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Chapter 1

Introduction

This master thesis is devoted to the theoretical study of electronic transport across

atomic-sized constrictions in graphene. The motivation of this work is threefold.

First, at the start of the project, we wanted to study the transport between two

graphene electrodes that are non coplanar and connected through an atomic scale

contact. Second: we soon realized that, unlike the case of metallic nanocontacts,

the conductance of “bulk” graphene is not much larger than the quantum of con-

ductance. Therefore, a detailed study on how the conductance depends on the size

of the contact, interpolating between the atomic and the macroscopic limit was in

order. Finally, there are now several papers reporting experiments and theoretical

calculation on transport measurements in graphene nanocontacts [1, 2, 3, 4].

1.1 Nanoelectronics

In modern society, it has become fundamental the improvement of the efficiency along-

side the miniaturization in order to create new technology. In the last few decades the

number of transistor that can be fitted in a chip has been doubling with each genera-

tion following the trend predicted by Moores’s Law [5]. Simultaneously, computers have

been increasing its computational power exponentially. In order to keep this trend, it is

necessary to study in detail smaller structures.
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Figure 1.1: Evolution of the scale of transistor manufacturing process in time and the
prediction of single atom transistor technology [6].

Figure 1.1 shows how the size of the transistor manufacturing process has been de-

creasing since the creation of the first transistors. To date, the goal of making small

systems formed by a few atoms has been pursued. Current transistor manufacturing pro-

cess size is in the 5 nm range. As a result, nanoscience has come to play a major role in

electronics. Introduced by Richard P. Feynman in the talk “There’s Plenty of Room at

the Bottom: An invitation to enter a new field of physic” [7], in a conference at Caltech,

the nanoscience tries to control and study the science of devices and materials at the

nanometer scale (10−9m). One of the greatest discoveries was to found that many of the

well known characteristics of a material in bulk can change dramatically at the nanoscale.

The effects of the quantum world start to became very noticeable at this scale and physics

plays a fundamental role, where studying the materials at the quantum level has been an

extraordinary task.

Studying nanometric systems from a theoretical point of view has become an ex-

tremely useful complementary tool to experimental research, helping to understand the

measurements, saving time and expenses when working with materials that are difficult to

synthesise and also predicting interesting properties in devices yet to be made. Given the

well known limitations of analytical methods, most of the modelling in nanoelectronics is

carried out using computational methods. As a consequence, many theoretical models had

been developed to overcome this limitation letting us to get an insight into the interesting

properties at the atomic scale using computational methods in a reasonable amount of

time.

This topic has been widely studied for metals, going from three-dimensional materials

(bulk) to single atom constrictions between the electrodes. However, in the present work we

will focus on the electronic transport properties of atomic sized contacts studying similar

structures with graphene, a two-dimensional semiconductor, using tight binding models
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and Green’s functions formalism to solve the transmission probability in the Landauer

formula.

1.2 Quantum effects at the nanoscale

1.2.1 Reminder of classical theory

One of the earliest successful descriptions of the electronic transport in macroscopic

metallic systems is given by Drude model [3, 8]. This model is based on the kinetic theory

of gases. The electrons behave as solid spheres moving in straight line until they collide

when an external electric field is applied.

The kinetic energy of the electrons is not equal to the contribution from the electric

field (q ~E). Instead, we need to consider that the collisions are taking away the energy

from the electrons.

m
d~v

dt
= q ~E + ~f (1.2.1)

This contribution, ~f , can be modeled as a velocity depending term when we work with

average velocities and so we can obtain :

m
dv̄

dt
= q ~E −mv̄

τ
(1.2.2)

being τ the mean free time, where the probability of an electron suffering a collision per

unit of time is 1/τ . This equation allows us to define the average velocity of the electrons

in the metal:

v̄ =
qEτ

m
(1.2.3)

Knowing the characteristic velocity and the mean free time, we can obtain the main

free path between collisions, l = τv.

Following the gas description for the electron, we consider a box with area A and length

δd in a macroscopic wire, where the current is I = ∆Q/∆t. For an electron gas with a

density n the amount of charge is given by δQ = enAδd = enAvδt and so, the current is:

δQ

δt
= enAv (1.2.4)

Using the description for the velocity and EL=V where L is the length of the wire, the
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current is described as follows:

I =
e2nτ

m

A

L
V (1.2.5)

The Ohm’s law tell us that the current is proportional to the electrical potential,

I = V/R. The proportionality constant R accounts for the resistance of the system and its

inverse G = 1/R, for the conductance. Taking this into account in the current description

from Drude model, we obtain the diffuse transport description of the conductance:

G =
e2nτ

m

A

L
(1.2.6)

This equation has three length scales: L,
√
A and the mean free path l = τv, where

v would be the typical velocity of electrons. The diffusive description implicit in the

Drude model breaks down when the mean free path is larger than L or
√
A. Quantum

effects need to be accounted when the Fermi wavelength is larger than one of these length

scales. Because of this, the way we have to understand and to compute the conductance

is radically different at the nanoscale. We have to take into account the complex wave

function of electrons and study its quantum characteristics to define the conduction. This

behaviour is defined by the electronic configuration of the atoms in contact.

1.2.2 Conductance of metallic nanocontacts

In a wide class of situations, nanoscale conductors are in series with macrosopic con-

ductors. As a result, the resistance of the whole system is governed by the contribution

of the nano-conductor, which makes it easier for its experimental determination. For the

theory, the challenge is to compute the conductance at the nanoscale. Here, the so called

Landauer formalism is the optimal method [9]. In this formalism, we solve a scattering

problem to obtain the conductance. For that matter, we divide the system in, at least

3 parts: a nanoconstriction and a minimum of two electrodes attached to it. This will

be related to the transmission probability of the electron for crossing the material. The

scattering formalism can be summarized with the Landauer formula derived in further

sections:

G =
2e2

h

N∑
n=1

Tn (1.2.7)

where e is the charge of the electron, h the Plank’s constant, Tn represents the transmission

probability in the channel (n), where each channel are roughly related with the extended

states of the electrodes. The 2 factor corresponds to spin degeneracy. We thus see that

the conductance for the case of a single channel with perfect transmission T = 1 is given
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by G0 = 2e2/h, which is known as the quantum of conductance.

Landauer formalism provides the natural framework to describe the conductance in

atomic scale constrictions. There, the number of channels is roughy given by the valence

of the atoms. For instance, the observation of G = G0 for atomic contacts of gold relates

to the fact that transmission is roughly 1 for the s electrons that dominate conductance

in this system

In order to measure the quantum of conductance expected for gold we need to re-

produce experimentally the formation of a single atom contact by reducing the section

between the electrodes until reaching the nanocontact [10, 11, 12]. The break junction

technique is the base to perform this kind of measurements. There are two main types

of set-up. First, a mechanically controlled break junction (MCBJ) [13], deforming a ex-

tremely small junction between the metallic electrodes until it breaks. In the last steps,

before total rupture, a single atomic contact is made. On the other hand, we can use a

scanning tunnel microscope (STM) by approaching and retracting the tip and the sample

in order make atomic-sized metallic contacts (STM-BJ) [14] (Figure 1.2 (b)). In both of

them, the conductance is measure as a function of the displacement associated with the

voltage applied in the piezoelectric device as seen in Figure 1.2(a).

Figure 1.2: (a) Measurements of the rupture (black line) and formation (red line) of
gold junction performed by a scanning tunnel microscope based break junction (STM-BJ)
technique at 4.2 K from LT Nanolab, Department of Applied Physics from University
of Alicante. (b) Schematic representation of the formation and rupture of the contact
between the tip and the sample in a STM-BJ experiment [15].

