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Abstract 

Spermatozoa motility is a key parameter during fertilization process. In this context, spermatozoa 

tyrosine protein phosphorylation and an appropriate cytoskeleton α-tubulin distribution are some of 

the most important physiological events involved in motility. However, the relationship between 

these two biomarkers remains poorly defined. Here, we characterized simultaneously by 

immunocytochemistry the α-tubulin (TUBA4A) distribution and the tyrosine phosphorylation at 

flagellum before capacitation, during different capacitation times (one and four hours), and after 

acrosome reaction induction in human spermatozoa. We found that the absence of spermatozoa 

phosphorylation in tyrosine residues positively and significantly correlated (p<0.05) with the 

terminal piece α-tubulin flagellar distribution in all physiological conditions. Conversely, we 

observed a positive significant correlation (p<0.01) between phosphorylated spermatozoa and 

continuous α-tubulin distribution in spermatozoa flagellum, independently of the physiological 

condition. Similarly, the subpopulation of spermatozoa with tyrosine phosphorylated and continuous 

α-tubulin increases with longer capacitation times and after the acrosome reaction induction. Overall, 

these findings provide novel insights into the post-transcriptional physiological events associated to 

α-tubulin and the tyrosine phosphorylation during fertilization, which present potential implications 

for the improvement of spermatozoa selection methods. 

Keywords: Acrosome reaction; capacitation; microtubules; protein phosphorylation; spermatozoa  
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1. INTRODUCTION 

Spermatogenesis takes place in mammalian seminiferous tubules and yields highly differentiated and 

specialized spermatic cells (Yanagimachi, 1994), which acquire motility during the epididimal 

maturation process (Eddy, 2006). However, the spermatozoa fertilizing capacity is acquired during 

the residence in the female reproductive tract (de Lamirande, Leclerc, & Gagnon, 1997) or using in 

vitro conditions (Edwards, Bavister, & Steptoe, 1969) by the process known as capacitation (Austin, 

1951, 1952; Chang, 1951). Capacitation involves a set of physiological and structural changes that 

prepare the spermatozoa to perform the acrosomal reaction, releasing hydrolytic vesicles to cross the 

zona pellucida and finally fusing with the oocyte membrane (Eddy, 2006). 

Human spermatozoa capacitation in vitro covers ranges from three to 24 hours (De Jonge, 

2017). This wide time range is associated with the vast heterogeneity of semen samples, resulting in 

spermatozoa subpopulations with different degrees of functionality and membrane cholesterol 

content (Buffone, Doncel, Marin Briggiler, Vazquez-Levin, & Calamera, 2004; Buffone, 

Verstraeten, Calamera, & Doncel, 2009). Likewise, a previous study reported that spermatozoa need 

to capacitate for at least four hours for properly recognize the oocyte’s zona pellucida (Baibakov, 

Boggs, Yauger, Baibakov, & Dean, 2012) and another report demonstrated that the timing of 

capacitation in human spermatozoa differs among men but is reproducible within each individual 

(Ostermeier et al., 2018).  

Due to lack of transcriptional and translational activity once the spermatogenesis is finished, 

post-translational modifications (acetylation, glutamylation, glycylation, methylation, 

phosphorylation, and polyamination) further increase the spermatozoa heterogeneity and introduced 

specific changes that could be associated to functionality (Brohi & Huo, 2017). One of the key 

spermatozoa post-translational modification is the flagellum tyrosine protein phosphorylation 

(Naresh & Atreja, 2015; Naz & Rajesh, 2004), which is regulated by kinase A protein located at 
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flagellar fibrous sheath through a cAMP dependent pathway (Visconti et al., 1998). According to 

several studies, spermatozoa tyrosine phosphorylation is a time-dependent event and plays an 

outstanding role during capacitation, hyperactivation, acrosome reaction, and oocyte interaction 

(Tardif, Dube, Chevalier, & Bailey, 2001; Urner, Leppens-Luisier, & Sakkas, 2001; Sakkas et al., 

2003; De Jonge, 2017).  

