the glass transition temperature.

The introduction of the effect of molecular mobility into the Arrhenius laws of k 6 and k 3 allows building 

master curves and finally, proposing a single kinetic model for the whole family of EPO-DA networks.

1. Introduction

The vast majority of composite material structures used in the 

civil aeronautical sector are made of diamine cross-linked epoxy 

matrix (EPO-DA) reinforced with carbon fibers. The development of 

a numerical tool for predicting the degradation state of this poly- 

mer family under the combined effects of temperature, oxygen and 

mechanical stress remains an open issue in this sector. Indeed, this 

tool could help aeronautical manufacturers to take into account the 

possible alteration of the thermomechanical properties of compos- 

ite structures from the moment of their design and sizing, but also 

to consider the use of these materials in more aggressive thermo- 

chemical environments. 
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There is a large amount of literature works devoted to the ther- 

mal degradation mechanisms [1-9] and kinetics [10-17] of EPO-DA 

networks, showing that oxidation is clearly the predominant aging 

process. However, in these publications, each network is consid- 

ered as a completely different material from other networks of the 

EPO-DA family, because it is assumed to be characterized by its 

own chemistry, its own oxidation mechanisms, its own degrada- 

tion kinetics and its specific kinetic model. Therefore, the values of 

the rate constants determined by using these kinetic models as an 

inverse solving method are found to be quite different, but without 

giving any real explanation except, perhaps, the possible effect of 

molecular mobility [15] . 

However, contrary to popular belief, there are not so great 

chemical differences between all the networks of the EPO-DA fam- 

ily, especially from a chemical kinetics point of view, as shown in 

Table 1 . Indeed, let us recall that, according to Korcek et al. [18] , 
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Table 1

Main oxidation sites in EPO-DA networks.

Starting epoxy monomer Oxidation sites

DGEBA, DGEBF, DGEBD, TGPAP, TGTPM, TGMDA, etc…

TGPAP and TGMDA only

Abbreviations : Diglycidyl ether of bisphenol A (DGEBA), Diglycidyl ether of bisphenol F (DGEBF), Diglycidyl ether of

bisphenol D (DGEBD), Triglycidyl ether of para-amino phenol (TGPAP), Triglycidyl ether of triphenyl methane (TGTPM),

Tetraglycidyl ether of methylene dianiline (TGMDA).

oxidation propagates via the most labile hydrogens of the con- 

stitutive repeating unit. Thus, in EPO-DA networks, the main ox- 

idation sites are oxy-methylene (-O-CH 2 -) and amino-methylene 

( > N-CH 2 -) groups, which are already present in the starting epoxy 

monomers, but also amino-methylene (-CH 2 -N < ) and methanol 

groups ( > CH-OH) which are formed during the polymerization re- 

action between the epoxy monomer and diamine hardener. All 

these oxidation sites are reported in Table 1 , as well as the cor- 

responding name of the starting epoxy monomer. 

Based on these observations, it is difficult to imagine large fun- 

damental differences between the oxidation mechanisms of the 

different EPO-DA networks. However, as their glass transition tem- 

perature can vary in a wide temperature range, typically between 

0 °C and 221 °C [19] , it is expected that the molecular mobility 

plays indeed a key role in their oxidation kinetics, in particular 

on both sides of the glass transition temperature. In other words, 

at a same aging temperature, it would not be surprising to find a 

large difference between the oxidation rates of two EPO-DA net- 

works that are in different physical states (i.e. in glassy and rub- 

bery states). Unfortunately, until now, there are too few experi- 

mental data available in the literature on the thermal oxidation of 

EPO-DA networks to doubtless check this assumption. In addition, 

almost all studies are focused on thermal aging in glassy state that 

is, of course, the usual temperature range for industrial applica- 

tions of these materials. 

The impact of molecular mobility on the oxidation kinetics 

was clearly put in evidence for another thermodynamic transi- 

tion: the melting, in an electron-beam irradiation cross-linked lin- 

ear polyethylene (XLPE) [20 , 21] . A jump of about half a decade was 

observed for the pre-exponential factor around the melting tem- 

perature (130 °C) in the Arrhenius diagram of the oxidation induc- 

tion time. However, this discontinuity is relatively subtle and thus, 

can be hidden by the wider scattering of experimental data in PE 

compilations [22] . 

The effect of glass transition on the oxidation kinetics is ex- 

pected to be much more marked because all the diffusion pro- 

cesses are favored by large amplitude cooperative molecular move- 

ments in rubbery state, whereas they are almost totally frozen in 

glassy state. In fact, as for a common polymerization reaction, two 

kinetic regimes should be distinguished: i) One above T g , for which 

the reaction kinetics is governed by the intrinsic reactivity of reac- 

tive species and thus, can be satisfyingly described by the classical 

rules of chemical kinetics; ii) Another below T g , for which the re- 

action kinetics is governed by the diffusivity of reactive species. 

This latter regime was specifically investigated by Waite [23] and 

Russian researchers [24 , 25] . 

That is the reason why some aromatic polymers which con- 

tains also few hydrocarbon groups reputed to be very easily oxi- 

dizable (e.g. methynic and methylenic groups), such as polyimides 

of poly(bismaleimide) type [26] or polymerization of monomeric 

reactant (PMR) type [27] , can be considered as thermostable in 

glassy state. This is also the case for many aromatic epoxies 

[10 , 28 , 29] . 

The present article aims at laying down the main lines of 

a general kinetic model for the thermal oxidation of networks 

of the EPO-DA family and checking its validity. After having re- 

called its theoretical bases and structure, its different param- 

eters will be determined by applying a “step by step” pro- 

cedure combining experience and simulation. First of all, oxy- 

gen transport properties (i.e. coefficients of oxygen diffusion and 

solubility) will be estimated from a compilation of literature 

data. Then, rate constants and formation yields will be deter- 

mined by inverse solving method from the measurements of oxy- 

gen consumption and carbonyl build-up performed on six differ- 

ent EPO-DA networks between 25 and 200 °C and between 0.16 

and 20 bars of oxygen partial pressure in our laboratory or in 

literature. 

2. Theory

2.1. Oxidation sites 

As mentioned in introduction, the main oxidation sites in EPO- 

DA networks are oxy-methylene (-O-CH 2 -), amino-methylene ( > N- 

CH 2 -) and methanol groups ( > CH-OH) (see Table 1 ). Indeed, C −H 

bonds are characterized by a much lower dissociation energy 

(E D ≈376 kJ.mol −1 ) when they are located in α of a heteroatom (O 

or N) rather than in polymethylenic sequences (E D ≈ 393 kJ.mol −1 ) 

[30] . Table 2 recalls the Arrhenius parameters and orders of mag- 

nitude at 30 °C of the rate constant k 3 for the propagation of oxi- 

dation determined in the previous studies conducted in our labo- 

ratory [22 , 31-37 ]. 



Table 2

Arrhenius parameters and orders of magnitude at 30 °C of the rate constant k 3 for the propagation of oxidation on 

the main types of methylenic C −H bonds. 

C-H bond k 30 (L.mol −1 .s −1 ) E 3 (kJ.mol −1 ) k 3 at 30 °C (L.mol −1 .s −1 ) Polymer References

−CH 2 −CH 2 − 1.5 × 10 10 73 4.0 × 10 −3 PE [22 , 31 , 32]

9.9 × 10 10 78 3.6 × 10 −3 EPDM [33]

−CH = CH −CH 2 − 4.0 × 10 9 68 7.7 × 10 −3 BR [34]

−O −CH 2 − 1.8 × 10 9 63 2.5 × 10 −2 PET, EPO-AN [35 , 36]

> N −CH 2 − 1.8 × 10 9 63 2.5 × 10 −2 PA 6–6 [37]

Abbreviations: Polyethylene (PE), Ethylene-Propylene terpolymer (EPDM), Polybutadiene (BR), Poly(ethylene tereph- 

thalate) (PET), Anhydride cross-linked epoxy (EPO-AN), Polyamide 6–6 (PA 6–6).

Thus, as linear polyesters [35] , epoxy-anhydride networks 

[36] and aliphatic polyamides [37] , EPO-DA networks will be sub- 

jected to a much more severe oxidation than PE [22 , 31 , 32] . 

2.2. Mechanistic scheme 

The so-called “closed-loop” oxidation mechanism, developed for 

polymethylenic substrates in previous studies [22 , 31-37 ], was nat- 

urally chosen for EPO-DA networks in the present study. Its gener- 

alization to EPO-DA networks required a re-adjustment in the con- 

sumption yields of PH substrate in the different balance reactions 

(i.e. involving several elementary chemical events). Its final version, 

already detailed and explained in reference [37] , is given below: 

Initiation: 

1u) POOH → 2P • + (1 −γ CO )P-OH + γ CO P = O + γ 1 S

{ −(2 + γ 1 )PH} (k 1u ) 

1b) 2POOH → P • + PO 2 
• + (1 −γ CO )P-OH + γ CO P = O + γ 1 S

{ −(1 + γ 1 )PH} (k 1b ) 

Propagation: 

2) P • + O 2 → PO 2 
• (k 2 )

3) PO 2 
• + PH → POOH + P • (k 3 )

(Terminating and non-terminating) bimolecular combinations: 

4) P • + P • → γ 4 P-P + (1 −γ 4 )PH + (1 −γ 4 )F + γ 4 B { + (1 −γ 4 )PH}

(k 4 )

5) P • + PO 2 
• → γ 5 POOP + (1 −γ 5 )POOH + (1 −γ 5 )F + γ 5 B (k 5 )

6a) PO 2 
• + PO 2 

• → [PO 

••OP] cage + O 2 (k 6a )

6b) [PO 

••OP] cage → POOP + B (k 6b ) 

6c) [PO 

••OP] cage → P-OH + P = O (k 6c )

6d) [PO 

••OP] cage → 2P • + 2(1 −γ CO )P-OH + 2 γ CO P = O + 2 γ 1 S

{ −2(1 + γ 1 )PH} (k 6d ) 

where PH; POOH; P •, PO 2 
• and PO 

•; POOP, P-OH and P = O; F; S

and B designate an oxidation site; an hydroperoxide; alkyl, per- 

oxy and alkoxyl radicals; peroxide, hydroxyl and carbonyl groups; 

a double bond; a chain scission and a crosslink node, respectively. 

k i are the reaction rate constants and γ i are the formation yields 

of the different inactive products in the corresponding balance re- 

actions. 