As seen in Figure 1.2 (b), the top images correspond to the formation of the contact

in the STM-BJ technique. As the tip approaches the sample, the first contact is made

with a single gold atom and the conductance goes from the tunnel regime to the contact

regime. In Figure 1.2 (a) we can see this in the red line with the first step as the contact is

made, achieving a quantum of conductance. From there, as more atoms from the tip are

in contact with the sample, the conductance increase in a quantized manner (integers of

G0). The top images from panel (b) represents the rupture of the contact. In the last step,

before breaking the junction, a single atomic contact is achieved. In panel (a) this can be

seen in the black line, for the last contact (a single atom), the plateau corresponds to 1
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G0. There is an extended bibliography of experimental data and theoretical calculations

of the conductance in metallic nanocontacts [15]. Being a well known fact that even with

a single atomic contact with a perfect channel, the device is able to achieve a conduction

of at least G0.

1.3 Electronic properties of graphene

In 2010, Andrei Geim, Konstantin Novoselov and co-workers [16] received the Nobel

prize by the isolation of a single carbon layer graphite by mechanical exfoliation. Their

result contradicts what L.D. Landau y R.E. Peierls predicted, i.e. the impossibility of

isolate 2D monoatomic crystal layers due to the lack of thermodynamic stability [17, 18].

Each layer is a two dimensional structure known as graphene, term coined by Hanns-Peter

Boehm while studying extremely thin flakes of graphite [19].

The strong binding among the carbon atoms and the honeycomb lattice makes graphene

a material with extraordinary characteristics such as high strength [20] and excellent elec-

tronic and thermal conduction [21]. Since its experimental appearance, the rise of graphene

[22] has attracted the scientists attention to 2D structures, used as a base for different

studies focus on 2D materials.

The two quantities that appear in all formulas describing insulators and conductors,

namely, the band-gap and the density of states at the Fermi energy, are zero in graphene.

As a result, graphene has quite peculiar electronic properties. Graphene is zero gap

semiconductor. The point where the conduction and the valence bands meets are called

the Dirac points.

Figure 1.3: Experimental conduction of graphene as a function of the gate voltage applied
[23].

Another important aspect about charge transport in graphene is its ambipolar be-

havior. This implies that charge carriers can be tuned continuously between holes and
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electrons by supplying the necessary voltage [24]. Under negative gate bias, the Fermi level

drops below the Dirac point, introducing a significant population of holes into the valence

band. Under positive gate bias, the Fermi level rises above the Dirac point, promoting a

significant population of electrons into the conduction band.

In semiconductors, transport is dominated by carriers at the extreme of the bands

with parabolic dispersion. As a result, their description can be done using a Schrodinger

equation with an effective mass. In graphene, bands are linear. Those are at the junction

of the Dirac cones (Figure 1.3), this conic geometry defines the unique nature of its charge

carriers. The relevant effective model for these bands is the Dirac equation [25]:

EF = h̄vFkF (1.3.1)

where the speed is set at vF ∼ 106m/s or c/300, being c the speed of light in vacuum.

In contrast to the conductance in conventional two-dimensional materials, graphene

shows conductance at the Dirac point that is geometry dependent. The electronic trans-

port is related to evanescent modes [26]. A distinct feature of a 2D massless Dirac fermion

system is that the minimum of conductance is predicted to be an universal value of

G0 = 4e2/πh for both ballistic and disordered cases [22]. Another studies, [23, 27] found

an universal, but larger, value of G0 = 2e2/h. This π factor was complicated to explain,

thus generating a debate between theory and experimental data [28, 29, 30, 31, 32].

By narrowing the size of the graphene sheet in one of the two direction, we can reduce

the dimensionality of the system. These stripes of graphene that have a finite width and an

infinite length (from the electronic point of view) are called graphene nanoribbons (GNRs).

In these types of structures, the minimum of conductance is often reported experimentally

to be a quantum conductance, G0 = 2e2/h [28]. However, it is also possible to recover the

original theoretical value with the π factor by reducing the length in very wide ribbons,

achieving ballistic transport [33].

The experimental results can be explain with the Klein paradox [34]. It states that the

quasiparticles in graphene, that have a perfect electron-to-hole conversion at a potential

barrier, will have a probability of one of tunneling through the barrier [35]. This guarantees

the absence of localization [32, 36] and the existence of a finite minimum conductance

measured in several works experimentally [37, 16] and theoretically [38, 39]. This makes

graphene ribbons suitable to be used in all sort of electronic devices.

1.4 Motivation

Initially, the main focus of this work was to study the electronic transport between two

non-coplanar graphene nanoribbons. We wanted to study the conductance as a function of

the angle. The idea behind this came from an article about dynamic tunneling junctions

at the atomic intersection of two twisted graphene edges [40]. In this experiment, in order
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to study the electronic transport through a graphene atomic-sized contacts, two graphene

flakes were approached in a certain angle as seen in Figure 1.4 (a).

Figure 1.4: (a) Schematic representation of the contact between two graphene nanoribbons
in a certain angle. (b) Conductance as a function of the distance between the GNRs in
the formation and the rupture of the junction. Images from [40].

The conductance was measured as they approached and retracted the ribbons. From

the results presented in Figure 1.4 (b), while approaching, they found a conductance of

approximate 0.4G0 for the first contact. Taking into account the contribution of the

electrodes used, the real value they estimated is around 0.8 and 1.3G0. While stretching,

they observed that a similar value is maintained along a few manometers. This result

suggest the formation of a carbon atomic chain before the junction is broken.

As we started to delve in this question, we realized that the conductance in graphene

nanocontacts, needed in order to model the electronic transport between non-coplanar

ribbons, are far from the metallic nanocontacts. Therefore, we decided to perform a

detailed study on the conductance of different types of contacts as a function of the

geometry of the contact, the constriction and electrodes widths and the Fermi energy.

This topic is of interest since in recent years some works have emerged studying

graphene nanocontacs, from a theoretical and experimental point of view. Going from

quantum interference in graphene break junctions [1], quantized edge modes in atomic-

scale point contacts in graphene [4] to mechanically tunable quantum dot in a graphene

break junction [2].
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Chapter 2

Methodology

The quantum properties of a system in solid state are determined by solving the

Schrodinger equation for the electrons. We have to take in consideration the kinetic

and the potential energy of any particle in the system. With N particles, the number

of variables needed in order to describe only the position are 3N . With the current

mathematical tools we can not solve more than a two body problem, hence, we need to

make approximations in order to solve the problem for bigger systems.

From the different models and approximations developed, the majority of the ab-initio

calculations of the electronic structure are based on density functional theory (DFT). This

approach is able to reduce the number of variables and get very accurate results. However,

the computational cost is high for systems with hundreds of atoms. Therefore we may

need a more efficient however less accurate model. In this work we use the tight binding

model that offers a good relation between accuracy and computational power in materials

as graphene.

2.1 Tight binding model

In ordinary systems, in order to describe the behaviour of one electron, many variables

are needed. The interaction of the electron and the other electrons in the system, also

the interaction with the the nuclei of the atoms. For crystalline systems, we can make

an approximation by assuming that the Hamiltonian of the complete structure can be

described by the Hamiltonian of a single atom due to the repetition in the lattice. This

model is already well described in many textbooks [8, 9]. We are going to introduce briefly

the model, we can start by defining the Hamiltonian of a single atom as follows:

H = Hat + ∆U (2.1.1)

where Hat is the Hamiltonian describing the single atom and ∆U is all the potential acting
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on that atom produced by the rest of the system. We can assume that the interaction

fades away with the distance from the centre of the atom. Therefore, ∆U −→ 0 and we

can define the energy of the particle with the Schrödinger’s equation as follows:

HΨnk(r) = EnkΨnk(r) (2.1.2)

where n is the index of the band and k is the wavevector in the first Brillouin zone.

