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ABSTRACT Many real-world problems are modeled as multi-objective optimization problems whose 

optimal solutions change with time. These problems are commonly termed dynamic multi-objective 

optimization problems (DMOPs). One challenge associated with solving such problems is the fact that the 

Pareto front or Pareto set often changes too quickly. This means that the optimal solution set at period t may 

likely vary from that at (t+1), and this makes the process of optimizing such problems computationally 

expensive to implement. This paper proposes the use of adaptive mutation and crossover operators for the 

non-dominated sorting genetic algorithm III (NSGA-III). The aim is to find solutions that can adapt to 

fitness changes in the objective function space over time. The proposed approach improves the capability of 

NSGA-III to solve multi-objective optimization problems with solutions that change quickly in both space 

and time.  Results obtained show that this method of population reinitialization can effectively optimize 

selected benchmark dynamic problems. In addition, we test the capability of the proposed algorithm to 

select robust solutions over time. We recognize that DMOPs are characterized by rapidly changing optimal 

solutions. Therefore, we also test the ability of our proposed algorithm to handle these changes. This is 

achieved by evaluating its performance on selected robust optimization over time (ROOT) and robust 

Pareto-optimality over time (RPOOT) benchmark problems.    

INDEX TERMS convergence, diversity, dynamic multi-objective optimization, inverted generational 

distance, reference points  

I. INTRODUCTION 

Many real-world problems are modeled by parameters 
which change over time [1-4]. Rather than model such 
problems as static optimization problems, they are best 
described using dynamic optimization problems. With 
respect to multiple objectives, dynamic problems are 
characterized by a moving, constantly changing Pareto front 
(PF) or Pareto set (PS). A dynamic multi-objective 
optimization problem (DMOP) is generally considered to be 
a changing sequence of multi-objective optimization 
problems [5]. Some real-world instances of DMOPs are 
solved in [6] and [7]. The fitness landscape of a DMOP is 
dynamic because of time-varying objective functions and/or 
constraints. In this paper, we consider a DMOP as consisting 
of multiple objective functions of the form: 

𝑚𝑖𝑛𝑥𝑓(𝑥, 𝑡) = [

𝑓1(𝑥, 𝑡)
.
.

𝑓𝑛(𝑥, 𝑡)

]    (1) 

subject to: 

)(tx
 

where )(t is the decision variable space.
mt )(  where 

m  is the number of feasible decision variables. The decision 

variables are constituted such that there are generally u

inequality constraints and v  equality constraints according 

to: 
𝛽(𝑡) = 𝑥 𝜖 ℝ𝑚: 𝑎𝑢(𝑥, 𝑡) ≤ 0 𝑎𝑛𝑑 𝑏𝑣(𝑥, 𝑡) = 0 (2) 
𝑓𝑜𝑟 𝑢 = 1. . , 𝑘 𝑎𝑛𝑑 𝑣 = 1. . , 𝑙 
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With regard to the Pareto optimal front (POF), an objective 

function vector tc  dominates another vector td  when 

tt dc  . In other words: 

njtjtj ,.......2,1,, = dc     (3) 

Therefore, all the elements in tj ,c constitute the non-

dominated POF. The Pareto optimal solution (POS) set is 

obtained from the decision vector )(t in which there exists 

a subset of )(t called: 

 )()..,(),()(' ''
2

'
1 txtxtxt f=x    (4) 

such that no other vector in )(t dominates )(' tx . 

One important point to note in the optimization of 

DMOPs is that a balance between convergence and diversity 

of the POS must be maintained despite the dynamic fitness 

landscape [8]. In other words, there must be a balance 

between the ability of a search algorithm to effectively 

explore the solution space without failing to select locally 

non-dominated solutions that may eventually constitute the 

POS or POF. One such approach is to effectively reinitialize 

the search population after a change has occurred within the 

solution space over time. From literature, one technique of 

ensuring that this happens is by adapting the search 

algorithm’s mutation and crossover operators [5]. The 

crossover operator is used to search for feasible solutions 

within the solution space. Mutation operator alters the genes 

of the offspring. In other words, it improves fitness level of 

candidates within the solution space. Therefore, these two 

operators can significantly improve the quality of the PF in 

dynamic optimization problems if they are well tuned. 

In this paper, we propose the use of adaptive crossover and 

mutation operators for the NSGA-III evolutionary algorithm 

in the presence of time-varying objective functions. We call 

this dynamic version of NSGA-III, dynamic NSGA-III 

(dyNSGA-III). The aim of this proposed approach is to 

address the problem of high-dimensionality, or changing 

dimensionality associated with DMOPs. The main 

contributions of this paper include: 

• The proposal of a principal component analysis 

(PCA) strategy with n-mutation to improve 

selection pressure and diversity of original NSGA-

III under high-dimensionality. 

• Testing capability of proposed strategy to obtain 

robust solutions to problems with multiple time-

varying PF and PS.  

 The results of the proposed approach would be compared 

to the performance of three other well-performing dynamic 

multi-objective evolutionary algorithms (DMOEAs) in 

terms of sensitivity to changing fitness landscape. We use 

the robust moving peaks benchmark (RMPB) test suite for 

single objective and robust Pareto-optimality over time 

(RPOOT) for up to three objectives.  The rest of the paper is 

organized as follows: Section II discusses successfully 

implemented strategies for tackling DMOPs. Section III 

presents the proposed approach to effectively track the 

moving POF characterizing DMOPs. Section IV presents 

the test problems and performance parameters for estimating 

the ability of the proposed algorithm to retain robust 

solutions. Section V discusses results obtained and Section 

VI concludes the paper.  

 
II. STRATEGIES FOR IMPROVING DYNAMIC MULTI-
OBJECTIVE EVOLUTIONARY ALGORITHMS 

Several researchers have proposed improvements to the 

capability of EAs to handle dynamic, multimodal problems. 

