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Abstract  24 

Little is known about the role of biocrusts in regulating the responses of N2O and CH4 fluxes to climate change in drylands. Here, we 25 

aim to help filling this knowledge gap by using an eight-year field experiment in central Spain where temperature and rainfall are 26 

being manipulated (~1.9 °C warming, 33% rainfall reduction, and their combination) in areas with and without well-developed 27 

biocrust communities. Areas with initial high cover of well-developed biocrusts showed lower N2O emissions, enhanced CH4 uptake 28 

and higher abundances of functional genes linked to N2O and CH4 fluxes compared with areas with poorly-developed biocrusts. 29 

Moreover, biocrusts modulated the responses of gases emissions and related functional genes to warming and rainfall reductions. 30 

Specifically, we found under rainfall exclusion and its combination with warming a sharp reduction in N2O fluxes (~96% and ~197%, 31 

respectively) only under well-developed biocrust cover. Warming and its combination with rainfall exclusion reduced CH4 32 

consumption in areas with initial low cover of well-developed biocrust, whereas rainfall exclusion enhanced CH4 uptake only in areas 33 

with high initial cover of well-developed biocrusts. Similarly, the combination of warming and rainfall exclusion increased the 34 



3 
 

abundance of the nosZ gene compared to the rainfall exclusion treatment and increased the abundance of the pmoA gene compared to 35 

the control, but only in areas with low biocrust cover. Taken together, our results indicate that well-developed biocrust communities 36 

could counteract the impact of warming and altered rainfall patterns on soil N2O and CH4 fluxes, highlighting their importance and the 37 

need to preserve them to minimize climate change impacts on drylands. 38 

Keywords 39 

Biocrust, denitrifiers, dryland, methane, methanotrophs, nitrous oxide.  40 

 41 

Highlights 42 

• Under the combination of rainfall exclusion and warming, biocrusts reduced N2O fluxes. 43 

• Biocrusts enhanced the rate of CH4 uptake. 44 

• Soils with high biocrust cover had higher abundances of pmoA and nosZ genes.  45 
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Introduction 46 

Most efforts to understand the main drivers of soil greenhouse gas (GHG) fluxes under global change scenarios have focused on 47 

carbon dioxide (CO2) (Pachauri and Meyer 2014). Much less is known about other greenhouse gases such as nitrous oxide (N2O), and 48 

methane (CH4), which have stronger greenhouse effects and can significantly affect feedback responses to climate change 49 

(Nakicenovic and Swart 2000; Le Mer and Roger 2001; Soussana and others 2007; Oertel and others 2016). This is especially true for 50 

dryland (arid, semi-arid and dry-subhumid) ecosystems, which cover ~45% of the land surface (Prăvălie 2016) and sustain over 40% 51 

of human population (Reynolds and others 2007). The exchange of N2O and CH4 between the soil and the atmosphere has been 52 

traditionally considered of little importance in drylands due to their typically low water and nutrient contents, which limit biological 53 

activity (Dalal and Allen 2008). However, over the last two decades multiple studies have reported elevated N2O fluxes in dryland 54 

soils after rainfall pulses (Barton and others 2008, 2013; Zaady and others 2013), and have noted their potential as a relevant global 55 

sink of atmospheric CH4 (Potter and others 1996; Angel and Conrad 2009). Furthermore, the relevance of drylands as a contributor to 56 

the global balance of GHG fluxes will increase in the future, as their global extent will likely increase by 11-23% by the end of this 57 

century due to climate change (Huang and others 2016). However, how warming and forecasted changes in rainfall patterns will affect 58 

N2O and CH4 fluxes in drylands remains poorly studied (Darrouzet-Nardi and others 2015; Guan and others 2019).  59 

Soil N2O and CH4 transformations are largely carried out by highly specialized microbial communities. For instance, the N2O 60 

produced in both nitrification and denitrification processes (Firestone and Davidson 1989; Bremner 1997; Canfield and others 2010) is 61 

reduced to N2 by the nosZ carrying denitrifiers under anaerobic conditions (Bremner 1997; Canfield and others 2010). In dryland 62 
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surface soils, aerobic nitrification has been traditionally considered the dominant process (Delgado-Baquerizo and others 2016). 63 