Otherwise, post-translational modifications are also involved in the stability of microtubules 

and in regulating microtubules interactions with proteins (Kierszenbaum, 2002). Thus, a proper 

microtubules organization during spermatogenesis (Tachibana et al., 2005; O’Donnell & O’Bryan, 

2014) and subsequent post-translational changes will influence on spermatozoa motility and 

hyperactivation during capacitation (Gagnon et al., 1996). The axoneme is composed of two central 

microtubules surrounded by nine microtubule doublets (9+2) which, in turn, are formed by 

heterodimers of α- and β-tubulins (Eddy, 2006). Tubulin is a polymorphic protein and results from 

the expression of various isogenes. Particularly, α-tubulin isoforms are TUBA1A, TUBA1B, 

TUBA3C, TUBA4A, TUBA4B, and TUBA8 (Khodiyar et al., 2007).  

   It is known that in human spermatozoa tubulin is one of the proteins that serve as substrate 

for post-transcriptional during spermatozoa epididymal maturation and capacitation, including 

tyrosine phosphorylation, mainly in the C-terminal structural domains of tubulin subunits ( Ludueña, 

1997; Westermann & Weber, 2003; Arcelay, Salicioni, Wertheimer, & Visconti, 2008). Specifically, 

tyrosine phosphorylation play roles in microtubule functions, such as microtubule stability, the 

interaction with associated proteins and the participation in axonemal motility (Gagnon et al., 1996; 

Garnham & Roll-Mecak, 2012; O’Donnell & O’Bryan, 2014). However, there is no data regarding 

the simultaneous study of both molecular events in the flagellum of the human spermatozoa. Here, 

we have addressed, for the first time, the relationship of flagellar tyrosine phosphorylation and α-

tubulin (TUBA4A) distribution patterns in different spermatozoa physiological conditions. 
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Specially, we analysed the colocalization of these two biomarkers before capacitation, during one 

and four hours of capacitation, and after the induction of acrosome reaction in human spermatozoa. 

 

 

 

2. RESULTS AND DISCUSSION 

2.1 Spermatozoa parameters 

All samples included in this study were normozoospermic according with WHO standards 

(Organization, 2010). Results of basic spermatozoa parameters from all physiological conditions 

(NC, C1, C4, AR1, and AR4) are summarized in the Table 1. We detected after both capacitation 

times and acrosome reaction induction (C1, C4, AR1, and AR4) a significant decrease in 

spermatozoa concentration (p <0.001) and an increase in motility and vitality (p<0.001) compared 

to NC cells (Table 1). 

2.2 Assessment of acrosomal status  

Acrosome reaction is an essential physiological event for the interaction and fusion of the 

spermatozoa with the oocyte (Mahi & Yanagimachi, 1978; Yanagimachi, 1994). In this study, the 

spermatozoa that fluoresced in the acrosomal region were regarded as not reacted and those with a 

label in the equatorial segment were considered reacted (see Figure 1). Results showed that in AR1 

subpopulation the percentage of reacted cells was 67.6%, while only 12.1% of spontaneous reacted 

spermatozoa were observed in control (p<0.001; Table 1). Similarly, in AR4, 68.7% of cells 

exhibited positive acrosome reaction, compared to 15.7% from spontaneous acrosome reaction (p 

<0.001). No differences were found in the fractions of spontaneous and inducted acrosome-reacted 
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cells between both capacitation times (see Table 1). These data complement previous studies 

showing that the percentage of acrosome-reacted spermatozoa depends on the induction time (Sosa 

et al., 2014), and the percentage of cells with spontaneous acrosome reaction is around 20% (Cardona 

Maya, Olivera Angel, & Cadavid, 2006). 

2.3 Tyrosine phosphorylation immunofluorescence 

The molecular event of tyrosine phosphorylation is used as a spermatozoa capacitation indicator, 

since its presence has been associated with hyperactivation, cumulus oophorous penetration, and 

zona pellucida binding (Sakkas et al., 2003). We distinguished the phosphorylated state based on the 

positive label in the flagellum or the absence of it (see Figure 2a). Our immunofluorescence results 

showed that the percentage of spermatozoa with tyrosine phosphorylation at the flagellum increased 

from 8.4% to 18.3% (P>0.05) and 28.3% (P<0.05) after one- and four-hours capacitation, 

respectively. After the induction of acrosomal reaction, the number of phosphorylated spermatozoa 

rose up to 35.2% in AR1 and 49.2% in AR4. These percentages were significant different compared 

to noncapacitated and one-hour capacitated conditions (see Table 1).  