Very briefly, let us recall the main characteristics of this oxida- 

tion mechanism: 

i) The propagation of oxidation, by abstracting the most labile

hydrogen atoms (3), leads to the formation of a very instable

species: hydroperoxide group POOH. Indeed, the dissociation

energy of the O −O bond is extremely low: E D ≈ 150 kJ.mol −1 ,

against more than 280 kJ.mol −1 for all other chemical bonds

(i.e. C −O, C −N, C −C and C −H) composing the EPO-DA net- 

works [30] . Therefore, this main propagation product will

be, either from the starting of exposure, or very quickly,

the main source of radicals. This “closed loop” character al- 

lows accounting for the sudden and sharp auto-acceleration

of oxidation at the end of an incubation period, commonly

called the “induction period” [38] . It is noteworthy that, 

in the kinetic model, the initial hydroperoxide concentra- 

tion [POOH] 0 is kinetically equivalent to all structural de- 

fects (e.g. oxidation products formed during the polymeriza- 

tion reaction of the macromolecular network) and intrinsic 

species (e.g. catalytic residues, PH-O 2 complexes, other im- 

purities, etc.) responsible for the very first oxidation events. 

ii) The thermal decomposition of POOH occurs in two modes:

unimolecular (1u) and bimolecular (1b). When the poly- 

mer is not too pre-oxidized (i.e. when [POOH] 0 < [POOH] C ),

the POOH decomposition starts in unimolecular mode. Then,

when [POOH] exceeds a critical value [POOH] C , which is

a decreasing function of temperature obeying an Arrhe- 

nius law, the bimolecular decomposition becomes in turn

the predominant mode. For EPO-DA networks, it was found

that: [ POOH ] C = 6 . 8 × 10 3 Exp ( −40 , 0 0 0 / RT ) . On the con- 

trary, when [POOH] 0 > [POOH] C , oxidation is initiated by the

bimolecular mode throughout the exposure duration. This is

generally the case for all polymers at low temperatures (typ- 

ically for T < 100 °C).

iii) The writing of the two initiations (1u and 1b) can be sur- 

prising due to the apparent non-compliance with stoichiom- 

etry. In fact, these initiations are balance reactions involv- 

ing several elementary chemical events. Their writing will

not be detailed here, but the reader can consult reference

[37] for further details. Let us just point out that this writing

is entirely justified because the dissociation of O −O bond is

the limiting step. In addition, the same formation yields can

be used for the different inactive products (P-OH, P = O and

S) because they result from the same reactive species (PO 

•

and PH) involved in these two initiations. However, due to 

the ignorance of the exact nature of carbonyl group P = O and 

thus, the value of its molar extinction coefficient, it was nec- 

essary to introduce an apparent formation yield γ CO and to 

distinguish it from the actual yield of chain scissions γ 1 . The 

same considerations apply to the non-terminating bimolec- 

ular combination (6d). 

iv) Terminations between two alkyl radicals P • (4) or between

one alkyl P • and one peroxy radical PO 2 
• (5) are also bal- 

ance reactions. Indeed, these two reactions involve two el- 

ementary chemical events: coupling and disproportionation. 

Thus, γ 4 and γ 5 are the formation yields in crosslink nodes. 

v) In fact, the combination between two peroxy radicals PO 2 
•

(6) involves four competitive elementary chemical events

(6a to 6d). This writing allowed highlighting the existence of

a non-terminating combination, but also better distinguish- 

ing crosslinking B from chain scissions S. Indeed, in poly- 

methylenic substrates, the termination of PO 2 
• is not very

efficient [39 , 40] . As an example, it was found that about 70

and 85% of alkoxyl radicals escape from the cage to initi- 

ate new radical oxidation chains at 160 °C in PE and PA 6–

6, respectively [37] . However, for a sake of simplicity, these

four chemical events can be grouped into a single appar- 



ent terminating combination (PO 2 
• + PO 2 

•→ inactive prod- 

ucts + O 2 ) whose the corresponding rate constant k 6 can be 

expressed as a function of all elementary rate constants, as 

follows [22] : 

k 6 = 

2 ( k 6b + k 6c ) 
2 
k 6a

( k 6b + k 6c + k 6d ) ( 2 k 6b + k 6c + k 6d ) 
(1) 

vi) Finally, it is noteworthy that inactive molecular (P-OH and

P = O) and macromolecular products (S and B) are exclusively

formed in initiations (1u and 1b) and in the (terminating

and non-terminating) bimolecular combinations of peroxy

radicals (6c and 6d).

2.3. 2.3 Kinetic model 

A system of ten non-linear differential equations (SED) was de- 

rived from the previous mechanistic scheme using the classical 

rules of the chemical kinetics. This system gives access to the local 

concentration changes of all the reactive species involved in the 

mechanistic scheme (i.e. [POOH], [P •], [PO 2 
•], [PO 

••OP] cage , [PH]

and [O 2 ] = f(z, t)), but also to the local concentration changes of the 

most important inactive products from a practical point of view, as 

they can be easily measured experimentally. In this study, we fo- 

cused on oxygen consumption ([O 2 abs ]), carbonyl groups ([P = O]) 

and macromolecular modifications (i.e. B and S). In the case of 

one-dimensional oxygen diffusion (e.g. through the sample thick- 

ness), the resulting SED can be written as follows: 

d [ POOH ] 

dt 
= −k 1u [ POOH ] − 2 k 1b [ POOH ] 

2 + k 3 [ PO 

•
2 ] [ PH ]

+ ( 1 − γ5 ) k 5 [ P 

•] [ PO 

•
2 ] (2) 

d [ P 

•] 

dt 
= 2 k 1u [ POOH ] + k 1b [ POOH ] 

2 − k 2 [ P 

•] [ O 2 ]

+ k 3 [ PO 

•
2 ] [ PH ] − 2 k 4 [ P 

•] 
2

−k 5 [ P 

•] [ PO 

•
2 ] + 2 k 6d [ P O 

•OP ] cage (3) 

d [ PO 

•
2 ]

dt 
= k 1b [ POOH ] 

2 + k 2 [ P 

•] [ O 2 ] − k 3 [ PO 

•
2 ] [ PH ] − k 5 [ P 

•] [ PO 

•
2 ]

−2 k 6a [ PO 

•
2 ] 

2 (4) 

d [ P O 

••OP ] cage

dt 
= k 6a [ PO 

•
2 ] 

2 − ( k 6b + k 6c + k 6d ) [ P O 

••OP ] cage (5) 

d [ PH ] 

dt 
= −( 2 + γ1 ) k 1u [ POOH ] −( 1 + γ1 ) k 1b [ POOH ] 

2 −k 3 [ PO 

•
2 ] [ PH ]

−2 ( 1 + γ1 ) k 6d [ P O 

••OP ] cage (6) 

d [ O 2 ] 

dt 
= D O2 

∂ 2 [ O 2 ] 

∂ z 2 
− k 2 [ P 

•] [ O 2 ] + k 6a [ PO 

•
2 ] 

2 (7) 

d [ O 2 abs ] 

dt 
= R O2 = k 2 [ P 

•] [ O 2 ] − k 6a [ PO 

•
2 ] 

2 (8) 

d [ P = O ] 

dt 
= γCO k 1u [ POOH ] + γCO k 1b [ POOH ] 

2 

+ ( k 6c + 2 γCO k 6d ) [ P O 

••OP ] cage (9) 

dS 

dt 
= γ1 k 1u [ POOH ] + γ1 k 1b [ POOH ] 

2 + 2 γ1 k 6d [ P O 

••OP ] cage (10) 

dB 

dt 
= γ4 k 4 [ P 

•] 
2 + γ5 k 5 [ P 

•] [ PO 

•
2 ] + k 6b [ P O 

••OP ] cage (11) 

where D O2 is the coefficient of oxygen diffusion into the EPO-DA 

network and z is the spatial co-ordinate (i.e. the depth beneath the 

sample surface). R O2 is the rate of oxygen chemical consumption, 

commonly called the “oxidation rate”. 

This SED was solved simultaneously in space (z) and time 

(t) with numerical algorithms specifically recommended for “stiff

problems” of chemical kinetics [41] , as already reported in many 

previous papers, for instance in reference [42] . 

Initial and boundary conditions were: 

i) When t = 0, at any depth z in the sample thickness:

[ POOH ] ( z , 0 ) = [ POOH ] 0 = 10 

−4 mol . L −1

[ P 

•] ( z , 0 ) = [ PO 

•
2 ] ( z , 0 ) = [ P O 

••OP ] cage ( z , 0 ) = 0

[ PH ] ( z , 0 ) = [ PH ] 0

and [ O 2 ] ( z , 0 ) = [ O 2 ] 0

ii) When t ≥ 0, on both sample surfaces (z = ± L):

[ O 2 ] ( −L , t ) = [ O 2 ] ( +L , 0 ) = [ O 2 ] 0

Oxygen concentration obeys the classical Henri’s law: 

[ O 2 ] 0 = S O2 . P O2 (12) 

where S O2 is the coefficient of oxygen solubility into the EPO-DA 

network and P O2 is the oxygen partial pressure in the exposure 

environment. The sample thickness is 2L. 

