
electronics

Article

Exploiting Heterogeneous Parallelism on Hybrid
Metaheuristics for Vector Autoregression Models

Javier Cuenca 1 , José-Matías Cutillas-Lozano 2 , Domingo Giménez 2 ,
Alberto Pérez-Bernabeu 3 and José J. López-Espín 4,*

1 Department of Engineering and Technology of Computers, University of Murcia, 30100 Murcia, Spain;
jcuenca@um.es

2 Department of Computing and Systems, University of Murcia, 30100 Murcia, Spain;
josematias.cutillas@um.es (J.-M.C.-L.); domingo@um.es (D.G.)

3 Department of Economics (FAE), University of Alicante, 03690 San Vicente del Raspeig, Spain;
alberto.perezbernabeu@ua.es

4 Center of Operations Research, Miguel Hernandez University of Elche, 03202 Elche, Spain
* Correspondence: jlopez@umh.es

Received: 5 September 2020; Accepted: 14 October 2020; Published: 27 October 2020
����������
�������

Abstract: In the last years, the huge amount of data available in many disciplines makes the
mathematical modeling, and, more concretely, econometric models, a very important technique to
explain those data. One of the most used of those econometric techniques is the Vector Autoregression
Models (VAR) which are multi-equation models that linearly describe the interactions and behavior
of a group of variables by using their past. Traditionally, Ordinary Least Squares and Maximum
likelihood estimators have been used in the estimation of VAR models. These techniques are
consistent and asymptotically efficient under ideal conditions of the data and the identification
problem. Otherwise, these techniques would yield inconsistent parameter estimations. This paper
considers the estimation of a VAR model by minimizing the difference between the dependent
variables in a certain time, and the expression of their own past and the exogenous variables of the
model (in this case denoted as VARX model). The solution of this optimization problem is approached
through hybrid metaheuristics. The high computational cost due to the huge amount of data makes
it necessary to exploit High-Performance Computing for the acceleration of methods to obtain the
models. The parameterized, parallel implementation of the metaheuristics and the matrix formulation
ease the simultaneous exploitation of parallelism for groups of hybrid metaheuristics. Multilevel and
heterogeneous parallelism are exploited in multicore CPU plus multiGPU nodes, with the optimum
combination of the different parallelism parameters depending on the particular metaheuristic and
the problem it is applied to.

Keywords: computational econometric; VAR models; parallelism; metaheuristics; GPU

1. Introduction

In any scientific discipline where data usage is extensive, the provision of mathematical models
that efficiently simulate a certain problem is a powerful tool that provides extremely valuable
information. In economics, the study and use of econometric models that can simulate the relationship
among many variables has been a key point in its development throughout the twentieth century.
Nevertheless, in many cases, the computational cost has been an important drawback setting back the
use of the largest models.

One of the most extended econometric models are Vector Autoregression (VAR) models [1] which
are multi-equation models that linearly describe the interactions and behavior of a group of variables,

Electronics 2020, 9, 1781; doi:10.3390/electronics9111781 www.mdpi.com/journal/electronics

http://www.mdpi.com/journal/electronics
http://www.mdpi.com
https://orcid.org/0000-0002-8763-756X
https://orcid.org/0000-0003-4359-0058
https://orcid.org/0000-0003-4827-1320
http://www.mdpi.com/2079-9292/9/11/1781?type=check_update&version=1
http://dx.doi.org/10.3390/electronics9111781
http://www.mdpi.com/journal/electronics

Electronics 2020, 9, 1781 2 of 18

by using their own past. More specifically, a VAR is a particularization of a Simultaneous Equations
Model formed by a system of equations in which the contemporary values of the variables do not
appear in any explanatory variable in the equations. VAR models are traditionally used in finance
and econometrics [2,3], but, with the arrival of Big Data, huge amounts of data are being collected
in numerous fields like medicine, psychology or process engineering, giving to the VAR models an
important role modeling this data. Although there are tools to tackle this issue, the large amount of
data, along with the availability of computational techniques and high performance systems, advise
an in-depth analysis of the computational aspects of VAR, so large models can be solved efficiently
with today’s computational systems, whose basic components are nodes of multicore CPU plus GPUs.

There is ample literature on time series [4], and, when the value of a variable at a time depends
linearly on the value of one or more variables at previous instants, the structure of VAR is considered.
In these models, there are dependent (endogenous) and independent (exogenous) variables. The first
ones influence and are influenced by the rest of endogenous and exogenous variables. The second
ones just influence but are not influenced, and are not predicted by the model.

To solve a VAR model, classical techniques like Ordinary Least Squares (OLS) (used equation by
equation) or Maximum Likelihood estimator are commonly used. The practical challenge of its design
lies in selecting the optimal length of the lag of the model. A general and actualized review can be
seen in [5].

Nevertheless, nowadays, an alternative point of view of VAR models is the Bayesian Vector
Autoregressive models (BVAR), first proposed by Litterman [6]. These models have become popular
to deal with the overparameterization problem that appears in VAR models. In fact, BVAR models
seem to be an alternative technique of the classic ones to estimate a VAR model.

Several recent articles survey the literature on BVARs. Koop and Korobilis (2010) [7] propose a
discussion of Bayesian multivariate time series models with an in-depth discussion of time-varying
parameters and stochastic volatility models. As a recapitulation, S. Miranda and G. Ricco (2018) [8]
provide a review of ideas and contributions of BVAR literature.

In summary, the main contribution of this work consists of the design and implementation of a
high performance software engine for the estimation of VAR models by minimizing the difference
between the dependent variables at instant i, and the expression of their own past and the exogenous
variables of the model. For the achievement of this general objective, it has been necessary to work in
an interdisciplinary way in order to join a set of techniques, tools and paradigms of problem solving
(Figure 1):

• A matrix formulation of VAR has been used, where, as will be described in detail in the following
section, given a set of endogenous and exogenous variables (represent by Y and Z respectively),
the endogenous variables at time i are expressed as a linear function of those endogenous variables
in previous instants (i− 1, i− 2,. . .) and the exogenous variables (both represented by X). Thus,
the objective of the software is to find the coefficients of the model, represented by matrix A,
which best represents the dependency of the VAR model; that is, that it better relates both
data matrices Y and X. From a matrix point of view, this objective can be summarized in the
minimization of the difference between the Y values and the values of the matrix multiplication
XA. This matrix approach to VAR allows to apply high performance techniques in its resolution;
that is, by becoming a problem of matrix calculation, several improvements has been introduced in
the algorithms of resolution, such as the use of data block methods to optimize access to different
levels of the hardware platform memory, with the consequent improvement of its performance.
Likewise, the matrix vision of the problem allows the use of pre-optimized matrix libraries and an
efficient execution of the software on high performance parallel platforms.

• The problem of finding the optimum VAR model for a given series is an optimization problem
whose solution can be approached through metaheuristics. The application of parameterized
metaheuristic schemes has proved to be a practical approach for the determination of satisfactory
metaheuristics for several problems [9,10]. Therefore, a flexible metaheuristic scheme has been

Electronics 2020, 9, 1781 3 of 18

used hybridizing it from a set of metaheuristics, both Local Search and population-based methods.
A set of configuration parameters adjusts the degree of hybridization in each phase of the final
metaheuristic scheme.

• The parameterized metaheuristic scheme facilitates the development and optimization of parallel
implementations [11,12]. The application of shared-memory parallelism to VAR is analyzed in [13].
This work extends the proposal to heterogeneous parallelism so that shared-memory and CUDA
parallelism are combined to fully exploit today’s computational systems composed of multicore
CPU plus one or more GPU cards. In addition, for the distribution of workload between the
different computing units (CPU and GPUs), different scheduling schemes (static versus dynamic,
uniform versus balanced) are proposed and compared.