Overall, our data indicate that longer capacitation times positively favoured the presence of 

tyrosine phosphorylation, with a higher percentage of phosphorylated cells after four-hours 

capacitation. These results are in accordance with previous studies performed in human (Barbonetti 

et al., 2008; Battistone et al., 2014) and in other mammalian species (Si & Okuno, 1999; Urner, 

Leppens-Luisier, & Sakkas, 2001) in which tyrosine phosphorylation increased in a time-related 

manner (Hereng et al., 2011; Liu, Clarke, & Baker, 2006; Martinez-Leon et al., 2015; Nassar et al., 

1999). 

2.4 α-tubulin immunofluorescence 

Another essential requirement for proper spermatozoa motility is the adequate disposition of the 
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microtubules, which are composed mainly of tubulin (O’Donnell & O’Bryan, 2014). Moreover, it 

should be noted that the presence of structural defects in the axonema is one of the causes of male 

infertility in humans (Baccetti, Bruni, Gambera, Moretti, & Piomboni, 2004; Baccetti, Burrini, & 

Pallini, 1980; Gómez-Torres, Medrano, Romero, Fernandez-Colom, & Aizpurua, 2017; Peknicova 

et al., 2007).   

We characterized four α-tubulin fluorescent patterns (see Figure 2b). Pattern 1 (P1) consisted 

of continuous label throughout the flagellum. Pattern 2 (P2) had discontinuous fluorescence along 

the whole flagellum. Pattern 3 (P3) was characterized by positive signal in terminal piece of the 

flagellum. Finally, Pattern 4 (P4) was classified as absence of labelling. Some of these patterns 

coinciding with patterns observed in previous studies (Draber, Draberova, & Viklicky, 1991; 

Francou, Ten, Bernabeu, & De Juan, 2014). This data highlights the existence of spermatozoa 

subpopulations with different α-tubulin distribution patterns.  

We theorise that the post-translational modifications (Garnham & Roll-Mecak, 2012) could 

be hiding the α-tubulin epitopes, leading to the different fluorescent patterns observed. In addition, 

our data highlighted that spermatozoa capacitation increased the percentage of cells with α-tubulin 

distribution homogeneously throughout the flagellum (P1). This pattern also increased in cells after 

acrosomal reaction induction. Therefore, we propose that these physiological events could be helping 

to unmask the α-tubulin epitopes. Similarly, previous reports have also detected rearrangements of 

tubulin epitopes after acrosomal reaction in spermatozoa head and flagellum of several mammals 

(Dvorakova, Moore, Sebkova, & Palecek, 2005; Dvorakova, Palecek, & Peknicova, 2001; Peknicova 

et al., 2001). These observations support the image of axonema proteins as highly dynamic structure 

that participates actively in fertilization process (Wloga, Joachimiak, & Fabczak, 2017). 

Specifically, low immunofluorescence scores of tubulin in spermatozoa has been related to 

low motility and low fertilizing potential, suggesting a possible structural or functional disorder in 
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the main axonema proteins (Hoshi, Sugano, Yoshimatsu, & Yanagida, 1995; Senn, Germond, & De 

Grandi, 1992). Other previous reports have found that the immunostaining of β-tubulin was less 

intense in pathological spermatozoa samples compared with normozoospermic ones (Baccetti et al., 

2004; Salvolini et al., 2013). Additionally, in the complete form of fibrous sheath dysplasia the 

majority of spermatozoa (~50%) showed the tubulin label only over the final portion of the flagellum 

(P3), the second distribution (20–30%) consisted of a discontinuous signal (P2) and a continuous 

staining (P1), reminiscent of the normal pattern was detected in 15–30% of sperm tails (Rawe, 

Galaverna, Acosta, Olmedo, & Chemes, 2001). These studies reveal the importance of bright tubulin 

immunofluorescence throughout the flagellum (P1) for proper sperm functionality. 

2.5 Simultaneous assessment of tyrosine phosphorylation and α-tubulin  

The present study was aimed at establishing the Pearson correlation coefficient (PCC) 

between tyrosine phosphorylation and α-tubulin patterns by indirect simultaneous 

immunofluorescence in different spermatozoa physiological conditions (see Figure 2 and Figure 3). 

