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Generalized Column Distances
Sara D. Cardell, Marcelo Firer and Diego Napp,

Abstract—The notion of Generalized Hamming weights of
block codes has been investigated since the nineties due to its
significant role in coding theory and cryptography. In this paper
we extend this concept to the context of convolutional codes. In
particular, we focus on column distances and introduce the novel
notion of generalized column distances (GCD). We first show that
the hierarchy of GCD is strictly increasing. We then provide
characterizations of such distances in terms of the truncated
parity-check matrix of the code, that will allow us to determine
their values. Finally, the case in which the parity-check matrix
is in systematic form is treated.

Index Terms—Convolutional codes, column distances, parity-
check matrix.

I. INTRODUCTION

The Generalized Hamming Weights (GHW) were first in-
troduced by Kløve [19] and later rediscovered by Victor Wei
[1]: Let C be an [n, k]-linear code over a Galois field F. We
define the support of C as

supp (C) = {i | xi 6= 0 for some [x1, x2, . . . , xn] ∈ C}.

The r-th generalized (Hamming) weight of C is then defined
as

dr(C) = min{|supp(D)| | D subcode of C,dim(D) = r},

and the Hamming weight hierarchy is the set of integers
{dr(C) | 1 ≤ r ≤ k}.

Although the generalized weights were originally intro-
duced motivated by applications in cryptography in [1], [8],
the notion goes far beyond these applications. The concept
of generalized weights is a generalization of the minimal
distance of linear codes and refines the role of the minimal
distance as an indicator of the error probability of a code. The
following simple example illustrates this fact. Denote by 1r

and 0s a sequence of r consecutive ones and s consecutive
0, respectively, and let C1 and C2 be two linear codes over
F2 = {0, 1} of dimension 2, defined by

C1 = 〈130n−3, 03130n−6〉, C2 = 〈130n−3, 031n−3〉.

Both codes have d1 = 3, hence are capable of correcting every
error of length 1, but the second weight of C1 is 6 while the
second generalized weight of C2 is n. For large n, the first code
has n−6 > 0 “useless” coordinates, while these coordinates do
have a role in C2, helping to distinguish if a received codeword
should be decoded as 130n−3 or 031n−3.
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A more precise role of the generalized weight hierarchy has
been recently investigated to derive error probabilities after
decoding of block codes over the erasure channel. This was
first approached by Didier [12] and later developed in [11],
[33] and finally in [34], were an expression of the unsuccessful
decoding probability under list decoding and unambiguous
decoding was established in terms of the distribution of
generalized weights1.

On the other hand, David Forney observed in [7] that
the results concerning the GHW obtained for block codes
admit an interesting extension to convolutional codes and this
motivated the work in [17]. In this work the authors tackled
the convolutional case focusing on the free distance whereas
in this work we consider column distances. Column distance
is arguably the most fundamental measure for convolutional
codes [20, pag. 109], as the maximal possible growth in the
column distances means that these codes have the potential to
correct the maximal number of errors per time interval.

The definition of Generalized Column Distance of a con-
volutional code (GCD) is the starting point of this work. We
prove the first key result to study the subject: the monotonicity
of the GCD hierarchy of a convolutional code C. Moreover,
we provide a complete characterization of this new notion in
terms of the truncated parity-check matrix of C. This result
is general, constructive and its proof only requires elementary
notions of linear algebra. An interesting instant is when the
convolutional code admits a systematic encoder/parity-check
polynomial matrix. If so, say H(D) = [Ik P (D)], a simple
characterization of the GCD can be given only in terms of
the coefficients of the matrix P (D). As P (D) is usually
much smaller that the parity-check H(D), this condition is
easier to verify. The results presented here on generalized
column distances can be seen as a generalization of previous
results on generalized Hamming weights for block codes [8],
[26], [27], [28], [29], [30], [31]. In this work we need to
consider truncated convolutional codes, which are intrinsically
nonlinear and therefore very different from the ones treated
before and in particular, in [17]. In [24] a more restrictive
definition was introduced and later generalized in [25] where
some preliminary results were presented.

II. NOTATION AND DEFINITIONS

Let F be a finite field and F[D], the ring of polynomials
with coefficients in F. A convolutional code C of rate k/n is
an F[D]-module of F[D]n of rank k of the form

C = im G(D) = {uuu(D)G(D) | uuu(D) ∈ F[D]k}
1This is a generalization of the weight distribution. We consider the

polynomial p(x, y) =
∑

i,j A
j
ix

jyi, where Aj
i := |{D ⊂ C | dim(D) =

i, |supp(D)| = j}| and the usual weight distribution polynomial is given by
the particular case when i = 1,

∑n
j=0(q − 1)Aj

1x
jy1.
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where G(D) ∈ F[D]k×n is a right invertible matrix or basic,
i.e., there exits a matrix H(D) ∈ F[D](n−k)×n such that

C = ker H(D) = {www(D) ∈ F[D]n | www(D)H(D)T = 000}.

We can express the generator matrix as

G(D) =

µ∑
j=0

GjD
j , Gj ∈ Fk×n, Gµ 6= 0

and the parity-check matrix as

H(D) =
ν∑
j=0

HjD
j , Hj ∈ F(n−k)×n, Hν 6= 0.

Let

Gcj =


G0 G1 · · · Gj
000 G0 · · · Gj−1
...