Consequently, the nosZ gene (carried by denitrifying bacteria) and the factors affecting its abundance and activity have been poorly 64 

studied (Philippot and others 2007; Hallin and others 2018). However, aggregates and precipitation pulses create anaerobic conditions 65 

favourable for denitrification in dryland soils, which could represent a temporary sink for atmospheric N2O, the substrate used by nosZ 66 

denitrifiers (Austin and others 2004; Ley and others 2018; Wang and others 2019). Likewise, under aerobic conditions (dominant in 67 

dryland soils), CH4 oxidizing bacteria use the CH4 monooxygenase (encoded by the pmoA gene) to oxidize CH4 , constituting the only 68 

biological sink for atmospheric CH4 (Dalal and Allen 2008; Conrad 2009). Previous experiments and observational studies (Nazaries 69 

and others 2013; Powell and others 2015) have shown strong relationships between the abundance of nosZ/pmoA genes and GHG 70 

fluxes, and consequently functional genes have been used to predict these fluxes (Nazaries and others 2013; Powell and others 2015). 71 

Unfortunately, most of our knowledge on nosZ and pmoA genes comes from mesic ecosystems (Nazaries and others 2013; Powell and 72 

others 2015; Martins and others 2017; but see Martins and others 2015, Lafuente and others 2019), and we lack studies evaluating the 73 

changes in their abundance under global change scenarios in drylands.  74 

Biocrusts, soil surface communities composed by lichens, mosses, liverworts, fungi, algae, cyanobacteria and other 75 

microorganisms, are a key biological component of dryland ecosystems worldwide (Weber and others 2016). Biocrusts regulate a 76 

myriad of key soil biotic and abiotic properties and processes (Eldridge and others 2010; Aschenbach and others 2013; Maestre and 77 

others 2013; Zaady and others 2013; Felde and others 2014), and are home to particular soil microbial communities (Steven and others 78 

2013; Delgado-Baquerizo and others 2018). However, and to the best of our knowledge, no previous field studies have experimentally 79 
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evaluated how biocrusts influence soil N2O and CH4 fluxes under simulated climate change. Such studies are needed not only to 80 

advance our understanding of climate change impacts on drylands, where biocrusts are a prevalent biotic feature, but also to provide 81 

relevant data to refine simulation models employed to forecast future N2O and CH4 fluxes across dryland biomes.  82 

Herein, we used an eight-year (2008-2016) warming and rainfall manipulation experiment located in central Spain (Maestre 83 

and others 2013) to investigate: (i) the effects of simulated climate change (~1.9 ºC warming and ~33% rainfall reduction) on soil N2O 84 

and CH4 fluxes and the abundance of nosZ and pmoA functional genes; (ii) whether these effects are modulated by biocrusts; and (iii) 85 

the relationships between N2O and CH4 fluxes and the abundance of nosZ and pmoA functional genes, respectively. 86 

 87 

Materials and methods 88 

Study site 89 

This experiment was conducted in the Aranjuez Experimental Station (central Spain; 40º01’55.7’’N-3º32’48.3’’W; 590 m.a.s.l; for 90 

more details on this experimental station see http://maestrelab.blogspot.com/2013/05/the-aranjuez-experimental-station.html). Its 91 

climate is Mediterranean semi-arid, with average annual temperature and rainfall of 15°C and 358 mm, respectively (data available 92 

since 1977 from the Aranjuez Meteorological Station, 40º04’N - 3º32’W; 540 m.a.sl). Soils are gypsum-derived (Gypsiric Leptosols, 93 

WRB 2006). Organic carbon (C), total nitrogen (N), and pH vary among the considered microsites (i.e. areas with low and high 94 

biocrust cover) between 1.8-5.0%, 0.14-0.44%, and 6.6-7.2, respectively. Vegetation is dominated by Macrochloa tenacissima (L.) 95 

Kunth (18% of total cover), Retama sphaerocarpa (L) Boiss and Helianthemun squamatum Pers. (6% of total cover for both shrubs). 96 

http://maestrelab.blogspot.com/2013/05/the-aranjuez-experimental-station.html
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Open areas between vascular plants are partially covered with a well-developed biocrust community dominated by lichens such as 97 

