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a b s t r a c t 

This paper reports the study of embrittlement of PBT submitted either to thermal or hydrolytic ageing. All

changes were followed up by tensile tests, rheometry in molten state and gel permeation chromatography

for molar mass changes, SAXS and DSC experiments for crystallinity changes. Both kind of ageing were

shown to induce predominant chain scissions with moderate crystallinity increase, in great part due to

annealing. The combination of all results were used to establish a M w - χ c embrittlement window helping 

for a determination of an end of life criterion.

1. Introduction

Brought to market by Celanese in the late 1960s, poly(butylene 

terephthalate) (PBT) is a thermoplastic polyester with a good bal- 

ance between dielectric properties, mechanical strength and di- 

mensional stability [1] . The easy processing and the rapid crystal- 

lization [2,3] makes it ideal to be processed by injection mould- 

ing. Its applications cover several fields from design insulator parts, 

door lockers to connectors for automotive or medical applications 

[4,5] . One major disadvantage is its instability regarding hydrolysis 

and high temperature causing its very narrow processing window 

(typically 250–260 °C). 

In the technical literature, one can find some examples of un- 

expected PBT brittleness [6] where the skin-core morphology in- 

duced by injection molding is reported to be a potential failure, 

since this latter is well known to impact polymer properties [7–

10] . The influence of morphology, especially spherulites size, on

resistance and toughness has mainly been studied on PP [11–13] .

It was shown that these properties are enhanced by increasing the

spherulites radius but decrease above a determined value: for ex- 

ample a radius of 46 μm leads to a ductile behaviour whereas a 

radius about 126 μm leads to brittle fracture [12] . For PP, Huan 

et al. [13] observed that a 80 μm spherulites radius resulted in a 

decrease of 15 MPa of tensile strength. The process is also impor- 

tant: the same increase in radius but by an annealing under com- 
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pression process leads to a rise of 20 MPa in tensile strength [13] . 

Hence, the mechanical properties are also driven by spherulites 

size, but these large spherulites are generally not observed in in- 

jection molding parts for PP parts [14] as well as for PBT parts. 

Another reason is the possible degradation of PBT induced by 

the process. Polyesters are classified to be both hydrolytically and 

thermally unstable. Both degradation mechanisms might induce ar- 

chitectural changes in the macromolecular chains (chains scissions 

in particular) responsible for a loss of toughness. It is well doc- 

umented that mechanical properties of semi-crystalline polymers 

depend on both molar mass and crystalline morphology. In the 

case of polypropylene for example, pioneering works by Fayolle 

[15,16] showed the embrittlement occurs when molar mass gets 

below a critical mass M’ c below which there is no more plastic 

deformation. Later, this end of life criterion was completed in the 

case of polyethylene [17,18] , polyamide [19,20] and PLA [21] : it was 

highlighted that the embrittlement is also dependant on residual 

amorphous phase content, then crystallinity. Schematically, poly- 

mer gets brittle at low molar mass and/or low amorphous phase 

content and the ductile-brittle transition is represented by a line 

in L a (or L c , or χ c ) vs M w 

or M n diagram. 

Despite its practical interest, the embrittlement of PBT was, to 

our best knowledge, scarcely addressed in scientific literature. The 

aim of the present paper is hence to define failure criteria cor- 

responding to the “critical” macromolecular architecture in rela- 

tion to the ductile-brittle transition. For that purpose, thin films of 

one PBT grade will be aged either in thermal or in hydrolytic age- 

ing. The ageing will be systematically monitored by uniaxial tensile 
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tests, molar mass changes (rheometry, gel permeation chromatog- 

raphy) in order to give a fine description of PBT embrittlement. 

2. Experimental

2.1. Material 

The poly(butylene terephthalate) used in this study is an in- 

jection grade. It was transformed into films with a GIBITRE com- 

pression press (200 bar) at 230 °C. This temperature was chosen 

low enough to limit thermal degradation. Films were about 150 to 

200 μm thick and initial average molar mass values M n = 33.8 kg/ 

mol and M w 

= 74.7 kg/mol. 

2.2. Ageing conditions 

Films previously prepared were exposed to three ageing condi- 

tions: 

- Thermal ageing at 180 °C and 210 °C under air in ventilated

ovens (AP60 by System Climatic Service).