For the energy of the atom itself, we can apply the Hat with the atomic wavefunctions

Φi in the Schrödinger equation, and so we obtain:

HatΦi(r) = εiΦi(r) (2.1.3)

The overlap integral takes into account the relation between the wave functions of two

different positions in the lattice (r = 0 and R 6= 0) and can be defined as:

γ(|R|) =

∫
Φ∗i (r)HΦi(r +R)dr (2.1.4)

As established before, the overlap of the function from other position in the crystal

should decay rapidly from the center of the atom under study. Therefore, we can make the

approximation for the atomic orbitals as orthonormal functions, being the overlap integral

zero, in any position of the system but centred on the atom itself.∫
Φ∗i (r)Φj(r +R)dr = 1 · δi,j(R = 0) (2.1.5)

To apply this approximation, we have to make sure that the states for the single atom

follows the Bloch’s theorem [8], the single atomic orbital does not apply to the theorem,

in order to achieve this we have to make a linear combination of atomic orbitals (LCAO).

We are going to particularize for the case of a single band. By making this change we will

comply with the criteria of Bloch functions thanks to the 1/
√
N :

Ψnk(r) =
1√
N

∑
R

eik·RΦn(r −R) (2.1.6)

where N are the possible sites in the crystal and R the translation vector in the real space.

In order to define the relation between the energy and the wavevector, we need to

calculate the value of the energy defining the dispersion relation as follows:

E(k) =

∫
Ψ∗k(r)Hk(r)dr (2.1.7)
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Now, if we apply the linear combination of atomic orbitals, we end up with the next

expression:

E(k) =
1

N

∑
R

∑
R′

eik·(R
′−R)

∫
Φ∗s(r −R)HΦs(r −R′)dr

=
1

N

∑
R

∑
R′

eik·(R
′−R)

∫
Φ∗s(x)HΦs(x− (R′ −R))dx

(2.1.8)

In the last step we change the spatial variable r to x = r−R′, and so, the Hamiltonian

remains the same due to the periodicity in the system. Then, as we are summing over all

the translation vectors, we can change R and define a translation vector as R′ −R = R′′,

also, a position in the lattice. Making the change in the equation, we obtain:

E(k) =
1

N

∑
R

∑
R′′

eik·R
′′
∫

Φ∗s(x)HΦs(x−R′′)dx (2.1.9)

all the terms in the sum of the translation vector are the same, this leave us with one term

for every possible site in the lattice:

E(k) =
∑
R′′

eik·R
′′
∫

Φ∗s(x)HΦs(x−R′′)dx (2.1.10)

The next step is to split the components of the sum. As mention before, the orbitals

are highly centred in each atom and decrease with the distance from the centre of the

atomic site. The first term is can be obtained by making R′′ = 0.∫
Φ∗s(x)HΦs(x)dx =

∫
Φ∗s(x)εsΦs(x)dx = εs (2.1.11)

from the result, we obtain the energy of the orbital in a single atom.

In the other limit, for R′′ being a position that is far from the atom, the energy should

be zero. But if we take into account the contribution from the nearest neighbours, making

the distance R′′ = τ , being τ the distance of the neighbour atom, we can define the

dispersion relation as:

E(k) = εs +
∑
τ

eik·τ
∫

Φ∗s(x)HΦs(x− τ)dx (2.1.12)

The integral part of the equation is the same as the overlap integral defined before. In this

model, being a semi-emphirical method, we can set the the overlap integral to a certain
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neighbours as a constant that match the experimental data, called the hopping term:

γ(|τ |) =

∫
Ψs(x)HΦs(x− τ)dx. (2.1.13)

Finally, we obtain the dispersion relation for the single band tight binding approxima-

tion with the nearest neighbour atoms contribution:

E(k) = εs +
∑
τ

eik·τγ(|τ |) (2.1.14)

2.1.1 Band structure for infinite graphene

Graphene is a 2D crystal. Therefore, the reciprocal space is also 2D:

a1 = a(
1

2
,

√
3

2
) a2 = a(

−1

2
,

√
3

2
) , (2.1.15)

with a =
√

3a0 being the lattice constant and a0 = 1.42Å is the distance between carbons.

In Figure 2.1, with a integer number multiplying the lattice vectors, we can recreate

the crystal structure.

Figure 2.1: Schematic representation of the graphene unit cell and its lattice vectors in
the honeycomb structure.

Each carbon atom has four electrons, three of them form the graphene structure in

the plane as σ bonds. The other electron is oriented perpendicular to the plane, in a 2pz
orbital. The unit cell is formed by two atoms. The Hamiltonian of each unit cell will be:

HRR(k) = HR′R′(k) = ε0 (2.1.16)
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with ε0 the onsite energy of each unit cell.

We can set the overlap integral as a constant t, the hopping value. Now we can define

the interaction between the nearest neighbours:

HRR′(k) = −t(e−ika1 + e−ika2 + 1) (2.1.17)

The Hamiltonian for the crystal structure can be defined as follows:

H =

(
ε0 t(ei

~k~a1 + ei
~k~a2 + 1)

t(e−i
~k~a1 + e−i

~k~a2 + 1) ε0

)
(2.1.18)

Finally, we obtain the dispersion relation for 2D graphene:

E(~k) = ε0 ± |t|

√
4cos2(ky

a

2
) + 4cos(kx

√
3a

2
)cos(ky

a

2
) + 1 (2.1.19)

Now if we plot the dispersion relation as function of the wave vector for each possible

dimension, we obtain the 2D band structure of graphene.

Figure 2.2: (a) Representation of the 2D band structure with the energy as a function of
kx and ky. (b) Projection in the plane of the graphene band structure. The red points
represent the Dirac points. (c) Density of states (DOS) of 2D graphene. Image modified
from [41].

As described in the introduction chapter, graphene has Dirac cones on its bands,

responsible for many of its electronic properties. In the Figure 2.2 (b), we can see the

Dirac points as red spots, the junction between the Dirac cones, as we can see in (a). So,

with the tight binding model we can reproduce the well known characteristics of graphene

band structure. From (c) we can see that there is no density of states at the Dirac point.

In the semi-classical formulation of the Drude model we use the density of states at EF = 0
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instead of the charge density n and the electron mass m. With this approach, Drude model

would predict G = 0 at the Dirac point, contrary to the experimental values discussed in

section 1.3.

2.1.2 Band structure of graphene nanoribbons

We can cut thin stripes on infinite two-dimensional graphene in different directions.

These allows us to obtain graphene ribbons with different type of edges. If we make the

ribbons thin enough it can be considered a one dimensional system. The most known edges

of graphene ribbons are zigzag and armchair, as seen in Figure 2.3 (a) and (b) respectively.

The width is defined with the number of dimers in the finite direction.

Figure 2.3: Representation of two types of nanoribbons edges: (a) zigzag and (b) armchair,
with the corresponding notation for the widths for each case.

We are going to apply the tight binding model to those ribbons (armchair and zigzag).

The bands are obtained by numerical diagonalization of the Bloch matrix and we have

coded a python program for such task.

2.1.2.1 Armchair

The band structure of armchair graphene ribbons in Figure 2.4 shows the values of the

Fermi energy EF scaled with the overlap integral value (the hopping term) t as a function

of the wave vector k. In this edge type, the widths of the ribbons is what determines

the behavior of the system. We can follow the rule N = 3M − 1, where M is an integer

number, to determine if an armchair ribbons has a gap or if the valence and conduction

bands meet at zero energy as shown in Figure 2.4 [42]. The end result is similar to the

projection of the infinite graphene crystal in the armchair direction.
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Figure 2.4: One dimensional band structures of an armchair graphene nanoribbon with (a)
N = 16 (b) N = 17, showing an insulator and a metallic behaviour respectively. Marked
in red and blue the conduction and the valence band.