Diploschistes diacapsis (Ach.) Lumbsch, Squamarina lentigera (Weber) Poelt, Fulgensia subbracteata (Nyl.) Poelt, Toninia sedifolia 98 

(Scop.) Timdal, and Psora decipiens (Hedw.) Hoffm, which covers ~34 % of the soil surface (see Maestre and others 2013 for a full 99 

species checklist). 100 

Experimental design 101 

A detailed description of the experimental design can be found in Escolar and others 2012. Briefly, we established a fully factorial 102 

experimental design with three factors, each with two levels: warming (control vs. ~1.9 ºC soil temperature increase), rainfall 103 

exclusion (control vs. 33% rainfall reduction) and biocrust cover (<25% vs. >50% of lichens and mosses; hereafter low and high 104 

biocrust cover, respectively). To simulate warming, we used 40 × 50 × 32 cm hexagonal open top chambers (OTCs) made of 105 

methacrylate, which were elevated 5 cm from the surface to avoid overheating (Fig. S1a). To intercept rainfall, we built a 1.2 × 1.2 × 1 106 

m metallic frame supporting three V ‐shaped methacrylate gutters that cover ~37% of the surface (Fig. S1b). Warming and rainfall 107 

exclusion treatments were setup in July and November 2008, respectively (see Maestre et al. 2013 for additional details). Ten 108 

replicates per combination of treatment were established, resulting in 80 experimental plots. Our warming treatments (warming and its 109 

combination with rainfall exclusion), significantly increased soil temperatures by ~1.6°C and 2.3°C, respectively, compared to control 110 

plots (average of the 2008-2019 period). Our rainfall exclusion (RE) shelters excluded on average ~33% of the incoming rainfall 111 

(2008-2013 period). 112 
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At each plot we inserted a polyvinyl chloride (PVC) ring (diameter = 20 cm, height = 7 cm) 5 cm into the ground at the start of 113 

the experiment for measuring GHG fluxes and monitoring changes in biocrust cover. Well-developed biocrust cover (i.e. lichens and 114 

mosses) was estimated annually using high resolution pictures since the setup of the experiment in 2008, as detailed in Maestre and 115 

others (2013). Values obtained using these pictures are highly correlated with those obtained with in situ surveys (Ladrón de Guevara 116 

and others 2018).  117 

Soil moisture (0-5 cm) and temperature (0-2 cm) were monitored every 2.5 h and 0.5 h, respectively in all treatments in a 118 

subset of the plots using EC-5 soil moisture (Decagon Devices Inc., Pullman, WA, USA) and HOBO® TMC20 (Onset Corporation, 119 

Bourne, MA, USA; Figs. S2 and S3) sensors.  120 

Greenhouse gas exchange measurements  121 

We estimated soil-atmosphere N2O and CH4 fluxes in seven replicates per combination of treatments using the static chamber method 122 

(Bowden and others 1990). From March 2015 to May 2016, 14 sampling campaigns were carried out approximately once a month. 123 

Immediately before each measurement, a 20 cm diameter and 9 cm high PVC chamber was placed on top of each of the 56 permanent 124 

rings and sealed with a rubber band. Each chamber had a sampling port in the top centre that allowed air sampling and was covered 125 

with reflective material to thermally isolate it during the measurement. Gas samples were collected at 0, 30 and 60 min after chamber 126 

closure using a needle attached to a polypropylene syringe, transferred to 22 ml pre-vacuumed vials and kept at room temperature until 127 

analysis. We estimated N2O and CH4 concentrations in the gas samples using a HP-6890 gas chromatograph (GC), equipped with a 128 



9 
 

headspace autoanalyzer (HT3) (Agilent Technologies, Barcelona, Spain), a 63Ni electron capture detector (for N2O), and a flame-129 

ionization detector fitted with a methaniser (for CH4 detection). The carrier gas used was helium.  130 

Soil sampling and analyses 131 

Soil samples (0-2 cm) were collected five times during the study period (June, September and November 2015 and February and April 132 

2016) from five replicates per combination of treatments. Each soil sampling always matched one of the gas measurement campaigns. 133 

Visible biocrusts (i.e. lichens and mosses) were removed when present and then soils were stored in -20 ºC for DNA extractions.  134 