- Hydrolysis at 80 °C by immerging films in distilled water in

closed jars placed in a ventilated oven (AP60 by System Cli- 

matic Service). After exposure, films were dried at 100 °C under

vacuum overnight before any testing.

2.3. Characterization 

2.3.1. Tensile testing 

Uniaxial tensile testing was carried out at room temperature at 

10 mm/min using an INSTRON 4301 machine with a 100 N cell. 

No extensometer was used during tests hence only the cross head 

displacement was recorded. 

Samples were punched using a H3 hole punch with a 150–

200 μm thickness (neck length L 0 = 20 mm and width = 4 mm). 

2.3.2. Gel permeation chromatography 

Gel Permeation chromatography (GPC) were performed by 

PeakExpert. PBT samples were dissolved in Hexafluoroisopropanol 

(HFiP) with 0.1 M potassium trifluoroacetate (KTFA) at 2.0 g/L. 

The injection volume was 100 μL at 40 °C. The detection was 

performed with a RID Waters 2414 refractometer. Three columns 

were used: one PSS PFG 10 μm, 10 0 0 Å, ID 8,0 mm ×100 mm 

as a pre-column and 2 columns PSS PFG 10 μm, 10 0 0 Å, ID 8,0 

mm ×300 mm. Post treatment was done by using PSS-WinGPC 

Unity software. Molar masses were given as PMMA equivalent. 

2.3.3. Differential scanning calorimetry 

Morphological changes were followed with a Q10 0 0 by TA in- 

strument. Prior to any measurement, DSC apparatus was calibrated 

with an indium standard. About 6–8 mg of virgin or aged PBT 

sealed in standard aluminium pans were subjected to two cycles: a 

heating from 30 °C to 250 °C followed by a cooling 250 °C to 0 °C 

and the second heating from 0 °C to 250 °C and finally a cooling 

from 250 °C to 0 °C. Both cycles were performed at 10 °C/min rate. 

The crystallinity ratio was measured by calculating the melting 

peak enthalpy and divided by 140 J/g [22] which is the enthalpy 

for a 100% crystalline PBT. 

2.3.4. Rheometry 

Rheology measurements were performed on MCR502 from An- 

ton Paar with a 25 mm diameter plate geometry with a gap of 

0.8 mm. Viscosity is related to weight average molar mass by: 

η = KM 

3 . 4 
w 

(1) 

Frequency sweep tests from 100 to 0.1 rad/ s at 230 °C were car- 

ried under nitrogen. The deformation was chosen at 2% to remain 

in the linear viscosity domain. 

2.3.5. Small angle X-Ray scattering 

The long period L p was measured at room temperature with 

the diffractometer Genix Xenocs instrument using a copper an- 

ode Cu α with λ = 1.54 Å coupled with the MAR30 0 0 software. 

The distance sample to detector was 1205 mm, scattering vector 

Q was calibrated by using silver behenate standard sample. Sam- 

ples were exposed to X-rays during 3 h on an active area of 1 mm. 

An exposition without any sample was also performed and used as 

blank and subtracted to samples spectra. After measurement, data 

were extracted with Foxtrot 3.2.7 software. All curves were then 

imported in Fityk free software and a PseudoVoigt peak find al- 

lowed finding the maximum of the wave vector Q for each curve. 

L p is obtained as: 

L p = 2 × π/Q (2) 

L p was then used to obtain the amorphous length L a using the 

following formula: 

L a = L p − L p 
χc 

100 

(3) 

where χ c is the crystallinity of the sample. 

3. Results

3.1. Mechanical changes 

Aged samples were first characterized by tensile tests. For un- 

aged PBT, the curve displays a plastic behaviour with an ultimate 

strain higher than 10% which is consistent with literature [23,24] . 

In the case of ageing at 210 °C, the curves of virgin and aged sam- 

ples are almost similar in the elastic region whereas the main dif- 

ference of samples having undergone oxidative and hydrolysis age- 

ing is the absence of the plastic region ( Fig. 1 ), which is usually 

observed after ageing [17,19,25] . 

Based on that observation, elongation at break was chosen to 

characterize embrittlement. The embrittlement criterion has been 

chosen as ε R, C = ε 0 /2 [19] . The ageing time associated to this cri- 

terion will be called embrittlement time. Fig. 2 depicts the elon- 

gation at break with the exposure time to identified both εR,C and 

the embrittlement time. 