By plotting the density of states (DOS) of armchair nanoribbons we can see that for

widths that follows the rule mention before, there are states at zero energy (Figure 2.5

AC-17) and not for the others (Figure 2.5 AC-16). We can also see that the gap reduces

inversely proportional to the width (Figure 2.5 AC-71. The DOS of the wider ribbon

becomes quite similar to the one of 2D graphene, shown in Figure 2.2 (c).

Figure 2.5: Density of states in armchair nanoribbons with N=16, 17, 71.

2.1.2.2 Zigzag

In the case of zigzag edge a new feature arise from making graphene ribbons. In

contrast to the projection that can be made from infinite graphene bands on the zigzag
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direction, the structure of the bands has some differences. As we can see in Figure 2.6,

two flat bands appears at zero energy where valence and conduction bands meet. The

origin of these bands is not the intrinsic band structure of graphene, it is from the edge

states. The wave function resides completely on the edges of the ribbon and the bands

gets flatter as we make the ribbon wider [42].

Figure 2.6: Band structure of a zigzag graphene nanoribbon with N = 14, blue and red
lines are valence and conduction bands respectively.

Therefore, the electronic transport in zigzag edges is completely determined by the

edge states [43] and the flat bands at zero energy (Figure 2.7). This type of systems shows

a metallic behavior for any ribbon width.

Figure 2.7: Edge states of zigzag nanoribbons. Representation of the wave function in
zigzag ribbons with N= 8, 14 as grey circles for the flat bands.
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With the edges states coming from the flat bands at zero energy, the density of states

(DOS) is expected to show sharp peaks at the Dirac point.

Figure 2.8: Density of states in zigzag nanoribbons with N=5, 15, 50.

In Figure 2.8, we can see the expected peaks at zero energy. For smaller widths the

contribution of those is greater. Although, as we make the ribbon wider the contributions

starts to be negligible. Another characteristic that we can extract from the graph is how,

as the width of the ribbon increases, the relative weight of the EF = 0 edge states is

reduced and the DOS of 2D graphene (2.2 (c)) starts to emerge.

2.1.3 Dependence of the third nearest neighbour

One step further in the tight binding model approximation is to add the terms cor-

responding to the hopping between not only the nearest neighbours but also the next

nearest or even third neighbours. In the case of graphene, next nearest neighbours pro-

vokes a rupture of the electron-hole symmetry but the effects in the electronic properties

can be neglected [44]. Therefore, we can improve the model by taking into account only the

third nearest neighbours, giving similar results to the ones with ab initio calculations [45].

We can define the third nearest neighbour hopping term as t3 = 0.15 t and is presented

on the system as seen in the visual representation of Figure 2.9.
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Figure 2.9: Graphene lattice with a visual representation of third nearest neighbour hop-
ping in light gray.

Although the system properties are expected to not change drastically, some difference

can appears. Now we present the bands for the exact same systems as in the nearest

neighbour calculation:

Figure 2.10: One dimensional band structure of a zigzag graphene nanoribbon with N =
14 considering third nearest neighbours hopping contribution.

From the zigzag band structure (2.10), the gap is still zero at EF = 0. On the other

hand, the shape has changed. We found the bands closer to the Dirac point. This is in

accordance with the increase on the number of channels that we just add to the system.
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Figure 2.11: (a) One dimensional band structure of an armchair graphene nanoribbon
with N = 17 considering third nearest neighbours hopping contribution. (b) Zoom in the
Dirac point highlighting the gap.

In the case of armchair ribbons, we can see from 2.11 that a small gap appears when

taking into account third nearest neighbour contribution. Therefore, this could affects the

electronic transport calculations.

2.2 Landauer formula

The Landauer approach [46, 47, 48] is the most used theoretical formalism to study the

coherent transport in materials with a nanometric size. The main idea of this approach is

to ignore inelastic interactions, a transport problem can always be viewed as a scattering

problem. The transmission probability for charge carriers to cross from one electrode to

the other through a contact is related to the transport properties of the material and

therefore its electrical conductance.

The derivation can be found in [49]. In this case, we start by defining the current for

a system with multiple terminals:

Ip =

∫
ip(E)dE (2.2.1)

where ip is given by the total transmission from terminal q to terminal p (Tpq) for a certain

energy E:

ip(E) =
2e

h

∑
q

[
Tqp(E)fp(E)− Tpq(E)fq(E)

]
(2.2.2)
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being fp,q the Fermi function for the correspondent terminal:

fp(E) =

[
exp

(
E − µp
kBT

)
+ 1

]−1

(2.2.3)

Assuming that at the equilibrium there is no current, the transmission must satisfy:

∑
q

Tqp(E) =
∑
q

Tpq(E). (2.2.4)

considering that assumption and taking into account that there is no inelastic scattering

inside the device, we can approximate the current in the following manner:

ip(E) =
2e

h

∑
q

Tpq(E)
[
fp(E)− fq(E)

]
. (2.2.5)

The system must comply with having a net current of zero:

Ip =

∫
ip(E)dE = 0 (2.2.6)

If the bias (µ1−µ2) is small compared to the , kBT energy, we can linearize the system:

Ip =
∑
q

Gpq
[
Vp − Vq

]
, where Vp =

µp
e

(2.2.7)

where the conductance is given by:

Gpq =
2e2

h

∫
Tpq(E)

(
− ∂f0

∂E

)
dE (2.2.8)

If we work at low temperature, we can approximate the conduction only by its trans-

mission probability:

Gpq =
2e2

h
Tpq(Ef ) (2.2.9)

The results shows that a perfect single channel in a material between two electrodes has

a finite resistance, given by the universal quantity of G0 = 2e2/h. Being the conductance

proportional to the transmission probability with a constant of proportionality that is the

quantum of conductance.
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2.3 Calculation of the transmission matrix

Following the scattering formalism, we can introduce Green’s functions technique in

order to use the tight binding Hamiltonians to calculate the transmission probability and

therefore the conductance.

We work with a two lead device example. We will propagate the states that are inside

the lead into the device region using a Green’s function technique. We call these states

the scattering states, and from them, the total current that goes between the leads can

be calculated. We can define the Hamiltonian for a single particle as a matrix operator as

follows:

H = H0 + V =

HL 0 0

0 Hd 0

0 0 HR

+

 0 VLd 0

VdL 0 VdR
0 VRd 0

 (2.3.1)

where the HL,R and Hd are the Hamiltonians describing the leads isolated from the system

and the device region; V is the interaction between the electrodes and the device. Therefore

we achieve a Hamiltonian that fully describe the particle in the three regions taking into

account the interactions between them.