Big Data Base

Set of variables:

Y: endogenous variables at instant i
X: endogeneous and exogeneous variables at previous instants

Time Series Analysis Engine

Hybrid MetaheuristicMetaheuristic1 scheme
Metaheuristic2 scheme

…
Metaheuristicn scheme

Hybrid Metaheuristic Parameters

Optimizating fitness:

Min ||Y-XA||

Matrix
formulation

of the
VAR Model:

A

Hybrid Platform

Multicore
CPU

GPU1 GPUmGPU2 ...

Workload
scheduling

Figure 1. Operation diagram of the time series analysis engine.

This high-performance proposal can facilitate tackling huge problems, with a large number of
variables involved on which to study their relationships over long periods of time. In this way, in the
last section of this paper, some previous results of the works that are being developing with scientists
of several fields are shown.

The rest of the paper is organized as follows. Section 2 describes the matrix formulation used in
this paper. The hybrid metaheuristics considered for approaching the time series model are analyzed
in Section 3, while their parallelization for the exploitation of heterogeneous multicore+multiGPU
parallelism is analyzed in Section 4. The results of some experiments are shown in Section 5. Section 6
analyses possible applications of the parallel metaheuristics, and Section 7 concludes the paper.

2. Matrix Formulation for Vector Autoregression Models

Considering d dependent parameters at t time instants, the vector of parameters at an instant i
is represented by y(i). Therefore, the time series Y is a matrix of dimension t× d. Similarly, vectors
z(i), 1 ≤ i ≤ t, represent the values of independent variables; each vector z(i) is of size e and the series

Electronics 2020, 9, 1781 4 of 18

of independent variables is a matrix Z of dimension t× e. The values of the endogenous variables at
instant i depend on those of ty and tz previous instants for the endogenous and exogenous variables.
The dependencies on the endogenous variables are represented by matrices Ai ∈ Rd×d, 1 ≤ i ≤ ty and
those on the exogenous ones by matrices Bi ∈ Re×d, 1 ≤ i ≤ tz:

y(j) ≈ y(j−1)A1 + y(j−2)A2 + . . . + y(j−ty)Aty+

z(j−1)B1 + z(j−2)B2 + . . . + z(j−tz)Btz + C
(1)

where C is a vector 1× d of constant values.
They can be represented in matrix form, with the values of the series at instants ty + 1 to t

depending on the previous ones:

Y(ty + 1 : t, :) ≈
Y(ty : t− 1, :)A1 + Y(ty − 1 : t− 2, :)A2 + . . . + Y(1 : t− ty, :)Aty+

Z(ty : t− 1, :)B1 + Z(ty − 1 : t− 2, :)B2

+ . . . + Z(ty − tz + 1 : t− tz, :)Btz + C

(2)

Alternatively, if the vectors at previous instants are represented in a matrix X of dimension(
t− ty

)
×
(
d · ty + e · tz + 1

)

y(ty) . . . y(1) z(ty) . . . z(ty−tz+1) 1
...

...
...

y(t−1) . . . y(t−ty) z(t−1) . . . z(t−tz) 1

 (3)

Equation (2) can be represented as

y(ty+1)

...
y(t)

 ≈ X

A1
...

Aty

B1
...

Btz

C

(4)

where the matrix on the right (built from matrices Ai, Bi and C) represents
the model of the time series. We call this matrix A, of dimension(
d · ty + e · tz + 1

)
× d.

The optimization problem to be solved consists of the determination of the model (matrix A)
which best represents the dependencies on the time series:

min
A

∥∥Y
(
ty + 1 : t, :

)
− X · A

∥∥ (5)

The problem can be approached by Ordinary Least Squares (OLS). Here, basic Local Search and
distributed metaheuristic algorithms and their hybridations are considered. The basic distributed
metaheuristics are Genetic Algorithms [14] and Scatter Search [15], in combination with Local
Search [16] and Tabu Search [17].

For each possible model (matrix A, an element for the metaheuristic), the norm in Equation (5)
represents the fitness. The time series, Ŷ, generated with the model represented by matrix
A and with the ty initial vectors, is simulated with the multiplication Ŷ = X · A, with cost
O
((

t− ty
)
·
(
d · ty + e · tz + 1

)
· d
)
, which means a high computational cost in the application of

Electronics 2020, 9, 1781 5 of 18

metaheuristics for large time series with large dependencies. Therefore, matrix computation techniques
should be used to reduce the execution time [18]. These techniques are not considered in this paper,
which is devoted to the analysis of the application of hybrid metaheuristics and their parallelization
on today’s multicore+multiGPU nodes. If optimized matrix operations were used, the execution time
would be reduced, with no modifications to the metaheuristic, parallel schema.

3. Basic and Hybrid Metaheuristics

The representation of the candidate elements and their fitness are common to all the
metaheuristics considered:

• A candidate solution is a matrix A (Ai, Bi and C in Equation (4)) of size
(
d · ty + e · tz + 1

)
× d.

Different types of problems can be stated by imposing restrictions on the values in A. For example,
the values can be in an interval or a set of integers or real numbers. LAPACK [19] can be used
for the solution of Equation (5) for the real, continuous problem. The metaheuristic approach,
generally with a larger execution time, can be used for the different versions of the problem.
The results in the experimental section were obtained for solutions in an interval of real numbers,
but this work focuses on the exploitation of parallelism, and the conclusions do not change
significantly for different versions.

• The fitness for a candidate solution A is a measure of how the time series Y is approached with
model A. The norm ‖Y− X · A‖ divided by the square root of the number of elements of Y
(
√

t · d) is used in the experiments. Other statistical criteria (Akaike (AIC) [20], Schwarz (BIC) [21],
Hannan–Quinn (HQC) [22], etc.) could be used, with different costs for the computation of the
fitness. The differences in the solutions with the different criteria are residual, and now, again,
the parallelism is not influenced by the fitness function.

Local Search methods work by analyzing the neighborhood of the candidate elements.
The neighborhood considered for a vector with

(
d · ty + e · tz + 1

)
· d entries consists of 2 ·(

d · ty + e · tz + 1
)
· d elements, which are obtained by adding and subtracting a certain value to

each position of the vector. If the best element in the neighborhood is better than the active element,
it becomes the new active element. If not, the search continues with the same element, and the new
neighborhood to be explored changes, due to the random generation of the neighbors. A maximum
number of iterations from an initial value can be established and, after this number, a new active
element can be generated for a new search. Therefore, a method similar to GRASP [16] is obtained.

Tabu Search [17] is used to guide the search. In our implementation, the last positions modified in
the vector v are maintained in the list. On the other hand, a long-term tabu strategy is used with a
tabu element which is the mean of the best elements in a number of the last iterations. It is used in the
selection of elements to be explored. Elements close to this tabu element are discarded.

The previous methods are Local Search metaheuristics, which can be hybridized with distributed
metaheuristics. The most popular distributed (or population-based) metaheuristic is the Genetic
Algorithm [14], GA. The way in which the basic functions of the GA have been implemented is
briefly explained:

• Initialize: An initial population is randomly generated. This population can be improved with
Local and Tabu Searches (hybridization).

• A number of iterations are performed on the population:

– Select: In our implementation, the best elements are always selected, and some of the
worst ones are randomly selected. Combinations of best elements, of best and worst and of
worst elements are generated. When the number of combinations of best elements is large,
the method is closer to a pure GA.

Electronics 2020, 9, 1781 6 of 18

– Combine: The combination can also be carried out in different ways. A simplified Path
Relinking [23] approach is used: given two ascendants v1 and v2, the two descendants are in
the path connecting them, 1

3 v1 +
2
3 v2 and 2

3 v1 +
1
3 v2.