Total genomic DNA was extracted from 0.6 g of frozen soil using the PowerSoil DNA Isolation kit (MOBIO Laboratories, Inc. 135 

USA) according to manufacturer’s protocol but with a slight modification during the cell lysis step (we used a tissue homogenizer 136 

[Precellys 24- dual. Bertin technologies, France] at a speed of 4500 rpm for 45 s, twice). DNA extractions yields ranged from 0.1 to 137 

132.6 ng/µl, with an average of 6 ± 15 ng/µl (mean ± standard deviation, n = 5). The abundances of nosZ and pmoA genes were 138 

determined using nosZ2f/nosZ2r (Henry and others  2006) and pmo189f/pmo650r (Bourne and others 2001) primers, respectively. All 139 

primers were purchased from Integrated DNA Technologies (Australia). Each sample was quantified (in duplicate) in a total volume of 140 

10 µl using a BioRad C1000 Touch thermal cycler CFX96 Real-Time System (Bio-Rad Laboratories, USA). The reaction mixture 141 

contained 1 µl of DNA template (2 ng/µl; those samples with a concentration <2 ng/µl were not diluted in sterilised water), 5 µl of 142 

SensiFast Sybr No-Rox Mix (2x) (Bioline, Australia), 0.3 µl of each primer (0.4 mM) and 0.4 µl of BSA (0.4 mg/ml). Thermal cycling 143 

conditions and primer sequences can be found in Table S1. The nosZ gene was cloned with pGEM-T Easy Vector kit according to 144 

manufacturer’s instructions (Promega, Madison, USA) and transformed into Escherichia coli strain JM109 to perform calibration 145 
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curves. The pmoA gene calibration curves were made form genomic DNA (Methylosinus trichosporium). Melt curve analyses were 146 

performed in each assay to verify the specificity of the amplicon products. Gene copy number per g dry soil normalized to extraction 147 

yield were calculated for both genes. 148 

Statistical analyses 149 

We estimated N2O and CH4 fluxes as described in Durán and others (2013), and reported them as changes in milligrams or 150 

micrograms (for N2O) per square meter per day. In more than 90% of the cases, the increases in N2O and CH4 emissions were linear 151 

(R2 >0.7). Non-linear rates were discarded, and imputation of missing rates (per treatment) was performed using the missForest 152 

algorithm in the R package missForest (Stekhoven and Buehlmann 2012), which iteratively fills missing values in all columns of a 153 

data frame based on predictions from random forest models. For the iteration, we included the averaged soil moisture and temperature 154 

matching the treatment, date and time of the sampling. We estimated the 2.3% and 6.8% of the N2O and CH4 rates analysed in this 155 

study, respectively. 156 

We first tested the effects of warming, rainfall exclusion and biocrust cover (i.e. low and high biocrust cover in the ring when 157 

the experiment was established in 2008) on N2O and CH4 fluxes and soil microbial gene abundance (nosZ and pmoA functional genes) 158 

with a repeated measures general linear mix effects model. We also included the rate of change in the biocrust cover over time (in %) 159 

as a covariate in the models to control for the observed changes in biocrust cover since the setup of the plots in 2008 (described in 160 

detail in Ladrón de Guevara and others 2018). As multiple interactions between initial biocrust cover and the climate change 161 

treatments were found (Table 1), we tested the effect of warming and rainfall exclusion (alone and combined) separately for low and 162 
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high biocrust cover plots using the same model. These analyses were carried out using the function lmer in the R package lmer4 (Bates 163 

and others 2015). Differences of least squares means for the factors of the mixed effects model were calculated using the function 164 

difflsmeans in the R package lmerTest (Kuznetsova 2017) with no p-value adjustment. We compared differences in gas fluxes and 165 

gene abundances between the two levels of biocrust cover (low and high), with the student’s t-test. Methane fluxes and soil microbial 166 

gene abundances were log transformed prior to analyses to improve normality. All statistical analyses were performed using R 167 

statistical software 3.4.0 (R Core Team 2017). Data are available on Figshare (Lafuente and others 2020). 168 

 169 

Results  170 

Effects of simulated climate change on N2O and CH4 fluxes  171 

Nitrous oxide fluxes were very low in all cases, ranging on average from -10 to 20 μg m-2 d-1, and had a high temporal variability 172 