Firstly, the two curves for thermally-aged samples from 

Fig. 2 can be overlaid and the s-shape indicates that the same phe- 

nomenon occurs. According to Figs. 1 and 2 , the embrittlement 

Fig. 1. Strain-stress curves for each exposure time at 210 °C. Error bars are not

displayed for a clearer view.



Fig. 2. Elongation at break average function of time for thermal ageing at 210 °C
( ◦), 180 °C ( � ) and hydrolytic ageing at 80 °C ( ×). The unaged point is showed here

as 10 °.

time is about 8 min for ageing at 210 °C and 3 h for ageing at 

180 °C and 6 weeks for a hydrolytic ageing at 80 °C. 

3.2. Morphological changes 

It is known that ageing has an impact on polymer semi- 

crystalline morphology [17] . Hence, a particular attention is paid 

in order to better understand the decrease in ultimate elongation. 

Previous studies have concluded that the decrease in elongation at 

break can originate from an increase in crystallinity ratio [17,19] . 

Nothing, to our knowledge, was reported on PBT about this pos- 

sible link between εR and χ c , therefore DSC measurements were 

performed. Fig. 3 displays thermograms for each exposure time at 

210 °C under air. 

For the first heating ramp ( Fig. 3 a), there is no change in the 

melting temperature for the main melting peak (located at 223 °C). 

However, a second melting peak appears at a temperature close 

to 210 °C after a very short ageing time at 210 °C (2 min) to- 

gether with another one at 230 °C. The first one usually appears 

after annealing [26–28] . To check this hypothesis, further inves- 

tigations were carried out in situ under nitrogen atmosphere in 

DSC. Corresponding increases in crystallinity ratio (see Fig. 3 b) are 

relatively similar, which weights in favour of a significant anneal- 

ing occurring during thermal ageing. However, the possibility of a 

chemicrystallization cannot be excluded at this stage, as it will be 

discussed later. 

Both peaks contribute to an increase in melting enthalpy 

( Fig. 4 ). Crystallinity also increases from 26% for the unaged sam- 

ple to 38% for the sample aged 10 min at 210 °C. 

Thus, we have compared these previous results with other age- 

ing conditions. Here is a brief summary of all observations: 

- For thermal ageing at 210 °C and 180 °C: aged samples dis- 

play two additional melting peaks around 210 °C peaks around

210 °C (for ageing at 210 °C) and 180 °C (for ageing at 180 °C)

and 230 °C.

- For hydrolysis at 80 °C: there is one additional melting peak

around 230 °C and one exothermic peak around 210 °C (see Ap- 

pendix). The exothermic peak observed after hydrolysis could

be associated with a partial crystallization of the amorphous

phase [29] , which could be consistent with the fact that chains

mobility increases with exposure time due to several phenom- 

ena as explained later.

Fig. 3. Morphological evolution of PBT films thermally oxidized at 210 °C. Dashed

lines are in situ N 2 exposures at 210 °C first heating (a). Comparison between ther- 

mal oxidation ( � ) and in situ DSC exposure ( � ), both at 210 °C (b). 

- Regarding all exposure conditions, the main melting peak at

223 °C does not shift towards high temperature.

According to some authors [18,19] , the increase in crystalline ra- 

tio is accompanied by a thickness decrease of the amorphous layer 

L a corresponding in a thickening of the crystalline part. 

The decrease in L a is well observed for each exposure condition 

( Fig. 5 ) until a minimal value around 8.5 nm at 210 °C and 80 °C 

and 7.5 nm at 180 °C. It also seems that the decrease is more im- 

portant for the thermal oxidation at 180 °C than at 210 °C. It could 

go along with the earlier described phenomenon where the crystal 

reorganization is easier at 180 °C (corresponding approximately to 

the crystallization temperature) than at 210 °C which is closer to 

the melting peak onset ( ≈ 215 °C). 

3.3. Macromolecular changes 

Another parameter interesting for a better understanding of 

embrittlement is the average molar mass [18,19] . There are two 



Fig. 4. Crystallinity changes for thermal ageing at 210 °C ( ◦), 180 °C ( � ) and hy- 

drolytic ageing at 80 °C ( ×). 