– Diversify: The mutation contributes to the diversification of the search. A low percentage
of individuals are selected to be mutated. An entry e of the individual is randomly selected,
and it is updated by randomly adding or subtracting a random value in the interval [0, |ve|].
The elements obtained by mutation are likely to die, and to prevent their early death, they can
be improved with a few iterations of Local Search (hybridization).

– Include: The best elements from those in the original population and those generated with
combination and mutation are included in the population for the next iteration. The inclusion
of a few of the non-best elements can contribute to diversify the search, as can the use of the
long-term tabu strategy (hybridization).

Scatter Search (SS) [23] differs from GA in the systematic application of intensification and in the
way in which diversification is achieved. The main differences are:

• Initialize: An initial set of elements is randomly generated as in GA, but it is normally smaller
than for GA. The elements are improved before starting the iterations (hybridization).

• Select: Typically, all the elements are combined, in pairs or bigger groups. In our implementation,
the combination is like that for GA, but the percentages of best and worst elements selected for
combination are similar, and a large number of combinations is carried out, and the elements so
obtained are improved (hybridization).

• Diversify: The diversification is carried out through the selection and combination of
non-promising elements, and so mutation is not applied.

• Include: The percentage of non-promising elements to be included in the reference set is now
higher, again to help diversification.

Metaheuristics can be hybridized in many ways [24], and hybridation with exact methods is also
possible [25]. Some hybridation possibilities have been mentioned for the basic methods considered.
Metaheuristics can be developed with a unified schema [26], which can in turn be parameterized [9].
The parameterized schema used here for hybrid metaheuristics is shown in Algorithm 1. Each basic
function includes some parameters whose values are selected to obtain basic metaheuristics or
hybridations. The hybridation of Local Search and distributed methods is achieved with the inclusion
of improvements in two parts of the schema.

Algorithm 1: Parameterized schema for hybrid metaheuristics.
Initialize(ParamIni) −→ S_ini
Improve(S_ini, ParamImpIni) −→ S_re f
while not EndCondition(S_ref, ParamEndCon) do

Select(S_ref, ParamSel) −→ S_sel
Combine(S_sel, ParamCom) −→ S_com
Diversify(S_ref, S_com, ParamDiv) −→ S_div
Improve(S_com, S_div, ParamImp) −→ S_imp_com, S_imp_div
Include(S_imp_com, S_imp_div, S_ref, ParamInc) −→ S_re f

end while

The metaheuristic parameters of the parameterized metaheuristic schema (Algorithm 1) are:

• ParamIni (Parameters Initialize function): INEIni (Initial Number of Elements).
• ParamImpIni (Parameters for Improving Initial Elements): PEIIni (Percentage of Elements to

be Improved in the initialization), I IEIni (Intensification in the Improvement of Elements),

Electronics 2020, 9, 1781 7 of 18

LTLIni (Length of the Tabu List for Local Search), FNEIni (Final Number of Elements for
successive iterations).

• ParamEndCond (Parameters for End Condition): MNIEnd (Maximum Number of Iterations),
MIREnd (Maximum number of Iterations with Repetition).

• ParamSel (Parameters for Select function): NBESel (Number of Best Elements selected for
combination), NWESel (Number of Worst Elements selected for combination).

• ParamCom (Parameters for Combine fuction): NBBCom (Number of Best-Best elements
combinations), NBWCom (Number of Best-Worst elements combinations), NWWCom (Number
of Worst-Worst elements combinations).

• ParamDiv (Parameters for Diversify function): PEDDiv (Percentage of Elements to be Diversified).
• ParamImp (Parameters for Improve function): PEIImp (Percentage of Elements obtained

by combination to be Improved), I IEImp (Intensification of the Improvement of Elements
obtained by combination), I IDImp (Intensification of the Improvement of elements obtained
by Diversification), LTLImp (Length of the Tabu List for Local Search on elements obtained
by combination), LTDImp (Length of the Tabu list for Local Search on elements obtained
by Diversification).

• ParamInc (Parameters for Include function): NBEInc (Number of Best Elements included in the
reference set for the next iteration), LTMInc (Long-Term Memory size for the selection of elements
to be included in the reference set).

The searching task of the most appropriate set of values for these parameters is a challenge in
itself beyond the scope of this paper. One possibility to address it is by a hyperheuristic approach [10],
where this set of values can be selected so that it is suitable for the set of problems on which it will be
applied, avoiding the dependence of each specific problem. A hyperheuristic can be implemented on
top of the parametrized metaheuristic schema, searching within the space of metaheuristics determined
by the values of the metaheuristic parameters.

4. Hybrid Metaheuristics on Heterogenous Multicore+multiGPU

Metaheuristics can be parallelized in a number of ways [27,28], and there are works on
parallelization of each of the basic metaheuristics considered (Local Search [29], Tabu Search [30],
Genetic Algorithm [31], Ant Colony [32], ...), and for different types of computational systems
(e.g., CMP architectures [33], distributed platforms [34] and GPUs [35,36]). On the other hand,
the unified, parameterized schema enables the simultaneous implementation of parallel versions
of different basic metaheuristics and their hybridations for different types of computational systems
(e.g., shared-memory [11], heterogeneous clusters [12] and many-core systems like GPUs [37]).
In addition, when a hyperheuristic approach is included, a lot of metaheuristics are applied to different
inputs, leading to a very large computational cost. Therefore, an upper parallel schema becomes
mandatory to reduce execution times [38,39].

In shared-memory, parallelism can be implemented with independent parallelization of each
basic routine in Algorithm 1. There are three parallelism levels:

• The parallelization in the routines Initialize, Combine, Diversify and Include consists of just
parallelization of a loop, with dynamic assignation of the steps of the loop to a pool of threads.

• The improvement function has higher computational cost, and two levels of parallelism are
used—the first to distribute the set of elements to be improved, and the second to assign different
areas of the neighborhood to different threads.

• Additionally, for our approximation to the time series problem, the matrix operations (matrix
multiplication and computation of the norm) can be done in parallel.

Electronics 2020, 9, 1781 8 of 18

The three levels are exploited in shared-memory with multilevel parallelism in OpenMP [40],
with a different number of threads at each level depending on the amount of work at each level and
the characteristics of the computational system (number of cores and computational capacity). On the
other hand, GPU parallelism can be exploited at different levels:

• The highest level corresponds to an island schema, with the reference set divided in subsets which
are each assigned to a different GPU. If only one GPU is available, all the computation should be
carried out in that GPU.

• The highest level of the shared-memory version corresponds to the parallelization of the loops for
the treatment of elements. The steps of a loop are assigned to different threads, with one thread per
GPU, and each thread calls its GPU to work with the corresponding element, which is transferred
from the CPU to the GPU for the computation, and the required results (the elements generated
together with the fitness) are transferred back from the GPU to the CPU. In this way the GPU
computes the fitness of the element or explores its neighborhood in the improvement function.

• GPUs can work at the second level of the shared-memory version: the analysis of the neighborhood
of each element would be done in parallel, with each GPU working in one area of the neighborhood
to obtain the best neighbor in its area, which is transferred together with its fitness back to the CPU,
which computes the best neighbor before the next step of the improvement of the active element.

• The parallelization at the lowest level would delegate the computation of the fitness to GPU.

In this work, a combination of the two middle-level versions has been considered. The GPUs
work in the computation of the fitness after initialization, combination and diversification, and in the
improvement of elements, where the parallelism at two levels might be explored (Algorithm 2).

Algorithm 2: Parameterized schema for hybrid metaheuristics. CPU/GPU work distribution.