(Figs. S4a,b, and 1a,b). These fluxes did not differ between biocrust cover levels (Fig. 1 a,b; p=0.14; Fig. S5a). Biocrusts, however, 173 

regulated the responses of N2O emissions to warming and rainfall exclusion. In low biocrust cover plots, these climatic manipulations 174 

reduced N2O fluxes (vs. control) in March, April and early July, and increased them in late July and September (Fig. S4a). However, 175 

in high cover plots we observed sharp reductions in N2O fluxes in the rainfall exclusion and warming + rainfall exclusion treatments as 176 

compared with the control plots (~96% and ~197%, respectively; Fig. 1b, p < 0.05, Table S2). 177 

 Methane fluxes were also low and negative (i.e. CH4 uptake) in most cases, and ranged on average from -1.66 to -1.22 mg m-2 178 

d-1 (Figs. S4c,d and 1c,d). The CH4 uptake was higher in high (vs. low) biocrust cover plots (p<0.01; Fig. S5b). The response of CH4 179 
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fluxes to warming and rainfall exclusion was very variable throughout the study period, and was modulated by biocrust cover (Fig. 180 

1c,d). All climate change treatments tended to decrease CH4 uptake in low biocrust cover plots, although these differences were only 181 

found in the warming and warming + rainfall exclusion treatments (Table S2, Fig. 1c). However, in high biocrust cover plots, only 182 

warming reduced CH4 uptake (Table S2, Fig. 1d).  183 

Effects of climate manipulation on the abundances of nosZ and pmoA genes  184 

Both nosZ and pmoA genes were more abundant in high than in low biocrust cover plots (p<0.05; Fig. S5c,d). As found with N2O and 185 

CH4 fluxes, we observed a marked variability in nosZ and pmoA gene abundance throughout the experiment (Fig. S6), as well as 186 

important differences in their responses to warming and rainfall exclusion treatments depending on biocrust cover (Figs. S6 and 2).  187 

The averaged abundances of the nosZ gene ranged from 2.4x105 to 7.8x107 copy number g dry soil-1 (Table S3, Fig. 2a, b). 188 

Warming, rainfall exclusion, and their combination reduced the abundance of the nosZ gene (vs. the control) in the September 189 

sampling. In low biocrust cover plots, its overall abundance was higher at the warming + rainfall exclusion treatment than at the 190 

rainfall exclusion treatment (Table S3, Fig. 2a). We did not find any relationship between N2O fluxes and nosZ gene abundance (R2 = 191 

0.00; p=0.91 and R2 = 0.02; p=0.07 in low and high biocrust cover plots, respectively). 192 

On average, the pmoA gene abundance ranged from 1.6x104 to 8.3x105 copy number g dry soil-1 (Fig. 2c,d). The combination 193 

of warming and rainfall exclusion led to an overall increase in the abundance of the pmoA gene, but only in the low biocrust cover 194 

plots (Fig. 2c,d; Table S3). A positive relation between CH4 fluxes and the abundance of the pmoA gene was observed in the warming 195 

+ rainfall exclusion plots, but only in low biocrust cover plots (R2 = 0.13; p=0.04). 196 



13 
 

 197 

Discussion 198 

Our study provides novel experimental evidence that biocrusts are key regulators of the responses of N2O and CH4 fluxes and 199 

associated functional genes to climate change drivers. Biocrusts regulated the temporal patterns of N2O and CH4 fluxes and their 200 

response to our climate change treatments. For instance, and despite being highly variable in space and time, the combination of 201 

warming and rainfall exclusion led to a sharp reduction (197%) in average N2O fluxes, but only in areas with high biocrust cover. 202 