The PCC results showed that the distribution patterns of α-tubulin were dependent on the state of 

spermatozoa phosphorylation (see Figure 3 and Table 2). In particular, it is important to highlight 

that the presence of continuous α-tubulin pattern (P1) was significantly positively correlated (PCC; 

p<0.01) with tyrosine phosphorylation subpopulation and significantly negatively correlated  (PCC; 

p<0.01) with unphosphorylated spermatozoa of all physiological conditions (NC, C1, C4, AR1, and 

AR4) (see Table 2). Therefore, P1 was the majoritarian pattern in all phosphorylated spermatozoa 

conditions (Figure 2d and Figure 3). In this line, a previous study claimed that α-tubulin acetylation 

is reduced in individuals with low spermatozoa motility (Bhagwat et al., 2014). In addition, a 

previous report observed that the absence of tubulin labeling in the flagellum could be associated 

with aberrant protein post-modification in different regions of the axoneme, affecting microtubules 

structure (Chan et al., 2009). Therefore, spermatozoa physiological events during fertilization such 
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as capacitation and acrosomal reaction are intimately linked with post- translational modifications 

and with the α-tubulin epitopes unmasking (Wloga et al., 2017). 

Otherwise, we registered that spermatozoa with discontinuous α-tubulin pattern (P2) showed 

a positive and significant correlation (PCC; p<0.05) in NC regardless of phosphorylation status 

(Table 2). However, after both capacitation times and acrosomal reaction, phosphorylated 

spermatozoa presented a negative correlation with P2. Regarding terminal piece pattern (P3) and 

absence of labelling (P4), both patterns were negative correlated with phosphorylated spermatozoa 

subpopulation and positive correlated with nonphosphorylated cells of all physiological conditions 

(see Table 2). It should be noted that in the presence of tyrosine phosphorylation, the results did not 

record any spermatozoon without tubulin labeling (P4), due to this there is no representative image 

in Figure 2c. In nonphosphorylated cells, the most abundant distribution pattern of the α-tubulin 

varied according to the physiological state of the cells. In detail, spermatozoa from NC, C1, and C4 

unphosphorylated conditions showed a higher percentage of P2, whereas, after the acrosome reaction 

induction (AR1 and AR4) presented mainly P3 (Figure 2d), which could be associated with 

alterations in flagellar motility. In this context, a previous report observed that after spermatozoa 

thawing the progressive motility was decreased as P3 α-tubulin pattern increased, indicating a tubulin 

disorganization (Gómez-Torres, Medrano, Romero, Fernandez-Colom, & Aizpurua, 2017).  

In conclusion, this study reports for the first time a differential distribution of α-tubulin epitopes 

along the flagellum conditioned by the tyrosine phosphorylation state in human spermatozoa. 

Furthermore, the presented data demonstrate that longer capacitation times (four hours) and 

acrosome reaction allow selecting a subpopulation with greater percentage of phosphorylated 

spermatozoa linked to α-tubulin continuous distribution along the flagellum. Hence, these 

biomarkers could provide a new research tool for study the biological basis of infertility and the 

improvement of human spermatozoa selection methods in assisted reproduction.  
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3. MATERIALS AND METHODS 

3.1 Experimental design 

This research was approved by the ethical committee of the University of Alicante in accordance 

with the Declaration of Helsinki principles. Semen samples were processed following the 

experimental design (see Figure 4) to obtain the five selected spermatozoa physiological conditions: 

noncapacitated (NC), one hour capacitated (C1), four hours capacitated (C4), induced acrosome 

reaction from one hour capacitated (AR1), and induced acrosome reaction from four hours 

capacitated (AR4). C1 condition was chosen in concordance with the World Health Organization 

(WHO) swim-up protocol (Organization, 2010) and C4 based on a previous study (Baibakov et al., 

2012). Cells from all conditions were fixed in 2% (w/v) paraformaldehyde (TAAB Essentials for 

Microscopy, UK) for 45 minutes at 4°C and then the simultaneous study of α-tubulin and tyrosine 

phosphorylation was performed. 