CPU: Initialize(ParamIni) −→ S_ini
GPU: Computefitness(S_ini, ParamIni)
GPU: Improve(S_ini, ParamImpIni) −→ S_re f
while not EndCondition(S_ref, ParamEndCon) do

CPU: Select(S_ref, ParamSel) −→ S_sel
CPU: Combine(S_sel, ParamCom) −→ S_com
GPU: Computefitness(S_com, ParamCom)
CPU: Diversify(S_ref, S_com, ParamDiv) −→ S_div
GPU: Computefitness(S_div, ParamDiv)
GPU: Improve(S_com, S_div, ParamImp) −→ S_imp_com, S_imp_div
CPU: Include(S_imp_com, S_imp_div, S_ref, ParamInc) −→ S_re f

end while

Thus, taking into account this parallel schema, the method of finding the solution does not change
in substance with respect to the CPU version, but now the work that is done with the components of
these populations is distributed between the CPU and GPU threads. Therefore, the stop condition of
the main loop is the same, thus maintaining the quality of the solution. Therefore, the experimental
study of this work will focus on improving the speed of treatment of successive populations when
multiple GPUs are used.

5. Experimental Results

Experiments were performed in 3 nodes with different CPUs and GPUs:

• Marte: hexa-core CPU AMD Phenom II X6 1075T at 3.00 GHz, 16 GB of RAM. It includes a GPU
NVidia GeForce GTX 480 (Fermi).

• Saturno: 4 CPU Intel Xeon E7530 (hexa-core) at 1.87 GHz, 32 GB of RAM. It includes a GPU
NVidia Tesla K20c (Kepler).

Electronics 2020, 9, 1781 9 of 18

• Jupiter: 2 CPU Intel Xeon E5-2620 (hexa-core) at 2.00 GHz, 32 GB of RAM. It includes 6 GPUs:
2 NVidia Tesla C2075 (Fermi) and 4 GeForce GTX 590 (Fermi).

Shared-memory parallelism is analyzed in [13]. In general, the preferred number of threads
at each of the three levels is different depending on the values of the metaheuristic parameters.
Therefore, a different number of threads can be fixed for each level in each of the basic functions in
Algorithm 1. The main conclusions in [13] are summarized here:

• The exploitation of parallelism at the highest level is, in general, preferred for small problems.
The difference depends on the computational capacity of the node.

• The performance with medium level parallelism decreases for small problems when the number
of threads increases.

• For large problems, medium level parallelism is preferred, especially when the number of
threads increases.

• The exploitation of low level parallelism is far worse than with the other types of parallelism.

In order to improve the global performance of the routine, the possibility of using GPUs
has been studied to carry out the part of the work that best suits their characteristics. They can
be used in different parts of the algorithm and with different levels of parallelism (Algorithm 2).
Generally speaking, the use of these accelerators tends to offer better performance when they are
responsible for solving computation-intensive parts of the problem, with a large number of operations
on the same set of data and with an as uniform as possible operational schema. For this reason, the use
of GPUs is centered mainly on the calculation of the fitness of each element: functions Computefitness
and on the computation of the fitness inside function Improve. Different versions with different degrees
of parallelism and schedule and balancing policies are considered:

• The first version with one accelerator, called single_fitness_1GPU or sf_1GPU, consists of using
a single GPU that performs the fitness calculations for each element (matrix multiplication and
norm) one by one. It corresponds to parallelism at the third level in the shared-memory version,
but in this case the computation of the fitness is delegated to the GPU.

• The second version, called grouped_fitness_1GPU or gf_1GPU, seeks to increase the amount of
data the GPU operates with, in order to optimize its use by addressing operations on large
data sets. When calculating the fitness of the set of elements of the next generation that are
children or neighbors (depending on the function) of the current elements, the set of individual
multiplications is substituted by one multiplication by building a matrix composed of all the
individual matrices to be multiplied. Therefore, parallelism works now at a higher level.

• The first version for multiple GPUs, called static_uniform_scheduling_multiGPU or sus_mGPU,
uses a static, uniform work distribution. The fitness calculations are distributed among the
GPUs in the system without making decisions during the execution (static scheduling) and
without taking into account possible differences in the performance of these accelerators
(uniform scheduling).

• The next version, called static_balanced_scheduling_multiGPU or sbs_mGPU, is a multiGPU version
with static but non uniform distribution of the fitness calculations, where the quantity of work
sent to each GPU is proportional to its relative computing capacity.

• The last version, called dynamic_balanced_scheduling_multiGPU or dbs_mGPU, dynamically
distributes the workload among the GPUs: the successive calculations of the fitness are scheduled,
at runtime, among the different GPUs.

The use of two GPU matrix multiplication routines has also been considered in all the versions:
a naive implementation and the multiplication routine in the CUBLAS library [41].

The versions are compared in the nodes mentioned and for problems of variable sizes. Table 1
shows the problem scenarios for the experiments. The names of the parameters are those used in the

Electronics 2020, 9, 1781 10 of 18

matrix formulation in Section 2. The size of the multiplications when computing the fitness is also
shown (

(
t− ty

) (
dty + etz + 1

)
d); it serves to compare the expected time for the different scenarios.

Table 1. Problem scenarios considered. Parameters and size of the multiplications when computing
the fitness.

Parameters Size of the Multiplications

scenario t d e ty tz
(
t− ty

) (
dty + etz + 1

)
d

s1 200 4 2 3 2 13,328
s2 200 5 3 4 3 29,250
s3 300 6 4 12 10 199,332
s4 1001 20 0 2 0 804,420
s5 2001 31 0 2 0 3,847,410

Different sets of metaheuristic parameters, which were introduced in Section 3, have been tested,
obtaining similar results in terms of the scope of this work (heterogeneous CPU+GPUs parallelization
of the hybrid metaheuristic schema). The set of metaheuristic parameters used is:

• ParamIni: INEIni = 80
• ParamImpIni: PEIIni = 50, I IEIni = 10, LTLIni = 1, FNEIni = 20.
• ParamSel: NBESel = 10 , NWESel = 5.
• ParamCom: NBBCom = 10, NBWCom = 10, NWWCom = 5.
• ParamDiv: PEDDiv = 20 .
• ParamImp: PEIImp = 50, I IEImp = 10, I IDImp = 20, LTLImp = 1, LTDImp = 1.
• ParamInc: NBEInc = 15, LTMInc = 3 .
• ParamEndCond: MNIEnd = 10, MIREnd = 10.

That is, 80 elements are randomly generated, 50% of them are improved, with 10 steps of
exploration of the neighborhood and a tabu list of only one element; the reference set for the successive
iterations comprises 20 elements; the best 10 elements and 5 elements from the remaining ones are
selected for combinations, with 10, 10 and 5 combinations between best, best-worst and worst elements;
50% of the elements in the reference set and those obtained by combination are improved, with intensity
10 and tabu list with 1 element; 20% of the elements are mutated, and the elements generated are
improved with 20 steps of improvement and tabu list with 1 element; the 15 best elements and five
elements from the remaining ones form the reference set for the next iteration; and information of the
last 3 iterations is used to diversify the non-best elements selected.

For the experiments performed, a regular escalation in the execution times has been verified,
independently of the number of algorithm main iterations. Therefore, each of the values that will
be shown in figures and tables correspond to the average time of 20 executions, with 10 iterations
per execution.