. . .
...

000 · · · 000 G0


and

Hc
j =


H0 000 · · · 000

H1 H0
. . .

...
...

... 000
Hj Hj−1 · · · H0

 ,
be the truncated sliding generator and parity-check matri-
ces for j ∈ N0, respectively, Hj = 0 for j > ν and Gj = 0
for j > µ. We define the jjj-truncated convolutional code (of
C) as

Cj =
{
[uuu0,uuu1, . . . ,uuuj ]G

c
j | uuui ∈ Fk,uuu0 6= 0

}
.

We denote N = (j + 1)n and K = (j + 1)k and [n] =
{1, 2, · · ·n} and write www = [www0,www1, · · · ,wwwj ] ∈ FN with wwwi ∈
Fn or www = [w1, w2, . . . , wN ], with wi ∈ F. A list of words is
denoted by superscripts: www1, · · · ,wwwr.

For a set X ⊂ FN , supp(X) =
⋃
xxx∈X supp(xxx). For

simplicity, given xxx1, · · · ,xxxr, we denote supp
(
xxx1, · · · ,xxxr

)
=

supp
(
{xxx1, · · · ,xxxr}

)
(omitting the brackets {−}).

We can now give the key definitions of this work:
Definition 1: [16], [20] The jjj-th column distance dcj(C) =

d (Cj) of C = im G(D) = ker H(D) is given by

dcj(C) =min
{
ω
(
[uuu0,uuu1, . . . ,uuuj ]G

c
j

)
| uuui ∈ Fk,uuu0 6= 0

}
=min {ω ([www0,www1, . . . ,wwwj ]) |

| Hc
j [www0,www1, . . . ,wwwj ]

T
= 000,www0 6= 0

}
=min {ω(www) | www ∈ Cj}

where ω (www) is the Hamming weight of the vector www.
Definition 2: The r-th Generalized Column Distance (or

r-th GCD) of the truncated convolutional code Cj is

dgr(Cj) = min{|supp(D)| : D ⊂ Cj , |D| = r and D is L.I.},
(1)

where L.I. stands for a linearly independent set and |X| is the
cardinality of a set X .

We remark that the first generalized Hamming weight is
actually the column distance, that is, dcj(C) = d(Cj) = dg1(Cj).
The weight hierarchy is {dg1(Cj), d

g
2(Cj), . . . , d

g
K(Cj)}. Since

the r-th GCD is defined considering a minimum over subsets
D ⊂ Cj with r elements, it is not obvious that the weight
hierarchy is strictly increasing, that is, dg1(Cj) < dg2(Cj) <
· · · < dgK(Cj). We shall see in Theorem 4 that this is the case.
Note that, as opposed to the block code case, the set Cj in
Definition 2 does not have the structure of a vector space, as
the sum of two of its elements may not be in Cj .

Example 3: Consider the convolutional code with parame-
ters n = 4 and k = 2 over F3 whose generator matrix is

G(D) =

[
1 0 1 + 2D 2 +D
0 1 2 +D 2 +D

]
,

and

G0 =

[
1 0 1 2
0 1 2 2

]
, G1 =

[
0 0 2 1
0 0 1 1

]
.

For j = 0, we have that dg1(C0) = 3 and dg2(C0) = 4. Consider
now the truncated sliding generator matrix for j = 1:

Gc1 =


1 0 1 2 0 0 2 1
0 1 2 2 0 0 1 1
0 0 0 0 1 0 1 2
0 0 0 0 0 1 2 2


We consider rows of the matrix Gc1:

g1 = [1 0 1 2 0 0 2 1]
g2 = [0 1 2 2 0 0 1 1]
g3 = [0 0 0 0 1 0 1 2]
g4 = [0 0 0 0 0 1 2 2]

It is worth noticing that g1, g2 ∈ C1 but g3, g4 6∈ C1. It is easy
to check that

dg1(C1) = 4, realized by span{g2 + g4} and
dg2(C1) = 6, realized by span{g1, g2}.

III. MONOTONICITY AND SINGLETON BOUNDS

The first fundamental result on generalized Hamming
weights for linear codes obtained by Wei in [1, Theorem
1] states that the generalized weight hierarchy is strictly
increasing. The same holds for convolutional codes.

Theorem 4 (Monotonicity): Let Cj be a truncated convolu-
tional code. Then,

dg1(Cj) < dg2(Cj) < · · · < dgK(Cj) (2)

Proof. We shall assume that the weight hierarchy is not strictly
increasing and come to a contradiction. So, we assume that
there is an r such that dgr (Cj) = dgr+1 (Cj). We assume that r
is minimal with such property.

Let β =
{
www1,www2, ...,wwwr+1

}
be a set of codewords of Cj

that realizes the (r + 1)-th generalized column distance, that
is:

rank (β) = r + 1 and |supp (β)| = dgr+1 (Cj) ,

where rank (β) means the rank of the matrix that has
www1,www2, ...,wwwr+1 as its rows. We denote βi = β\

{
wwwi
}

,
βi,j = β\

{
wwwi,wwwj

}
. Again we write www = [www0,www1, . . . ,wwwj ]

or www = [w1, w2, . . . , wN ].
Note two facts:
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1) Since we are assuming that dgr (Cj) = dgr+1 (Cj) and
since rank

(
βi
)
= r we have that∣∣supp (βi)∣∣ = |supp (β)| = dgr+1 (Cj) ,

i.e., wwwi does not aggregate to βi, in the sense that
supp(wwwi) ⊂ supp(βi), i ∈ [r + 1].