However, several challenges remain [9]. One of these 

challenges is difficulty in establishing the right balance 

between convergence and diversity. Convergence describes 

the ability of an MOEA to settle on the final non-dominated 

solution or set of solutions that most accurately solves the 

problem. Diversity is concerned with the spread of non-

dominated solutions within the solution space. This 

problem is considered by many researchers to be the most 

significant for MOEAs. Another problem is as the number 

of objectives increases, the distance between suitable mates 

also increases. This means that when such candidates mate, 

their offspring will be far away from both mates. This 

means that more effort would have to be made to 

recombine candidates to ensure effective convergence and 

diversity of the non-dominated solution set. A third 

challenge is when the number of objectives exceeds two, it 

becomes challenging to estimate the performance of 

MOEAs due to high dimensionality of the solution space. 

Therefore, it becomes difficult to compare the performance 

of several MOEAs. Examples of most used performance 

metrics include inverted generational distance (IGD) and 

hypervolume (HV) metrics. Lastly, when the number of 

objectives describing a problem is large (typically beyond 

five), it becomes difficult to visualize the non-dominated 

solution space.  

In recent years, several approaches have been proposed 

by various researchers to improve the optimization of 

DMOPs. In [10], a prediction strategy based on reference 

points was used to partition the population into 

subpopulations. With this strategy, a sequence of 

subpopulation centers in the previous environments was 

attached to one reference point and was used to predict the 

center of the new environment. The performance of the 

proposed algorithm was compared to population prediction 

strategy (PPS) and dynamic search strategy (DSS) for 

various dynamic environments. The proposed algorithm 

outperformed the other two algorithms for highly dynamic 

problems. In [11], a squirrel search algorithm was proposed 

to optimize DMOPs. This algorithm was based on 

decomposition with both evolutionary direction prediction 

and bidirectional memory populations. The proposed 

direction prediction strategy involved the use of 

modification vectors and judgment individuals. Therefore, 

there was no need for threshold settings. In terms of the 

bidirectional memory populations, two cases were 

considered: when the population evolved along the 

evolutionary direction of the previous environment, and 

when it evolved against the previous evolutionary direction. 

The proposed algorithm’s performance was compared with 
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3 other well-performing dynamic optimization algorithms 

for 6 dynamic multi-objective optimization problems. The 

test parameters considered involved both severity and 

frequency of change within the solution space. The 

proposed algorithm outperformed the other three dynamic 

optimization algorithms.  

In [12], a strategy was proposed to predict the dynamic 

location of the Pareto set by clustering the population into 

several representative groups. The number of clusters was 

adapted to the intensity of environmental change. The 

proposed method was compared with 5 other well-

performing algorithms including multi-objective 

evolutionary algorithm based on dominance (MOEAD) and 

dynamic non-dominated sorting genetic algorithm 

(dNSGA-II). The algorithms were tested on 10 DMOPs; 

performance indices included spacing metric, dynamic 

hypervolume metric and mean inverted generational 

distance. The proposed algorithm outperformed the other 

algorithms, particularly problems involving rotating Pareto 

set with dynamic environments.  

In [13], a novel raccoon family optimization (RFO) 

algorithm was proposed to solve the task of planning and 

scheduling of multiple projects. The objective of the 

mathematical model was to maximize total net profit of the 

multiple projects while considering early completion bonus, 

late completion penalty cost and resource cost. The 

performance of RFO algorithm was found to be superior to 

raccoon optimization algorithm (ROA), artificial bee 

colony (ABC) algorithm and genetic algorithm (GA) at 

95% confidence interval. A Pareto-based guided artificial 

bee colony (PGABC) algorithm was proposed to handle the 

multi-objective optimization problem of lotsizing and 

mixed model scheduling for flexible production lines in 

[14]. Taguchi method was used to tune the parameters for 

PGABC and the algorithm was tested on 9 different 

problem instances based on demand and production system. 

Three conflicting objectives were considered: lotsizing and 

mixed model sequencing to minimize makespan, balancing 

workload among parallel production lines, and maximizing 

net profit in production lines. PGABC outperformed multi-

objective artificial bee colony (MOABC), non-dominated 

sorting genetic algorithm III (NSGA-III) and improved 

strength Pareto evolutionary algorithm (SPEA2) for Pareto 

front (PF) improvement. Particularly, performance metrics 

were PF spread and proximity to true PF that optimized the 

problem. In [15], a hybrid spider monkey optimization 

(HSMO) algorithm was proposed to solve an integrated 

planning and scheduling problem for printed circuit board 

(PCB) assembly lines. The multi-objective problem 

involved line assignment to PCB models, component 

allocation to machines, and component placement 

sequencing to maximize net profit. The performance of 

HSMO was compared to ABC, GA, particle swarm 

optimization (PSO) and simulated annealing (SA) 

algorithms on a real-world problem adapted from a PCB 

manufacturing industry in China. It was reported that 

HSMO achieved near-optimal solutions compared to the 

other 4 algorithms.    

Several other innovations with respect to solving 

dynamic optimization problems can also be found in [16-

19]. In [16], a single randomly mutating time-variant 

archive was used to balance convergence and diversity of 

the dynamic Pareto front (PF). The Gee-Tan-Abbass (GTA) 

test suite was used to evaluate performance on problem 

dimensions of 500 and 1500, respectively. Local fitness 

approximation and prediction approach was used in [17] to 

locate optimal solutions to DMOPs. In this approach, the 

solutions that were sought were those that changed slowly 

over time. Adaptive gradient refinement based on a multi-

layer co-evolutionary approach was proposed in [18]. This 

approach attempted to solve the problem of rapidly 

changing PF associated with finding suitable solutions to 

selected DMOPs. Maintaining both diversity and fitness of 

solutions in time-varying search environment was 

emphasized. In [19], a two-archive evolutionary algorithm 

was proposed to tackle the problem of changing shape of 

PF in the presence of changing number of objectives. One 

archive tackled convergence of the PF, while the other 

maintained its diversity. 

In this paper, we propose the use of adaptive crossover 

and mutation operators to improve the capability of the 

NSGA-III algorithm to handle dynamic Pareto sets. We will 

test the ability of the proposed dyNSGA-III to maintain fit 

and robust solutions as the candidate landscape changes 

over time. The methodology for achieving this is discussed 

in the next section. 