5.1. Experimental Results Using One GPU

In marte, with only one GPU, a version which only exploits CPU parallelism (parallel_CPU or
pCPU) is compared with the two versions that use both the CPU and the GPU (sf_1GPU and gf_1GPU).
Table 2 shows the execution times of these versions for the problem scenarios in Table 1 (the best time
value for each scenario has been highlighted). As expected, as the problem size increases, the use of
the GPU together with the CPU makes more sense, because the cost of the transfers from CPU to GPU
is compensated by the exploitation of the computational power of the two units. Hence, for problem
s2, the execution times of all the GPU versions are similar, and larger than that of the CPU version.
For larger problems (scenarios s3, s4 and s5), the times of the different versions that use GPU start
to be lower than that of the parallel routine for CPU. The version pCPU+gf_1GPU, which includes
a global fitness calculation for a whole new generation of newborn or neighbor elements, produces

Electronics 2020, 9, 1781 11 of 18

a small improvement, which corresponds to how the operations performed are grouped. For the
CUBLAS library, we can see in the first version (single application of each matrix multiplication) how
its performance improves on those of the three-loop routine when the size of the problem grows.
However, the version which combines the matrix computations shows similar performance when
CUBLAS is used, which may be due to a larger cost of the CPU-GPU transfers.

Table 3 includes the same comparison for saturno. In this case, both the CPU and GPU are
more powerful than in marte, although the costs of communication between the CPU-GPU memories
are similar. For that reason, unlike in marte, GPU is not recommended for medium sized problems
(scenario s3), although the accelerator offers improvements in performance when the input problem is
larger (scenarios s4 and s5).

In jupiter, the CPU is more powerful than in marte, as it comprises 12 cores, and 6 GPUs, 4 of
them similar in power to that of marte, and the other 2 usually offer better performance, although it
depends on the specific operations/routines to be executed. Table 4 compares, in jupiter, the execution
times of the CPU and one-GPU versions. The GPU used is one of the fastest in the node. The execution
time of the CPU version is reduced by about a half for scenario s4 and by about one third in s5, both
with the basic version of single fitness calculation (pCPU+sf_1GPU) and when it includes calculation
grouping (pCPU+gf_1GPU). The latter is somewhat better, mainly when the size of the problem
grows, as happens in marte and saturno. In both cases, in addition, the use of CUBLAS supposes an
improvement of around 10% in the performance.

In Figure 2, we can appreciate how, in the three hardware platforms and for all the CPU+GPU
versions of the routine, the speed-up with respect to the CPU version clearly grows as we advance in
the work scenario, which reaffirms the idea of the utility of the hybrid proposal, mainly as we face
problems of greater dimension.

The differences in the behavior of the routines in the three nodes are due to the differences in
relative CPU/GPU performance and in the cost of CPU-GPU transfers.

Table 2. Execution times (in seconds, for 10 iterations) in marte (the best time value for each scenario
has been highlighted).

scenario pCPU pCPU + sf_1GPU pCPU + sf_1GPU_cublas pCPU + gf_1GPU pCPU + gf_1GPU_cublas

s1 4.76 23.14 24.82 23.61 25.94
s2 19.17 59.40 63.00 59.10 62.42
s3 418.46 426.34 383.88 413.87 416.07
s4 1638.54 886.54 853.21 853.37 869.45
s5 6634.22 3386.32 3353.87 3452.11 3362.78

Table 3. Execution times (in seconds, for 10 iterations) in saturno (the best time value for each scenario
has been highlighted).

scenario pCPU pCPU + sf_1GPU pCPU + sf_1GPU_cublas pCPU + gf_1GPU pCPU + gf_1GPU_cublas

s1 3.58 50.61 56.30 56.59 55.82
s2 14.05 132.07 139.74 119.13 144.16
s3 344.25 823.73 789.40 759.67 777.35
s4 1584.07 1088.38 926.53 1105.84 916.98
s5 6544.44 3038.23 2923.21 3135.22 2922.92

Table 4. Execution times (in seconds, for 10 iterations) in jupiter (the best time value for each scenario
has been highlighted).

scenario pCPU pCPU + sf_1GPU pCPU + sf_1GPU_cublas pCPU + gf_1GPU pCPU + gf_1GPU_cublas

s1 6.44 33.56 31.40 32.45 93.23
s2 11.65 83.53 81.40 83.45 90.53
s3 185.03 509.25 497.55 508.56 550.24
s4 1487.44 1023.33 913.23 1055.44 906.22
s5 8584.07 3018.31 2956.56 3303.33 2902.56

Electronics 2020, 9, 1781 12 of 18

2 3 4 5
0

0.5

1

1.5

2

2.5

problem scenarios

sp
ee

d-
up

w
it

h
re

sp
ec

tt
o

C
PU

marte

pCPU+sf_1GPU
pCPU+sf_1GPU_cublas

pCPU+gf_1GPU
pCPU+gf_1GPU_cublas

2 3 4 5
0

0.5

1

1.5

2

2.5

problem scenarios

sp
ee

d-
up

w
it

h
re

sp
ec

tt
o

C
PU

saturno

pCPU+sf_1GPU
pCPU+sf_1GPU_cublas

pCPU+gf_1GPU
pCPU+gf_1GPU_cublas

2 3 4 5
0

0.5

1

1.5

2

2.5

3

problem scenarios

sp
ee

d-
up

w
it

h
re

sp
ec

tt
o

C
PU

jupiter

pCPU+sf_1GPU
pCPU+sf_1GPU_cublas

pCPU+gf_1GPU
pCPU+gf_1GPU_cublas

Figure 2. Speed-up with respect to the homogeneous parallel version on CPU (pCPU) of different
hybrid versions using 1 GPU (pCPU+xx_1GPU), for different problem scenarios (Table 1); in the
different platforms.

5.2. Experimental Results Using Multiple GPUs

The use of multiple GPUs can help to further reduce the execution time. Table 5 shows the
execution time of the different hybrid versions using multiple GPU with and without CUBLAS.
Results are shown for the largest scenarios in Table 1 (the best time value for each scenario has been
highlighted; for each number of GPUs, the best time value for each scenario has been underlined).
The main conclusions from the comparison of the results with the different scheduling methods are:

• The simplest method, with a uniform and static work distribution (pCPU+sus_mGPU) gives
satisfactory results for small problems and/or with few GPUs.

• When the size of the problem grows and, mainly, with more GPUs, both the static balanced
distribution (pCPU+sbs_mGPU) and the dynamic distribution (pCPU+dbs_mGPU) begin to show
better behavior, outperforming pCPU+sus_mGPU in some cases. In general, it seems that
scheduling policies that take into account the heterogeneous capacity of GPUs, either statically or
dynamically, make more sense when the problem and platform grow in size and complexity:

◦ In the case of pCPU+sbs_mGPU, the size of the problem must grow so that the static balancing
policy corresponds better to the relative performance of the GPUs.

◦ On the other hand, in pCPU+dbs_mGPU, the overload introduced by the dynamic distribution
of work is compensated by achieving work distributions which are more proportional to the
computational capacity of each process unit.

Electronics 2020, 9, 1781 13 of 18

Table 5. Execution times of different hybrid versions (CPU plus multiple GPUs), for different problem
scenarios (Table 1) and varying the number of GPUs, in jupiter, for 10 iterations, in seconds.