2) The minimality of r ensures that
∣∣supp (βi,j)∣∣ <∣∣supp (βi)∣∣, for all i 6= j, that is, each wwwi aggregates

to every βi,j , for i 6= j, in the sense that supp(wwwi) 6⊂
supp(βi,j).

Based on these facts we shall come to a contradiction.
Consider two cases.

Case 1: wwwr+1
0 6= wwwi0,∀i 6= r + 1

Take an ` ≤ n such that wr+1
` = α 6= 0. Define for i ≤ r,

wwwi∗ =

{
wwwi if wi` = 0,

wwwi − γ
αwww

r+1 if wi` = γ 6= 0,

and β∗ =
{
www1
∗,www

2
∗, ...,www

r
∗,www

r+1
}

. Obviously, rank (β∗) =
r+1 and supp (β∗) = supp (β), since coordinates that may be
annihilated by exchanging some wwwi by wwwi∗ are positions that
correspond to entries in supp

(
wwwr+1

)
. Moreover, wi∗` = 0

for every i = 1, 2, ..., r. It follows that wwwr+1 aggregates to
β∗\

{
wwwr+1

}
hence

∣∣supp (β∗\{wwwr+1
})∣∣ < |supp (β∗)| =

|supp (β)| which is a contradiction to the hypothesis dgr (Cj) =
dgr+1 (Cj).

Case 2: ∃ t ∈ [r + 1],wwwr+1
0 = wwwt0

We define uuut = wwwt−wwwr+1. Since β is L.I., we have uuut0 = 000
and ut` = α 6= 0 for some ` > n. For i ≤ r we define

wwwi∗ =

{
wwwi if wi` = 0

wwwi − γ
αuuu

t if wi` = γ 6= 0
.

Then we consider β∗ =
{
www1
∗,www

2
∗, ...,www

r
∗,www

r+1
}

and we
have that rank (β∗) = r + 1 and, since wwwr+1 aggregates to
β∗\

{
wwwr+1

}
, we find again a contradiction.

As a result let us establish an upper-bound on the GCD
of a truncated convolutional code. This result generalizes [1,
Corollary 1] (on generalized weights of block codes) and [16,
Proposition 2.2] (on column distances of convolutional codes).

Corollary 5 (Singleton bound): Let Cj be a truncated con-
volutional code. Then,

dgr(Cj) ≤ (j + 1)(n− k) + r. (3)

Proof. It is known (see [16], [22]) that dg1(Cj) = dcj(C) ≤
N − K + 1. Thus, the result follows from the monotonicity
theorem, with a reasoning similar to the original proof of Wei
in [1].

Remark 6: Taking into account the monotonicity of the GCD
of a convolutional code and Corollary 5, it is easy to see that if
dgr(Cj) attains the bound given in (3) for some r, all following
generalized column distances dgs(Cj) will also attain the bound
for r ≤ s ≤ K.

Example 7: Consider again Example 3. It is easy to check
that dg1(C0) = 3, dg2(C0) = 4 and dg2(C1) = 6 attain the bound
given in Corollary 5 and dg1(C1) = 4 does not. From the
monotonicity theorem and Corollary 5 we get that dg3(C1) = 7
and dg4(C1) = 8.

IV. A CHARACTERIZATION IN TERMS OF PARITY-CHECK
MATRICES

In this section we study the structure of the truncated convo-
lutional code Cj and provide a full algebraic characterization
of the GCD in terms of their parity-check matrices.

From now on, we will use the following notations and
definitions:
• Given I = {i1 < i2 < · · · < ir} ⊂ [N ] we denote as HI

the sub-matrix of H consisting of the columns indexed
by I . The same notation may be applied to every matrix.

• We say that the set of columns of HI , say {hi | i ∈ I},
satisfies Condition (∗)(∗)(∗) if there is r ∈ I ∩ [n] such that
hr =

∑
j∈I,j 6=r αjhj , with αj ∈ F.

Theorem 8: Let Cj be a truncated convolutional code and
for convenience we denote here by H the truncated sliding
parity-check matrix Hc

j . Then, it holds that:
1) If there is a set of d columns of H whose rank is equal

to d− r and satisfies Condition (∗), then dgr(Cj) ≤ d.
2) If every subset {hj1 , hj2 , · · · , hjd−1} of d− 1 columns

of H with j1 ≤ n has rank at least equal to d− r, then
dgr(Cj) ≥ d.

Proof.
Part 1: Let I = {j1, j2, · · · , jd} ⊂ [N ] and define

DI =

{
xxx ∈ FN | xi = 0 for i /∈ I and

N∑
i=1

xihi = 0

}
,

where hi are the columns of H . DI is an extension of
the kernel of HI and a subspace of FN . We have that
|supp(DI)| ≤ |I| = d and dim(DI) = r. So, we shall prove
that dgr(Cj) ≤ d by constructing a basis β = {www1,www2, . . . ,wwwr}
of DI with wwwi ∈ Cj .