III. PROPOSED METHODOLOGY 

The non-dominated sorting genetic algorithm III (NSGA-

III) is capable of handling optimization problems with 

many objectives. It does this by using reference points that 

are positioned in the hyperplane representing the multi-

objective optimization problem [20-21]. NSGA-III solves 

both constrained and unconstrained optimization problems. 

Regarding constrained problems, NSGA-III effectively 

handles three scenarios: when the Pareto front is optimal 

with an infeasible barrier, when the Pareto front is partly 

infeasible, and when it is wholly infeasible [21]. These 

capabilities determined our decision to improve the 

performance of NSGA-III to handle dynamic multi-

objective optimization problems. Several techniques of 

mutation and crossover operator tuning have been reported 

[19]. We will focus on adaptive principal component 

analysis (PCA) mutation and n-point crossover, 

respectively. PCA is suitable for problems with high 

dimensionality because it selects features with highest 

covariance. This means that correlation among similar 

features in the problem variables is reduced [22]. The n-

point crossover approach is selected to increase the 

randomness with which offspring for successive 

generations are generated [23]. This results in 

dimensionality reduction of the given problem, which 

improves visualization of the solution space.   A real-coded 
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genetic algorithm (GA) generally uses a population 

comprising N chromosomes, with each chromosome 

comprising M genes. The chromosome population is 

represented as: 























=

Nc

c

c

.

.

2

1

c      (5) 

In general, each chromosome abc (where a and b denote 

chromosome position and generation respectively) is 

composed of genes abg  such that  bublab ggg ,, , . blg ,  

and bug ,  are the real-coded lower and upper bounds of the 

search space respectively. The PCA mutation approach 

involves the compression of high-dimensional input data 

into a lower dimensional space [19]. 

The input data set represented by Equation (5) can be 

viewed as a collection of N points within an m-dimensional 

Euclidean solution space equidistant from the mean value 

).(cE The PCA mutation then looks for solutions in 

directions of maximum variance. The covariance matrix is 

obtained according to: 

)})())(({( TEEECOV cccc −−=    (6) 

Eigenvalues )( j  and eigenvectors )( j  are obtained 

according to: 

mjCOV jjj ,....1==     (7) 

The solution space is then re-centered using the PCA 

mutated eigenvectors to obtain the modified population as: 

θccP −= ))(( E      (8) 

where ],...,,[ 21 j=θ  is the matrix of eigenvectors. The 

algorithm for the adaptive mutation of the solution space 

using PCA is shown in Algorithm 1. 

The crossover operator enables offspring of the mutated 

chromosomes to find suitable solutions within the search 

space, varied according to the distance of potential 

solutions from the optimum solution(s). The n-point 

crossover (recombination) has been selected so that the 

number of genes for recombination can be varied according 

to the distance of potential solutions from the optimum 

solution(s). For n-point crossover, n genes are randomly 

selected from both parents. These are swapped between the 

parents and then they are recombined to produce the 

offspring. In this paper, we consider the single arithmetic 

recombination strategy [24]. In this method, the arithmetic 

average of both parent chromosomes is taken at a random 

point at which an allele is located. This is then used to 

create an offspring according to: 

xxxyxxch lllloffspring ,....,,)1(,,...., 111 +− −+=   (9) 

where nx  and ny  are genes from parents, is 

recombination operator. 

The algorithm for describing the adaptive crossover 

operation is detailed in Algorithm 2. 

The search parameters for the proposed dyNSGA-III 

algorithm are specified in Table 1. The test problems used 

to test the performance of the proposed algorithm are from 

the Gee-Tan-Abbass (GTA) benchmark test suite for 

dynamic multi-objective optimization [25]. Five additive 

and five multiplicative forms of the DMOPs were used to 

test the performance of dyNSGA-III. GTA1a – 6m are bi-

objective DMOPs, while GTA9m – 12m are tri-objective. 

The main differences between the additive and 

multiplicative forms of the DMOPs are in terms of their 

lower bounds and modality [25].  

 

*For Algorithms 1 and 2, the stopping criterion is taken to be maximum 

Euclidean distance with respect to Np and COV. 

TABLE I PARAMETERS FOR DYNSGA-III ALGORITHM 

Parameter Setting 

Severity of change (st) 

Frequency of change (ft)  

Number of dimensions 
Number of reference points (pr) 

Population size (Np) 

Mutation probability (pm) 
Crossover rate (cr) 

5 (initial) 

10 (initial) 

50 
21 

100 

0.1 
0.5 (adaptive) 

 

There is a degradation of selection pressure of MOEAs 

as the number of objectives increases. dyNSGA-III 

remedies this problem by adopting the strategy proposed in 

[26]. Here, a less computationally expensive approach is 

used to generate reference points for the m-dimensional 

vector 𝚪𝑗 using a random function. Also, a clustering 

operator is used to obtain a normalized PF based on the 

following: 

𝑑𝑜(𝑥) = ‖v(x)𝑇𝚪𝑗‖/‖𝚪𝑗‖    (10) 

𝑑𝑝(𝑥) = ‖v(x) −  𝑑𝑜(𝑥)(
𝚪𝑗

‖𝚪𝑗‖
)‖   (11) 

where 𝚪𝑗 = [𝛾𝑗,1, 𝛾𝑗,2, … … , 𝛾𝑗,𝑚], v(x) is the normalized 

objective vector, 𝑑𝑜(𝑥) is distance between a line passing 

through the origin and a point p in the objective function 

space, 𝑑𝑝(𝑥) is perpendicular distance between v(x) and 

the line through the origin. 