3. Materials and experimental procedure

3.1. EPO-DA networks 

The study focused on six perfect EPO-DA networks (i.e. with- 

out dangling chains) characterized by very different glass transi- 

tion temperatures, typically ranged between 95 and 263 °C (see 

Table 3 ). 

Four of them result from the reaction of common bi-functional 

or tri-functional epoxy monomers with an aromatic diamine 

hardener: 9,9-bis(3-chloro-4-aminophenyl)fluorene (CAF) or 4,4 ′ - 
diamino diphenyl sulfone (DDS). Over the past twenty years, these 

four networks were all considered, in turn, as potential matrices 

of carbon fiber reinforced composite materials for structural appli- 

cations at low to moderate temperatures (typically between 70 °C 

and 150 °C) in the civil aeronautical sector. The marketing of net- 

work no. 5 was progressively abandoned in the early 20 0 0s, but 

its thermal degradation between 150 °C and 210 °C was the subject 

of several papers a few years earlier, for instance [10-14] . Network 

no. 6 was considered in the early 2010s for applications at temper- 

atures above 200 °C, for which there is clearly a lack of solutions in 

organic materials in Europe. Its thermal degradation was also the 

subject of few papers, for instance [15 , 16] . In contrast, networks 

no. 3 and 4 are completely new materials whose the thermal ag- 

ing behaviors have not still been published to date. 

Films of these four EPO-DA networks, with thicknesses typically 

ranging between 25 and 100 μm, were produced by compression 

molding then post-cured under primary vacuum (i.e. 10 −3 bar) in 

accordance with the recommended industrial cure cycle, in order 

to reach the maximum crosslinking density while avoiding any un- 

desired pre-oxidation before exposure to thermal aging. That is the 

reason why a very low concentration in structural defects will be 

chosen for modeling the thermal aging kinetics of these networks 

in the present study, typically: [POOH] 0 = 10 −4 mol.l −1 . 

After processing, the films were characterized by conventional 

laboratory techniques. In particular, their glass transition tempera- 

ture (T g ) was determined by differential scanning calorimetry (DSC, 

with a 20 °C.min 

−1 heating rate, under nitrogen) and confirmed by 

mechanical spectrometry (DMA, in tensile mode, with a 1 Hz fre- 

quency and a 2 °C.min 

−1 heating rate, under nitrogen). The mea- 

surements were found very close to the theoretical values of T g de- 

termined with the Di Marzio’s equation [43] for perfect networks 



Table 3

Molar mass of the repetitive monomer unit (m UCR ), density ( ρ) and concentration in oxidation sites (PH)

for perfect EPO-DA networks.

Number Network m UCR (g.mol −1 ) ρ [PH] (mol.L −1 ) T g ( °C)

1 Epon 828-Jeffamine D230 910 1.16 24.2 95

2 Epon 828-Ancamine 2049 918 1.2 32.7 150–155

3 DGEBF-CAF 1041 1.25 14.4 158

4 DGEBA-CAF 1097 1.25 13.7 182

5 (a) DGEBF/TGPAP-DDS 1362 1.31 15.4 211

6 (b) Tactix 123/Tactix 742-DDS 1674 1.11 10.6 263

Abbreviations : Diglycidyl ether of bisphenol A (DGEBA, Epon 828 or Tactix 123), Diglycidyl ether of

bisphenol F (DGEBF), Triglycidyl ether of para-amino phenol (TGPAP), Triglycidyl ether of triphenyl

methane (TGTPM or Tactix 742), poly(oxypropylene)diamine (Jeffamine D230), diamino dimethyl dicyclo- 

hexyl methane (Ancamine 2049), 9,9-bis(3-chloro-4-aminophenyl)fluorene (CAF), 4,4 ′ -Diamino diphenyl 

sulfone (DDS).
(a) Matrix commercialized under the reference 977–2 by Cytec Fiberite.
(b) Matrix commercialized under the name Tactix by Hunstman.

(i.e. without dangling chains). As an example, the method for the 

T g calculation of network no. 6 is detailed in reference [29] . 

In addition, EPO-DA networks no. 1 and 2, resulting from 

the reaction of diglycidyl ether of bisphenol A (Epon 828) with 

an aliphatic diamine hardener: poly(oxypropylene) diamine (Jef- 

famine D230) and diamino dimethyl dicyclohexyl methane (An- 

camine 2049) respectively, were considered in the present study 

for two main reasons: 

i) Their T g is lower than those of all previous networks (see

Table 3 ), thus allowing to analyze the possible effect of molecu- 

lar mobility on the oxidation kinetics over a wider temperature

range;

ii) Their oxygen consumption kinetics was meticulously measured

in real time at moderate to very low temperatures close to am- 

bient (typically between 140 °C and 25 °C) [44] .

The concentration in oxidation sites [PH] was estimated from 

the knowledge of the repetitive monomer unit of the six perfect 

EPO-DA networks. In Table 3 , it can be seen that [PH] is signifi- 

cantly higher for epoxies cross-linked with an aliphatic (typically, 

between 24 and 33 mol.L −1 ) than an aromatic diamine (between 

10 and 15 mol.L −1 ), which might already explain a significant dif- 

ference in oxidizability between these two subfamilies of EPO-DA 

networks. It should be pointed out that, when DDS is the crosslink- 

ing agent, the sulfonyl group protects the amino-methylene groups 

(-CH 2 -N < ), formed during the polymerization reaction, against the 

radical attack from oxidation. Indeed, the sulfonyl group is a high 

electron-attracting group whose the inductive effect through the 

aromatic rings of DDS leads to an increase in the strength of 

the C −H bond. This stabilizing effect of sulfonyl group was first 

evidenced by comparing the polymerization kinetics of different 

epoxy-diamine mixtures [45] . This is the reason why [PH] is only 

about 10 mol.L −1 for network no. 6. 

3.2. Thermal aging and experimental procedures 

The oxidation kinetics of networks no. 3, 4 and 6 was stud- 

ied at 120, 150, 180 and 200 °C under an oxygen partial pres- 

sure ranged between 0.21 (ambient air) and 20 bars in autoclaves. 

Given the high impact of oxygen partial pressure on the oxida- 

tion kinetics, the aging experiments at the highest temperature 

(200 °C) were limited to a maximum pressure of 1 bar so as not 

to observe high conversion ratios of oxidation from the very first 

samplings. At the opposite, at the lowest temperatures (120 and 

150 °C), the aging experiments were carried out above 0.21 bar in 

order to detect significant structural modifications after a mini- 

mum duration of 3 months. All the films were periodically re- 

moved from the aging chambers and cooled to room temperature 

Fig. 1. Changes in the FTIR spectrum of network no. 3 during its thermal aging at

150 °C under 0.21 bar of oxygen (i.e. ambient air). The final spectrum (in sky blue)

was recorded after 156 hours of thermal exposure.

in a desiccator containing silica gel for preventing any moisture re- 

covery prior to be characterized by FTIR spectrophotometry. The 

FTIR spectra were recorded in a transmission mode between 400 

and 40 0 0 cm 

−1 with a Perkin Elmer Frontier apparatus, after hav- 

ing averaged the 16 scans obtained with a minimum resolution 

of 4 cm 

−1 . As reported many times in literature [1-10 , 46-48 ], the 

main structural modifications were observed in the carbonyl region 

where two new wide absorption bands appeared and grew rapidly 

with exposure time: one centered around 1680–1690 cm 

−1 , and 

the other around 1720–1730 cm 

−1 . As an example, Fig. 1 shows 

the changes over time in the FTIR spectrum of network no. 3 at 

150 °C under 0.21 bar of oxygen (i.e. ambient air). These two bands 

were assigned to amides and other types of carbonyl products, re- 

spectively. Unfortunately, the great variety of these latter products 

(aldehydes, carboxylic acids, phenyl formates, etc.), often result- 

ing from oxidation induced chain scissions in the hydroxyl propyl 

ether segment [47] , did not allow identifying them precisely. Their 

average concentration throughout the film thickness [P = O] was de- 

termined by applying the classical Beer-Lambert’s law: 

[ P = O ] = 

OD

ep ε 
(13) 

where OD is the optical density of the IR absorption band centered 

at 1720–1730 cm 

−1 (dimensionless), ε is the corresponding molar 

extinction coefficient (expressed in L.mol −1 .cm 

−1 ), and ep is the 

film thickness (in cm). 

For carbonyl products, typical values of ε are ranged between 

150 L.mol −1 .cm 

−1 (for ketones) and 850 L.mol −1 .cm 

−1 (for car- 

boxylic acids) [49-53] . In a first approximation, an average value 

of 500 L.mol −1 .cm 

−1 was chosen for ε in the present study. 



Fig. 2. Arrhenius graph between 10 and 110 °C for the coefficient of oxygen solubility of EPO-DA networks.

The oxidation kinetics of network no. 5 was measured in real 

time at 180 and 200 °C under an oxygen partial pressure ranged 

between 0.05 and 1 bar with a homemade thermogravimeter. All 

details on the apparatus and experimental procedure are available 

in reference [10] . 

The oxidation kinetics of networks no. 1 and 2 was measured 

in real time between 25 and 140 °C under 0.166 bar of oxygen with 

an ultrasensitive manometric method. All details on the apparatus 

and experimental procedure are available in reference [44] . 