Condition (∗) ensures there is ja ≤ n such that hja =∑
`≤d,`6=a α`hj` . We consider now the vector www1 that has 1

in the position ja, −α` in the position j` and zero otherwise.
This vector belongs to DI and Cj . Now, we can construct a
basis β∗ of DI that contains www1:

β∗ = {www1,www2
∗, . . . ,www

r
∗}

We know that www1 ∈ Cj , but wwwi∗, i = 2, . . . , r, might not be in
Cj . We define

wwwi =

{
wwwi∗ if wwwi∗ ∈ Cj
www1 +wwwi∗ if wwwi∗ /∈ Cj

and now wwwi ∈ Cj and β = {www1,www2, . . . ,wwwr}.
By construction we have that β ⊂ DI hence its support

contains at most d positions. Since the matrix determined by β
was obtained from the matrix determined by β∗ by the means
of elementary operations, we have that β is a L.I. set as well.

Part 2: We shall prove this part by contradiction. Assuming
that dgr(Cj) < d, we will prove the existence of a set I ⊂ [N ]
with |I| = d− 1 such that rank(HI) < d− r and I ∩ [n] 6= ∅.

Assuming that dgr(Cj) < d means there is a set β =
{www1,www2, · · ·wwwr} ⊂ Cj such that β is L.I. and |supp(β)| =
dgr(Cj) < d. We denote I = supp(β) and consider HI the
matrix obtained from H by turning into zero the columns
corresponding to entries in [N ] \ I . Then, for each wwwi ∈ β
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we have that HI(wwwi)T = 000. Since β is assumed to be L.I.,
we have that rank(HI) ≤ dgr(Cj) − r. If we denote by ĤI

the matrix formed by the non-zero columns of HI , we have
that rank(ĤI) = rank(HI) ≤ dgr(Cj)− r < d− r. Note that
I ∩ [n] 6= ∅ as wwwi ∈ Cj . Therefore, we have dgr(Cj) columns
with rank < d − r. Now, if dgr(Cj) = d − 1, there is nothing
else to prove. Otherwise, if dgr(Cj) = d − t, with t > 1, we
can choose t−1 columns of H whose indices are not included
in I . Thus, we have a set of d − 1 columns of H with rank
< d− r as claimed.

One should remark that Condition (∗) is essential for the
validity of the first part of the theorem. This difficulty is due
to Definitions 1 and 2, i.e., if www = [www0,www1, . . . ,wwwj ] ∈ Cj then
www0 6= 0.

Indeed, let us consider Example 3 again. Direct calculations
showed that dg1(C1) = 4, hence dg2(C1) ≥ 5 (actually dg2(C1) =
6). A sliding parity-check matrix is

Hc
1 =


2 1 1 0 0 0 0 0
1 1 0 1 0 0 0 0
0 0 1 0 2 1 1 0
0 0 0 1 1 1 0 1

 .
It is immediate to note that the last d = 4 columns of Hc

1 have
rank d − 2 = 2, but d < d2. This would contradict the first
part of the previous theorem, except for the fact that the set
of columns {h5, h6, h7, h8} does not satisfy Condition (∗).

Theorem 9 (reciprocal of Theorem 8): Let Cj be a truncated
convolutional code and for clarity we denote here by H
the truncated sliding parity-check matrix Hc

j . If we denote
dgr(Cj) = dr then:

1) There exists a set of dr columns of H with j1 ≤ n with
rank equal to dr − r

2) Every set of dr − 1 columns of H satisfying Condition
(∗) has rank ≥ dr − r.

Proof.
Part 1: According to the definition of dr, there exists β =
{www1,www2, · · · ,wwwr} ⊂ Cj a L.I. set with |supp(β)| = dr. Let
I = supp(β) = {j1, j2, · · · , jdr}. We assume without loss of
generality that jr < jr+1, for all 1 ≤ r ≤ dr − 1. Since each
wwwr ∈ β is a codeword of Cj , we have that supp(wwwr)∩ [n] 6= ∅
and this implies that I ∩ [n] 6= ∅. It follows that j1 ≤ n. We
may assume without loss of generality that j1 = 1.

The rank-nullity theorem ensures that rank(HI) +
dim(ker(HI)) = dr. Since dim(ker(HI)) ≥ r we get that

rank(HI) = dr − dim(ker(HI)) ≤ dr − r.

Let us assume that rank(HI) < dr − r. This means
that there is another element wwwr+1 ∈ ker(H) such that
supp(wwwr+1) ⊂ I and {www1,www2, . . . ,wwwr,wwwr+1} is still a L.I.
set. As a consequence, we obtain that dr+1 = dr, which is a
contradiction (see Theorem 4). Then, rank(HI) = dr − r.

Part 2: Suppose there is a set
{
hj1 , hj2 , · · · , hjdr−1

}
of

dr − 1 columns of H satisfying Condition (∗) with rank
< dr − r. Let I = {j1, j2, · · · jdr−1}. Then, the rank-nullity
theorem ensures that dim(kerHI) > r − 1. So, there is
a L.I. set with r elements contained in ker(HI). Condition
(∗) ensures that we may assume, without lost of generality,

that hj1 =
∑dr−1
k=2 αkhjk and hence we have that the vector

www1 = [1,−α2, · · · − αd−1] ∈ ker(HI). We complete it to a
L.I. set β∗ = {www1,www2

∗, · · · ,wwwr∗} ⊂ ker(HI) and, in the same
manner we proceeded in the proof of part 1 of Theorem 8, out
of β∗ we get a set β = {www1,www2, · · · ,wwwr} ⊂ Cj that is L.I.
Finally, from the definition of the generalized column distance
we get

dr ≤ |supp(β)| = |supp(β∗)| ≤ dr − 1,

(the last inequality follows from the fact that β∗ ⊂ ker(HI)),
which is a contradiction.