To illustrate the use of PCA to improve solution diversity 

of the PF, consider a hypothetical 2-objective hyperplane in 

Algorithm 1 Adaptive Mutation for dyNSGA-III   

Start  

Initialize pop. size (Np), reference points (pr), mutation probability (pm) 

While (stopping criterion*=false) 
Adaptively vary pm and measure Euclidean distance from E(c) 

Output COV, θj, γj, P 

End  

Algorithm 2 Adaptive Recombination for dyNSGA-III   

Start  

Initialize pop. size (Np), reference points (pr), crossover rate (cr) 

While (stopping criterion*=false) 
Adaptively vary cr and modify offspring chromosomes according to 

Equation (9) 

Output best local choffspring 

End 
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Fig. 1. The line through the origin with least varying 

solutions is eliminated while a line with greater variance 

with respect to potential solutions for the PF is selected. 

 

 

 

 

 

 

 

 

 

 

  
FIGURE 1. PCA selection of line with potential solutions. 

 

This approach significantly improves selection pressure of 

the original NSGA-III by balancing convergence and 

diversity as the number of objectives increases. Therefore, 

PCA handles perturbation of the population and improves 

dyNSGA-III performance on RPOOT problems. 

IV. PERFORMANCE WITH ROBUST OPTIMIZATION 
OVER TIME (ROOT) AND ROBUST PARETO-
OPTIMALITY OVER TIME (RPOOT) BENCHMARK 
PROBLEMS 

The idea of ROOT and RPOOT is because certain solutions 

in dynamic environments become sub-optimal as the search 

space changes over time. This means that a solution that 

optimizes problem parameters at a given feature evaluation 

instance may not do so in the next instance. This scenario is 

likely to be computationally expensive in real-life 

applications since the DMOEA parameters would need to 

be reconfigured to suit the new problem landscape. 

Therefore, it is important to test the ability of the DMOEA 

to obtain robust solutions which can optimally solve a 

DMOP over at least two feature instances of the DMOP 

[27]. In this section, we will examine the ability of the 

dyNSGA-III algorithm to obtain robust solutions which 

remain optimal over time. The performance of the proposed 

algorithm would be compared with the dNSGA-II, SGEA 

and dMOPSO DMOEAs.   

Without loss of generality, we assume according to [27] 

that a solution or sequence of solutions is robust when such 

solutions can be used to solve a DMOP for at least 2 

consecutive instances of the problem. Therefore, due to the 

characteristics of ROOT and RPOOT, there are specified 

benchmark problems which are used to test the robustness 

of the DMOEA. These are presented in the next subsection. 

A. ENHANCING DYNSGA-III PERFORMANCE TO 
HANDLE ROOT AND RPOOT BENCHMARK PROBLEMS 

With ROOT, solutions are selected in such a way that they 

remain effective even as environmental changes in the 

solution space take place over time. This is a more realistic 

approach to solving dynamic optimization problems as 

opposed to continually tracking a single global moving 

optimum. This therefore means that we must incorporate 

prediction into the solution-finding process based on the 

time-changing solution space. Regarding the benchmark 

problems being considered, we adopt the approach in [17]. 

In this approach, we use a radial basis function (RBF) 

model as an approximator, and an autoregression (AR) 

model as a predictor. We note that ROOT problems are to 

test the capability of dyNSGA-III to provide robust 

solutions for a single objective, while RPOOT problems 

test robustness for up to three objectives at a time. Details 

of the approach can be seen in [17].   

B. ROOT BENCHMARK PROBLEMS 

The problems used to test the robustness of the proposed 

DMOEA are based on [28]. The problems are collectively 

referred to as robust moving peaks benchmark (RMPB) and 

they are divided into two subsets. The first problem subset 

(RMPB-I) consists of six test problems which describe the 

maximization of the average fitness of solutions obtained 

by the DMOEA with respect to ROOT. The second subset 

(RMPB-II) consists of another six test problems which is 

used to determine the maximum time that a solution or 

solution sequence remains the optimal solution of the 

DMOP. According to [29], the average fitness and survival 

time are described according to Equations (12) and (13). 
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where T is the DOP lifecycle, )(, xtaf is the average fitness 

of a solution describing the parameter vector x , F is the 

solution fitness threshold, p is the time step increase over 

the interval ],0[ T . 

The baseline fitness function in RMPB-I for average 

fitness maximization is specified according to [28] as: 


=

−−=

D

i

ab
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ab
t

ab
ttf cxwh

D
1

, }max{
1

)(x   (14) 

 

 

Also, the baseline fitness function for RMPB-II for survival 

time maximization is according to Fu, [28] as:  

}}{max{min)(
11

,
ab
tb

ab
t

ab
t

m

a

n

b
ts cxwh −−=

==
x   (15) 

D is the dimension of the parameter vector x , while ab
th , 

ab
tw and ab

tc represent the height, width and centre of peak 

function a for dimension b at time t . Varying the height, 

width and centre of a given peak function introduces 

dynamics into the solution space over time, which represent 

changes in the parameter space for many real-life problems. 

Regarding RMPB-I and –II, six different dynamics are 

considered which include: small step, large step, random, 

chaotic, recurrent, and recurrent with noise dynamics [28]. 

Eliminated line with 
least covariance 

Potential solution 

Preserved line with 

higher covariance 

Pareto-optimal 

front 

Solution space 

f2 

f1 
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C. ROOT PERFORMANCE EVALUATION METRICS 

We consider performance of individual solutions obtained 

by the DMOEAs being compared using the average error 

ave  and sensitivity to changing environment s [27]: 


−+

=

−=

10

0

1 aNp

pb

ib
a

av
N

e      (16) 

where aN is total number of problem instances for a given 

peak function a , 0p  is the initial problem instance, b  is 

the fitness value of the global optimum of the problem 

instance b , i is the fitness value of solution iS . 
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   (17) 

The fitness of a sequence of robust solutions is determined 

by considering the length of the sequence solutions ( sl ) 

with respect to best sequence error ( sbeste , ), average 

sequence error ( save , ), worst sequence error ( sworste , ) and 

sequence sensitivity ( s ). These parameters are defined 

according to [27]: 
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where ie  is average error of the solution sequence iS . 

In general, the performance measure of the DMOEA with 

respect to ROOT is estimated using the relation according 

to [28]:   


=

=

N

i

ixF
N

ePerformanc

1

)(
1

   (22) 

where )( ixF  is the robustness of the solution sequence iS . 