Number of GPUs

Problem Scenario 2 3 4 5 6

pCPU+sus_mGPU

s2 52.98 62.83 53.00 43.80 36.72
s3 258.66 203.25 201.99 174.32 155.49
s4 462.76 307.82 278.60 241.47 196.89
s5 2753.91 1747.19 1436.59 1125.08 989.56

pCPU+sus_mGPU+CUBLAS

s2 55.92 61.73 47.92 41.73 34.42
s3 281.25 266.55 192.36 164.54 140.25
s4 519.03 742.85 845.81 780.13 801.84
s5 1709.52 2030.31 2173.82 2173.90 2084.35

pCPU+sbs_mGPU

s2 51.05 61.72 50.52 47.11 37.29
s3 279.86 287.37 187.54 168.35 138.58
s4 479.24 345.58 278.80 238.29 201.96
s5 3055.48 1987.37 1612.96 1212.72 1076.20

pCPU+sbs_mGPU+CUBLAS

s2 59.19 66.57 51.62 38.04 33.94
s3 292.55 273.25 212.55 152.10 135.25
s4 496.83 720.46 813.38 769.74 775.60
s5 1862.27 2013.31 2334.37 2300.61 2285.00

pCPU+dbs_mGPU

s2 55.27 46.08 46.93 42.05 34.01
s3 265.54 220.25 217.54 183.65 142.36
s4 506.92 327.44 294.42 253.51 191.39
s5 2910.10 1820.28 1397.16 1278.52 985.53

Figure 3 shows the evolution of the speed-up with respect to the parallel execution in CPU
when the problem size increases, for the different hybrid versions and for different number of GPUs.
In general, with multiple GPUs, greater performance is achieved, increasing with the size of the
problem and the number of GPUs, and showing good scalability of the routine. For example, under
scenario s3, the performance generally improves when using more than 3 GPUs, while for scenarios
s4 and s5, a single GPU improves the CPU time, and the performance is multiplied up to ×8 when
the 6 GPUs are used. Although the growth of this value is initially less pronounced in those versions
using CUBLAS, for the largest problem size it tends towards costs similar to the other implementations.
This seems to indicate that when there are more GPUs in the system, CUBLAS needs even larger
problem sizes, in order to have enough distributed work on each GPU to achieve better performance.

Electronics 2020, 9, 1781 14 of 18

2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

problem scenarios

sp
ee

d-
up

w
it

h
re

sp
ec

tt
o

C
PU

jupiter: CPU + 3 GPU

pCPU+sus_mGPU
pCPU+sus_mGPU+CUBLAS

pCPU+sbs_mGPU
pCPU+sbs_mGPU+CUBLAS

pCPU+dbs_mGPU

2 3 4 5
0

1

2

3

4

5

6

problem scenarios

sp
ee

d-
up

w
it

h
re

sp
ec

tt
o

C
PU

jupiter: CPU + 4 GPU

pCPU+sus_mGPU
pCPU+sus_mGPU+CUBLAS

pCPU+sbs_mGPU
pCPU+sbs_mGPU+CUBLAS

pCPU+dbs_mGPU

2 3 4 5
0

1

2

3

4

5

6

7

8

problem scenarios

sp
ee

d-
up

w
it

h
re

sp
ec

tt
o

C
PU

jupiter: CPU + 5 GPU

pCPU+sus_mGPU
pCPU+sus_mGPU+CUBLAS

pCPU+sbs_mGPU
pCPU+sbs_mGPU+CUBLAS

pCPU+dbs_mGPU

2 3 4 5
0

1

2

3

4

5

6

7

8

9

problem scenarios

sp
ee

d-
up

w
it

h
re

sp
ec

tt
o

C
PU

jupiter: CPU + 6 GPU

pCPU+sus_mGPU
pCPU+sus_mGPU+CUBLAS

pCPU+sbs_mGPU
pCPU+sbs_mGPU+CUBLAS

pCPU+dbs_mGPU

Figure 3. Evolution of the speed-up with respect to the homogeneous parallel version on CPU (pCPU)
of different hybrid versions (pCPU+xxx_mGPU) when the problem size grows (Table 1). For different
number of GPUs in jupiter.

6. Ongoing Work: Possible Applications

Experiments have been carried out in five different problems obtaining five VAR models, three of
them are classic economy problems, and the others two are from medicine. The time, the internal
variables and the time dependencies are shown in Table 6. No exogenous variables were considered.
The cost of the multiplication X · A in Equation (5) is also shown. Therefore, there are big differences
in the expected times for the different applications, especially for the data in the medicine application
called Neurology.

Table 6. Number of time instants, of internal variables and of time dependencies for the applications,
and number of multiplications in the computation of the fitness.

Problem t d ty
(
t − ty

) (
dty + etz + 1

)
d

Economy Productivity 135 2 2 1330
Interest 628 2 12 30,800
Product 464 4 12 88,592

Medicine Pressure 36 3 2 714
Neurology 4001 62 2 30,992,250

A brief description of these problems and the main characteristics of these applications
are exposed:

• Productivity corresponds to a classical economic problem of forecasting the Gross Domestic
Product (GDP) based on the work of Gali (1999) [42]. In this problem, data on productivity and
hours worked spanning the period from 1983 to 2016 at quarterly frequency are used for the U.S.

Electronics 2020, 9, 1781 15 of 18

Given that GDP can be decomposed into productivity and hours worked, obtaining predictions
of these two variables can be used as predictors of the GDP.

• Interest is another classical problem used by economic researchers to predict the business cycle,
i.e., expansions and recessions. The gap in the maturity of interest rates, also known as the
yield curve, is a leading indicator of the business cycle behavior [43]. We use monthly data for
the one-year and the three-month interest rates from 1953M5 to 2005M7 for the U.S. in a VAR
framework to assess this problem.

• Product denotes a classical economic problem. In particular, is a monetary policy concern.
Given that it is crucial to understand how monetary policy operates through the economy [44],
we evaluate this by using the following variables: industrial production as our economic activity
variable, consumer price index as our price level variable, the one-year treasury bill rate as the
monetary policy variable and the excess bond premium as our financial variable. We use monthly
frequency from 1979M6 to 2018M2 for the U.S., taken from Datastream [45].

• Pressure corresponds to data of blood pressure (systolic and diastolic) and heart rate. Measures
are taken during one day of a person’s normal daily life [46]. Data from a population of patients are
available. Only one patient is considered in the experiments, with measures taken approximately
each 30 minutes in one day. The length of the dependency for the time series is not known,
and two times are considered for the experiments.

• Neurology is the biggest problem. Data came from the cerebral activity of a person. A helmet
with potentiometers is used to register the answer of groups of neurons to some stimulus [47].
It is not clear if a Multivariable Regression Model can be used to model the answers, so we are
collaborating to detect patterns inside the large amount of data. Two time dependencies are
considered in the experiments.

Experiments were conducted for these problems. In all cases, several executions (between five
and fifteen, depending on the execution time) were carried out.

For the problems of Economy, the lowest fitnesses achieved are 0.4241 (Productivity), 0.4553
(Interest) and 0.3606 (Product). These problems are classical examples of time series in economy,
so it is not unusual to obtain satisfactory models. Here, the convergence greatly varies in time.
While for Productivity only 0.28 s of a Local Search method are needed, for the Interest problem,
the Local Search method runs for around 30.52 s and the time for Product rises to 540.33. Experiments
were carried out in a multicore with 12 cores, so for Productivity, which is a very small problem,
the sequential version of the algorithm was used, and for the other problems, with a similar size to the
small problem in the figure, the shared-memory version with parallelism at the second level and with
four threads was used. Figure 4 shows the evolution of the fitness for the three problems, each 0.01 s
for the first problem, each 1.5 s for the second and each 25 s for the third. For all three problems the
convergence was satisfactory.

We are working on the application of techniques traditionally used in econometrics to medical
data. For the Pressure problem, the best fitness obtained was 5.7212, in around 35 s. Thus, the model
obtained is not as satisfactory as the fitness obtained in the economy problems. The data of only
one patient were used, with a time dependency of two instants. The application of the software
presented here to this problem needs to be carefully studied in collaboration with specialists in this
field. Some possibilities are to consider several patients for the determination of the model, the analysis
of the number of time dependencies, the classification of patients using their model, the study of
pathologies represented by anomalous models, etc.