3.2 Analysis of seminal parameters 

Semen samples were obtained from five healthy normozoospermic donors by masturbation after 

three-to-four days of sexual abstinence under written informed consent. The samples were allowed 

to liquefy for 15 minutes at room temperature and basic seminogram was performed in the laboratory 

of the Department of Biotechnology at University of Alicante. Basic seminogram was performed 

mostly by following the WHO guidelines (Organization, 2010). Spermatozoa concentration and 

motility were assessed using Makler® (BioCare Europe, Rome, Italy) counting chamber, 

morphology by Papanicolaou staining (Panreac Química S.L.U., Barcelona, Spain), and viability was 

studied using eosin-nigrosine assay (Projectes i Serveis R+D S.L., Paterna, Spain). Only 

normozoospermic samples were included based on the criteria established by the WHO 
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(Organization, 2010).  

3.3 In vitro capacitation by swim-up 

The seminal plasma was removed by centrifugation for 10 minutes at 250g, the pellet was washed 

with human tubal fluid medium (HTF, Origio®, Måløv, Denmark) and divided into three aliquots, 

one to fix the noncapacitated spermatozoa and the others were destined for one and four hours 

capacitation. The capacitation was performed by swim-up using HTF medium supplemented with 

5mg/mL of bovine serum albumin (BSA, Sigma-Aldrich®, Saint Louis, Missouri, USA) at 37ºC and 

5.5% (v/v) of CO2 for one and four hours. Next, supernatant fraction was collected and washed three 

times in phosphate buffered saline without calcium and magnesium (PBS, Biowest, Nuaillé, France) 

by centrifugation (250g, 10 minutes). All in vitro capacitation conditions were performed according 

to WHO (Organization, 2010). Following the capacitation, the concentration, motility, and viability 

of each motile spermatozoa recovery was analysed. 

3.4 Induction and evaluation of acrosomal reaction  

After the respective capacitation times, the supernatant of the tubes was collected and divided into 

three aliquots: one for the fixation of the capacitated spermatozoa, another for the induction of the 

acrosome reaction, and the last one as a control of the reaction. The induction of the acrosome 

reaction was performed by 10µM of calcium ionophore A23187 (Sigma-Aldrich) and 2mM of 

calcium chloride (Panreac Química S.L.U, Barcelona, Spain) for one hour at 37ºC and 5.5% (v/v) 

CO2, following previous protocols (Cross, Morales, Overstreet, & Hanson, 1986). Only calcium 

chloride was added to the controls.  

To assess the acrosomal status, 5µL of each physiological condition were placed on 

coverslips and fixed in methanol for 30 minutes. After the smear was dry, cells were washed three 

times in PBS and unspecific bindings were blocked using 2% (w/v) BSA-PBS for 30 minutes. The 
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smears were then incubated in the dark with Pisum sativum agglutinin lectin conjugated with 

fluorescein-5-isothiocyanate (PSA-FITC, Sigma-Aldrich) at a concentration of 50µg/mL for 30 

minutes. After three washes in PBS, samples were mounted using Vectashield® and 4′,6-diamidine-

2′-phenylindole dihydrochloride (DAPI, Vector Laboratories, Burlingame, California, USA). DAPI 

was used to detect the nucleus of the cells and the whole process was conducted at room temperature. 

A minimum of 200 spermatozoa of each experimental condition were evaluated using a confocal 

microscope (Zeiss LSM 800, Oberkochen, Germany). 

3.5 Simultaneous immunolocation of tyrosine phosphorylation and α-tubulin  

A total of 5μL of each paraformaldehyde-fixed condition were placed on a coverslip. When smear 

was dry, cells were washed three times for 5 minutes with PBS. Smears were then incubated with 

the primary PY20 anti-phosphotyrosine antibody (1:500) produced in rabbit (Sigma-Aldrich) in 

blocking solution of 2% PBS-BSA for one hour at room temperature (Barbonetti et al., 2008). 

Subsequently, three washes were made with PBS and the secondary anti-rabbit antibody conjugated 

with Alexa Fluor 488 (1:100) (Jackson ImmunoResearch, Ely, UK) was added in blocking solution 

of 2% (w/v) PBS-BSA for one hour at room temperature. Three washes were performed again and 

the primary anti-α-tubulin antibody (1:600) produced in mice (TUBA4A, Sigma-Aldrich) in blocking 

solution of 2% (w/v) PBS-BSA was added under the same conditions as previously. After washing, 

they were incubated with the secondary anti-mouse IgG (H+L) antibody conjugated to Cyanine TM3 

(1:400) (Jackson ImmunoResearch) in blocking solution of 2% (w/v) PBS-BSA, under the same 

conditions. Finally, three washes were made with PBS and the assembly was carried out with 

Vectashield with DAPI.  