In terms of the robustness estimation, the T metric measures 

average fitness with respect to a time window, while the V 

metric measures survival time with respect to a fitness 

threshold. In this paper, T is set to 10, while V is set to 20. 

D. PERFORMANCE OF DYNSGA-III ON RPOOT 
PROBLEMS 

We further investigate the capability of dyNSGA-III to 

handle robust Pareto-optimality over time (RPOOT) for 

multiple objectives [30]. We consider test instances of 

dynamic multi-objective benchmark functions. We test 

based on 4 classic test instances (F1-F4) [31] and 3 

instances for complicated Pareto front (F9-F11) [32]. 

According to [29], we use performance metrics of robust 

survival time (𝑡𝑟), robust inverted generational distance 

(𝑑𝑟) and robust spacing (𝑠𝑟). Details of these metrics are as 

follows: 

𝑡𝑟 =
1

𝑇
∑ 𝑡𝑖

𝑇
𝑖=1      (23) 

where 𝑇 is the length of the survival time window for 

Pareto-optimal solutions and 𝑡𝑖 is the survival time for the i-

th robust Pareto-optimal solution. A larger 𝑡𝑟 indicates that 

the solutions adapt better to changing environments over 

time. 

𝑑𝑟 =
1

𝑀
∑ 𝑚𝑎𝑥𝑗=𝑘𝑖1 ,…..,𝑘𝑖+𝑀𝑘𝑖

𝐼𝐺𝐷(𝑗)𝑀
𝑖=1    (24) 

where 𝑀 is the total number of robust Pareto-optimal 

solutions, and 𝑚𝑎𝑥𝑗=𝑘𝑖1 ,…..,𝑘𝑖+𝑀𝑘𝑖
𝐼𝐺𝐷(𝑗) is the inverted 

generational distance of the j-th robust solution. 𝑑𝑟 

measures the average inverted generational distance of 

robust Pareto-optimal solutions over their survival time. 

𝑠𝑟 =
1

𝑀
∑ (

1

|∆(𝑖)|−1
∑ (𝑑 − 𝑑𝑗)2|∆(𝑖)|

𝑗=1 )
1/2

𝑀
𝑖=1     (25) 

where 𝑑𝑗 is minimum Euclidean distance between fitness 

values of j-th robust solution in robust Pareto front (∆(𝑖)) 

and true Pareto front, and 𝑑 =
1

|∆(𝑖)|
∑ 𝑑𝑗

|∆(𝑖)|
𝑗=1 . Robust 

spacing measures average distribution of the Pareto-optimal 

solution set. For the simulation, population size was set to 

100 for F1-F4 and 500 for F9-F11 [29]. Threshold was set 

to 𝜂=0.4 and time window was 𝑇=2. Simulations were run 

20 times for dyNSGA-III, SGEA and dMOPSO.  

V. DISCUSSION OF RESULTS 

The performance of the proposed dyNSGA-III algorithm 

was compared with three other well-performing dynamic 

multi-objective evolutionary algorithms (DMOEAs), 

namely: dynamic non-dominated sorting genetic algorithm 

II (dNSGA-II), multi-objective particle swarm optimization 

based on decomposition (dMOPSO) and steady-state and 

generational evolutionary algorithm (SGEA). Performance 

metrics considered are the hypervolume (HV) and the mean 

inverted generational distance (MIGD) (Table II and III 

respectively). The results are the mean values with the 

standard deviation in parentheses. Results in boldface 

indicate the best-performing algorithm. The additive and 

multiplicative forms of the DMOPs from the GTA test suite 

were used to test the DMOEAs. The severity (st) and 

frequency (ft) of the dynamic search space were tuned in 

such a way that we consider the behavior of the DMOEAs 

for cases where st< ft, st= ft, and st> ft. 

 From the results obtained, it can be seen that dyNSGA-

III outperformed the other three DMOEAs in terms of both 

HV and MIGD performance metrics. dyNSGA performed 

very well on the multimodal problems (GTA9m – 

GTA12m), which demonstrates its ability to adapt well to 

problems involving many optima. It scaled well against the 

decomposition-based PSO (dMOPSO), which has the 

ability to adapt to changing search spaces and shifting PFs. 

One challenge of dynamic multi-objective optimization is 

that it becomes increasingly difficult to locate optimum 

solutions when there are both multiple objectives, and
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TABLE II MEAN AND STANDARD DEVIATION VALUES OF DMOEAS FOR HYPERVOLUME (HV) METRIC. STANDARD DEVIATION VALUES IN PARENTHESES 

DMOP (st , ft) dNSGA-II SGEA dMOPSO dyNSGA-III 

GTA 1a 

 

 
GTA 2a 

 

 
GTA 3a 

 

 
GTA 4a 

 

 
GTA 5a 

 

 
 

(5,10) 

(10,10) 

(20,10 
(5,10) 

(10,10) 

(20,10) 
(5,10) 

(10,10) 

(20,10) 
(5,10) 

(10,10) 

(20,10) 
(5,10) 

(10,10) 

(20,10) 

 3.211E-01(4.592E+00) 

4.217E-01(3.882E-01) 

6.438E-01(3.991E-01) 
3.105E-01(3.893E-01) 

3.606E-02(3.305E-01) 

4.149E-01(4.714E-01) 
1.621E-01(2.992E-02) 

1.942E+00(2.763E-01) 

5.031E-01(2.594E-01) 
3.519E-02(2.117E-01) 

2.054E-01(2.229E-01) 

3.432E-02(3.112E-01) 

3.937E-02(1.418E-01) 

2.666E-01(2.438E-01) 

3.638E+00(2.107E-01) 
 

2.247E+02(3.512E-01) 

4.474E-01(4.921E-01) 

3.483E-01(3.294E-01) 
2.247E+01(2.301E-01) 

3.116E-01(2.628E+00) 

2.117E-02(2.318E-01) 
3.071E-02(2.028E-02) 

4.840E-01(3.721E+01) 

3.684E-01(3.116E+02) 
3.853E-02(4.063E-01) 

3.832E-01(3.962E-01) 