In the last problem, the computational system needs to be fully studied to be exploited, including
multiple GPUs and linear algebra libraries, as it has been shown in the previous section. In any case,
the initial experiments show a convergence of the metaheuristic similar to that in Figure 4, but at much
higher values than for the other problems. Collaboration with specialists in the field is needed to
analyze, for example, the number of time dependencies and the variables to be considered.

Electronics 2020, 9, 1781 16 of 18

2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

FI
TN

ES
S

Productivity
Interest
Product

Figure 4. Evolution of the fitness for three applications: Productivity, each 0.01 s, Interest, each 1.5 s
and Product, each 25 s.

7. Conclusions and Future Work

A matrix formulation for Vector Autoregression Models has been stated together with the basic
and hybrid metaheuristics for the determination of satisfactory models. Parallel versions of the
metaheuristics for multicore+multiGPU are studied. In shared-memory, three-level parallelism
obtained with parallelism in the metaheuristic schema and in the matrix operations allows us to
experiment with different combinations in order to obtain the best configuration according to the
problem size, the values of the metaheuristic parameters (the metaheuristic being applied) and the
computational system. For large problems, GPU parallelism can be used to reduce execution times,
and the heterogeneity needs to be exploited to fully exploit the computational capacity of today’s
multicore+multiGPU nodes. In these platforms, it seems that scheduling policies that take into
account the heterogeneous capacity of GPUs offer better results when the platform grows in size
and complexity.

Preliminary results show that the hybrid metaheuristics can be applied to obtain VAR models for
series of data in different fields. The methods analyzed do not guarantee satisfactory models, but can
be used in collaboration with scientists in these fields to analyze large amounts of data.

More research is needed to further reduce the execution time for large problems. The use of
parallel matrix libraries needs to be optimized for the type and size of the problems on hand. Matrix
computation techniques are being considered to improve the application of linear algebra routines,
so reducing the cost of computation of the fitness and the overall execution time. For example,
QR or LQ decompositions can be applied to simplify the model, and the Toeplitz-type structure in
Equation (4) advises the adaptation of algorithms for structured matrices. Message-passing versions
could be developed to solve the problems in larger computational systems composed of heterogeneous
multicore+multiGPU nodes.

Author Contributions: Investigation, D.G. and J.J.L.-E.; software, J.C. and J.-M.C.-L.; writing, J.C., A.P.-B., J.J.L.-E.
and J.-M.C.-L.; validation, A.P.-B. and J.J.L.-E.; supervision, D.G. and J.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by the Spanish MICINN and AEI, as well as European Commission FEDER
funds, under grant RTI2018-098156-B-C53 and grant TIN2016-80565-R.

Acknowledgments: We thank Máximo Cosme Camacho and Juan José Gascón from University of Murcia, for
providing some of the economy and blood pressure data, and Eduardo Fernández from Miguel Hernández
University for providing the neurology data.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Electronics 2020, 9, 1781 17 of 18

References

1. Sims, C.A. Macroeconomics and Reality. Econometrica 1980, 48, 1–48. [CrossRef]
2. Cochrane, J. Time Series for Macroeconomics and Finance. Ph.D. Thesis, Graduate School of Business,

University of Chicago, Chicago, IL, USA, 2005.
3. Tsay, R.S. Analysis of Financial Time Series, 2nd ed.; John Wiley & Sons: New Jersey, NJ, USA, 2010.
4. Lütkepohl, H. New Introduction to Multiple Time Series Analysis; Springer Science & Business Media: Berlin,

Germany, 2005.
5. Kilian, L.; Lütkepohl, H. Structural Vector Autoregressive Analysis (Themes in Modern Econometrics); Cambridge

University Press: Cambridge, UK, 2017.
6. Litterman, R.B. Bayesian Procedure for Forecasting with Vector Autoregressions; Massachussets Institute of

Technology: Cambridge, MA, USA, 1980.
7. Koop, G.; Korobilis, D. Bayesian Multivariate Time Series Methods for Empirical Macroeconomics; Now Publishers:

Boston, MA, USA, 2010; pp. 267–358.
8. Miranda, S.; Ricco, G. Bayesian Vector Autoregressions. Available online: http://eprints.lse.ac.uk/87393/1/

CFMDP2018-08-Paper.pdf (accessed on 1 February 2019).
9. Almeida, F.; Giménez, D.; López-Espín, J.; Pérez-Pérez, M. Parameterized Schemes of Metaheuristics: Basic

Ideas and Applications With Genetic Algorithms, Scatter Search, and GRASP. IEEE Trans. Syst. Man
Cybern. Syst. 2013, 43, 570–586. [CrossRef]

10. Cutillas-Lozano, J.; Giménez, D.; Almeida, F. Hyperheuristics Based on Parametrized Metaheuristic
Schemes. In Proceedings of the Genetic and Evolutionary Computation Conference GECCO, Madrid,
Spain, 11–15 July 2015; pp. 361–36. [CrossRef]

11. Almeida, F.; Giménez, D.; López-Espín, J. A parameterized shared-memory scheme for parameterized
metaheuristics. J. Supercomput. 2011, 58, 292–301. [CrossRef]

12. Cutillas-Lozano, J.; Giménez, D. Optimizing a parameterized message-passing metaheuristic scheme on a
heterogeneous cluster. Soft Comput. 2017, 21, 5557–5572. [CrossRef]

13. Castaño, A.; Cuenca, J.; Cutillas-Lozano, J.; Giménez, D.; López-Espín, J.; Pérez-Bernabeu, A. Parallelism on
Hybrid Metaheuristics for Vector Autoregression Models. In Proceedings of the International Conference on
High Performance Computing & Simulation, Orleans, France, 16–20 July 2018; pp. 828–835. [CrossRef]

14. Holland, J. Genetic Algorithms and the Optimal Allocation of Trials. SIAM J. Comput. 1973, 2, 88–105.
[CrossRef]

15. Glover, F.; Kochenberger, G. Handbook of Metaheuristics; Kluwer Academic: Dordrecht, The Netherlands, 2003.
16. Resende, M.; Ribeiro, C. Greedy Randomized Adaptive Search Procedures; Kluwer Academic: Dordrecht,

The Netherlands, 2003.
17. Glover, F.; Laguna, M. Tabu Search; Kluwer Academic: Dordrecht, The Netherlands, 1997.
18. Golub, G.; Loan, C.F.V. Matrix Computations, 4th ed.; The John Hopkins University Press: Baltimore, MD,

USA, 2013.
19. Anderson, E.; Bai, Z.; Bischof, C.; Demmel, J.; Dongarra, J.; Croz, J.D.; Grenbaum, A.; Hammarling, S.;

McKenney, A.; Ostrouchov, S.; et al. LAPACK User’s Guide; Society for Industrial and Applied Mathematics:
Philadelphia, PA, USA, 1995.

20. Akaike, H. Information theory and an extension of the maximum likelihood principle. In 2nd International
Symposium on Information Theory; Akademiai Kaido: Budapest, Hungary, 1973; pp. 267–281.

21. Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [CrossRef]
22. Hannan, E.; Quinn, B. The determination of the order of an autoregression. J. R. Stat. Soc. Ser. B (Methodol.)

1979, 41, 190–195. [CrossRef]
23. Glover, F. A template for scatter search and path relinking. In European Conference on Artificial Evolution;

Springer: Berlin/Heidelberg, Germany, 1997; pp. 1–51. [CrossRef]
24. Blum, C.; Puchinger, J.; Raidl, G.; Roli, A. Hybrid metaheuristics in combinatorial optimization: A survey.