Corollary 10: Let Cj be a truncated convolutional code
with sliding truncated parity-check matrix H = Hc

j . Then,
dgr(Cj) = d if, and only if, the two following conditions hold:

1) There exists a set {hj1 , hj2 , · · · , hjd} of d columns of
H with j1 ≤ n with rank equals to d− r.

2) Every set of d − 1 columns of H satisfying Condition
(∗) has rank ≥ d− r.

Proof. Theorem 8 ensures the if part and Theorem 9 the only
if part.

Example 11: Consider again Example 3. A truncated sliding
parity-check matrix Hc

1 is given by:

Hc
1 =


1 0 1 2 0 0 0 0
0 1 2 2 0 0 0 0
2 0 0 0 1 0 1 2
0 2 0 0 0 1 2 2


Now we shall derive the weight hierarchy using Corollary 10.
First of all, we denote the columns of Hc

1 as h1, h2, . . . , h8.
For establishing dg1(C1) = 4 we need to show that:
• There are 4 columns that determine a matrix of rank 3

and one of them, let us say hi satisfies i ≤ 4. Indeed,
columns h1, h3, h4 and h5 determine a matrix of rank 3.

• Since there is no set of 3 columns satisfying Condition
(∗), there is nothing else to check.

For establishing dg2(C1) = 6 we need to show that:
• There are 6 columns that determine a matrix of rank 4(=

6−2) one of them, let us say hi, satisfying i ≤ 4. Indeed,
columns h1, h3, h4, h5 and h6 determine a matrix with
rank 4.

• Every set of 5 columns satisfying Condition (∗) has rank
≥ 4. Indeed, a set of columns satisfying Condition (∗)
must contain at least 3 columns corresponding to the first
4 positions. Every set of such three columns has rank 3.
It easy to check that, by adding two more columns the
rank will increase and hence will be equal to 4.

For the cases dg3(C1) = 7 and dg4(C1) = 8 it is enough to
note the existence of 7 or 8 columns with rank 4 and the fact
that every 6 or 7 columns satisfying Condition (∗) has rank
≥ 4.

V. SYSTEMATIC PARITY-CHECK MATRIX AND GHW

In this last section we consider the case when the sliding
parity-check matrix is in systematic form. This case was also
considered in [31] in the context of block codes and therefore
we extend here their results to the context of column distances.
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We show that the GCDs may be obtained with smaller effort
out of this systematic form, considering only the parity part
of the matrix.

Using elementary row operations (which keeps the code
invariant) and possible column permutations (what gives rise to
an equivalent code), the sliding truncated parity-check matrix
of Cj can be expressed in the form:

Hc
j =


I P0 000 000 000 000 . . . 000 000
I P1 I P0 000 000 . . . 000 000
...

...
...

...
...

...
...

...
I Pj−1 I Pj−2 I Pj−3 . . . 000 000
I Pj I Pj−1 I Pj−2 . . . I P0


where I stands for the identity matrix of size (n−k)×(n−k).
As the permutation of columns does not change the distance
properties of the code, we can consider the matrix Hc

j as
[IN−K P cj ] where

P cj =


P0 000 000 . . . 000
P1 P0 000 . . . 000
P2 P1 P0 . . . 000
...

...
...

...
Pj Pj−1 Pj−2 . . . P0

 ,
and IN−K is the identity matrix of size N−K = (n−k)(j+1).
For simplicity, in this section, we will denote the matrix P cj
by P and [IN−K P cj ] by H .

We say that the set of columns of PI , say {pi | i ∈ I},
satisfies Condition (∗) if there is d ∈ I ∩ [k] such that pd =∑
j∈I,j 6=d αjpj , with αj ∈ F.
Theorem 12: Let Cj be a truncated convolutional code

with weight hierarchy [dg1(Cj), d
g
2(Cj), . . . , d

g
K(Cj)]. Let H =

[IN−K P ] and P = P cj as above and consider dr = dgr(Cj),
then:

1) For every r ≤ g ≤ min{dr − 1,K}, every submatrix
consisting of g columns of P satisfying Condition (∗)
has rank ≥ g − r + 1

2) There is g satisfying r < g ≤ min{dr,K} such that
there is a sub-matrix of P of size N −K − dr + g × g
and rank = g − r.

Proof.
1) We suppose that (1) fails to hold, i.e., there exits a

non trivial submatrix PI consisting of the columns
I = {j1, j2, . . . , jg} of P with rank less than g− r+1,
for some g with r ≤ g ≤ min{dr − 1, k}.
Since PI has g columns and rank(PI) < g, we know
that one of the columns is a linear combination of the
others. By Condition (∗), we can assume, without loss
of generality, that this column is pj1 . Consider then, the
linear combination pj1 =

∑g
i=2 αipji . We set www1 =

[1,−α2, . . . ,−αg]. As rank(PI) < g − r + 1, by the
rank-nullity theorem there exists a set of L.I. vectors
{www1,www2

∗, . . . ,www
r
∗} ⊂ Fg such that PI(wwwi)T = 000, i =

1, 2, . . . , r. Now, for each i ≤ r,

wwwi =

{
wwwi∗ if wwwi∗0 6= 000

wwwi∗ +www1 if wwwi∗0 = 000

and we get that:
• For each i ≤ r, wwwi ∈ ker(PI).
• Each wwwi has the first coordinate different from zero.
• The set {www1,www2, . . . ,wwwr} is L.I..