4.553E-01(1.113E-02) 
3.456E-02(3.0962E-01) 

2.063E-01(3.732E-01) 

4.118E-01(2.062E-02) 
 

3.109E-01(3.986E-01) 

3.728E-02(2.159E-02) 

2.115E-01(3.582E-01) 
3.109E-01(3.986E-01) 

2.111E-02(1.869E-02) 

3.746E-01(3.164E-01) 
2.052E-01(2.027E-01) 

3.502E-02(2.194E-01) 

3.136E-01(2.334E-01) 
3.819E-02(2.581E-01) 

3.115E-02(2.128E-01) 

3.258E-01(2.127E-02) 
3.295E-02(2.197E-01) 

2.507E-02(3.198E-01) 

3.110E-01(2.586E-02) 
 

2.492E-02(3.773E-01) 

3.147E-02(1.935E-02) 

2.004E-01(3.129E-02) 

3.517E-01(2.885E-01) 

3.531E-02(2.794E-02) 

2.419E-01(5.653E-02) 
1.449E-01(3.108E-01) 

2.803E-02(4.382E-02) 

2.236E-02(3.459E-02) 

3.692E-02(2.093E-01) 

2.688E-02(2.629E-02) 

4.076E-02(2.075E-02) 
2.117E-02(1.295E-02) 

1.064E-02(2.952E-01) 

3.329E-02(2.086E-02) 

 

GTA 6m 

 
 

GTA 9m 

 
 

GTA 

10m 
 

GTA 
11m 

 

GTA 
12m 

(5,10) 

(10,10) 
(20,10) 

(5,10) 

(10,10) 
(20,10) 

(5,10) 

(10,10) 
(20,10) 

(5,10) 
(10,10) 

(20,10) 

(5,10) 
(10,10) 

(20,10) 

3.885E-02(3.486E-01) 

3.386E-01(4.465E-01) 
3.307E-01(3.065E-01) 

2.954E-01(3.754E-01) 

2.053E-03(2.047E-02) 

1.630E-02(2.058E-02) 

2.836E-02(3.892E-02) 

3.116E-01(2.047E-02) 
1.566E-01(2.731E-02) 

2.401E-01(2.782E-01) 
4.834E-01(5.492E-02) 

3.820E-02(4.018E-02) 

1.398E-01(1.273E-01) 
1.873E-01(2.493E-02) 

3.442E-02(3.984E-02) 

1.195E-02(1.096E-02) 

2.063E-01(3.732E-01) 
2.527E-02(2.108E-02) 

4.037E-02(4.748E-01) 

3.337E-01(2.017E-01) 
3.061E-02(3.505E-02) 

3.965E-02(4.105E-01) 

2.406E-01(2.437E-01) 
3.113E-01(2.062E-01) 

3.483E-02(4.105E-01) 
2.337E-01(2.285E-01) 

3.641E-01(3.292E-02) 

4.144E-02(3.119E-02) 
2.886E-02(1.732E-01) 

3.593E-02(3.226E-02) 

3.295E-02(2.197E-01) 

2.406E-02(2.225E-01) 
3.106E-02(2.075E-02) 

2.064E-02(2.062E-02) 

4.053E-02(3.116E-01) 
3.721E-02(3.146E-02) 

2.049E-02(3.058E-02) 

4.158E-02(1.296E-01) 
3.024E-02(3.188E-02) 

3.270E-02(3.374E-02) 
3.062E-02(3.115E-02) 

3.505E-02(3.774E-02) 

3.189E-02(3.288E-02) 
2.587E-02(2.479E-02) 

2.458E-02(2.841E-02) 

2.195E-02(1.836E-02) 

2.583E-03(2.329E-02) 

2.006E-03(1.663E-02) 

2.905E-02(3.033E-02) 

2.557E-03(2.336E-02) 
2.884E-02(2.924E-02) 

1.885E-03(2.227E-02) 

2.067E-03(3.258E-02) 

2.884E-02(2.006E-02) 

2.045E-02(3.018E-02) 

2.067E-01(2.384E-01) 

2.023E-03(2.205E-02) 

2.009E-03(2.116E-02) 

1.993E-02(2.021E-02) 

1.889E-02(1.993E-02) 

 

a time-changing Pareto front. The proposed approach 

adapts well to both multiple objectives and a dynamic 

Pareto front by adjusting both the fitness and orientation of 

the search candidates within the solution space. The 

problem of premature convergence and poor exploitation of 

the solution space is also addressed by satisfying the 

stopping criterion specified in Algorithms 1 and 2. We 

ensure that the best possible Euclidean distance is achieved 

by the algorithm with respect to the mean value E(c). 

 Fig. 2 shows the convergence rate of each one of the four 

tested DMOEAs over 5,000 feature evaluations. From the 

Figure, we see that dyNSGA-III and dMOPSO are the best 

performers. We observe that dyNSGA-III converges at a 

slightly slower rate than dMOPSO over the feature 

evaluations. This slower rate of convergence is 

advantageous in highly multimodal problems where the 

exploitative capability of the search algorithm is tested. 

Regarding the ability of dyNSGA-III to obtain robust 

solutions to dynamic optimization problems over time, we 

compare its performance with that of the other three 

specified DMOEAs for optimizing a single objective. We 

also evaluate performance for the RPOOT benchmark 

problems for multiple objectives. We compare the 

performance of dyNSGA-III with SGEA and dMOPSO 

since dNSGA-II is worst performer for robust single-

objective optimization. Details of ROOT benchmark test 

problems used are specified in Section IV(B). Performance 

 

 

 

metrics used are specified in Section IV(C). 

  From the results obtained in Table IV and V, we see that 

robustness average fitness and survival time results 

obtained are mostly higher for dyNSGA-III compared to 

SGEA, dNSGA-II and dMOPSO. The ROOT problems 

used are denoted as RMPBxy (where x indicates the 

problem baseline, and y indicates the kind of dynamic that 

characterizes the problem). Results in boldface indicate the 

best-performing metric. We use feature evaluations as time 

steps to evaluate performance of the DMOEAs at various 

instances in the simulation. We observe that dyNSGA-III 

performs very well on RMPB-I problems with time window 

T set to 10 (Table V).  