4. Kinetic modeling

The first step in kinetic study consisted in the separate determi- 

nation of the numerous parameters of the kinetic model. These are 

the seven rate constants (k 1u , k 1b , k 2 , k 3 , k 4 , k 5 and k 6 ), the four 

yields of inactive products formation ( γ 1 , γ CO , γ 4 and γ 5 ) and the 

two oxygen transport properties (S O2 and D O2 ). 

4.1. Oxygen transport properties 

Figs. 2 and 3 respectively show the compilations of the litera- 

ture values of S O2 and D O2 determined by oxygen permeability be- 

tween 10 and 100 °C for EPO-DA networks [10 , 44 , 54-59 ]. The val- 

ues measured with Systech 8001 and Mocon Ox-Tran 2–21 devices 

at room temperature for network no. 6 in our laboratory were 

added to this compilation. 

It clearly appears that S O2 erratically varies with temperature. 

Given the relatively large scattering of the experimental data, it 

was considered, in first approach, that S O2 is independent of tem- 

perature. In contrast, D O2 significantly increases with temperature 

and seems to obey an Arrhenius’ law. It should be pointed out that, 

for both oxygen transport properties, no discontinuity is observed 

when approaching the glass transition temperature. 

Two sub-families of EPO-DA networks are clearly put in evi- 

dence: 

a) For epoxies cross-linked with an aliphatic diamine hardener

(Jeffamine D230, Jeffamine D400, Ancamine 2049 or IPDA):

S O2 ≈ 5 . 1 10 

−8 mol . L −1 . Pa −1 (14) 

D O2 = 3 . 0 10 

−5 Exp − 44 600 

RT 

m 

2 . s −1 (15) 

b) And for epoxies cross-linked with an aromatic diamine hard- 

ener (DDM or DDS, but also CAF by generalization):

S O2 ≈ 1 . 45 10 

−7 mol . L −1 . P a −1 (16) 

D O2 = 4 . 7 10 

−5 Exp − 20 0 0 0 

RT 

m 

2 . s −1 (17) 

Of course, network no. 6 follows this latter behavior. Therefore, 

it would seem that the presence of aromatic structures, i.e. very 

rigid structures, in the macromolecular network promotes the dis- 

solution of oxygen, but also considerably slows down its diffusion. 

At this stage of the investigations, more in-depth studies on a se- 

ries of model networks are necessary to elucidate the relationships 

between the molecular and macromolecular structures of EPO-DA 

networks and their oxygen transport properties. 

4.2. Rate constants and formation yields 

Rate constants and formation yields were determined by in- 

verse solving method, in particular by simulating as closely as pos- 

sible the measurements of carbonyl build-up and oxygen consump- 

tion of the six EPO-DA networks under study. Given the very large 

number of parameters to be determined, it was decided to apply a 

“step by step” procedure. 

In a first step, as the main oxidation sites are C-H bonds located 

in α of heteroatoms (N and O), the values determined for aliphatic 

polyamides in a previous study [37] were attributed to the rate 

constants of EPO-DA networks. However, it should be recalled that 

all these values were determined in rubbery state, while the EPO- 

DA networks under study are mainly in glassy state. Therefore, in 



Fig. 3. Arrhenius graph between 10 and 110 °C for the coefficient of oxygen diffusion of EPO-DA networks.

a second step, it was necessary to gradually modify some rate con- 

stants, in particular those for which the corresponding reactions 

involve reactive species in very low concentration, such as peroxy 

radicals PO 2 
•. Indeed, it was expected that these rate constants

would be directly impacted by the freezing of large amplitude co- 

operative molecular movements, which characterize the main me- 

chanical relaxation α associated to glass transition. In order of pri- 

ority, these are the rate constants k 6i of the (terminating and non- 

terminating) bimolecular combinations, then the rate constant k 3 
of the propagation of oxidation, because this latter only involves 

one PO 2 
• radical.

Figs. 4 and 5 show two examples of numerical simulations in 

glassy state at temperatures well below the glass transition tem- 

perature (typically when T < T g – 60 °C). Carbonyl build-up was 

calculated with Eq. (9) at 150 °C between 0.21 and 20 bars of oxy- 

gen ( Fig. 4 ), and between 120 and 200 °C under 0.21 bar of oxygen 

for network no. 6 ( Fig. 5 ). It can be seen that the kinetic model 

satisfyingly accounts for both the effects of oxygen partial pressure 

and temperature on the oxidation kinetics of this EPO-DA network. 

The rate constants and formation yields used for these simula- 

tions are reported in Table 4 . In addition, the values found at 150 °C 

for aliphatic polyamides in a previous study [37] are given for in- 

formation. Indeed, these latter will be very helpful for the follow- 

ing discussion, because they were obtained in rubbery state, well 

above the glass transition temperature of these materials (typically 

when T ≥ T g + 100 °C). 

All these values call for several comments: 

i) For network no. 6, the initiation rate constants (k 1u and

k 1b ) are about 3–4 times higher compared to aliphatic

polyamides throughout the temperature range under inves- 

tigation. This result suggests a higher instability of hydroper- 

oxides in EPO-DA networks presumably due to the presence

of heteroatoms (N or O) in a β position (see Table 1 ). As

it will be seen in the next Tables 5 and 6 , this is general

behavior for EPO-DA networks. The Arrhenius laws found

for k 1u and k 1b for the whole family of EPO-DA networks

throughout the 25–200 °C interval are: 

k 1u = 1 . 3 10 

13 Exp − 130 0 0 0 

RT 

s −1 (16) 

and 

k 1b = 1 . 9 10 

9 Exp − 90 0 0 0 

RT 

L . mo l −1 . s −1 (17) 

ii) For network no. 6, the rate constant k 6 of apparent termi- 

nation of peroxy radicals is five orders of magnitude lower

compared to aliphatic polyamides throughout the tempera- 

ture range under investigation. This large gap was mainly at- 

tributed to the effect of molecular mobility on the bimolec- 

ular combinations of peroxy radicals on both sides of the

glass transition temperature. In contrast and as expected, the

impact of molecular mobility on the propagation of oxida- 

tion is much more moderate. Indeed, for network no. 6, the

rate constant k 3 is only two orders of magnitude lower com- 

pared to aliphatic polyamides.

iii) The formation yield in carbonyls γ CO is quite different be- 

tween network no. 6 and aliphatic polyamides throughout

the temperature range under investigation. This difference

could be explained by the formation of a much greater vari- 

ety of carbonyl products in EPO-DA networks. In addition, as

the relative predominance between these different carbonyl

products depends on temperature, γ CO varies throughout

the temperature interval under investigation. The fact that

γ CO decreases with temperature just confirms that aldehy- 

des are much less oxidizable at low temperature. As a con- 

sequence, the average molar extinction coefficient ε, used to

estimate the global concentration of carbonyl products from

FTIR measurements (see Eq. 13 ), should be progressively de- 

creased with temperature in order to take into account this

changes in the chemical composition. As it will be seen in

the next Table 5 , this also seems to be a general behavior

for EPO-DA networks.

iv) All other rate constants (k 2 , k 4 and k 5 ) and formation yields

( γ 1 , γ 4 and γ 5 ) were kept identical, if not very close, to



Fig. 4. Carbonyl build-up in 100 μm thick films of network no. 6 (Tactix 123/Tactix 742-DDS) at 150 °C between 0.21 and 20 bars of oxygen. Comparison between simulations

with Eq. (9) (solid lines) and experimental data (points).

Fig. 5. Carbonyl build-up in 100 μm thick films of network no. 6 (Tactix 123/Tactix 742-DDS) between 120 and 200 °C under 0.21 bar of oxygen (ambient air). Comparison

between simulations with Eq. (9) (solid lines) and experimental data (points).



Table 4

Values of the rate constants and formation yields used for modeling the thermal oxidation kinetics

of network no. 6 between 120 and 200 °C. Comparison with the values previously determined at

150 °C for aliphatic polyamides [37] .

Polymer Tactix 123/Tactix 742-DDS [T g = 263 °C] PA [T g ≈ 40–55 °C] 

T ( °C) 120 150 180 200 150

k 1u (s −1 ) 8.0 × 10 −5 1.3 × 10 −3 1.5 × 10 −2 6.5 × 10 −2 4.4 × 10 −4 

k 1b (L.mol −1 .s −1 ) 2.1 × 10 −3 1.5 × 10 −2 8.1 × 10 −2 2.2 × 10 −1 3.5 × 10 −3 

k 2 (L.mol −1 .s −1 ) 10 8 10 8 10 8 10 8 10 8

k 3 (L.mol −1 .s −1 ) 7.0 × 10 −2 2.9 × 10 −1 9.9 × 10 −1 2.0 3.0 × 10 1 

k 4 (L.mol −1 .s −1 ) 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 

k 5 (L.mol −1 .s −1 ) 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 5.0 × 10 11 

k 6 (L.mol −1 .s −1 ) 3.0 × 10 4 6.8 × 10 4 8.2 × 10 4 8.7 × 10 4 7.4 × 10 9 

γ 1 (%) 60 60 60 60 100

γ CO (%) 8.5 11.2 21.5 33.5 100

γ 4 (%) 50 50 50 50 55

γ 5 (%) 50 50 50 50 55

Table 5

Values of the rate constants and formation yields used for modeling the thermal oxidation kinetics

of networks no. 3 and 4 at 120 and 150 °C. Comparison with the values previously determined at

150 °C for aliphatic polyamides [37] .