Without loss of generality, we assume that
{www1,www2, . . . ,wwwr} ⊂ Fg is a set of vectors satisfying
these three properties.
Given www = [w1, w2, . . . , wg] ∈ Fg , consider ŵww =
[ŵ1, ŵ1, . . . , ŵN ] ∈ FN defined as follows:

ŵs =

{
ws if s ∈ supp(PI)
0 otherwise

From the definition we have that |supp(www)| =

|supp(ŵww)| hence we have that
∣∣∣supp

(
ŵww1, ŵww2, . . . , ŵwwr

)∣∣∣
=
∣∣supp

(
www1,www2, . . . ,wwwr

)∣∣ ≤ g < dr − 1.
Moreover, as {www1,www2, . . . ,wwwr} are L.I., so are
{ŵww1, ŵww2, . . . , ŵwwr} ∈ Cj and it follows that

dr ≤
∣∣supp

(
www1,www2, . . . ,wwwr

)∣∣ ≤ dr − 1 < dr,

which is a contradiction.
2) Let {www1,www2, . . . ,wwwr} ⊂ Cj be a L.I. set such that∣∣supp

(
www1,www2, . . . ,wwwr

)∣∣ = dr.

Let I and J be the set of corresponding indices of
supp

(
www1,www2, . . . ,wwwr

)
according to IN−K and P , from

H = [IN−K P ], respectively. Analogously, let us divide
wwwi = [wwwiI wwwiJ ] and denote by HI,J = [HI HJ ] the
columns of H with indices in I and J .
Furthermore, let g = |J | and |I| = dr − g. Since |I| +
|J | = dr we have that g ≤ dr and g ≤ K because P
has K columns, so that g ≤ min{dr,K}.
Consider ĤI , the submatrix of HI ∈ Fdr−g×dr−g
constructed by deleting the zero rows and consider
ĤJ ∈ FN−K−dr+g×g , the submatrix of HJ constructed
by deleting the rows of HJ corresponding to non-zero
rows in HI .
We remark that

rank(ĤI) = rank (HI) ,

since we obtained one from the other by deleting all-
zero rows. Moreover, up to a permutation of the rows,
we may write

HI,J = [HI HJ ] =

[
ĤI H+

J

0 ĤJ

]
where H+

J is a matrix obtained from HJ by considering
the rows not included in ĤJ . Obviously, since ĤI is
submatrix of the identity with one 1 entry in each row,
we have that HI,J and the matrix[

ĤI 0

0 ĤJ

]
are column equivalent so

rank(HI,J) = rank(ĤI)+rank(ĤJ) = dr−g+rank(ĤJ).
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As {www1, . . . ,wwwr}, are L.I. and according to the rank-
nullity theorem, we have that rank(HI,J) ≤ dr − r and
therefore rank(ĤJ) ≤ g − r.
Finally, if rank(ĤJ) < g − r, according to the rank-
nullity theorem again, one can find a wwwr+1 ∈ Cj
such that {www1,www2, . . . ,wwwr,wwwr+1} is L.I. and also with
supp(wwwr+1) ⊂ supp(www1,www2, . . . ,wwwr). But this implies
that dr+1 ≤ dr, which is a contradiction, hence
rank(ĤJ) = g − r, as desired.

Example 13: We consider now the sliding truncated parity-
check matrix HC1 in Example 11. Recalling that we are
working on F3, to obtain the systematic form we just need
to add the first and second row to the third row. By permuting
the appropriate columns we get that

P = PC1 =


1 2 0 0
2 2 0 0
1 2 1 2
2 2 2 2


We already know from Example 11 that d1 = 4. We shall

see how to check it from the parity check matrix in a system-
atic form using Theorem 12. For every 1 ≤ g ≤ min{3, 4},
we have g columns of P with rank ≥ g.
• g = 1: Since there are no zero columns, every column

has rank= 1.
• g = 2: It is possible to check that every pair of columns

of P is a L.I. set, therefore they determine a matrix with
rank= 2.

• g = 3: It is also possible to check that every three
columns of P are a L.I. set, therefore they determine
a matrix with rank= 3.

On the other hand, there exists a matrix of size g × g with
1 < g ≤ min{4, 4} with rank = g− r = g− 1. For g = 3 the
submatrix  2 0 0

2 0 0
2 1 2


has rank= 2.

Theorem 14: Let Cj be a truncated convolutional code with
H = [IN−K P ] the sliding parity-check matrix in systematic
form.

1) If for all g ≤ min{d− 1,K}, every submatrix of P of
size N − K − d + g × g has rank ≥ g − r + 1, then
dr ≥ d.

2) If there exists g, with r < g < min{d,K}, such that
g columns of the matrix P have rank g − r and satisfy
Condition (∗), then dr ≤ d.