Biocrusts also mitigated reductions in CH4 uptake observed under the combination of warming and rainfall exclusion. These results 203 

highlight the importance of considering biocrusts when assessing ecosystem responses to climate change in drylands and when 204 

estimating future GHG fluxes from soils in these ecosystems, which are forecasted to cover more than 50% of the terrestrial surface by 205 

the end of this century (Huang and others 2016). 206 

Our results suggest that projected changes in temperature and precipitation will likely modify the capacity of dryland soils to 207 

exchange N2O with the atmosphere. More importantly, these findings indicate that such responses depend on the degree of biocrust 208 

development. While in low biocrust cover areas rainfall exclusion (and its combination with warming) tended to increase N2O 209 

emissions throughout the study period, this treatment promoted a sharp decrease in these emissions when well-developed biocrust 210 

communities were present. Furthermore, soils at high biocrust cover plots were a net N2O sink under the combination of warming and 211 

rainfall exclusion. These results highlight the ability of biocrusts to mitigate the effects of climate change on N2O emissions, but also 212 

the importance of considering the interactions among different climate change drivers when evaluating potential future GHG emissions 213 
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(Fig. S4b). Interestingly, and despite the reductions in biocrust cover induced by warming over the years in our experiment (Ladrón de 214 

Guevara and others 2018), we still found a sharp reduction in N2O fluxes in the rainfall exclusion and its combination with warming 215 

treatments. Such a result suggests a strong legacy effect of biocrusts on soil functioning, similar to that reported in other mesic 216 

ecosystems with plants (Meisner and others 2013), and further highlights the importance of these communities on driving the 217 

responses of drylands to climate change drivers.  218 

Climate change effects on N2O fluxes are highly variable due to the key importance of climatic factors such as soil temperature 219 

and moisture as drivers of GHG emissions (Dijkstra and others 2012; Zhou and others 2016). Warming, and the associated increases in 220 

soil temperature, could enhance the metabolism of nitrifiers and denitrifiers, boosting N2O emissions (Dalal and others 2003) (Fig. 221 

S3). However, and particularly in drylands, climate change-driven reductions in soil moisture (either associated with warming or due 222 

to decreases in precipitation) can limit microbial metabolism and thus reduce atmospheric N2O emissions (Chapuis-Lardy and others 223 

2007). Overall, our rainfall exclusion and warming treatments promoted soil drying, as shown in Escolar and others (2012) and 224 

Maestre and others (2013). A detailed analysis of soil moisture changes after rainfall events in our experiment showed how biocrusts 225 

increased water gains after rainfall events but enhanced soil desiccation after rainfall pulses (Lafuente and others 2018). Thus, the 226 

reductions in water availability due to our climate change treatments, particularly in areas with high biocrust cover, might explain the 227 

decreases in N2O emissions observed in these plots (Fig. S2). Alternatively, nutrient availability is also often highlighted as a key 228 

driver of dryland N2O fluxes (Dalal and Allen 2008; Dijkstra and others 2013). Under aerobic conditions and high availability of N 229 

substrate (i.e. NH4
+), nitrification is expected to dominate over denitrification (Weier and others 1993; Dalal and others 2003), which 230 
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have been reported to lead to an accumulation of inorganic N forms in global drylands (Delgado-Baquerizo and others 2016). More 231 

importantly, we have found in our experiment that warming + rainfall exclusion treatments often lead to an accumulation of inorganic 232 

N in low (not in high) biocrust cover plots (Delgado-Baquerizo and others 2014). Similarly, previous studies at our experimental site 233 

have found a higher potential nitrification rate and available NO3
-  in bare soil areas compared to areas with well-developed biocrusts 234 

(Castillo-Monroy and others 2010), where DON is the dominant N form (Delgado-Baquerizo and others 2010). Thus, in drylands, 235 

having a well-developed biocrust community could be linked to a lower accumulation of inorganic N (Delgado-Baquerizo and others 236 

2014), therefore limiting the availability of substrate for the denitrification process and ultimately reducing N2O fluxes to the 237 

atmosphere from incomplete denitrification leaks (Dalal and Allen 2008).  238 

It is important to highlight the importance of the selected denitrification gene studied. Under aerobic conditions, nitrification 239 

produces N2O as a by-product (Bremner 1997; Canfield and others 2010), a process that is expected to be important in drylands given 240 

their reported relatively high mineralization rates. However, denitrification is an anaerobic multistep process that also produces N2O 241 

