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Abstract
The manufacturing research has been focusing on the improvement of product performance and lightweight design. The synergic
effects between material properties and manufacturing solutions have been considered, extensively. Specifically, joining tech-
niques have been developing with the aim to propose new suitable solutions considering dissimilarities in the properties of the
materials that have to be combined. Setting of new manufacturing routes is, therefore, a demanding task. In this direction, there
are several methods available in the scientific literature that are focused on sensitivity analysis or optimization/minimization
techniques to reduce the necessary attempts or to find a solution/correlation among big data. In this work, the goal of obtaining
high joint efficiency between Aluminum and Polycarbonate sheets by the Friction Spot Joining process is considered as a case
study. This process must face two main issues, i.e., the mechanical, physical and chemical compatibilities between the parts and
the integrity protection of the polymeric sheet near the joining area. The process parameters influences were analysed using
numerical simulations performed by a commercial FE code. The number of executed analyses was reduced with a planned DoE.
From these results, the Code2Vect algorithm was employed with the aim to visualize, efficiently, high-dimensional data and to
evaluate the influences of some identified parameters on the process answer. Finally, a transfer function involving the input and
output quantities of interest was derived in a compact representation by a Newton Raphson minimization technique.

Keywords Mechanical fastening .Dissimilarmaterials . Friction spot joining .Machine learning .Code2Vect .Newton-Raphson

Introduction

As continuously demanded by aerospace and automotive
industries, academic and industrial research have been
focusing on the development of lightweight components
for pursuing both CO2 reduction and performant

solutions through the combination of different light-
weight materials such as Aluminum, Magnesium alloys
and thermoplastic materials. In this context, the main
goal is the development of peculiar techniques suitable
to joint these materials through the optimization of ad-
vanced and sustainable connections.
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The main obstacle lies in the dissimilar properties of the
materials that need to be connected, which affect the process
parameters to be employed. For example, when an Aluminum
alloy is joined with a thermoplastic material, two main prob-
lems can arise, i.e., the mechanical, physical and chemical
compatibilities between the parts and the preservation of the
polymeric sheet nearby the joining area. To face these issues,
the effects of the process parameters on the joint quality need
to be understood by means of numerical and experimental
tests and data analysis.

New mechanical fastening methods have been proposed as
joining processes to manufacture dissimilar parts [1, 2].
Among these, friction stir based techniques have been devel-
oped in different variants [3, 4]. Friction Spot Joining (FSpJ)
represents a promising solid-phase joining solution. This tech-
nique was patented by Helmholtz-Zentrum Geesthacht [5] for
producing thin-sheet metal-polymer joints and was derived
from the friction spot welding technology [6, 7]. The spot joint
is performed with the aid of a non-consumable tool. As
depicted in Fig. 1, the tool is composed of two movable parts,

pin and sleeve, which are coaxial to a clamping ring. This last
rigid tool ensures a continuous contact between the parts to be
joined. Both pin and sleeve are characterized by a rotational
speed, which allows heating the joined area.

Moreover, the produced heat depends on the plunge depth
of the pin inside the metallic sheet and on the joining time, too.
A schematic illustration of the whole FSpJ process is provided
in Fig. 1a, b, and c.

In this process, the complex dynamics, such as a material
stirring, high deformation, heat flow, combination of material
with different thermal and material flow properties, etc., should
be considered. Several studies in the literature deal with experi-
mental and numerical analysis [8, 9]. Most of the numerical
models available in literature for the FSpJ simulation were de-
rived from the friction spot welding process [10–14]. In each
proposed numerical research, the main problem is the mesh dis-
tortion owing to the stirring effect of the tool rotation. On the
other hand, this phenomenon is computationally expensive to
solve and can result in simulation failures.

The research herein proposed focused on a 2D axisymmetric
numerical model suitable for the evaluation of specific process
outputs, which have an impact on the performance of the
achieved connections. According to a planned Design of
Experiments (DoE), 30 numerical tests, set by a commercial
FE code, were performed. As explained in the following section,
the Code2Vect [15] algorithm was employed on these results
with the purpose to visualize high-dimensional data and to eval-
uate: a) the influences of the identified process parameters and b)
the process responses at their variation. Finally, for each identi-
fied parameters a compact representation involving the input and
output quantities of interest was derived using a Newton-
Raphson minimization technique [16].