Samples were visualized using a ZEISS LSM 800 confocal microscope, 

immunofluorescence is an alternative method to describe spermatozoa biomarkers, since it allows 

visualizing the relocation of molecules involved in the fertilization process (Sáez-Espinosa et al., 
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2019). In each sample and in all the physiological conditions, a minimum of 100 cells were evaluated, 

therefore a total of 2,500 cells have been studied in this work. First, the presence or absence of 

phosphorylation was determined from each cell and afterwards, its distribution pattern of α-tubulin 

was identified.  

3.6 Data collection and statistical analysis 

Shapiro-Wilk (W) test was performed in order to test the distribution and equal variance in the 

biomarkers analysed, showing that all the biomarkers studied were normally distributed (W=0.806 

to 0.956; P>0.05). Statistical tests were performed using the independent-samples t-test to assess 

differences in the biomarker’s percentages between the different physiological conditions. The 

bivariate correlation between tyrosine phosphorylation and tubulin patterns in all groups was 

conducted using the Pearson correlation coefficient (PCC). Two-sided P -values<0.05 were deemed 

statistically significant and statistical analyses were performed using IBM SPSS Statistics 22.0 (IBM, 

Armonk, NY, USA).  
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TABLES 

 

TABLE 1 Semen sample parameters. 

Noncapacitated (NC), one hour capacitated (C1), four hours capacitated (C4), acrosomal reaction 
inducted after one hour (AR1) and four hours of capacitation (AR4).  
a t-test p<0.001to NC, b t-test p<0.001to C1, c t-test p<0.001to C4. 
 
 

 

TABLE 2 Bivariate Pearson correlation between α-tubulin patterns (P1-P4) and tyrosine 
phosphorylated state (TP + or TP -) in each human spermatic physiological condition.  

  PCC of α-Tubulin patterns 
 TP P1 P2 P3 P4 

NC 
+ 0.836** 0.745* -0.583 -0.458 
- -0.954** 0.822** 0.719* 0.570 

C1 + 0.903** -0.677* -0.737* -0.423 
- -0.808** 0.417 0.869** 0.707* 

C4 + 0.911** -0.541 -0.831** -0.593 
- -0.943** 0.576 0.846** 0.623 

AR1 + 0.852** -0.633* -0.691* -0.398 
- -0.784** 0.476 0.799** 0.526 

AR4 + 0.793** -0.523 -0.639* -0.452 
- -0.889** 0.643* 0.639* 0.700* 

Pearson correlation coefficient (PCC), Noncapacitated (NC), one hour capacitated (C1), four hours 
capacitated (C4), acrosomal reaction inducted after one hour (AR1), four hours of capacitation 
(AR4), phosphorylated (TP+), and unphosphorylated (TP -).  Note that the continuous α-tubulin 
pattern (P1) was significantly positively correlated with tyrosine phosphorylation subpopulation and 

Parameter NC 
Mean ± SD 

C1 
Mean ± SD 

C4 
Mean ± SD 

AR1 
Mean ± SD 

AR4 
Mean ± SD 

Volume (mL) 4.4 ± 1.5 - - - - 
pH 7.6 ± 0.2 - - - - 

Normal morphology (%) 12.5 ± 5.4 - - - - 
Concentration (106/mL) 76.7 ± 32.8 15.4 ± 10.4a 19.0 ± 8.2a 15.4 ± 10.4a 19.0 ± 8.2a 

Total motility (%) 65.2 ± 10.8 98.5 ± 1.9a 96.8 ± 2.7a 91.2 ± 3.6a 90.1 ± 5.4a 

Viability (%) 84.2 ± 8.1 97.6 ± 2.1a 95.2 ± 2.1a 94.4 ± 4.5a 91.4 ± 3.2a 

Acrosome reaction (%) - 12.1 ± 8.8 15.7 ± 7.3 67.6 ± 13.7b,c 68.7 ± 14.7b,c 

Tyrosine 
phosphorylation (%) 8.4 ± 3.8 18.3 ± 9.6 28.3 ± 13.9a 35.2 ± 8.5a,b 49.2 ± 18.0a,b 
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significantly negatively correlated with unphosphorylated spermatozoa of all physiological 
conditions. 
* Significative correlation (p<0.05); ** Significative correlation (p<0.01).   
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FIGURE LEGENDS 
 

FIGURE 1 Fluorescent PSA-FITC binding label. Acrosomal region label indicates absence of 
acrosome reaction and the labelling in the equatorial band that the acrosome reaction has been 
performed. (a) Spermatozoa before acrosome reaction induction. (b) Spermatozoa after acrosome 
reaction induction. Scale bar 10μm. 