Polymer DGEBF-CAF [T g = 158 °C] DGEBA-CAF [T g = 182 °C] PA [T g ≈ 40–55 °C] 

T ( °C) 120 150 120 150 150

k 1u (s −1 ) 8.0 × 10 −5 1.3 × 10 −3 8.0 × 10 −5 1.3 × 10 −3 4.4 × 10 −4 

k 1b (L.mol −1 .s −1 ) 2.1 × 10 −3 1.5 × 10 −2 2.1 × 10 −3 1.5 × 10 −2 3.5 × 10 −3 

k 2 (L.mol −1 .s −1 ) 10 8 10 8 10 8 10 8 10 8

k 3 (L.mol −1 .s −1 ) 2.5 × 10 −1 3.0 3.1 × 10 −1 2.0 3.0 × 10 1 

k 4 (L.mol −1 .s −1 ) 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 

k 5 (L.mol −1 .s −1 ) 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 5.0 × 10 11 

k 6 (L.mol −1 .s −1 ) 7.7 × 10 4 4.3 × 10 6 5.5 × 10 4 3.0 × 10 5 7.4 × 10 9 

γ 1 (%) 60 60 60 60 100

γ CO (%) 25 30 30 35 100

γ 4 (%) 50 50 50 50 55

γ 5 (%) 50 50 50 50 55

Table 6

Values of the rate constants and formation yields used for modeling the thermal oxidation kinetics of networks no. 1 and 2 at 125 and

140 °C, and network no. 5 at 180 and 200 °C.

Network

Epon 828-Jeffamine

D230 [T g = 95 °C] 

Epon 828-Ancamine

2049 [T g = 150–155 °C] 

DGEBF/TGPAP- 

DDS [T g = 211 °C] 

T ( °C) 125 140 125 140 180 200

k 1u (s −1 ) 1.3 × 10 −4 5.4 × 10 −4 1.3 × 10 −4 5.4 × 10 −4 1.5 × 10 −2 6.4 × 10 −2 

k 1b (L.mol −1 .s −1 ) 3.0 × 10 −3 8.0 × 10 −3 3.3 × 10 −3 8.0 × 10 −3 8.1 × 10 −2 2.2 × 10 −1 

k 2 (L.mol −1 .s −1 ) 10 8 10 8 10 8 10 8 10 8 10 8

k 3 (L.mol −1 .s −1 ) 2.1 4.6 3.0 × 10 −1 7.0 × 10 −1 8.0 × 10 −1 3.0

k 4 (L.mol −1 .s −1 ) 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 

k 5 (L.mol −1 .s −1 ) 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 

k 6 (L.mol −1 .s −1 ) 2.9 × 10 9 6.9 × 10 9 6.5 × 10 5 9.9 × 10 6 1.7 × 10 6 2.7 × 10 7 

γ 1 (%) 60 60 60 60 100 100

γ 4 (%) 50 50 50 50 55 55

γ 5 (%) 50 50 50 50 55 55

the values of aliphatic polyamides [37] . As it can be noted 

in Tables 4 , 5 and 6 , all these parameters are independent of 

temperature. 

Figs. 6 and 7 show two examples of numerical simulations still 

in glassy state, but now, up to temperatures near the glass transi- 

tion temperature (typically for T g – 60 °C < T ≤ T g – 10 °C). Car- 

bonyl build-ups were calculated with Eq. (9) at 120 and 150 °C be- 

tween 0.21 and 10 bars of oxygen for networks no. 3 and 4. Here 

also, it can be seen that the kinetic model satisfyingly accounts 

for both the effects of the oxygen partial pressure and temperature 

on the oxidation kinetics of these two EPO-DA networks, despite a 

slightly larger scattering of experimental results. 

The rate constants and formation yields used for all these sim- 

ulations are reported in Table 5 . In addition, the values found at 

150 °C for aliphatic polyamides in a previous study [37] are recalled 

for information. 

These new results call for the following additional comments. 

As expected, the impact of the molecular mobility on the bimolec- 

ular combinations of peroxy radicals and the propagation of oxi- 

dation is significantly reduced when increasing the exposure tem- 

perature and approaching the glass transition temperature of both 

EPO-DA networks. As an example, at T = T g – 30 °C for network no. 

3, k 6 is only three orders of magnitude lower compared to aliphatic 

polyamides (against five orders of magnitude when T < T g – 60 °C). 

Similarly, at T = T g – 30 °C for network no. 3, k 3 is only one order of 

magnitude lower compared to aliphatic polyamides (against three 

when T < T g – 60 °C). 

Finally, Fig. 8 shows one example of numerical simulations on 

both sides of the glass transition temperature (typically when T g –



Fig. 6. Carbonyl build-up in 25 μm thick films of network no. 4 (DGEBA-CAF) at 120 °C between 0.21 (ambient air) and 10 bars of oxygen. Comparison between simulations

with Eq. (9) (solid lines) and experimental data (points).

Fig. 7. Carbonyl build-up in 25 μm thick films of network no. 3 (DGEBF-CAF) at 150 °C between 0.21 (ambient air) and 10 bars of oxygen. Comparison between some

simulations with Eq. (9) (solid lines) and experimental data (points).



Fig. 8. Arrhenius graphs between 25 and 200 °C of the maximal oxidation rate under 0.166 bar of oxygen for 100 μm thick films of networks no. 1 and 2 (Epon 828-Jeffamine

D230 and Epon 828-Ancamine 2049, respectively), and 50 μm thick films of network no. 5 (DGEBF/TGPAP-DDS). Comparison between the simulations with Eq. (8) (solid

lines) and literature data (points) [10 , 44] .

130 °C ≤ T ≤ T g + 45 °C). Maximal oxidation rates were calculated 

with Eq. (8) between 25 and 140 °C under 0,166 bar of oxygen for 

networks no. 1 and 2, and at 180 and 200 °C under 0,166 bar of 

oxygen for network no. 5. Here again, it can be seen that the ki- 

netic model satisfyingly predicts the effect of temperature on the 

oxidation kinetics of these three EPO-DA networks throughout this 

wide temperature range. 

For a sake of brevity and clarity, only the rate constants and 

formation yields used for the simulations at the two highest tem- 

peratures, for each EPO-DA under study, are reported in Table 6 . 

The parameter values obtained at all other temperatures are avail- 

able in Appendix A for networks no. 1 and 2. 

These new results call for the following additional comments. 

As expected, the gap between the oxidation kinetics of the EPO- 

DA networks and aliphatic polyamides continues to narrow when 

increasing the temperature of exposure, and ends up disappearing 

almost totally when equalizing and exceeding the glass transition 

temperature of EPO-DA networks. As an example, at T = T g + 30 °C 

for network no. 1, k 6 and k 3 take almost the same values than in 

aliphatic polyamides (at T ≈ T g + 100 °C). 

5. Discussion

The values of the rate constant k 6 determined for the six EPO- 

DA networks under study have been plotted as a function of the 

reciprocal temperature 1/T in Fig. 9 . The values found for aliphatic 

polyamides in a previous study [37] have been added for compari- 

son. The vertical solid straight-lines indicate the position of the T g 
of the different materials. 

At first glance, it would seem that the effect of molecular mo- 

bility causes only a shift of the different curves along the abscissa 

axis. Thus, if assuming that k 6 obeys an Arrhenius law, the molecu- 

lar mobility would only affect the pre-exponential factor of k 6 (i.e. 

the frequency of chemical events between peroxy radicals) and not 

its activation energy. 

To check this assumption, the values of k 6 were plotted as a 

function of the difference (1/T – 1/T g ), which amounts to position- 

ing 1/T g of all materials on the ordinate axis passing through the 

origin (i.e. at 1/T = 0). As expected, the resulting shift along the ab- 

scise axis of the different curves allows obtaining a single master 

curve for k 6 (see Fig. 10 ), whose the general shape can be satis- 

fyingly described by the statistical model of Mahieux and Reifs- 

nider [60 , 61] . Although this model was firstly developed for simu- 

lating the temperature dependence of the storage modulus in large 

temperature range, due to the presence of several thermodynamic 

transitions such as: secondary relaxations, glass transition, melting, 

etc., it seems to be perfectly suited for this study. Around the glass 

transition temperature, this model can be rewritten as follows: 

k 6 = k 6r + ( k 6v + k 6r ) × Exp 

[
−
(

1 / T − 1 / T v 

1 / T r − 1 / T 

)m 

]
(18) 

where T v and T r are the temperatures delimiting the action zone 

of the glass transition from the fully glassy and rubbery domains, 

respectively; m is a statistical parameter related to the width of 

the action zone; and k 6v and k 6r are the values of k 6 in the fully 

glassy and rubbery domains, respectively. 

Its numerical application to the master curve of Fig. 10 allows 

the determination of the statistical parameter (m ≈ 1.3) and the 

temperature dependence of k 6 on both sides of the glass transition 

temperature. It was found that k 6 tends to be almost independent 

of temperature in the rubbery domain: 

k 6r = 1 . 4 10 

10 L . mo l −1 . s −1 (19) 

In contrast, k 6 obeys an Arrhenius law in the glassy domain: 

k 6v = 1 . 4 10 

5 Exp 

[
−16 0 0 0

R 

(
1 

T 

− 1

T g 

)]
L . mo l −1 . s −1 (20) 



Fig. 9. Arrhenius graphs between 25 and 250 °C of the rate constant k 6 for the six EPO-DA networks under study and aliphatic polyamides. The vertical solid straight-lines 

indicate the position of the T g of the different materials.

Fig. 10. Master curve around the glass transition temperature for the rate constant k 6 of EPO-DA networks and aliphatic polyamides. Modeling of the impact of the thermo- 

dynamic transition with Eq. (18) .