Fig. 1 Schematic illustration of the Friction Spot Joining Process. The Sleeve plunging softens the Aluminum alloy (a); spot refilling (b) and joint
consolidation (c)

Fig. 2 2D Axisymmetric finite element model for the FSpJ process
simulation

Table 1 Johnson-Cook plasticity model constant for AA 1050 [20] and
AA 2024 [21]

Material A [MPa] B [MPa] C n m Troom [°C] Tmelt [°C]

AA 1050 110 150 0.01 0.4 1 20 640

AA 2024 352 440 0.0083 0.42 1 20 645



Proposed approach

This section summarises the proposed approach for the sensi-
tivity analysis on FSpJ. Specifically, two aluminum alloys
(AA), with different mechanical properties, were joined to a
polycarbonate (PC) sheet, separately. In the next sections, the
developed FE model, the planned DoE, the Code2Vect algo-
rithm and the Newton-Raphson minimization technique are
fully described.

FEM model description

The numerical tests were performed with a commercial finite
element code, DEFORM 2D™. Specifically, the “Torsion”
mode in the geometry section was employed to simulate the
heat generation by friction between the contact surfaces, with-
out affecting the computational effort, excessively. The basic
hypothesis of this approach is to neglect the material stirring
around the tool, which could be simulated only by a 3D ap-
proach. Nevertheless this simplification, as proved in the re-
sults section, this 2D extended model resulted to be suitable
for the FSpJ analysis.

More in the model details, the tools were assumed to be
rigid while only the two plates were set as deformable. The
AA and PC parts are, resperctivelly, 1.5 mm and 2.17 mm
thick according to the ASTM D3528, which rules the double
lap shear (DLS) tests. Regarding the tool, a diameter of 6 mm
was considered for the Pin, a diameter of 9 mm for the Sleeve
and a diameter of 14.5 mm for the Clamping ring [8].

Figure 2 shows the assumed 2D axisymmetric finite ele-
ment model. All the setup was meshed with approximatively
2500 elements.

Between the two plates, a coulomb friction coefficient of
0.5 was set while a shear coefficient of 0.5 was considered
between all the other surfaces [17]. Additionally, the heat
transfer coefficient between the AA and the PC was set equal

to 0.2 N/(m·s·°C) [18]. The Johnson-Cook’s model [19] was
employed to set the constitutive AA models. Table 1 sums up
the Johnson-Cook parameters for both materials, i.e. AA 1050
and AA 2024. The effects of strain hardening, thermal soften-
ing, and strain rate sensitivity are taken into account.

Concerning the PC part, the constitutive material model
was expressed by the DSGZ [22], a viscoplastic phenomeno-
logical model developed for glassy or semi-crystalline poly-
mers. With that model, the effect of the strain, strain rate,
temperature, softening and hardening is considered. Table 2
reports the coefficients used in this work. Finally, both elastic
and thermal properties were considered temperature-
dependent.

Performed numerical simulations according to a
planned DoE

The proposed methodology is generally applicable. This is
able to operate both with reduced data and big data.
However, since the sample of data came from numerical sim-
ulations, a DoE with Latin Hypercube (LH) sampling was set
to reduce the number of simulations. In this way, we demon-
strate the strength of the methodology, which can work with a
reduced sample of data, following the so-called smart data
paradigm. Table 3 summarizes the investigating four process
parameters, i.e. rotational speed, plunge depth, joining time
and type of aluminum alloy, upon which the DoE based on
LH sampling, was applied. The pin depth, instead, was con-
nected to the plunge depth and, for this reason, was not taken
into account in the DoE and in the successive result
discussion.

The resulting 30 joining conditions are listed in Appendix
(Table 4). For the clearness of the paper, Fig. 3 shows the
simulated phases for the first joining condition, following
Fig.1a and Fig.1b.

Table 3 FSpJ process parameters and their respective levels (min, max,
and step)

Factors Symbol Unit Min Max Step

Rotational speed RS Rpm 1000 3000 100

Plunge depth PD mm 0.5 1 0.1

Joining time JT s 4 8 0.5

Material AA – AA 1050 AA 2024 –

Table 2 Material coefficients for polycarbonate [22]

Material C1 C2 m a (K) K (MPa sm) C3 (sm) C4 α

PC 4.02 0.038 415 28.4 0.03 5.8 5.8 6.8

Fig. 3 Variation monitoring diagram of the phases “a” and “b” for the
first joining condition



Fig. 4 Input space (a) and target
vector space (b)

Fig. 6 The selected results: the
maximum temperature of the
peak, the maximum temperature
of the valley and the interlocking
area

Fig. 5 Typical result for the FSjP process simulation, at the end of the phase “a” (a) and “b” (b)



Code2Vect

In the Artificial intelligence framework, the most common
techniques such as decision trees or neural networks [23] rely
on “big-data” in order to build regression models. When
scarce data are available, the use of such techniques is limited.
Thus, Code2Vect was employed. Another motivation behind
the adoption of Code2Vect resides on the aim to visualize
high-dimensional data.

So, with this background, the algorithmwas used to represent
in a low-dimensional space high-dimensional heterogeneous da-
ta. This technique, sketched in Fig. 4, maps points from a com-
plex representation space to a simple target space equipped of a
Euclidean metric allowing the quantification of distances en-
abling the use of usual machine learning procedures [24].