Fig. 5. Changes in thickness of the amorphous layer for thermal ageing at 210 °C
( ◦), 180 °C ( � ) and hydrolytic ageing at 80 °C ( ×).

main experimental ways to follow macromolecular changes: GPC 

and viscosity, giving information about both average weight molec- 

ular mass (M w 

) and the predominance of either chains scissions or 

crosslinking. 

Some dynamic viscosity measurements are given on Fig. 6 . The 

slight decrease of viscosity with frequency sweep is due to the 

rheothinning behaviour of the molten polymer. A major decrease of 

viscosity in the whole frequency range with exposure time can be 

observed. This decrease could be, with all other observations, con- 

sidered as the consequence of chain scission phenomenon. Despite 

the small uncertainty in the measurement of | η∗| at low frequency, 

M w 

could be in principle determined based on the viscosity-molar 

mass calibration performed on unaged samples. However, rheo- 

metric experiments require the knowledge of the K factor from the 

initial value measured by GPC and long rheological tests at low fre- 

quency and high temperature lead to a possible degradation of the 

polymer. 

The average weight molar masses were also measured by GPC 

with the additional advantage of also measuring M z, without any 

further heating (contrarily to rheological measurements), hence 

avoiding further degradation. It allows estimating concentration 

Fig. 6. Melt viscosity changes after thermal oxidation at 210 °C.

Fig. 7. Average weight molar mass changes for thermal ageing at 210 °C ( ◦), 180 °C 
( � ) and hydrolytic ageing at 80 °C ( ×). Values are given in PMMA equivalent.

in chain scissions and crosslinks as presented later in this paper. 

Fig. 7 gives the M w 

changes (M n and M z are not displayed for con- 

ciseness purposes). It is noteworthy that polydispersity index does 

not significantly change and remains close to 2. 

4. Discussion

The aim of this section is to understand the nature of archi- 

tectural changes responsible for PBT embrittlement and later to il- 

lustrate commonalities and differences between PBT embrittlement 

and those of other semi-crystalline thermoplastics. 

4.1. On the nature of macromolecular changes 

The PBT degradation has been extensively studied for hydroly- 

sis [30–33] , thermolysis and thermal oxidation [34–38] . According 

to these references, PBT may be subject to different degradation 

mechanisms leading to chains scission, as depicted in Fig. 8 . 

PBT ageing could also lead to crosslinking through the coupling 

of radicals held by aromatic ring [35,39,40] ( Fig. 8 a). Nait-Ali et 

[41] have hypothesized a possible crosslinking from the coupling

between aliphatic radicals ( Fig. 9 ) which would be favored in PBT

compared to PET since the concentration in methylene is higher.



Fig. 8. Simplified thermal oxidation mechanism (a) and thermolysis of PBT (b).

Fig. 9. Possible mechanisms of crosslinking.

Here, an analytical effort (f or example mass spectrometry 

[35] or NMR [34] ) would help to better understand the nature of

the chemical changes but this goes out of the scope of the present

paper aimed at understanding the consequences of ageing on me- 

chanical properties. Despite the exact nature of the crosslinking 

process in PBT remains unclear, its contribution can be compared 

with chain scission process using the Saito’s equations [42] : 

1 

M n 
− 1

M n 0 

= s − x (4) 

1 

M w 

− 1

M w 0 

= 

s

2 

− 2 x (5) 

With M w 

average weight molar mass, M n average number mo- 

lar mass, s chain scissions and x crosslinking. Estimated s and x 

values are given in Fig. 10 . It seems that crosslinking is clearly neg- 

ligible compared to chains scissions. 

It has been shown in the previous section that both M w 

and εR 

decrease with exposure time. Then, it is possible to establish a link 

between these two quantities ( Fig. 11 ). 

It seems that a molar mass about 57–65 kg/mol would separate 

domains of ductile and brittle behaviour, which could be a possible 

Fig. 10. Chain scission ( ◦) and crosslinking ( ×) concentrations after an ageing at 

210 °C (red), 180 °C (orange) and hydrolysis at 80 °C (blue).



Fig. 11. Establishment of embrittlement criterion after thermal oxidation at 210 °C
( ◦) and 180 °C ( � ) and hydrolytic ageing at 80 °C ( ×). Dashed lines represent the

embrittlement frontier (respectively for 210 °C thermal ageing and hydrolytic age- 

ing).