Proof.
1) Suppose d > dr. We shall show that for some g ≤

min{d − 1,K} there is a submatrix A of P of size
N − K − d + g × g such that rank(A) ≤ g − r.
According to the definition of dr, we have that there
exists a L.I. set {www1,www2, . . . ,wwwr} ∈ Cj such that
|supp(www1,www2, . . . ,wwwr)| = dr. Let I and J be the set of
indices of supp(www1,www2, . . . ,wwwr) corresponding to IN−K
and P (from H = [IN−K P ]), respectively, and denote

by HI,J = [HI HJ ], the columns of H with indices in
I and J .
It is easy to check that {www1,www2, . . . ,wwwr} ⊂ ker(H) and
as a consequence rank(HI,J) ≤ dr − r. On the other
hand:

rank(HI,J) ≤ rank(HI) + rank(HJ)

Since HI is part of the identity matrix, we have that the
matrix HI,J is column equivalent, up to permutation of
the rows, to the matrix

H∗I,J =

[
ĤI 0

0 ĤJ

]

and clearly rank(HI,J) = rank(H∗I,J) = rank(ĤI) +

rank(ĤJ).
Let |J | = g and |I| = dr − g. We clearly have that
g ≤ min{d− 1,K}.
We know that the matrix HI has rank equal to dr − g,
so that

rank(ĤJ) = rank(HI,J)−(dr−g) = dr−r−(dr−g) = g−r.

Notice that ĤJ is a matrix of size N −K − dr + g× g.
By removing any d−dr rows of ĤJ we get a submatrix
A of P of size N −K − d+ g × g. Moreover,

rank(A) ≤ rank(ĤJ) ≤ g − r,

which is a contradiction.
2) It follows using the same reasoning used in previous

proofs.

VI. ALGORITHM AND EXAMPLE

In this section we introduce an algorithm that computes the
GCD hierarchy of a truncated convolutional code Cj and a
detailed example of how this algorithm works on a practically
used convolutional code.

Let H be the sliding parity-check matrix of Cj and consider
a distance d. First, we introduce the function Cond(r, d,H) in
Algorithm 1, which checks whether d satisfies the conditions
of Corollary 10 (and thus whether d is the r-generalized
column distance of Cj). Next, Algorithm 2 shows a pseudo-
code that runs over possible values of r and d, avoiding
impossible values, to compute the GCD hierarchy of Cj . This
algorithm starts assuming the minimum possible value of each
distance, according to the monotonicity given in equation (2)
and the bound given in (3). If the distance does not satisfy the
conditions given Corollary 10 (that is Cond(r, d,H) = 0),
then the distance is increased by one unit until the theorem
is satisfied. Notice that, according to the monotonicity given
in equation (2), if one of the distances attains the bound
given in (3), the posterior distances automatically attain the
corresponding bounds as well.
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Algorithm 1. Cond: Check if d satisfies Corollary 10.

Input: r, d and H .
function Sol =Cond(r, d,H)
01: Store in [R,C] the size of H;
02: Store T =

(
C
d

)
;

03: Store i = 1 and Sol = 0;
04: while i ≤ T and Sol = 0;
05: Choose d columns of H;
06: if rank= d− r
07: Sol=1;
08: else
09: i=i+1;
10: end if;
11: end while;
12: Store T =

(
C
d−1
)
;

13: Store i = 1;
14: while i ≤ T and Sol=1;
15: Choose d− 1 columns satisfying Condition(*);
16: if rank< d− r
17: Sol = 0;
18: else
19: i = i+ 1;
20: end if;
21: end while;
end function
Output:
Sol = 1 if the d satisfies Corollary 10,
Sol = 0 otherwise.

Algorithm 2. Computation of the GCD hierarchy of
a truncated code Cj .

Input: H , n, k and j.
01: Initialize vector d of length k(j + 1);
02: Set d(0) = 0;
03: for r = 1 to k(j + 1)
04: d(r) = d(r − 1) + 1;
05: while Cond(r, d(r), H) = 0
06: d(r) = d(r) + 1;
07: end while
08: if d(r) = (j + 1)(n− k) + r
09: for t = r to k(j + 1)
10: d(t) = (j + 1)(n− k) + t;
11: end for
12: break;
13: end if
14: end for
Output:
d: GCD hierarchy.

The most complex part of our algorithm comes from func-
tion Cond, where we have to compute the rank of several sets
of columns of H . It is well known that the rank of a matrix
can be computed in polynomial time [35, page 119]. However,
we have to compute the rank of

(
n(j+1)
d

)
+
(
n(j+1)
d−1

)
sets of

columns, in the worst case scenario. As a consequence, the
complexity of the algorithm achieves exponential levels. This
result was expected, since the computation of the distances of

a code is an NP-hard problem. For example, just computing
the minimum distance of a linear block code is an NP-hard
problem [36].

Another way to compute the GCD hierarchy is using
the definition given in (1), that is, computing the complete
list of codewords of the truncated code Cj and for each
r = 1, 2, . . . , k(j + 1) consider the support of every L.I. set
of r codewords. However, this approach is presumably more
expensive in terms of memory and time.