Fig. 11. Arrhenius graphs between 25 and 250 °C of the rate constant k 3 for the six EPO-DA networks under study and aliphatic polyamides. The vertical solid straight-lines 

indicate the position of the T g of the different materials.

It has been tried to apply the same methodology to rate con- 

stant k 3 . However, in this case, the molecular mobility does not 

cause a simple shift of the different curves along the abscissa axis. 

Indeed, in Fig. 11 , it can be noted that some curves are already 

very close to each other, while the corresponding EPO-DA net- 

works have very different values of T g . This the case for networks 

no. 2, 3 and 4 on one hand, and networks no. 5 and 6 on the other 

hand. 

According to Korcek et al. [18] , the pre-exponential factor k 30 of 

the rate constant k 3 depends above all on the dissociation energy 

of the C-H, but also secondarily on the reactivity of the involved 

peroxy radical PO 2 
•. However, in the previous section, it has been

shown that their reactivity (through k 6 ) is significantly impacted 

by the molecular mobility. As a consequence, k 3 is expected to 

show a little more complicated variation with T g than k 6 in both 

the rubbery and glassy domains (see Eqs. 19 and 21 ). 

At first, the values of k 3 were plotted as a function of the dif- 

ference (1/T – 1/T g ), as previously done for k 6 . As expected, the re- 

sulting shift along the abscise axis of the different curves does not 

allow obtaining a single master curve for k 3 (see Fig. 12 ). However, 

if looking at the variation of k 30 with the T g of the different ma- 

terials (most of the data are in glassy state), one founds that k 30 

increases exponentially with T g 

k 30 ∝ Exp 

(
T g 

30 

)
(21) 

Then, the curve of aliphatic polyamides was chosen as the refer- 

ence curve. Eq. 21 was used to shift along the ordinate axis all the 

curves of EPO-DA networks, thus obtaining a single master curve 

for k 3 (see Fig. 13 ). As for k 6 , the general shape of k 3 can be sat- 

isfyingly described by the statistical model of Mahieux and Reifs- 

nider [60 , 61] : 

k 3 = k 3r + ( k 3v + k 3r ) × Exp 

[
−
(

1 / T − 1 / T v 

1 / T r − 1 / T 

)m 

]
(22) 

where k 3v and k 3r are the values of k 3 in the fully glassy and rub- 

bery domains, respectively. 

Its numerical application to the master curve of Fig. 13 allows 

the determination of the statistical parameter (m ≈ 0.9) and the 

temperature dependence of k 3 on both sides of the glass transition 

temperature. It was found that k 3 obeys an Arrhenius law with the 

same activation energy on both sides of the glass transition tem- 

perature. In the rubbery domain: 

k 3r = 1 . 0 10 

−1 Exp

(
T g − 50 

30 

)

Exp 

[
−64 0 0 0

R 

(
1 

T 

− 1

T g 

)]
L . mo l −1 . s −1 (23) 

In the glassy domain: 

k 3v = 1 . 9 10 

−2 Exp

(
T g − 50 

30 

)

Exp 

[
−64 0 0 0

R 

(
1 

T 

− 1

T g 

)]
L . mo l −1 . s −1 (24) 

The scattering of data in the glassy domain appears to be suf- 

ficiently narrow (over only one decade) to allow the use of a sin- 

gle kinetic model for the whole family of EPO-DA networks. If ne- 

glecting any experimental error, this scattering can be due to three 

sources: 

i) Errors in the calculation of the concentration of oxidation

sites.

ii) Differences in the reactivity of oxidation sites (i.e. between

oxy-methylene, amino-methylene and methanol groups) and



Fig. 12. Result of the shift along the abscise axis of the curves of Fig. 11 . It can be noted an increase k 30 with the T g of the different materials.

Fig. 13. Master curve around the glass transition temperature for the rate constant k 3 of EPO-DA networks and aliphatic polyamides. Modeling of the impact of the thermo- 

dynamic transition with Eq. (22) .



therefore also, differences in the reactivity of the resulting 

peroxy radicals. 

iii) A possible loss of aromaticity leading to the formation of

highly oxidizable aliphatic structures during thermal aging.

The impact of two first assumptions on the values of k 3 should 

be very limited (of a factor lower than 2) and thus, not allow a 

full explanation of the width of data cloud. In contrast, the last 

assumption should be carefully considered, in particular epoxies 

cross-linked with an aromatic hardener, because it could theoreti- 

cally impact by several orders of magnitude the values of k 3 . Such 

a radical recombination has already been evidenced in a highly 

aromatic polymer, for instance in poly(ether ether ketone) [62] . 

6. Conclusion

The kinetic model developed for the thermal oxidation of poly- 

methylenic substrates in previous studies [22 , 31-37 ]was success- 

fully generalized to EPO-DA networks in the present study. Its nu- 

merous parameters were determined by applying a “step by step”

procedure combining experiment and simulation. 

It was found that the oxygen transport properties depend (i.e. 

oxygen diffusion and solubility) on the aromaticity of the EPO-DA 

network, whereas the rate constants of the apparent termination 

of peroxy radicals (k 6 ) and the propagation of oxidation (k 3 ) are 

highly impacted by the molecular mobility around the glass tran- 

sition temperature (T g ). The introduction of the effect of molecu- 

lar mobility into the Arrhenius laws of k 6 and k 3 allowed building 

master curves and finally, proposing a single kinetic model for the 

whole family of EPO-DA networks. In addition, the sharp variation 

of both rate constants with temperature within the glass transition 

zone (i.e. when passing from glassy to rubbery state) was success- 

fully described using the statistical model of Mahieux and Reifs- 

Table A.1

Values of the rate constants and formation yields used for modeling the thermal oxidation kinetics of networks no. 1 between 25 and 140 °C.

Network Epon 828-Jeffamine D230 [T g = 95 °C] 

T ( °C) 25 37 50 65 80 95 110 125 140

k 1u (s −1 ) 2.6 × 10 −10 2.0 × 10 −9 1.5 × 10 −8 1.3 × 10 −7 8.9 × 10 −7 5.4 × 10 −6 2.8 × 10 −5 1.3 × 10 −4 5.4 × 10 −4 

k 1b (L.mol −1 .s −1 ) 3.3 × 10 −7 1.3 × 10 −6 5.5 × 10 −6 2.4 × 10 −5 9.4 × 10 −5 3.3 × 10 −4 1.0 × 10 −3 3.0 × 10 −3 8.0 × 10 −3 

k 2 (L.mol −1 .s −1 ) 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10 8

k 3 (L.mol −1 .s −1 ) 5.0 × 10 −4 1.1 × 10 −3 2.7 × 10 −3 7.0 × 10 −3 2.8 × 10 −2 2.6 × 10 −1 1.0 2.1 4.6

k 4 (L.mol −1 .s −1 ) 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 

k 5 (L.mol −1 .s −1 ) 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 

k 6 (L.mol −1 .s −1 ) 4.9 × 10 4 5.9 × 10 4 7.8 × 10 4 1.1 × 10 5 1.6 × 10 6 1.8 × 10 8 1.2 × 10 9 2.9 × 10 9 6.9 × 10 9 

γ 1 (%) 60 60 60 60 60 60 60 60 60

γ 4 (%) 50 50 50 50 50 50 50 50 50

γ 5 (%) 50 50 50 50 50 50 50 50 50

Table A.2

Values of the rate constants and formation yields used for modeling the thermal oxidation kinetics of networks no. 2 between 25 and 140 °C.

Network Epon 828-Ancamine 2049 [T g = 150–155 °C] 

T ( °C) 25 37 50 65 80 95 110 125 140

k 1u (s −1 ) 2.6 × 10 −10 2.0 × 10 −9 1.5 × 10 −8 1.3 × 10 −7 8.9 × 10 −7 5.4 × 10 −6 2.8 × 10 −5 1.3 × 10 −4 5.4 × 10 −4 

k 1b (L.mol −1 .s −1 ) 3.3 × 10 −7 1.3 × 10 −6 5.5 × 10 −6 2.4 × 10 −5 9.4 × 10 −5 3.3 × 10 −4 1.0 × 10 −3 3.0 × 10 −3 8.0 × 10 −3 

k 2 (L.mol −1 .s −1 ) 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10 8 10 8

k 3 (L.mol −1 .s −1 ) 6.0 × 10 −4 1.6 × 10 −3 4.0 × 10 −3 1.2 × 10 −2 3.0 × 10 −2 6.8 × 10 −2 1.5 × 10 −1 3.0 × 10 −1 7.0 × 10 −1 

k 4 (L.mol −1 .s −1 ) 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 8.0 × 10 11 

k 5 (L.mol −1 .s −1 ) 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 3.0 × 10 11 

k 6 (L.mol −1 .s −1 ) 2.0 × 10 4 2.4 × 10 4 3.3 × 10 4 4.0 × 10 4 4.8 × 10 4 6.2 × 10 4 9.8 × 10 4 6.5 × 10 5 9.9 × 10 6 

γ 1 (%) 60 60 60 60 60 60 60 60 60

γ 4 (%) 50 50 50 50 50 50 50 50 50

γ 5 (%) 50 50 50 50 50 50 50 50 50

nider [60 , 61] , although initially developed for the storage modu- 

lus. It is thus clear that the molecular mobility plays a key role 

in both the mechanical behavior and in the durability around the 

glass transition temperature of EPO-DA networks. 

Despite this apparent success, at least two main challenges re- 

main to be met. The effect of aromaticity on oxygen transport 

properties is not well understood and would deserve an in-depth 

and specific study on a series of model EPO-DA networks, but also 

on a series of linear polymers having almost the same chemical 

composition than EPO-DA networks (e.g. polycarbonate, polysul- 

fone, etc.). 