We can define three operators in order to indicate the region in which we are working,

one for each of the regions. The device region Pd and the left and right leads PL,R. The

sum of all three must be unitary ( PL+Pd+PR = I) and the two leads can not be directly

connected:

PL =

1 0 0

0 0 0

0 0 0

 Pd =

0 0 0

0 1 0

0 0 0

 PR =

0 0 0

0 0 0

0 0 1

 (2.3.2)

The Green’s function can be defined as the inverse of the energy minus the Hamiltonian

of the system. There are two functions in relation to the direction of the particle, the

retarded and the advanced. We only need the retarded Green function and we can define

it using the eigenstates of the Hamiltonian:

G(E) = [E + iδ −H]−1 =

∫
dE′

∑
m

|Ψm(E′)〉 〈Ψm(E′)|
E + iδ − E′

(2.3.3)

where m indexes any degenerate states at a given energy and the infinitesimal energy

δ = 0+ is used to select the retarded response in the system.
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2.3.1 Partition method

Following the matrix notation we can write the Green’s function operator:

G =

 GL GLd GLR
GdL Gd GdR
GRL GRd GR

 (2.3.4)

We can compute the device part in Green’s function terms using the relation between

the function itself and the Hamiltonian, (E −H)G(E) = 1:

E −HL −VLd 0

−VdL E −Hd −VdR
0 −VRd E −HR


 GL GLd GLR
GdL Gd GdR
GRL GRd GR

 =

1 0 0

0 1 0

0 0 1

 (2.3.5)

Three expressions can be obtained from the second column in the matrix operator:

(E −HL)GLd − VLdGd = 0

−VdLGLd −HdGd − VdRGRd = 1

−VRdGd + (E −HR)GRd = 0

(2.3.6)

we are interested in using the first and the last one, so we obtain the next expressions:

GLd = gLVLdGd

GRd = gRVRdGd
(2.3.7)

where gL,R = [E−HL,R]−1 corresponding to the leads functions. Applying these equations

to the result from 2.3.6 we can define:

Gd = [E −Hd − ΣL − ΣR]−1 (2.3.8)

obtaining the Green function of the device as a function of the leads self-energies:

ΣL = VdLgLVLd

ΣR = VdRgRVRd
(2.3.9)
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The spectral function of the Green’s Function can be defined as:

A(E) = i
(
G(E)−G†(E)

)
= 2π

∑
n

|Ψn(E)〉 〈Ψn(E)| (2.3.10)

Finally, we define the coupling matrices using the self energies:

ΓL = i(ΣL − Σ†L)

ΓR = i(ΣR − Σ†R)
(2.3.11)

2.3.2 Relation between current and transmission

With all the elements necessary defined, we can write down the current operator. In

this case, we use the operator PR to describe the electrons in the right lead. If we make

the time derivative of the right lead operator we get:

JR = 2eṖR =
i2e

h̄
[H,PR] (2.3.12)

being the factor two a representation of the spin degeneracy.

The current between the leads can be calculated using the states corresponding to the

left lead onto the current operator of the right lead:

j(L) = 〈Ψ(L)| JR |Ψ(L)〉

=
i2e

h̄

(
〈Ψ(L)

d |VdR |Ψ
(L)
R 〉 − 〈Ψ

(L)
R |VRd |Ψ

(L)
d 〉

)
=
i2e

h̄

(
〈Ψ(L)

d |VdRgRVRd |Ψ
(L)
R 〉 − 〈Ψ

(L)
R |VdRg

†
RVRd |Ψ

(L)
d 〉

)
=

2e

h̄
〈Ψ(L)

d |ΓR |Ψ
(L)
d 〉

(2.3.13)

The sum of all the scattering states originated in the left lead correspond to the total

current. Each scatter state |Ψ(L)
d,l 〉, with the index l:

jLtot =
2e

h̄

∑
l

〈Ψ(L)
d,l |ΓR |Ψ

(L)
d,l 〉

=
2e

2πh̄

∑
m

〈m|ΓR
(∑

l

|Ψ(L)
d,l 〉 〈Ψ

(L)
d,l |

)
|m〉

=
2e

h
tr

[
ΓRGdΓLG

†
d

] (2.3.14)
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And so, we obtain the analogous version of the Landauer formula, in which the trans-

mission is defined as:

T = tr[ΓRGdΓLG
†
d] (2.3.15)

2.4 Calculating the transmission matrix using Kwant

The calculation of the transmission matrix can has a high computational cost. In

order to approach the solution in a more efficient manner we can use the recursive Green’s

function algorithm [50, 51, 52]. Instead of computing the full Green’s function we can

obtain only the useful information to compute the conductance. We also know that the

tight-binding Hamiltonian is a sparse matrix, where most of the values are zero. This

method is based on physical considerations and suits very well semi-infinite systems that

are much longer in the direction of the leads.

The idea of recursive Green’s function algorithm is to go from the Green’s function

of a part of the system that we know how to solve as if this part was disconnected from

the rest. We take the next part that is connected to the known one and we compute the

Green’s function for this, emulating that is disconnected. Then we connect the two parts

and couple them, thinking in the coupling as a perturbation using the Dyson equation.

The Dyson equation and the derivation can be found in [49]. This allows us to compute

the transmission through the system by defining a self-consistent formula:

Σ1,r = V
1

E −H0 − Σ1,r
V † (2.4.1)

In order to solve the recursive Green’s function, there are many software options avail-

able. For this work we are going to use the Kwant [53] software package. Kwant is a

python library based on the tight binding models and highly oriented to quantum trans-

port analysis. This software offers a simple and fast tool to obtain results with highly

efficient algorithms for tasks as solving the self-consistent equations.

2.4.1 Examples with monoatomic chains

In this section we are going to present two studies using Kwant, with a simple example

using monoatomic chains. First, a study on how the transmission probability changes as

a function of the hopping value of the contact between two chains.
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Figure 2.12: (a) Transmission probability (T) for chains with a barrier as a function of the
energy for different barrier values (tb) and a schematic representation of the the barrier
(black hopping) between the monoatomic chains.

From Figure 2.12, we can see that the scaling of T with tb2 for small tb can be obtained

if tunneling is treated as a perturbation to lowest order. Eventually, for higher values of

the hopping of the barrier, the transmission goes up to T=1.

We also can study the resonant tunnel effect in a system with a double barrier. The

barriers are represented with a black hopping (tb) in Figure 2.13 (b) with a different value

from the hopping in chain, in this case tb = 0.2t. We calculate the transmission probability

as a function of the number of sites of the chain inside of the barriers.
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Figure 2.13: (a) Transmission probability for chains with a double barrier as a function
of the energy for different lengths. (b) Schematic representation of hopping between the
atoms in a chain in red and in black a hopping with a lower value acting as a barrier.

As seen from the results 2.13 (a), the number of resonances in which the system is

able to conduct match the number of atoms that form the chain. In chains with an odd

number of atoms a peak is present at EF = 0. All the resonances achieve T=1.

The hopping value of the barrier is also an important quantity to the shape of the

resonance. We compute the conductance for a system with a single site between the two

barriers (see Figure 2.13 (b.1)).

27



Figure 2.14: (a) Transmission probability in a double barrier for different values of the
barrier hopping value.

As tb is increased, the T goes from the resonant tunneling regime to the perfect con-

ductance regime (tb = t). The width of the resonant tunneling curve increases with the

hopping value of the barrier.

2.4.2 Examples with graphene nanoribbons

The device atomic positions are previously generated and imported to Kwant. We

generate a thin slice of graphene that match the width of the device using a honeycomb

lattice. With this, we ensure that the leads generated by the same honeycomb lattice can

find the places to attach it. Hopping are set between all the parts for Kwant to generate

the tight binding Hamiltonians and calculate the transmission from the scattering matrix.

Figure 2.15: Schematic representation of the device embedded between the right and left
graphene electrodes forming a semi-infinite system.

We can test the software with two giving system formed by a zigzag GNR with N=30

and an armchair edge one with N=50 with no constrictions:
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Figure 2.16: Conductance as a function of the energy in terms of the hopping value for a
device without constriction in a system with (a) zigzag edges with N=30 and (b) armchair
edges with N=50.