(Firestone and Davidson 1989). Anaerobic soils are not dominant in drylands, but favourable conditions for denitrification can be 242 

created in soil aggregates or after precipitation pulses (Austin and others 2004; Ley and others 2018). The last step of the 243 

denitrification pathway consists on the conversion of N2O into N2, a step catalysed by the nitrous oxide reductase codified by the 244 

functional gene nosZ (Philippot and others 2007). Consequently, the nosZ gene has been used to estimate N2O fluxes (Powell and 245 

others 2015). Our climate change treatments had no detectable effects on this gene regardless the initial biocrust cover considered. 246 

However, the abundance of the nosZ gene tended to increase in the warming and rainfall exclusion treatments only in high biocrust 247 
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cover plots (Fig. 2a, b). This may also help explain, at least partially, the average lower rates of N2O observed in these plots 248 

throughout the whole study. However, we cannot obviate that (i) we have evaluated functional genes at DNA level, and consequently 249 

we cannot know whether this gene is being expressed or not; and (ii) the primers used, which fail to amplify nosZ clade II gene (Jones 250 

and others 2013), have recently been described to be abundant in soils and thus an important contributor to N2O fluxes (Domeignoz-251 

Horta and others 2016; Stein 2017; Hallin and others 2018).  252 

Our climate change treatments consistently and relatively reduced CH4 uptake, as found in another study carried out in a 253 

semiarid grassland (Dijkstra and others 2013). Methane oxidation requires gas diffusivity to provide atmospheric CH4 to soil 254 

methanotrophs, a step catalysed by the CH4 monooxygenase codified by the pmoA gene (Dalal and Allen 2008). In more mesic 255 

ecosystems, decreased soil moisture would improve gas diffusivity, increase soil aeration and CH4 oxidation. However, drylands are 256 

water limited ecosystems, so further reductions in soil moisture by our climate change treatments might have limited the activity of 257 

CH4 oxidizing bacteria (Schnell and King 1996; Galbally and others 2008; Sullivan and others 2013) (Figs. S2 and S3). Similarly, 258 

increased temperatures have been described previously to drive changes in the community composition of CH4 oxidizing bacteria 259 

(Mohanty and others 2007), which can also help to explain the differences in CH4 uptake observed among treatments (Nazaries and 260 

others 2013). Interestingly, we observed a positive correlation between changes in biocrust cover during the lifetime of our experiment 261 

and CH4 uptake. Put simply, the loss of cover through time observed in high biocrust cover plots (Ladrón de Guevara and others 2018) 262 

was linked to decreases in CH4 uptake (Fig. S7). Methane oxidation is very sensitive to changes in temperature and more importantly 263 

in moisture, changes related to water stress and gas diffusivity (Smith and others 2000). Thus, it is likely that the known changes 264 
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exerted by biocrusts in soil properties and processes (Barger and others 2016; Chamizo and others 2016; Weber and others 2016), 265 

might have improved the environmental conditions (e.g. mitigating water and heat stress) for methanotrophs or changed the CH4 266 

oxidising bacterial community, affecting CH4 uptake, even in deeper layers where most CH4 uptake occurs (Butterbach-Bahl and 267 

Papen 2002). 268 

The abundance of the pmoA gene was higher in high than in low biocrust cover plots. The well-known positive impacts of 269 

biocrusts on soil fertility (Weber and others 2016) could underlie this increase in microbial abundance (Maestre and others 2011; 270 

Barger and others 2016), which in turn might have contributed, at least partially, to increase the overall CH4 uptake observed during 271 

the entire duration of this study (Le Mer and Roger 2001). However, and in contrast with a previous study carried out in an Australian 272 

forest that found correlated gene abundances and GHG emissions (Martins and others 2016), we could not find a relationship between 273 

the overall abundance of the pmoA gene and overall CH4 uptake. Methane uptake depends on the balance between gas diffusivity and 274 

metabolic stress (Luo and others 2013). Thus, our results can be the consequence of microbial activity limitation due to water stress. 275 

Indeed, in low biocrust cover plots, we detected an increase in pmoA abundance in the warming + rainfall exclusion treatment (Fig. 276 

2c). Despite such increase, this treatment did not show enhanced CH4 uptake, which supports that reductions in soil moisture could 277 

have limited microbial metabolism. Alternatively, we cannot discard that the interference of soil NH4
+, which competes with CH4 for 278 

the methane monooxygenase (King and Schnell 1994), could be behind the observed lack of correlation between pmoA abundance and 279 