For the RMPB-II problems, we set the fitness threshold V 

to 20 to evaluate the survival time of the selected 

DMOEAs. From the results obtained, the dyNSGA-III 

algorithm outperformed the other three DMOEAs for most 

of the instances of the test problems. However, we further 

examined the susceptibility of the proposed algorithm to 

noise dynamics which is characterized by RMPB16 and 

RMPB26. We consider the error metrics as well as the 

solution sequence sensitivity for each of the DMOEAs for 

the two selected problems to further establish the 

robustness of dyNSGA-III. Results are shown in Table IV 

with best-performing results indicated in boldface. 

Therefore, we observe that dyNSGA-III performs better 

than dMOPSO for the multiplicative forms of the DMOPs 

(GTA9m – 12m). These problems have many local minima, 
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which means that search agents can easily become trapped 

before reaching the global optimum.  

Details of RPOOT benchmark problems and performance 

metrics are specified in Section IV(D). The RPOOT 

benchmark problems used to test the ability of dyNSGA-III 

to obtain robust solutions over changing multi-objective 

space include: F1-F4 which present complexities such as 

nonconvexity, disconnectedness and deceptiveness [31]. 

F9-F11 present additional complexities including changing 

Pareto set (PS) and Pareto front (PF) [32]. These 

complexities are created to test the ability of DMOEAs to 

adjust to time-varying characteristics describing a given 

MOP, while maintaining suitable solutions over time. 

From the results obtained in Table VI, we observe that 

dyNSGA-III and SGEA are the best performers for RPOOT 

benchmark problems. However, dyNSGA-III could perform 

better for problems F9-F11 which involve complicated PF. 

The computational complexity of dyNSGA-III is 

O(2N2logM-2N) where N is population size and M is 

dimensionality of objective function vectors. This 

computational complexity is comparable to that of SGEA, 

dMOPSO and original NSGA-III. 
 
 
 

TABLE III MEAN AND STANDARD DEVIATION VALUES OF DMOEAS FOR MEAN INVERTED GENERATIONAL DISTANCE (MIGD) METRIC. STANDARD DEVIATION 

VALUES IN PARENTHESES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2. Average convergence of 4 tested DMOEAs. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
VI. CONCLUSIONS 

This paper has proposed the use of adaptive mutation and 

crossover operators to track the moving Pareto front 

associated with dynamic optimization problems. Many real- 

world problems are modeled as multi-objective 

optimization problems with time-dependent Pareto fronts. 

While several researches have been presented which 

suggest approaches to better track the moving Pareto fronts, 

the problem of suboptimal solutions due to premature 

convergence of the DMOEAs still persists.  

Optimal tuning of the mutation and recombination 

operators of genetic algorithms is vital for improving their 

ability to select the best Pareto set to solve a DMOP. This is  

DMOP (st , ft) dNSGA-II SGEA dMOPSO dyNSGA-III 

GTA 1a 

 

 
GTA 2a 

 

 
GTA 3a 

 
 

GTA 4a 

 
 

GTA 5a 

 
 

 

(5,10) 

(10,10) 

(20,10 
(5,10) 

(10,10) 

(20,10) 
(5,10) 

(10,10) 
(20,10) 

(5,10) 

(10,10) 
(20,10) 

(5,10) 

(10,10) 
(20,10) 

3.115E-01(3.047E-01) 

2.169E-01(3.114E-01) 

1.115E-01(1.032E-01) 
1.650E-02(1.631E-02) 

2.058E-02(1.994E-02) 

2.215E-02(2.119E-02) 
2.047E-03(2.159E-03) 

3.197E-02(2.491E-02) 
1.683E-01(1.493E-01) 

1.985E-03(1.026E-03) 

3.115E-01(3.218E-01) 
1.796E-02(1.360E-02) 

2.337E-02(1.649E-02) 

2.398E-02(2.546E-02) 
1.961E-01(2.107E-01) 

 

1.306E+00(2.875E-01) 

2.224E-01(3.218E-01) 

2.592E-01(1.593E-01) 
2.963E+01(3.014E-01) 

2.756E-01(2.847E-01) 

2.505E-01(2.476E-01) 
4.008E-02(4.195E-02) 

2.258E-01(1.067E-01) 
2.680E-01(2.684E-01) 

3.606E-02(3.592E-01) 

3.631E-01(3.730E-01) 
5.726E-01(1.113E-02) 

2.479E-02(2.054E-02) 

2.932E-01(2.821E-01) 
1.034E-01(2.184E-02) 

2.317E-02(3.584E-02) 

2.853E-01(1.482E-01) 

3.120E-02(2.834E-02) 
1.937E-02(1.847E-02) 

2.337E-02(2.260E-02) 

2.227E-02(2.183E-02) 
2.052E-01(2.027E-01) 

2.562E-02(2.369E-02) 
1.406E-01(1.329E-01) 

2.538E-02(2.240E-02) 

3.157E-02(2.189E-02) 
3.258E-01(2.769E-02) 

3.568E-03(2.117E-03) 

2.717E-03(3.003E-03) 
3.471E-02(2.627E-02) 

 

2.419E-03(2.784E-02) 

3.117E-02(1.582E-02) 

2.379E-02(2.183E-02) 

1.729E-03(1.897E-03) 

3.433E-02(3.280E-02) 

2.774E-03(2.873E-03) 

2.216E-02(2.732E-02) 

4.769E-03(5.693E-03) 

2.481E-02(2.280E-02) 

4.655E-01(1.024E-02) 

3.054E-02(2.047E-02) 

2.575E-02(2.216E-02) 

3.226E-03(3.189E-03) 

1.558E-03(4.279E-03) 

2.569E-02(1.058E-02) 

 

GTA 6m 
 

 

GTA 9m 
 

 

GTA 
10m 

 

GTA 
11m 

 

GTA 
12m 

(5,10) 
(10,10) 

(20,10) 