As we can see from the Figure 2.16, we obtain a quantum of conductance near the

Dirac point. As we increase the Fermi energy the conductance goes up in multiples of G0,

as expected.
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Chapter 3

Results

3.1 Single atomic constrictions in graphene electrodes

In this chapter we are going to present the results of the theoretical study of the

conductance in nanocontacts between graphene electrodes as a function of various charac-

teristics of the system. We will consider the width of both electrodes and constriction and

the conductance as a function of the Fermi energy. We will study also the difference be-

tween the tight binding model considering nearest neighbours and third nearest neighbour

contribution.

The hopping term, in the tight binding model, will be a constant value as mentioned

before in section 2.1. Although it is possible to take the value from first principles cal-

culation or experimental data [45, 54, 55], we normalize the energy to the hopping, so

the results are independent from this value. In some cases, we obtain conductance values

under 10−10G0. These are, for all practical purposes, equivalent to zero. The widths of

the ribbons (WR(N)) will follow the definition presented in 2.1.2 for each type of edge.

The value of the conductance will be obtained as the averaged value around the Dirac

point (EF = 0) within a window of energies (−∆E, ∆E) where ∆E = 0.025 t:

GEF =0 =
1

2∆E

∫ ∆E

−∆E
G(E)dE (3.1.1)

Following this procedure, we make sure that we have realistic results, since it is not

possible to achieve perfect zero temperature.
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3.1.1 Conductance through a single atomic contact between graphene

ribbons as a function of the electrodes width

One possibility to achieve a single contact between two graphene nanoribbons is to

approach the graphene sheets with a certain angle. See for instance Figure 1.4 (a) and

reference [40]. In order to emulate this geometry in the plain, we simply make the hopping

value in the middle of the device zero along the finite direction. The one atomic contact

position is set with a normal hopping between the two atoms from both electrodes. It is

modeled to be at the center of the ribbons, though not all the systems will allow it.

3.1.1.1 Zigzag

To start, we perform the calculation of the conductance using zigzag electrodes through

a single carbon-carbon contact as seen in the schematic representation of the device in

Figure 3.2 (a). We are going to obtain the conductance as a function of the Fermi energy

(G(E)) for a given width, in this case N=30.

Figure 3.1: (a) Conductance as a function of the Fermi energy for a given system simulating
a single contact between zigzag edge electrodes with N = 30. (b) Zoom at the conductance
near Dirac point.

Taking a look to the graph 3.1 (a), for a range of energies between (−0.5, 0.5)t, we can

observe that the system with the atomic-sized constriction presents a wide gap followed by

sharp peaks at different energies that correspond to different resonances, some of them are

able to get near the quantum of conductance. However, in 3.1 (b), the value of conductance

drops to zero at exactly EF = 0.

Next, we analyze how the conductance changes near the Dirac point by taking the mean

value of G in a window of energy (−0.025t, 0.025t) for different widths of the electrodes.

We are going to test the widths (WR(N)) in range from N=5 to N=75.
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Figure 3.2: (a) Schematic representation of single contact (marked with a red circle to
highlight the atomic contact) between two zigzag nanoribbons. (b) Conductance, averaged
around the Dirac point, as a function of the width of the graphene electrodes.

As seen in Figure 3.2 (b) we find that for widths under N=20 the values of the conduc-

tance are an order of magnitude below the quantum of conductance and from there it tends

to decrease with the width of the ribbon. Close to EF = 0, the only bands contributing

to transport are the edge states. Their wave functions peak at the edges and decay in the

middle of the ribbon, where the nanocontact is placed. As a result, as the width increases,

the weight of the edge state on the contact decreases, explaining the G(WR) curve that

we obtain. In the macroscopic limit, the single atom conductance will be essentially zero.

This behaviour is very different from the case of conventional conductors.

3.1.1.2 Armchair

In the case of armchair edge, we focus only on the gapless ribbons, as seen in 2.1.2.

Following the schematic example of the device presented in Figure 3.4 (a), we compute

the conductance as a function of the Fermi energy.
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Figure 3.3: Conductance as a function of the energy in terms of hopping for a system
simulating a single contact between armchair edge electrodes with (a) N = 14 and (b) N
= 50.

The graph shows a wide gap and resonances that are able to reach the quantum of

conductance for some energies in both cases. The single contact between the graphene

nanoribbons make the system a semiconductor with a noticeable gap, far from the metallic

behavior of the ribbons.

We calculate the conductance as a function of the widths of the electrodes in a range

that goes from N=5 to N=98.

Figure 3.4: (a) Schematic representation of single contact (marked with a red circle)
between two armchair nanoribbons. (b) Conductance averaged around the Dirac point as
a function of the width of the graphene electrodes near the Dirac Point.
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In the graph 3.4 (b), the conductance drops when the system increase its size. The

trend is similar to the electrodes with zigzag edges (Figure 3.2 (b)), however the values

are several orders of magnitude lower as the values around the Dirac point are almost

negligible due to the lack of edge states.

3.1.2 Conductance through a nanocontact between graphene electrodes

as a function of the constriction width

Up to now, we have seen that for a single carbon-carbon bond the device does not

show the metallic behavior originally presented in ribbons. The size of the ribbons became

almost irrelevant for the conduction from a certain width. The next step is to see how the

constriction widths affect the conduction for certain electrode sizes. Hence, we selected a

few ribbons with different widths to perform the calculations within a range of constriction

widths (Wc).

The methodology followed is based on adding one contact at the time between the

graphene sheets until obtaining the complete ribbon. This situation could be similar to a

experimental wedge break. We simulate this by making each hopping value, in a vertical

section of the device, zero for each contact. The filling can be carried out in two ways,

from the center to the sides or from edge to edge. We choose edge to edge for simplicity

since important differences where not observed.

3.1.2.1 Zigzag

We measure the conductance near the Dirac point for every contact added in the

constriction as shown in Figure 3.5 (a) for the electrodes with size N = 15, 30. The

constriction width is expressed as a function of the number of contacts between the ribbons

(WR(N)). For the zigzag edge, the number of bonds is the same as N, which defines the

width of the electrodes.
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Figure 3.5: (a) Representation of the contact between two zigzag electrodes. The number
of bonds will increase as depicted in the images with the increase of N, thus changing the
width of the constriction. (b) Conductance as a function of the constriction width Wc(N),
averaged around EF = 0 with N = 15, 30.

The graph 3.5 (b) shows a continuous increment on the conduction with each new bond

made between the electrodes. It is not until the last bond is made, making Wc = WR, that

we get the quantum of conductance at the neutrality charge point. On the other hand, we

can make the consideration of being a conductor in the scenarios where the system shows

at least G = 0.1G0. In the case of N=15, the conduction goes over 0.1G0 with Wc = 4

and for N=30, we get the same level of conductance with Wc = 8. The same happens

for all the values until the system reaches 1G0, thus we can see that there is a relation

between the widths of the electrodes and the constriction.

3.1.2.2 Armchair

We now consider transport across a series of contacts of increasing width Wc, between

two graphene ribbons with armchair termination. In Figure 3.6 (b) we show G(Wc) for

two ribbons of different width, N=29 and N=35. The filling of the ribbon is performed in

an analogous way to the zigzag geometry. The number of possible contacts that can be

made in an armchair edge electrode corresponds to half the N of the widths in the ribbon.
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Figure 3.6: (a) Schematic representation of the constriction for different widths. (b)
Conductance as a function of the number of contacts, related to the constriction width
Wc(N) averaging around EF = 0 with N = 29, 35.

In armchair based electrodes, the conduction grows presenting peaks at certain con-

striction widths (Wc = 2, 5, 8, 11, ...). These peaks appear every three integer values of

the constriction width, following the same rule to determine the armchair ribbons with a

metallic behavior (see 2.1.2). Also, we can observe in Figure 3.6 (b) a relation between

WR and Wc, since in order to achieve a certain value of conductance, the number of the

contacts necessary varies proportionally to the width of the electrodes.