Appl. Soft Comput. 2011, 11, 4135–4151. [CrossRef]
25. Jourdan, L.; Basseur, M.; Talbi, E.G. Hybridizing exact methods and metaheuristics: A taxonomy. Eur. J.

Oper. Res. 2009, 199, 620–629. [CrossRef]
26. Raidl, G. A unified view on hybrid metaheuristics. In International Workshop on Hybrid Metaheuristics; LNCS;

Springer: Berlin/Heidelberg, Germany, 2006; Volume 4030, pp. 1–12.

http://dx.doi.org/10.2307/1912017
http://eprints.lse.ac.uk/87393/1/CFMDP2018-08-Paper.pdf
http://eprints.lse.ac.uk/87393/1/CFMDP2018-08-Paper.pdf
http://dx.doi.org/10.1109/TSMCA.2012.2217322
http://dx.doi.org/10.1145/2739480.2754641
http://dx.doi.org/10.1007/s11227-011-0585-5
http://dx.doi.org/10.1007/s00500-016-2371-z
http://dx.doi.org/10.1109/HPCS.2018.00134
http://dx.doi.org/10.1137/0202009
http://dx.doi.org/10.1214/aos/1176344136
http://dx.doi.org/10.1111/j.2517-6161.1979.tb01072.x
http://dx.doi.org/10.1007/BFb0026589
http://dx.doi.org/10.1016/j.asoc.2011.02.032
http://dx.doi.org/10.1016/j.ejor.2007.07.035

Electronics 2020, 9, 1781 18 of 18

27. Alba, E. Parallel Metaheuristics: A New Class of Algorithms; Wiley-Interscience: Hoboken, NJ, USA, 2005.
28. Borovska, P. Efficiency of parallel metaheuristics for solving combinatorial problems. In Proceedings of the

CompSysTech ’07: 2007 International Conference on Computer Systems and Technologies, Rousse, Bulgaria,
14–15 June 2007; p. 15.

29. Kumar, A.; Nareyek, A. Scalable Local Search on Multicore Computers. In Proceedings of the Eighth
Metaheuristics International Conference, Hamburg, Germany, 13–16 July 2009; p. 146.

30. Crainic, T.; Gendreau, M.; Potvin, J. Parallel Tabu Search. In Parallel Metaheuristics; Alba, E., Ed.; Springer:
Boston, MA, USA, 2005.

31. Luque, G.; Alba, E. Parallel genetic algorithms. In Parallel Metaheuristics; Alba, E., Ed.; Springer: Boston,
MA, USA, 2005.

32. Cecilia, J.M.; Llanes, A.; Abellán, J.L.; Gómez-Luna, J.; Chang, L.; Hwu, W.W. High-throughput Ant Colony
Optimization on graphics processing units. J. Parallel Distrib. Comput. 2018, 113, 261–274. [CrossRef]

33. Cecilia, J.M.; García, J.M. Re-engineering the ant colony optimization for CMP architectures. J. Supercomput.
2020, 76, 4581–4602. [CrossRef]

34. Starzec, M.; Starzec, G.; Byrski, A.; Turek, W.; Pietak, K. Desynchronization in distributed Ant Colony Optimization
in HPC environment. Future Gener. Comput. Syst. 2020, 109, 125–133. [CrossRef]

35. Luong, T.V.; Melab, N.; Talbi, E.G. GPU-based island model for evolutionary algorithms. In Proceedings of
the 12th Annual Conference on Genetic and Evolutionary Computation, Portland, OR, USA, 7–11 July 2010;
pp. 1089–1096.

36. Talbi, E.G.; Hasle, G. Metaheuristics on GPUs. J. Parallel Distrib. Comput. 2013, 73, 1–3. [CrossRef]
37. Serrano, J.P.; Imbernon, B.; Cecilia, J.M.; Ujaldon, M. Energy-based tuning of metaheuristics for molecular

docking on multi-GPUs. Concurr. Comput. Pract. Exp. 2018, 30. [CrossRef]
38. Cutillas-Lozano, J.; Giménez, D.; García, L. Optimizing Metaheuristics and Hyperheuristics through

Multi-level Parallelism on a Many-Core System. In Proceedings of the 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPS Workshops 2016, Chicago, IL, USA, 23–27 May 2016;
pp. 786–795. [CrossRef]

39. Cecilia, J.M.; Cutillas-Lozano, J.; Giménez, D.; Imbernón, B. Exploiting multilevel parallelism on a many-core
system for the application of hyperheuristics to a molecular docking problem. J. Supercomput. 2018,
74, 1803–1814. [CrossRef]

40. Chandra, R.; Menon, R.; Dagum, L.; Kohr, D.; Maydan, D.; McDonald, J. Parallel Programming in OpenMP;
Morgan Kauffman: Burlington, MA, USA, 2001.

41. CUBLAS. Available online: http://docs.nvidia.com/cuda/cublas/ (accessed on 1 February 2019).
42. Galí, J. Technology, Employment, and the Business Cycle: Do Technology Shocks Explain Aggregate

Fluctuations? Am. Econ. Rev. 1999, 89, 249–271. [CrossRef]
43. Estrella, A.; Mishkin, F.S. Predicting U.S. Recessions: Financial Variables as Leading Indicators. Rev. Econ. Stat.

1998, 80, 45–61. [CrossRef]
44. Gertler, M.; Karadi, P. Monetary Policy Surprises, Credit Costs, and Economic Activity. Am. Econ. J. Macroecon.

2015, 7, 44–76. [CrossRef]
45. Thomson Reuters. Datastream. Available online: https://www.eui.eu/Research/Library/ResearchGuides/

Economics/Statistics/DataPortal/datastream (accessed on 1 February 2019).
46. Hermida, R.C.; Smolensky, M.H.; Ayala, D.E.; Portaluppi, F. Ambulatory Blood Pressure Monitoring

(ABPM) as the reference standard for diagnosis of hypertension and assessment of vascular risk in adults.
Chronobiol. Int. 2015, 32, 1329–1342. [CrossRef] [PubMed]

47. Grima Murcia, M.; Sánchez Ferrer, F.; Sorinas, J.; Ferrández, J.; Fernández, E. Application of
electroencephalographic techniques to the study of visual impact of renewable energies. J. Environ. Manag.
2017, 200, 484–489. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jpdc.2017.12.002
http://dx.doi.org/10.1007/s11227-019-02869-8
http://dx.doi.org/10.1016/j.future.2020.03.045
http://dx.doi.org/10.1016/j.jpdc.2012.09.014
http://dx.doi.org/10.1002/cpe.4684
http://dx.doi.org/10.1109/IPDPSW.2016.9
http://dx.doi.org/10.1007/s11227-017-1989-7
http://docs.nvidia.com/cuda/cublas/
http://dx.doi.org/10.1257/aer.89.1.249
http://dx.doi.org/10.1162/003465398557320
http://dx.doi.org/10.1257/mac.20130329
https://www.eui.eu/Research/Library/ ResearchGuides/Economics/Statistics/DataPortal/datastream
https://www.eui.eu/Research/Library/ ResearchGuides/Economics/Statistics/DataPortal/datastream
http://dx.doi.org/10.3109/07420528.2015.1113804
http://www.ncbi.nlm.nih.gov/pubmed/26587588
http://dx.doi.org/10.1016/j.jenvman.2017.05.096
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Matrix Formulation for Vector Autoregression Models
	Basic and Hybrid Metaheuristics
	Hybrid Metaheuristics on Heterogenous Multicore+multiGPU
	Experimental Results
	Experimental Results Using One GPU
	Experimental Results Using Multiple GPUs

	Ongoing Work: Possible Applications
	Conclusions and Future Work
	References