(5,10) 
(10,10) 

(20,10) 

(5,10) 
(10,10) 

(20,10) 

(5,10) 
(10,10) 

(20,10) 

(5,10) 
(10,10) 

(20,10) 

2.961E-02(2.941E-02) 
3.310E-01(3.217E-01) 

3.684E-01(3.559E-01) 

3.691E-01(3.501E-01) 
2.225E-03(2.179E-03) 

2.236E-02(2.185E-02) 

3.815E-02(3.932E-02) 
3.825E-01(2.782E-02) 

3.556E-01(2.093E-02) 

2.306E-01(2.415E-01) 
4.395E-01(3.451E-02) 

3.581E-02(3.661E-02) 

1.470E-01(1.333E-01) 
1.904E-01(2.512E-02) 

3.378E-02(4.056E-02) 

2.019E-02(1.995E-02) 

2.215E-01(2.175E-01) 

2.549E-02(2.446E-02) 

3.511E-02(3.642E-01) 
3.119E-01(3.217E-01) 

1.270E-02(1.106E-02) 

3.842E-02(3.726E-02) 
2.258E-01(2.348E-01) 

3.278E-01(2.994E-01) 

3.821E-02(3.634E-02) 
3.068E-01(3.033E-01) 

3.427E-01(3.371E-01) 

4.384E-02(3.469E-02) 
2.694E-02(1.653E-01) 

3.567E-02(3.492E-02) 

2.007E-01(1.948E-01) 
2.418E-02(2.388E-02) 

2.116E-02(2.104E-02) 

2.582E-02(2.495E-02) 

2.871E-02(2.941E-02) 

3.718E-02(3.888E-02) 

2.711E-02(2.641E-02) 
4.316E-02(4.239E-01) 

3.217E-02(3.118E-02) 

2.653E-02(2.579E-02) 
2.167E-02(1.647E-02) 

2.873E-02(2.779E-02) 

3.007E-02(2.986E-02) 
2.463E-02(2.589E-02) 

2.304E-02(2.996E-02) 

2.268E-02(3.445E-02) 
1.237E-01(2.329E-02) 

1.389E-03(1.369E-03) 

3.117E-02(3.106E-02) 
2.693E-03(2.731E-02) 

2.694E-02(2.792E-02) 

1.896E-03(1.934E-03) 

2.285E-03(2.118E-03) 

2.998E-02(2.923E-02) 

2.526E-02(1.285E-03) 

2.108E-01(1.121E-01) 

2.495E-03(2.384E-02) 

1.772E-03(1.629E-02) 

1.726E-02(1.882E-02) 

1.593E-02(1.448E-02) 
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TABLE IV PERFORMANCE COMPARISON OF DMOEAS FOR ERROR AND 

SENSITIVITY INDICES FOR NOISY INSTANCES OF RMPB-I AND -II 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

because these operators determine the fitness of search 

candidates within the solution space. Poor mating and 

reproduction of parents will produce offspring that will not 

guarantee the integrity of successive generations of search 

candidates. This results in the inability of the DMOEA to 

keep track of the moving Pareto front, particularly when the 

DMOP is also multimodal. 

In this paper, we propose the use of Euclidean distance 

measurement as a means of slowing down the movement of 

the Pareto front. We achieve this by specifying a covariance 

matrix with respect to the mean value within the search 

space. We then ensure that the distance between mean 

value and a potential candidate of the Pareto set is 

maximum, and this constitutes our stopping criterion. From 

the results obtained, we observe that our proposed 

dyNSGA-III algorithm scales very well compared to other 

well-performing DMOEAs. We observe that our proposed 

algorithm performs best for multimodal DMOPs which 

demonstrates its capability to adapt well to changing search 

environments. In terms of convergence rate, we see that the 

proposed algorithm does not converge too fast over the 

feature evaluations which means that it has good 

exploitative capability. To test the capability of the 

proposed dyNSGA-III algorithm to obtain robust solutions 

to dynamic optimization problems over time, we test its 

performance on the RMPB test suite. The reason for this is 

because many real-life problems are characterized by 

rapidly changing optima. 

Overall, this research has highlighted prominent challenges 

that exist while attempting to solve DMOPs. These include: 

i.  Maintaining balance between convergence and 

diversity. 

ii.  Effectively tracking changing PF due to time-

varying fitness landscape with respect to candidate 

solutions. 

iii. Maintaining robust solutions despite a moving PF. 

The algorithm proposed in this research has tackled the 

above problems using the following methodology: 

i.  Ensuring effective mutation and crossover 

(recombination) of population candidates using 

PCA mutation and n-point crossover. 

ii.  Using Euclidean distance measurement to slow 

down movement of the PF by implementing 

covariance matrix with respect to the mean value 

within the search space. 

iii. Ensuring that performance of the proposed 

algorithm (compared to other well-performing 

DMOEAs) is not diminished by problems of high 

dimensionality and rapidly changing objectives 

and PF. We achieved this by using both HV and 

IGD performance metrics (Tables II and III).  

Future research will consider improving the performance 

of the proposed dyNSGA-III algorithm on robust Pareto-

optimal solutions over time (RPOOT) for multiple 

objectives with complicated PF. We will also consider the 

effect of adaptive reference point placement in the search 

space in addition to adaptively varying the crossover and 

mutation rates for the NSGA-III algorithm. This will help 

us to examine the possibility of further improving the 

capability of DMOEAs to handle highly dynamic, 

multimodal problems. In addition, we will consider 

problems with more than three objectives, which are 

representative of many real-world problem models. 

Regarding the practical adaptability of the proposed 

DMOEA, we will also test its performance on optimization 

of dynamic mathematical models representing real-life 

systems which are susceptible to frequent environmental 

changes over time. The efficacy of specific MOEAs such as 

artificial bee colony algorithm (ABC), Hybrid Spider 

Monkey algorithm (HSMA), and Raccoon family 

optimization algorithm (RFOA) has been highlighted in 

recent literature. In future, we will compare the 

performance of the improved dyNSGA-III algorithm with 

these MOEAs. 
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