To test this idea, we compute the conductance in much wider armchair ribbons using

only the integer values of constriction widths that presents higher peaks in the conduction

(Figure 3.6 (b))in this edge type to simplify the calculations. The calculus was performed

with a specific Fermi energy, in this case EF /t = 0.1, to eliminate all the possible variables.

Results are presented in Figure 3.7.
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Figure 3.7: (a) Conductance as a function of the constriction width. (b) Relation between
the width of the nanoribbons and their constriction to obtain 1 G0.

From the results shown we can deduce that there is not a preferential relation between

ribbons widths and constriction size. As we can observe in the graph 3.7 (a), with Wc(N)

around 75-80 bonds we can recover the quantum of conductance, reaching a constant value

for bigger systems. In graph 3.7 (b), we can observe the behavior mentioned as a drop in

the relation between size of the ribbon and width of the constriction to achieve a quantum

of conductance.

3.1.3 Conductance away from the Dirac point

From the results of a single contact (see 3.1), we have seen that, for sufficiently wide

ribbons, atomic scale nanocontacts have a vanishing conductance as long as the Fermi

energy is in an energy window of several tens of meV around the Fermi energy. Effectively,

there is a gap for the transmission.

This is very different from the behaviour of a normal conductor. In this section we

recover the conventional behavior of atomic scale contacts between normal metals by

looking at the behaviour of conductance for EF = t, where many channels are available

at the electrodes, and the density of states is no longer dominated by the Dirac bands.
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Figure 3.8: Measurements of conductance for different sizes of ribbon averaged around
EF = t for both (a) zigzag and (b) armchair through a single contact.

From the results obtained in Figure 3.8 (a), we can deduce that for bigger widths

of zigzag ribbons, the conduction starts to stabilize and the value is in the order of a

quantum of conductance, approximately at 0.8G0. In the case of armchair (Figure 3.8

(b)) the conduction obtained rapidly reaches a constant value, being G ≈ 0.84G0. This

shows that even for a single contact between the graphene nanoribbons, the metallic

behavior presented in the ribbons without constriction is recovered for energies similar to

the hopping term.

3.1.4 Third nearest neighbors contribution

As seen in section 2.1.3, in order to implement a more realistic model, we can take in

consideration the contribution of third nearest neighbors in the system. The hopping term

for the third neighbours is t3 = 0.15t, changing slightly the band structure of the ribbons

as seen in Figures 2.10 and 2.11. Now we will discuss how this affects the conductance

through the single contact constriction.

3.1.4.1 Zigzag

In order to introduce the third nearest neighbours in the system, we added hopping

values to the atoms in the constriction between the electrodes but only the closest to the

the single atomic contact as it is presented in Figure 3.9 (a). We performed a calculation

of the conductance value as a function of the widths of the electrodes (Figure 3.9 (b)).
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Figure 3.9: (a) Single contact between two zigzag sheets of nanoribbon with visual repre-
sentation of third nearest neighbours. (b) Comparison of the conductance as a function of
the electrode width averaged around the Dirac point between the model considering only
nearest (NN) and third nearest (TNN) neighbours contribution.

For electrodes with smaller widths, the conduction is better with the third neighbour

contributions as the number of channels is higher. On the other hand, for bigger sizes

from WR(N) = 10, acts contrary, lowering down an order of magnitude the conductance

obtained in the nearest neighbours model. Although, there is a noticeable discrepancy

between the two approximations, the conclusions are the same with both models. The

conductance of this type of contacts are far from the metallic behavior.

3.1.4.2 Armchair

Analogous to the calculation with the zigzag edge, we will add the hopping of the third

nearest neighbour closest to the nanocontact. This is presented in 3.10 (a).
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Figure 3.10: (a) Single contact between two armchair sheets of nanoribbon with visual
representation of third nearest neighbours. (b) Comparison of the conduction as a function
of the electrode width averaged around the Dirac point between the model considering
only nearest (NN) and third nearest neighbours (TNN) contribution.

As is presented in Figure 3.10 (b), when looking at the conductance calculated using

both methods, differences appear. The third nearest neighbour model shows lower values

for smaller widths compared to the nearest neighbour model but at around WR(N) = 40,

the behavior became almost identical. This shows that the effect is visible when the edges

are closer to the contact and the small gap that appears in the bands contribute to the

resistance in the system. Although, this confirms that for bigger sizes, the results with

only nearest neighbours are accurate enough.

3.1.5 Conduction as a function of Wc and EF

We have seen that graphene nanocontacts made out of a single contact in between

the electrodes is far from the quantum of conductance at EF = 0, we have also seen that

we can recover the metallic behavior by increasing the width of the constriction (Wc) or

increasing the Fermi energy. In Figures 3.11 and 3.12 we sum up the results obtained as

a relation of G(EF ,Wc). We have selected ribbons with a considerable width because the

values tends to stabilizes for bigger systems, as seen in the previous results.

3.1.5.1 Armchair

In the case of armchair edge, we have selected one system with the electrodes width of

N=101 that have a metallic behavior. We have performed calculations of the conduction

for the different possible constrictions widths and the energy of the system from the

neutrality charge point to the hopping value.
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Figure 3.11: Conduction in terms of contacts between armchair electrodes with N=101
and the energy of the system. Reaching EF = t and Wc = WR.

From the results presented in 3.11, we can deduce all the key points that we have seen

so far. With a single contact and the Fermi energy at neutrality charge point, the system

presents a almost negligible conductance. When increasing the width of the constriction

(Wc = WR) we recover the quantum of conductance (marked as orange in the graph). If

we increase the energy (EF = t), eventually, we will recover the conduction as we cross

more bands. We also found configurations, where we recover the metallic behavior with

a certain combination of constriction width and Fermi energy. We can also see that for

EF = t, for each contact in the constriction we sum a G0 to the total conduction.

3.1.5.2 Zigzag

In the case of zigzag electrodes, we selected WR(N) = 75. We carried out the same

analysis in Figure 3.12, as for armchair edge.
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Figure 3.12: Conduction in terms of contacts between zigzag electrodes with N=75 and
the energy of the system. Reaching EF /t = 1 and Wc = WR.

From the graph we deduce that the results are similar to the armchair edge ones. At

the limits Wc = WR and EF = t, the metallic behavior of the system without constriction

is recovered. Also, the conductance is quantized in multiples of G0 by the number of

contacts in the constriction.

And so, we conclude that single contact constrictions between graphene electrodes

change the system from a zero gap semiconductor for the uninterrupted ribbon to a semi-

conductor with a noticeable gap. We are able to recover the metallic behavior when ap-

plying the limits of energy and width of the constriction.There are intermediate solutions

that may be interesting to develop specific devices.

3.2 Different type of geometries as constrictions

Apart from the simplest constriction that we have been studying, other types of con-

tacts were also tested. In this chapter we are going to focus on two of them: triangular

shape constrictions in armchair edges and carbon atomic chains as a function of the num-

ber of atoms in it. We also attempt to introduce the angle between the graphene electrodes

in the model using a simple approximation.

3.2.1 Triangulenes

We introduce a triangular shape constriction in the electrodes, forming a triangulene.

We put in contact the tip of the triangulenes to make a nanometric junction. We will

define the width by the number of hexagons in the base (Figure 3.13). Although, this

geometry naturally shapes to a single point of contact The results of single contact have
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been discarded, the conductance calculated was under the numerical error for all the

electrodes widths tested. we will study a double contact between them as represented on

of Figure 3.14 (a).

Figure 3.13: Schematic representations of a triangulene with a base M=3.