Table 1

Comparison between PBT and other semi-crystalline thermoplastics.

PP PE POM PET PA11 PBT PLA

M e (kg/mol) 3.5 1.4 2.5 1.45–1.63 2.0 1.6 8

M’ wc (kg/mol) 200 70 70 22–33 20 57–65 80

M’ wc /M e 57 50 28 ≈10–20 10 36–41 10

Reference [18] [18] [18] [43,45,46] [19] [44] [21]

failure criterion. This value can be compared with the molar mass 

between entanglements M e ( Table 1 ): 

At first, M wc is much higher than M e in PBT consistently with 

existing literature dealing with embrittlement of semi crystalline 

polymers (let us recall than in amorphous polymers, M’ c /M e is 

rather close to 5). Interestingly, the ratio M’ c /M e for PBT is higher 

than for PET having a T g about 20 °C higher. Last, from a practi- 

cal point of view, high fluidity PBT grades used for injection pur- 

pose display generally an initial molar just above the critical molar 

mass value M’ c . In other words, an occurrence of a few number of 

chain scissions induced by the manufacturing process could lead 

to a strong drop in mechanical properties. 

4.2. On the nature of crystalline changes during ageing 

Based on the above tests results, it could be concluded that PBT 

undergoes annealing during its degradation process since changes 

in crystallinity in thermally aged PBT are relatively similar under 

nitrogen and under oxygen ( Fig. 3 b). However, the changes due 

to annealing are expected to occur in the earlier ageing stages 

whereas an increase in crystallinity seems also to be observed at 

later stages. Since chain scissions increase macromolecular mobil- 

ity, a subsequent increase in crystallinity due to chemicrystalliza- 

tion might also occur as documented for example in PA11 [19] and 

PE [17] . To go further, the chemicrystallization yield was calculated 

from data given in Fig. 12 as follows: 

y = 

1

M m 

d χc 

ds 
(6) 

Its value was around 12 at 210 °C which is low compared to 

annealing of PE which are respectively equal to 4 [19] and 20 to 

58 [17] (depending on the polydispersity index). 

Relating to hydrolysis, the chemicrystallization yield seems 

slightly higher than for thermal ageing ( y = 21 for hydrolysis) but 

Fig. 12. Changes of crystalline versus chain scissions for thermal oxidation at 210 °C
( ◦) and 180 °C ( � ) and hydrolytic ageing at 80 °C ( ×).

Fig. 13. Comparison of L a for all exposition conditions. Closed triangles ( � ) cor- 

respond to ductile behaviour, opened triangles ( � ) to brittle behaviour. The ver- 

tical line depicts the “annealing” stage and the diagonal straightline depicts the

chemicrystallizaiton stage.

it remains difficult to conclude if this is an experimental incerti- 

tude or if there is a more physical mechanism linked to the pres- 

ence of structural defects induced by thermal ageing or increased 

mobility in amorphous phase due to water plasticization. 

A possible consequence of the increase in crystallinity associ- 

ated with the chemicrystallization phenomenon is the thickening 

of the crystalline layer ( Fig. 5 ). Under the assumption that the 

thickening of crystalline lamellae comes from chemicrystallization, 

a relation could be established between L a and M w 

[47] as investi- 

gated in Fig. 13 . 

Regarding Fig. 13 , the decrease of L a from 10 to around 8 nm 

for samples (at a constant average molar mass value) thermally 

aged at 180 °C and 210 °C respectively confirms that PBT mainly 

undergoes annealing rather than chemicrystallization in the early 

ageing stages. There are two identified slopes on the graph: one 

around 3.4 for the filled triangles and one around 1.0 for the un- 

filled triangles. These changes give two indications: firstly, there is 

a link between L a and M w 

. Secondly, there is two rates of degrada- 

tion, also observed on χ c changes. The first rate, without notice- 



Fig. 14. Embrittlement borders according to exposure conditions. Filled triangles

( � ) correspond to ductile behaviour, unfilled triangles ( � ) to brittle behaviour. The

area between the two red dashed lines corresponds to the transition area.

able changes in M w 

would be the PBT crystallization (annealing) 

rather than its degradation and the second rate would be related 

to the degradation (chemicrystallization). 