Similarly, the effect of aromaticity on the thermal oxidation 

kinetics should be carefully considered because it could explain 

small behavioral differences observed between the different EPO- 

DA networks in the glassy state. In particular, a possible loss of 

aromaticity could certainly allow reducing the scattering of data 

observed on the master curve of k 3 ( Fig. 13 ). 

In its current form, the kinetic model can be now used to eluci- 

date the oxidation behavior of many industrial materials exhibiting 

T g gradients such as: thick structures in composite material and 

joints of glue in assemblies of metal parts with composite material 

structures. 

Declaration of Competing Interest 

The authors declare that they have no known competing finan- 

cial interests or personal relationships that could have appeared to 

influence the work reported in this paper. 

Appendix A 

Tables A1 –A2 . 



References 

[1] T. Dyakonov , P.J. Mann , Y. Chen , W.T.K. Stevenson , Thermal analysis of some

aromatic amine cured model epoxy resin systems—II: Residues of degradation,

Polym. Degrad. Stab. 54 (1) (1996) 67–83 .
[2] P. Musto , G. Ragosta , P. Russo , L. Mascia , Thermal oxidative degradation of

epoxy and epoxy-bismaleimide networks: Kinetics and mechanism, Macromol.
Chem. Phys. 202 (18) (2001) 3445–3458 .

[3] P. Musto , Two-dimensional FTIR spectroscopy studies on the thermal oxidative
degradation of epoxy and epoxy −bis(maleimide) networks, Macromol 36 (9) 

(2003) 3210–3221 .

[4] B. Mailhot , S. Morlat-Therias , M. Ouhioune , J.-L. Gardette , Study of the degrada- 
tion of an epoxy/amine resin, Macromol. Chem. Phys. 206 (5) (2005) 575–584 .

[5] F. Delor-Jestin , D. Drouin , P.Y. Cheval , J. Lacoste , Thermal and photochemical
ageing of epoxy resin – Influence of curing agents, Polym. Degrad. Stab. 91 (6)

(2006) 1247–1255 .
[6] B. Dao , J. Hodgkin , J. Krstina , J. Mardel , W. Tian , Accelerated aging versus real- 

istic aging in aerospace composite materials. I- The chemistry of thermal aging
in a low-temperature-cure epoxy composite, J. Appl. Polym. Sci. 102 (5) (2006)

4291–4303 .

[7] N. Longerias , M. Sebban , P. Palmas , A. Rivaton , J.-L. Gardette , Degradation of
epoxy resins under high energy electron beam irradiation: Radio-oxidation,

Polym. Degrad. Stab. 92 (12) (2007) 2190–2197 .
[8] C. Galant , B. Fayolle , M. Kuntz , J. Verdu , Thermal and radio-oxidation of epoxy

coatings, Prog. Org. Coat. 69 (4) (2010) 322–329 .
[9] Y.-M. Pei , K. Wang , M.-S. Zhan , W. Xu , X.-J. Dhing , Thermal-oxidative aging of

DGEBA/EPN/LMPA epoxy system: Chemical structure and thermal-mechanical

properties, Polym. Degrad. Stab. 96 (7) (2011) 1179–1186 .
[10] X. Colin , C. Marais , J. Verdu , A new method for predicting the thermal oxida- 

tion of thermosets. Application to an amine crosslinked epoxy, Polym. Test. 20
(7) (2001) 795–803 .

[11] X. Colin , C. Marais , J. Verdu , Kinetic modelling and simulation of gravimetric
curves. Application to the oxidation of bismaleimide and epoxy resins, Polym.

Degrad. Stab. 78 (3) (2002) 545–553 .

[12] J. Decelle , N. Huet , V. Bellenger , Oxidation induced shrinkage for thermally
aged epoxy networks, Polym. Degrad. Stab. 81 (2) (2003) 239–248 .

[13] X. Colin , C. Marais , J. Verdu , Kinetic modelling of the stabilizing effect of car- 
bon fibre on thermal ageing thermoset matrix composites, Compos. Sci. Tech- 

nol. 65 (2005) 117–127 .
[14] M.-C. Lafarie-Frenot , J.-C. Grandidier , M. Gigliotti , L. Olivier , X. Colin , J. Verdu ,

J. Cinquin , Thermo-oxidation behaviour of composite materials at high temper- 

atures: A review of research activities carried out within the COMEDI program,
Polym. Degrad. Stab. 95 (6) (2010) 965–974 .

[15] X. Colin , B. Fayolle , J. Cinquin , Nouvelles avancées en modélisation cinétique de
la thermo-oxydation des matrices époxy-diamines, Mater. Tech.104 (2) (2016)

paper no. 202 .
[16] J. Cinquin , X. Colin , B. Fayolle , M. Mille , S. Terekhina , L. Chocinski-Arnault ,

M. Gigliotti , J.-C. Grandidier , M.-C. Lafarie-Frenot , M. Minervino , C. Cluzel ,

F. Daghia , P. Ladeveze , F. Zhang , Thermo-oxidation behavior of organic matrix
composite materials at high temperatures, Adv. Aircr. Spacecr. Sci. 3 (2) (2016)

171–195 .
[17] E. Ernault , J. Dirrenberger , E. Richaud , B. Fayolle , Prediction of stress induced

by heterogeneous oxidation: Case of epoxy/amine networks, Polym. Degrad.
Stab. 162 (2019) 112–121 .

[18] S. Korcek , J.H.B. Chenier , J.A. Howard , K.U. Ingold , Absolute rate constants

for hydrocarbon autoxidation. XXI. Activation energies for propagation and
the correlation of propagation arte constants with carbon-hydrogen bond

strengths, Can. J. Chem. 50 (14) (1972) 2285–2297 .
[19] J.-P. Pascault , H. Sautereau , J. Verdu , R.J.J. Williams , Thermosetting Polymers,

Marcel Dekker, New York, 2002 .
[20] V. Langlois , L. Audouin , J. Verdu , P. Courtois , Thermooxidative aging of

crosslinked linear polyethylene: Stabilizer consumption and lifetime predic- 
tion, Polym. Degrad. Stab. 40 (3) (1993) 399–409 .

[21] L. Audouin , X. Colin , B. Fayolle , J. Verdu , Sur l’utilisation de la loi d’Arrhenius

dans le domaine du vieillissement des polymères, Mater. Techn. 95 (2007)
167–177 .

[22] N. Khelidj , X. Colin , L. Audouin , J. Verdu , C. Monchy-Leroy , V. Prunier , Oxida- 
tion of polyethylene under irradiation at low temperature and low dose rate.

Part II- Low temperature thermal oxidation, Polym. Degrad. Stab. 91 (7) (2006)
1598–1605 .

[23] T.R. Waite , Bimolecular reaction rates in solids and liquids, J. Chem. Phys. 32

(1) (1960) 21–23 .
[24] N.M. Emanuel , A.L. Buchachenko , Chemical Physics of Polymer Degradtion and

Stabilization, VNU Science Press, Ultrech, The Netherlands, 1987 .
[25] E.T. Denisov , Polymer oxidation and antioxidant action, in: S. Halim Hamid

(Ed.), Handbook of Polymer Degradation, Marcel Dekker, New-York, 20 0 0,
pp. 383–419. Chap. 9 .

[26] X. Colin , C. Marais , J. Verdu , Thermal oxidation kinetics for a

poly-(bismaleimide), J. Appl. Polym. Sci. 82 (14) (2001) 3418–3430 .
[27] K. Abdeljaoued , Study of matrix thermal oxidation in carbon fibers-PMR-15

composites, PhD thesis, ENSAM, Paris, 1999 .
[28] T. Devanne , A. Bry , L. Audouin , J. Verdu , Radiochemical ageing of an amine

cured epoxy network. Part I: change of physical properties, Polymer (Guildf)
46 (1) (2005) 229–236 .

[29] S. Terekhina , M. Mille , B. Fayolle , X. Colin , Oxidation induced changes in vis- 
coelastic properties of a thermostable epoxy matrix, Polym. Sci. Ser. A 55 (10)

(2013) 614–624 .
[30] X. Colin , G. Teyssèdre , M. Fois , in: A. Boudenne, L. Ibos, Y. Candau, S. Thomas

(Eds.), Ageing and Degradation of Multiphase Polymer systems, Dans Hand- 
book of Multiphase Polymer Systems, Vol. 2/2, John Wiley & Sons Ltd, Chich- 

ester, 2011, pp. 797–841. Chap. 21 .
[31] X. Colin , L. Audouin , J. Verdu , M. Rozental-Evesque , B. Rabaud , F. Martin ,

F. Bourgine , Aging of polyethylene pipes transporting drinking water disin- 

fected by chlorine dioxide. I-Chemical aspects, Polym. Eng. Sci. 49 (7) (2009)
1429–1437 .

[32] A. Mikdam , X. Colin , G. Minard , N. Billon , R. Maurin , A kinetic model for pre- 
dicting the oxidative degradation of additive free polyethylene in bleach desin- 

fected water, Polym. Degrad. Stab. 146 (2017) 78–94 .
[33] X. Colin , M. Ben Hassine , M. Nait-Abdelaziz , Chemo-mechanical model for pre- 

dicting the lifetime of EPDM rubbers, Rubber Chem. Technol. 92 (4) (2019)

722–748 .
[34] M. Coquillat , J. Verdu , X. Colin , L. Audouin , R. Nevière , Thermal oxidation of

polybutadiene. Part II-Mechanistic and kinetic schemes for additive free un- 
crosslinked polybutadiene, Polym. Degrad. Stab. 92 (7) (2007) 1334–1342 .