Following the same scheme used in the approach to single contact calculations, we

measure the conductance near zero energy, taking a averaged values of conductance around

the Dirac point as a function of the triangulenes base size. This time, we tested two types

of contacts, single and double contact between the triangulenes.

Figure 3.14: (a) schematic example of a double contact for triangular shape constrictions.
(b) Conductance averaged around the Dirac as a function of the triangulene base size.

From Figure 3.14 the conductance values are almost negligible. Reducing the con-

ductance with the size, following the same pattern as for a simple single contact between

graphene electrodes. We also tested the third neighbour contribution in this geometries.

The hopping values is the same as in previous sections. In this case, as seen in the top of

Figure 3.15 (a), we include the single contact.
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Figure 3.15: (a) schematic example of the single contact for triangular shape constrictions
with a visual representation of third nearest neighbours hopping in the upper part and
the conductance values averaged around the Dirac point as a function of the triangulene
base size. In (b), following the shame scheme for a double contact.

From the graphs in Figure 3.15 we confirm that extremely small constrictions in tri-

angular shape contacts between graphene electrodes are not able to conduct at E=0 as a

metallic nanocontact would. Similar systems were already tested for wider constrictions

showing similar results [56].

Last, we calculate the conduction as a function of the Fermi energy using the same

triangulene size (M=25) for all the four types of contacts tested. Single (1-NN) and double

contact (2-NN) with nearest neighbour contribution and single (1-TN) and double contact

(2-TN) with third nearest neighbour contribution taken into account.

Figure 3.16: Conductance as a function of the energy for system with a triangulene M=25
at the tip with different types of contacts.
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In the graph 3.16 we found that all of them show a gap. Systems with third nearest

neighbours contribution, and therefore, having more channels (1-TN, 2-TN), have a smaller

gap. The metallic behavior is recover in all of them, again, being the number of channel in

each one, key to the energy needed to get a quantum of conductance. 1-NN, only having

a single channel recover the quantum of conductance around EF = t, outside of the range

shown.

3.2.2 Angle between electrodes

As mention in the introduction, in a previous work [40], in order to achieve the single

contact between the graphene nanoribbons, they have to approach them in a certain angle.

In order to tackle this situation we made the attempt to model this scenario by modulating

the hopping term in the junction. This approximation was made under the Slater-Koster

interatomic matrix elements [57]. Those give information about the relation between the

different orbitals between atoms. In this case, we consider that only the difference in the

alignment of the pz orbitals contribute the most part of the total change in the system,

particularly for lower energies, being other options more energy cost for electrons to move.

Therefore, the relation with the angle between the planes, taking into consideration those

assumptions, can be written as follow:

tθ = t · cos(θ) (3.2.1)

being θ the angle for from the junction between the two graphene planes.

We introduce a variable hopping for the single contact as shown in Figure 3.17 (a) and

we measure the conductance as a function of the angle.
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Figure 3.17: (a) Schematic representation of the rotation between two graphene electrodes
with a single contact at different angles. (b) Conduction for a single contact averaged
around the Dirac point as a function of the angle between the graphene electrodes for
zigzag edge with N=50.

As seen in graph 3.17 (b), the change in conduction follows the cosine function with

no sudden changes in the zigzag geometry. The armchair results, being almost negligible

with angle zero, does not improve therefore the numbers are below the possible numerical

error of the calculations and it is not shown here.

3.2.3 Carbon atomic chains as contacts

After the type of contacts tested in this work, we decided to take a glance on what

the behavior should be for carbon atomic chains. Taking into account that the model is

simplistic for this type of structures. The reason to try this contact is the existence of

evidence of formation of chains when the graphene electrodes are retracted [40].

The device consist on adding carbon atoms between the graphene ribbons, maintaining

the same hopping values present on the electrodes. In the case of armchair edges, the result

shows almost similar or worst values of the averaged conductance near the Dirac point

than the system with the single contact for any type of atomic carbon chain study.

Therefore, we tested the zigzag ribbons, and as we are going to see, differentiating

between the atomic chains formed by an even or an odd number of carbons.
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Figure 3.18: (a) Conductance as a function of the ribbon widths averaged around the
Dirac point for even carbon atomic chains as contact.(b) G(E) for the the double atom
chain contact, for a ribbon width N=50.

From Figure 3.18 (a) we concluded that for a carbon chain formed by an even number

of atoms, the conductance averaged around the Dirac point is similar to the single contact

case. In Figure 3.18 (b) we can see that the example with N=50 presents a conductance

that drops when reaching EF = 0 surrounded by resonances.

Figure 3.19: (a) Conductance as a function of the ribbon widths averaged around the
Dirac point for even carbon atomic chains as contact.(b) G(E) for the the single atom
chain contact, for a ribbon width N=50.

For zigzag edge electrodes with an odd number of carbon atoms forming the chain

the averaged conductance around the Dirac point presents values in the same order of

magnitude that the quantum of conductance. In the system with electrodes N=50, we

can see that a sharp peak appears at zero Fermi energy, in the Dirac point, recovering the

metallic behavior.

This can be explained by the resonant tunnelling effect in system with a double barrier.

Being the resonance formed by the stationary wave inside the two barriers following the
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example of monoatomic chain in section 2.4.1. In our case, the exponential decay of the

zigzag edges makes the effective hopping to the carbon chain in the contact small, acting

effectively as a barrier.
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Chapter 4

Discussion and conclusions

In this work, we have studied the conductance of atomic-sized graphene nanocontacts.

For that matter we have used the tight binding approximation to nearest-neighbours and

third nearest-neighbours applying Green functions technique and the Landauer formula.

We have studied thoroughly the conductance as a function of the geometry of the

contact and the graphene electrodes.

During our work, we have neglected electron-electron interactions. This may be a

serious problem in the case of the zigzag edge states, where interactions lead to magnetism

and change the dispersion energy of the zigzag states [58]. This may be less of a problem

as temperature depletes edge magnetism. Likewise, electron-electron interactions may also

play a role in the case of resonant transport across the single atom chains. In such system,

Coulomb blockade effects are to be expected, or perhaps even Kondo effect.

A four orbital tight binding model should be used to described transport connecting

two non-coplanar graphene electrodes. It is also necessary to implement a more complete

model of an atomic carbon chain as the one used is missing many of the key features of

these structures.

We have found that the conductance of two semi-infinite 2D graphene planes connected

by an atomic scale contact vanishes as long as the Fermi energy is not very far from the

Dirac point. Moreover, we studied how to recover the metallic behavior of the system.

Our theoretical results show the role of the size of the constriction and the Fermi energy.

We have demonstrated that by tuning these two variables, we can obtain configurations

with conductance values near G0.

Different kind of constrictions were tested between graphene electrodes. In the case of

triangular shape constrictions applied to armchair edge electrodes, we have also found a

system that is not able to conduct near the neutrality charge point. For smaller widths, the

edge states have a mayor contribution but when the size increase, the value of conductance

drops, similar to the single atomic contact constriction.
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Moreover we have modeled the hopping term in the nanocontact to emulate a rotation

of the graphene electrodes with a single contact and we have measured the conductance as

a function of the angle. We have observed a measurable decrease of the conductance for

the case of zigzag edge electrodes and an almost negligible change for armchair ribbons.

Finally, we have studied carbon atomic chains between two electrodes in the scenarios

of zigzag and armchair edge. As summary, we have found that for the case of armchair

geometry the results are similar to the ones observed in single atomic contact systems.

However, for zigzag edges electrodes, the conductance is close to the quantum of conduc-

tance when the chain is formed by an odd number of carbon atoms. This last result is

explained by a quantum tunneling effect in a system with a double barrier, similar to the

case of a monoatomic chain discussed in the present work.
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