We assume that the points in the origin space (input space)
consist of arrays y composed on D entries. They are assumed
arrays because they cannot be considered vectors, and are
noted by yi in R

D. Their images in the vector space are noted

by xi∈Rd, which have size of the reduced coordinates, this
time real vectors subjected to the rules of coordinate
transformation.

That vector space is equipped of the standard scalar product
and the associated Euclidian distance. The mapping is de-
scribed by the d × D matrix W,

x ¼ Wy ð1Þ
where both, the components ofW and the images xi∈Rd, must
be calculated. Each point xi keeps the label (value of the out-
put of interest, herein assumed scalar) associated with the
origin point yi, denoted by Oi.

We would like placing points xi, such that the Euclidian
distance with each other point xj scales with their outputs
difference, i.e.:

Fig. 7 MTV vector space
representation

Fig. 8 MTV estimated solution

Table 5 Range of the results obtained by the FE simulations

Factors Symbol Unit Min Max

Maximum temperature of the peak MTP °C 169 335

Maximum temperature of the valley MTV °C 146 304

Interlocking Area IA mm2 4.59 25.44



W yi−yj

� �� �
: W yi−yj

� �� �
¼ xi−xj

�� ��2 ¼ Oi−Oj

�� �� ð2Þ

Linear mappings are limited and do not allow proceeding
in nonlinear settings. Thus, a better choice consists of the
nonlinear mapping W(y), expressible from the general poly-
nomial form:

W yð Þ ¼ ∑kWkPk yð Þ ð3Þ
whereWk and Pk(y) are, respectively, matrices and a polyno-
mial basis. The associated nonlinear problem can be efficient-
ly solved by employing an adequate linearization strategy, e.g.
the Newton-Raphson’s method. The procedure followed is:

& Run Code2Vect for each one of the three quantities of
interest;

& Plot the vector space (reduced space) colored with each
one of the inputs;

& Test the regression capabilities of Code2Vect using 80%
of data as training data. For the regression, we use points
not used in the training, we place them in the reduced
space by means of W and, subsequently, we perform an
interpolation of the value of the quantity of interest in the
neighbor points.

Extracting a closed model

The objective of this work was also to find a compact repre-
sentation of the data itself, that meaning, an empirical equation
able to explains the behavior behind the data. For that purpose,
a Newton-Raphson minimization technique was defined for
each AA in a template as follows:

QoI ¼ ctt*RSa*PDb*JTc ð4Þ
where QoI stands for the quantity of interest.

Results and discussion

In this section, the results of the proposed approach are pre-
sented. In sequence, the next paragraphs show the FE simula-
tions results, the application of the Code2Vect algorithm,

Fig. 9 MTP vector space
representation

Fig. 10 MTP estimated solution



which highlights the classification of the heterogeneous data
and aims at emphasizing the classification and nonlinear re-
gression capabilities of this technique and, in conclusion, the
compact equations obtained from the Newton-Raphson mini-
mization technique.

FE simulations results

To assess the joint efficiency, the maximum temperature of
the PC sheet in two specific zone close to the friction-heated
aluminum side, and the interlocking area between the sheets
were evaluated from all simulation results. These three outputs
were chosen because they can be related to the degradation of
the polymers at higher temperatures and to the strength of the
connection.

Specifically, Fig. 5 illustrates the temperature distribution
obtained with the 2D FE model, at the end of the phase “a”

and phase “b”, as emphasized in Fig. 3. As expected, the
maximum AA temperature is observable close to the rotating
tool. Indeed, the metal reaches the melting temperature in the
stir zone. Furthermore, analysing in depth the process dynam-
ics, the melt zone is first gathered under the pin (Fig. 5a) and,
subsequently, pushed to the plastic plate. A mechanical
interlocking between the two plates (Fig. 5b) is, therefore,
achieved.

Figure 6 illustrates the selected outputs, i.e. the maximum
peak temperature (MPT) and the maximum valley tempera-
ture (MVT) on the PC sheet together with the interlocking
area (IA) that is circumscribed with dashed lines.

Finally, Table 5 summarizes the calculated minimum and
maximum values of the selected outputs.

Code2Vect results: Vector space and regression

In this section, the results of the Code2Vect application are
presented, focusing on the classification of the heterogeneous

Fig. 11 IA vector space
representation

Fig. 12 Prediction of the IA

Table 6 Resulting coefficients of the eq. (5) for the AA 1050

Target/Input ctt a b c

MTV 1154 −0,097 0,464 0,409

MTP 0,944 −0,051 0,567 0,342

IA 5611 −0,155 0,999 −0,170



data and on the classification and nonlinear regression capa-
bilities of the adopted technique.