Example 15: Burst-correcting convolutional codes with low
delay form a class of codes that are used in many multime-
dia applications, such as real-time video conference, since
the transmission must be performed sequentially and with
minimal perceptible delay at the destination [37], [38], [39].
We consider a simple truncated code C3 of a burst-correcting
convolutional code with low delay with systematic encoder
(introduced in [37]) whose parameters are n = 6, k = 4 and
whose sliding generator matrix is given by

G =


Ik G0 O G1 O G2 O G3

O O Ik G0 O G1 O G2

O O O O Ik G0 O G1

O O O O O O Ik G0


with

G0 = G1 = G2 = O4×2, and G3 =


1 0
0 1
0 0
0 0

 .
As sliding parity-check matrix, we can consider

H =


O O I2 O O O O O O O O O
O O O O O I2 O O O O O O
O O O O O O O O I2 O O O
I2 O O O O O O O O O O I2

 ,
where O stands for the matrix of zeros of size 2× 2. Table I
shows the values of Cond(r, d,H) for r = 1, . . . , 16 and the
different guesses for d that Algorithm 2 takes. Next, we explain
how Algorithm 1 proceeds to find Cond(r, d,H) in each case.

First, note that H has 14 zero columns and 10 non-zero
columns. In order to satisfy Condition (∗), a set of columns
must include one of the first six column and h1 (or h2) must
be included together with h23 (or h24).

Consider dgr = d = r, for r = 1, 2, . . . , 14, and let us see
whether they satisfy Cond(r, d,H) = 1:

1) There exists a set of r columns of rank d − r = 0 (we
have up to 14 zero columns in total including columns
in the first block of six).

2) For r = 1, there is nothing to prove. Let us consider
2 ≤ r ≤ 14. We know that h1 (or h2) must be included
together with h23 (or h24). Therefore, our set of d−1 =
r − 1 columns must have rank ≥ d − r = 0, which is
trivial.

This means, that for r = 1, 2, . . . , 14 the first try in
Algorithm 2, namely d = 1, 2, . . . , 14 is the final one, that
is, dr = r.

Let us consider now dg15. We first have to check whether
dg15 = 15 (r = 15 and d = 15). It is obvious that all sets
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of d − 1 = 14 columns have rank ≥ d − r = 0. However,
there is no set of d = 15 columns with rank = d − r = 0,
since we only have 14 zero columns. Therefore, dg15 6= 15 and
Cond(15, 15, H) = 0.

Let us now verify that dg15 = 16 (r = 15 and d = 16) and
Cond(15, 16, H) = 1.

1) There exists a set of 15 columns of rank d − r = 1
(choose, for instance, the first column and the 14 zero
columns).

2) We know that h1 (or h2) must be included together with
h23 (or h24). Therefore, every set of d−1 = 14 columns
have rank ≥ d− r = 1

Let us consider now dg16. We have to check whether dg16 =
17 (r = 16 and d = 17). Since we only have 14 zero columns,
it is easy to see that all set of d− 1 = 16 columns have rank
≥ d − r = 1. However, since the rank of any set of three or
more non-zero columns is ≥ 2, there is not set of d = 17
columns with rank= d − r = 1. Therefore dg16 6= 17 and
Cond(16, 17, H) = 0.

Now, we can prove that dg16 = 18 (r = 16 and d = 18) and
Cond(16, 18, H) = 1:

1) There exists a set of 16 columns of rank d − r = 2
(choose, for instance, the two first columns and the 14
zero columns).

2) We have to consider every set of d − 1 = 17 columns
including h1 (or h2) together with h23 (or h24). If we
consider any non-zero column different from h1 (or h2),
we have that the rank is = 2. Since we only have 14
zero columns, we necessarily have to consider at least
one non-zero column and, therefore, the set will have
rank ≥ 2.

It is worth noticing that none of the distances attains the
upper bound, however, this code is useful in other ways, due
to the low delay. This means that the code might not have an
optimal recovery rate, however it corrects very fast.

It is worth noticing that at some point the value of the
distances “jumps”. This gives us some information on the
structure of the codewords. Besides, since the length of the
codewords is 24 and d16 = 18, this means that the generator
matrix must be sparse. We note that in this example, it is easy
to determine the GCD directly from the generator matrix. We
chose this particular instance since it is a small example that
models an application to a “real world” problem (see [39]).

VII. CONCLUSIONS

The real figure of merit of a code, with respect to its
correction capabilities, is the error probability, which depends
both on the code and on the channel model. Since computing
this measure of performance is, in general, a very hard task,
it is very common to use other indicators or functions that
are easier to compute or describe instead. Such functions may
be called proximal figure of merit. The minimum distance is
the most important and famous of such proximal figure of
merit. Since its introduction in the context of block codes, the
generalized Hamming weights are perceived as a refinement of
the minimal distance. This perception was recently re-enforced
by the work [34] where it is shown that the error probability

TABLE I
DIFFERENT VALUES FOR COND(r, d,H) = 0 IN EXAMPLE 15

r d Cond(r, d,H)
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 1
7 7 1
8 8 1
9 9 1
10 10 1
11 11 1
12 12 1
13 13 1
14 14 1

15 15 0
16 1

16 17 0
18 1

of a linear code over the erasure channel under list decoding
or maximum likelihood decoding is expressed by its support
weight distributions. We think that a challenging work would
be to understand these results considering convolutional codes.
Besides, there are many concepts related to GHW of block
codes that deserve to be studied in the context of convolutional
codes, such as Near-MDS and Almost- MDS codes, see for
instance [31].
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