It is also interesting to bring some light to the effect of ob- 

served crystallinity increase on the mechanical properties in the 

elastic region: in particular, Young’s modulus stays almost constant 

( Fig. 1 ) which is rather unexpected. In polymers with amorphous 

phase in rubbery state, such as PE or PP, elastic modulus and yield 

stress depends heavily on the crystallinity. For instance, in PE an 

increase in 25% in crystalline ratio leads in an increase of 900 MPa 

for Young’s Modulus and 8 MPa for yield stress [48] . PP displays 

the same trend: an increase in 5% in crystalline ratio leads to an 

increase of 500 MPa of Young modulus [49] . However, in poly- 

mers with their glassy amorphous phase such as PEKK, PLA or 

PA11 [19,50,51] , the mechanical properties in the elastic domain 

depend less on crystallinity because the contrast of elastic mod- 

ulus between crystalline phase and amorphous phase is hundred 

to thousand times lower [52] . At this point, it seems that PBT be- 

haves more similarly to PA11 than to PE or PP consistently with 

the glassy nature of its amorphous phase. 

4.3. Determination of a failure criteria 

Based on the above results and observations, both crystallinity 

and molar mass vary during the PBT embrittlement process. We 

propose here an embrittlement criterion based on a combination 

of both properties. According to the exhaustive review by Fayolle 

et al. [18] , the embrittlement of semi crystalline polymers may be 

triggered by one of the following mechanisms: 

- the molar mass becomes lower than a critical value below

which the amorphous phase cannot undergo plastic deforma- 

tion or,

- -the molar mass goes along with a chemicrystallization process

during which the thickness of intermolecular amorphous phase

is reduced. This suggests a “mixed” failure criterion involving

M w 

and l ac or M w 

and χ c .

The available data for ductile and brittle PBT samples are given

in the M w 

- χC window ( Fig. 14 ). Dashed lines separate the do- 

mains where PBT are entirely brittle or entirely ductile. It seems 

well that both descriptors (macromolecular and morphological) are 

mandatory to predict the embrittlement of PBT. Interestingly, the 

straight line separating ductile and brittle domains is closer to a 

vertical than a horizontal line suggesting that M w 

plays a predom- 

inant role over χC at least for thin films samples. It remains now 

to investigate if this conclusion is valid for other PBT grades and 

try to extend it to: 

- bulky materials as thick dumb-bell samples, or industrial PBT

connectors for example,

- other testing conditions such as impact test or tensile tests at

higher elongation rates.

5. Conclusions

A PBT grade for injection purpose was thermally aged at 210 °C 

and 180 °C and hydrolytically aged at 80 °C to determine the evo- 

lution of the embrittlement and the associated mechanisms. 

First, thermal oxidation and hydrolysis seems to cause mainly 

chain scission evidenced by rheometry and GPC. There was no 

evidence of crosslinking here but it remains to be verified for 

bulkier materials submitted to oxygen gradients. Those macro- 

molecular changes are accompanied by a thickening of the crys- 

talline phase induced by an annealing and chemicrystallization (i.e. 

segments liberated from chain scissions migrating to crystalline 

phase). These phenomena were leveragated to extract a failure 

criterion. Samples get brittle when molar mass is below a criti- 

cal value M’ c close to 60 kg/mol i.e. almost 40 times higher than 

the molar mass between entanglements. Such a high value sug- 

gests that a very limited occurrence of chain scission is needed 

to induce a severe plasticity loss in PBT. The ratio between mo- 

lar mass at embrittlement and molar mass between entanglements 

is in line with other semi crystalline polymers and much higher 

than in glassy polymers (where typically M’ C /M e is close to 5). It 

means that changes in the crystalline phase are also involved in 

PBT embrittlement. Basing on these observations, a M wc - χ c win- 

dow separating two domains corresponding to ductile and brittle 

behaviour was proposed for the first time. In the next steps, this 

will be used to investigate the embrittlement of injection molded 

parts for which the molten polymer viscosity must be low mean- 

ing that the initial value of molar mass is close to the critical molar 

mass for embrittlement. 
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Appendix 

DSC of PBT after hydrolysis ( Fig. 15 ). 

Fig. 15. First heat and cooling after hydrolysis at 80 °C.
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