FIGURE 2 Immunocolocalization of α-tubulin and tyrosine phosphorylation in human spermatozoa 
flagellum. (A) Tyrosine phosphorylation, phosphorylated (+) and unphosphorylated spermatozoa (-
). (B) Patterns of α-tubulin distribution, Homogeneous and continuous (P1), discontinuous (P2), 
terminal piece (P3), and no labelling (P4). (C) Patterns of colocalization biomarkers, phosphorylated 
cell with continuous α-tubulin labelling (P1+), phosphorylated cell with discontinuous α-tubulin 
labelling (P2+), and phosphorylated cell with α-tubulin labelling in the terminal piece (P3+). The 
DNA of the spermatozoa was stained with DAPI. Scale bar 10μm. (D) Spermatozoa percentages of 
simultaneous study of tyrosine phosphorylation (TP+, phosphorylated; TP -, unphosphorylated) and 
α-tubulin flagellar distribution (P1-P4) in each physiological condition (NC, C1, C4, AR1, and AR4).  

FIGURE 3 Fluorescent immunocolocalization of α-tubulin and tyrosine phosphorylation in human 
spermatozoa flagellum in different experimental conditions. The DNA of the spermatozoa was 
stained with DAPI (magnitude 400x). Note that regardless of the experimental condition the 
spermatozoa with tyrosine phosphorylation localize tubulin homogeneously throughout the 
flagellum (P1). 

FIGURE 4 Experimental design. Spermatozoa physiological conditions: Noncapacitated (NC), one-
hour capacitated (C1), four-hour capacitated (C4), acrosomal reacted cells after one hour (AR1), and 
four hours of capacitation (AR4). 
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Fluorescent PSA-FITC binding label. Acrosomal region label indicates absence of acrosome reaction and the 
labelling in the equatorial band that the acrosome reaction has been performed. (a) Spermatozoa before 

acrosome reaction induction. (b) Spermatozoa after acrosome reaction induction. Scale bar 10μm. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.



For Peer Review

 

Immunocolocalization of α-tubulin and tyrosine phosphorylation in human spermatozoa flagellum. (A) 
Tyrosine phosphorylation, phosphorylated (+) and unphosphorylated spermatozoa (-). (B) Patterns of α-
tubulin distribution, Homogeneous and continuous (P1), discontinuous (P2), terminal piece (P3), and no 
labelling (P4). (C) Patterns of colocalization biomarkers, phosphorylated cell with continuous α-tubulin 

labelling (P1+), phosphorylated cell with discontinuous α-tubulin labelling (P2+), and phosphorylated cell 
with α-tubulin labelling in the terminal piece (P3+). The DNA of the spermatozoa was stained with DAPI. 
Scale bar 10μm. (D) Spermatozoa percentages of simultaneous study of tyrosine phosphorylation (TP+, 
phosphorylated; TP -, unphosphorylated) and α-tubulin flagellar distribution (P1-P4) in each physiological 

condition (NC, C1, C4, AR1, and AR4). 
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Fluorescent immunocolocalization of α-tubulin and tyrosine phosphorylation in human spermatozoa flagellum 
in different experimental conditions. The DNA of the spermatozoa was stained with DAPI (magnitude 400x). 
Note that regardless of the experimental condition the spermatozoa with tyrosine phosphorylation localize 

tubulin homogeneously throughout the flagellum (P1). A
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Experimental design. Spermatozoa physiological conditions: Noncapacitated (NC), one-hour capacitated 
(C1), four-hour capacitated (C4), acrosomal reacted cells after one hour (AR1), and four hours of 

capacitation (AR4). 
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	The seminal plasma was removed by centrifugation for 10 minutes at 250g, the pellet was washed with human tubal fluid medium (HTF, Origio®, Måløv, Denmark) and divided into three aliquots, one to fix the noncapacitated spermatozoa and the others were ...