[35] L.K. Nait-Ali , X. Colin , A. Bergeret , Kinetic analysis and modeling of PET macro- 
molecular changes during its mechanical recycling by extrusion, Polym. De- 

grad. Stab. 96 (2) (2011) 236–246 .

[36] G. Minard , X. Colin , Thermal ageing of a hybrid composite rod for next gener- 
ation overhead power lines, J. Compos. Sci. 3 (4) (2019) article no. 103 .

[37] C. El Mazry , M. Ben Hassine , O. Correc , X. Colin , Thermal oxidation kinetics of
free additive polyamide 6-6, Polym. Degrad. Stab. 98 (1) (2013) 22–36 .

[38] L. Achimsky , L. Audouin , J. Verdu , J. Rychly , L. Matisova-Rychla , On a transition
at 80 °C in polypropylene oxidation kinetics, Polym. Degrad. Stab. 58 (3) (1997)

283–289 .

[39] C. Decker , F.R. Mayo , H. Richardson , Aging and degradation of polyolefins. III–
Polyethylene and ethylene–propylene copolymers, J. Polym. Sci.: Polym. Chem.

Ed. 11 (1973) 2879–2898 .
[40] N. Khelidj , X. Colin , L. Audouin , J. Verdu , C. Monchy-Leroy , V. Prunier , Oxida- 

tion of polyethylene under irradiation at low temperature and low dose rate.
Part I- The case of “pure” radiochemical initiation, Polym. Degrad. Stab. 91 (7)

(2006) 1593–1597 .

[41] E. Hairer , G. Wanner , Solving Ordinary Differential equations. II-Stiff and Dif- 
ferential-Algebraic Problems, Springer, Berlin, 1991 .

[42] X. Colin , L. Audouin , J. Verdu , Determination of thermal oxidation rate con- 
stants by an inverse method. Application to polyethylene, Polym. Degrad. Stab.

86 (2004) 309–321 .
[43] E.A. Di Marzio , On the second-order transition of a rubber, J. Res. Natl. Br.

Stand.: Sect. A 68 (1964) 611–617 .

[44] M. Celina , A.R. Dayile , A. Quintana , A perspective on the inherent oxidation
sensitivity of epoxy materials, Polymer (Guildf) 54 (2013) 3290–3296 .

[45] E. Girard-Reydet , C.C. Riccardi , H. Sautereau , J.P. Pascault , Epoxy-aromatic
amine kinetics. 1- Modeling and influence of diamine structure, Macro- 

molecules 28 (1995) 7599–7607 .
[46] V. Bellenger , C. Bouchard , P. Claveirolle , J. Verdu , Photo-oxidation of epoxy

resins cured by non-aromatic amines, Polym. Photochem. 1 (1) (1981) 69–80 .
[47] V. Bellenger , J. Verdu , Oxidative skeleton breaking in epoxy–amine networks,

J. Appl. Polym. Sci. 30 (1) (1985) 363–375 .

[48] A. Rivaton , L. Moreau , J.-L. Gardette , Photo-oxidation of phenoxy resins at long
and short wavelengths. I- Identification of the photoproducts, Polym. Degrad.

Stab. 58 (3) (1997) 321–332 .
[49] M.St.C. Flett , Intensities of some group characteristic infra-red bands, Spec- 

trochim. Acta 18 (1962) 1537–1556 .
[50] W.-D. Domke , H. Steinke , Oxidative structures in polyolefins: FT-IR method of

quantitative determination, J. Polym. Sci.: Part A: Polym. Chem. 24 (10) (1986)

2701–2705 .
[51] J. Lacoste , D.J. Carlsson , Gamma-, photo-, and thermally-initiated oxidation of

linear low density polyethylene: A quantitative comparison of oxidation prod- 
ucts, J. Polym. Sci.: Part A: Polym. Chem. 30 (1992) 493–500 .

[52] A. Barth , Infrared spectroscopy of proteins, Biochim. Biophys. Acta (2007)
(1767) 1073–1101 .

[53] M. Da Cruz , L. Van Schoors , K. Benzari , X. Colin , Thermo-oxidative degradation

of additive free polyethylene. Part I- Analysis of the chemical modifications
at molecular and macromolecular scales, J. Appl. Polym. Sci. 133 (18) (2016)

43287 .
[54] C. Damian , E. Espuche , M. Escoubes , Influence of three ageing types (thermal

oxidation, radiochemical and hydrolytic ageing) on the structure and gas trans- 
port properties of epoxy-amine networks, Polym. Degrad. Stab. 72 (3) (2001)

447–458 .

[55] C. Damian-Pélissier , Réseaux polyépoxydes utilisés pour l’enrobage des déchets
radioactifs : analyse du vieillissement en conditions de stockage et effets

sur les propriétés diffusionnelles des matériaux, PhD thesis, Université Claude
Bernard, Lyon 1, France, 1999 .

[56] Y. Zahara , Dégradation des réseaux époxy −amine en ambiance nucléaire, PhD 
thesis, Arts et Métiers ParisTech, Campus de Paris, France, 2012 .

[57] M. Celina , A. Quintana , N. Giron , A. Dayile , An Overview of the Inherent Oxida- 

tion Sensitivity and DLO Behavior of Epoxy materials, 30th Meeting of PDDG,
Arts et Métiers ParisTech, Paris, 1-4 Sept. 2013 .

[58] M. Celina , A. Quintana , Oxygen diffusivity and permeation trough polymers at
elevated temperature, Polymer (Guildf) 150 (2018) 326–342 .

http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0001
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0001
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0001
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0001
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0001
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0002
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0002
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0002
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0002
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0002
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0003
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0003
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0004
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0004
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0004
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0004
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0004
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0005
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0005
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0005
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0005
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0005
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0006
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0006
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0006
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0006
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0006
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0006
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0007
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0007
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0007
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0007
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0007
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0007
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0008
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0008
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0008
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0008
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0008
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0009
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0009
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0009
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0009
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0009
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0009
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0010
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0010
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0010
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0010
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0011
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0011
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0011
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0011
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0012
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0012
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0012
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0012
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0013
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0013
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0013
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0013
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0014
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0014
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0014
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0014
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0014
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0014
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0014
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0014
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0015
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0015
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0015
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0015
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0016
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0017
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0017
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0017
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0017
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0017
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0018
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0018
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0018
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0018
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0018
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0019
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0019
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0019
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0019
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0019
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0020
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0020
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0020
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0020
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0020
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0021
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0021
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0021
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0021
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0021
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0022
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0022
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0022
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0022
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0022
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0022
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0022
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0023
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0023
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0024
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0024
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0024
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0025
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0025
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0026
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0026
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0026
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0026
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0027
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0027
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0028
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0028
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0028
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0028
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0028
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0029
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0029
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0029
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0029
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0029
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0030
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0030
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0030
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0030
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0031
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0031
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0031
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0031
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0031
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0031
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0031
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0031
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0032
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0032
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0032
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0032
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0032
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0032
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0033
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0033
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0033
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0033
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0034
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0034
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0034
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0034
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0034
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0034
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0035
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0035
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0035
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0035
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0036
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0036
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0036
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0037
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0037
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0037
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0037
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0037
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0038
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0038
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0038
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0038
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0038
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0038
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0039
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0039
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0039
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0039
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0040
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0040
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0040
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0040
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0040
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0040
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0040
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0041
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0041
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0041
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0042
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0042
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0042
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0042
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0043
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0043
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0044
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0044
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0044
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0044
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0045
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0045
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0045
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0045
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0045
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0046
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0046
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0046
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0046
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0046
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0047
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0047
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0047
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0048
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0048
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0048
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0048
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0049
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0049
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0050
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0050
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0050
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0051
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0051
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0051
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0052
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0052
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0053
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0053
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0053
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0053
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0053
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0054
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0054
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0054
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0054
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0055
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0055
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0056
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0056
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0057
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0057
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0057
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0057
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0057
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0058
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0058
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0058


[59] J. Delozanne , Durabilité des époxys. Application au collage structural aéronau- 
tique, Thèse de doctorat, Arts et Métiers ParisTech, Campus de Paris, France,

2018 .
[60] C.A. Mahieux , K.L. Reifsnider , Property modeling across transition temperatures

in polymers : a robust stiffness-temperature model, Polymer (Guildf) 42 (2001)
3281–3291 .

[61] C.A. Mahieux , K.L. Reifsnider , Property modeling across transition temperatures
in polymers: Application to thermoplastic systems, J. Mater. Sci. 37 (2002)

911–920 .
[62] S. Giancaterina , A. Rossi , A. Rivaton , J.-L. Gardette , Photochemical evolution of

poly(ether ether ketone), Polym. Degrad. Stab. 68 (20 0 0) 133–144 .

http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0059
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0059
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0060
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0060
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0060
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0061
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0061
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0061
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0062
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0062
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0062
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0062
http://refhub.elsevier.com/S0141-3910(20)30246-9/sbref0062

	Towards a general kinetic model for the thermal oxidation of epoxy-diamine networks. Effect of the molecular mobility around the glass transition temperature
	1 Introduction
	2 Theory
	2.1 Oxidation sites
	2.2 Mechanistic scheme
	2.3 2.3 Kinetic model

	3 Materials and experimental procedure
	3.1 EPO-DA networks
	3.2 Thermal aging and experimental procedures

	4 Kinetic modeling
	4.1 Oxygen transport properties
	4.2 Rate constants and formation yields

	5 Discussion
	6 Conclusion
	Declaration of Competing Interest
	Appendix A
	References