CH4 uptake.   280 
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Together, our findings highlight how biocrusts are essential regulators of soil-atmosphere N2O and CH4 fluxes and their 281 

responses to simulated climate change, directly and indirectly by improving soil environmental conditions (i.e. reducing water and heat 282 

stress) for N2O reducers and methanotrophs. They also show that functional microbial abundance (i.e. nosZ and pmoA carrying 283 

bacteria) can also be highly variable in time, providing evidence for seasonal patterns in these functionally important bacterial 284 

communities. Our results also illustrate how biocrusts affect temporal patterns in the fluxes of N2O and CH4 and associated functional 285 

genes. On average, the “biocrust legacy” reduced the rate of N2O emissions, increased the rate of CH4 uptake and increased the 286 

abundance of both nosZ and pmoA genes. More importantly, biocrusts mitigated the reductions in CH4 uptakes observed under the 287 

combination of warming and rainfall exclusion treatments. Our findings emphasize the importance of well-developed biocrust 288 

communities to mitigate the impacts of warming and altered rainfall patterns on the emission of GHG fluxes from dryland soils, and 289 

thus the need to preserve them to minimize the negative consequences of ongoing climate change and to maintain ecosystem 290 

functioning in a warmer and drier world.  291 
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Table 1. Linear mix model of the effect of climate change treatments on N2O and CH4 fluxes (n = 7) and functional gene abundances 470 

(n=5). The rate of change in the biocrust cover over time (∆BSC, in %) has been included in the models as a covariate to control for 471 

the observed changes in biocrust cover since the setup of the plots in 2008. WA = warming, RE = rainfall exclusion, BSC = biocrust 472 

cover, Num = Numerator degrees of freedom and Den = denominator degrees of freedom.  473 

 
N2O CH4 nosZ pmoA 

  Num Den F P Num Den F P Num Den F P Num Den F P 
Warming 1 51.19 0.55 0.461 1 52.96 6.88 0.011 1 31.60 0.61 0.440 1 32.13 3.30 0.079 
Rainfall Exclusion 1 47.60 1.56 0.218 1 48.45 0.42 0.522 1 30.42 0.10 0.755 1 30.66 0.00 0.986 
BSC 1 51.29 1.37 0.248 1 53.08 9.22 0.004 1 31.10 9.56 0.004 1 31.68 12.87 0.001 
WA:RE 1 47.60 0.53 0.471 1 48.45 1.28 0.263 1 30.37 1.81 0.188 1 30.67 0.03 0.854 
WA:BSC 1 50.13 0.02 0.896 1 51.61 0.66 0.419 1 30.66 0.10 0.753 1 31.08 0.94 0.339 
RE:BSC 1 47.67 12.02 0.001 1 48.55 7.78 0.007 1 30.10 0.00 0.952 1 30.39 0.07 0.793 
WA:RE:BSC 1 47.64 1.89 0.176 1 48.51 1.48 0.230 1 30.08 6.20 0.018 1 30.40 1.23 0.276 
∆BSC 1 72.47 0.16 0.686 1 84.66 2.66 0.106 1 40.22 0.23 0.637 1 41.33 0.62 0.436 
 474 
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Figure legends 476 

Figure 1. N2O (a, b) and CH4 (c,d) fluxes estimated in areas with low (left) and high (right) 477 

initial biocrust cover across the climate change treatments evaluated, the horizontal line shows 478 

the mean (n=98). The width of shaded area in the violin plot represents the kernel probability 479 

density (proportion of the data located there). Different letters indicate differences in pairwise 480 

comparisons among treatments by differences of least square means (P<0.05). WA:RE = 481 

warming and rainfall exclusion combined.  482 

Figure 2. Log-transformed abundances of nosZ (a,b) and pmoA genes (c,d) in areas with low 483 

(left) and high (right) initial biocrust cover across the climate change treatments evaluated, the 484 

horizontal line shows the mean (n=25). The width of shaded area in the violin plot represents the 485 

kernel probability density (proportion of the data located there). Different letters indicate 486 

differences in pairwise comparisons among treatments by differences of least square means 487 

(P<0.05). WA:RE = warming and rainfall exclusion combined. 488 

489 
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