Specifically, from 4 dimensions, i.e., RS, PD, JT and AA,
the space was reduced to 2 dimensions. Figure 7 depicts the
vector space representation for the MTV. Each point repre-
sents one of the sample data, and it is colored at each time with
the value of the input in the title. It is important to note that
when applying Code2Vect the vector space involves the so-
called reduced coordinates without specific units. By observ-
ing the colors, it can be seen how the AA equals to 0, i.e., the
AA 2024, is related to higher temperatures in the valley. Also,
the RS value, labeled Rpm in Fig.7, is directly correlated to the
temperature value because the tendency in the colors of the
cluster for Rpm andMTV are similar. Finally, the joining time
is also related toMTV even if the relationship seems to be less
relevant than AA and Rpm while plunge depth results to have
a marginal effect on this process output.

Figure 8 compares the MTV estimated solution taking into
account in- and out-side training points. It can be seen how the
predicted MTV values for the data outside the training (blue)
is very accurate.

The same approach was used for the other two factors.
Specifically, Fig. 9 shows the vector space representation for
the MTP. The considerations, as reported for MTV, are valid
for this output, which, therefore seems to be affected from the
monitored process parameters, equally.

Figure 10 compares the MTP predicted values with those
inside and outside the training. It can be seen how the predict-
ed MTP values for the data outside the training (blue) is very
accurate.

Concerning the IA, the vector space representation is illus-
trated in Fig. 11. By observing the colors, the evidences below
reported can be derived:

& Rpm is inversely related to the IA;
& Plunge Depth is directly related to IA.
& Aluminum Alloy equals to 1, i.e., the AA 1050, charac-

terized by softer mechanical properties, is the one with
higher IA values.

& Joining time does not show a direct relationship to IA.

Finally, as reported in Fig. 12, it can be seen how the
predicted IA values for the data outside the training (blue) is,
once again, very accurate.

Fig. 13 Predicted value for the MTV of AA 1050: Estimated solution vs
Real Solution

Table 7 Resulting coefficients of the eq. (5) for the AA 2024

Target/
Input

ctt a b c

MTV 0,7275 −0,0373 0,0075 0,3212

MTP 0,969 −0,013 0,193 0,109

IA 15,470 −0,338 1438 0,155

Fig. 14 Predicted value for the MTP of AA 1050: Estimated solution vs
Real Solution

Fig. 15 Predicted value for the IA of AA 1050: Estimated solution vs
Real Solution



Newton Raphson minimization towards a compact
representation

In this section, the results of the Newton-Raphson minimization
is provided. Starting from Eq. 4, the calculated values for each
quantity of interest (QoI) for each of the AA types can be written
throughout the compact representation provided in the Eq. 5:

QoIAA type ¼ ctt*RSa*PDb*JTc ð5Þ

The four coefficients for the AA 1050 are reported in
Table 6, while the four coefficients for the AA 2024 are re-
ported in Table 7.

Finally, Figs. 13-18 show, respectively, the predicted
value for the points in the training and the points out-
side the training for the MTV, MTP, and IA for the AA
1050 and AA 2024.

In all the cases, predictions are promising. Specifically,
lower errors are obtained if predictions are computed di-
rectly from the Code2Vect regression. However, the

single-term multiplicative compact expression (5) pro-
vides, as discussed, quite good predictions despite of its
compactness and simplicity (low data employed).

Conclusions

In this work, the potential window for the Friction Spot
Joining process was investigated in the case of joining
dissimilar materials, i.e., aluminum alloys and polycar-
bonate. This research was carried out from a numerical
point of view according to 2D FE simulations, planned
according to a DoE, with the aid of a novel approach
for sensitivity analysis.

Despite the 2D simplification neglects the material stirring
around the pin, the proposed torsional model and strategy
were able to provide important information on the perfor-
mance of the process in the joint making.

Furthermore, the proposed approach enabled an effi-
cient representation of the relevant parameters involved
in the model never the less low-data avai lable .
Specifically, the Code2Vect algorithm allowed under-
standing the influence of each of the investigated pro-
cess parameters on the monitored outputs. Finally, mak-
ing use of the Newton Raphson Minimization technique,
three equations able to predict the quantities of interest
through a compact representation were derived for each
of the investigated mayerials without considering the
physics behind the process.
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Fig. 16 Predicted value for the MTV of AA 2024: Estimated solution vs
Real Solution

Fig. 17 Predicted value for the MTP of AA 2024: Estimated solution vs
Real Solution

Fig. 18 Predicted value for the IA of AA 2024: Estimated solution vs
Real Solution



Appendix

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included
in the article's Creative Commons licence, unless indicated otherwise in a
credit line to the material. If material is not included in the article's
Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.
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