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Abstract: Within the framework of the running vacuum cosmology models, we solve Friedmann’s
equations and calculate the entropy of the apparent horizon, checking that the Generalized Second
Law of thermodynamics is satisfied which implies to compute the contribution from both the usual
entropy inside it as well as the contribution from its surface. We also show that the model solves the
horizon problem and obtain constraints on the model’s parameters through our thermodynamical
analysis.

I. INTRODUCTION

The ΛCDM model, although standard in cosmology for
years, leaves many things unexplained, such as the nature
of dark energy and dark matter. Moreover, it’s incompat-
ible with the standard model of particles (both models
famously give wildly different results for the vacuum en-
ergy) and has other inconveniences such as the horizon
problem. As such, many extensions of the ΛCDM model
have been proposed. One subset of these are the run-
ning vacuum models. In this paper we set out to study
said models and their compatibility with the Generalized
Second Law of thermodynamics.

Running vacuum models are models where we con-
sider that the cosmological constant (and therefore, the
vacuum energy density ρΛ) ”runs” with the Hubble pa-
rameter H, as if it were a one-loop beta function from
Quantum Field theory. This idea is perfectly compatible
with the Cosmological Principle which only asks for ho-
mogeneity and isotropy of space, not time. Not only are
such models are a suitable extension of the ΛCDM mod-
els (in the sense that we can easily recover the ΛCDM
models from them), but they also describe an initial infla-
tionary period and a ”graceful exit” from such period into
the radiation dominated epoch, while also being compat-
ible with current observations (see [8]). Moreover, they
solve the horizon problem, they provide an explanation
for the current elevated value of entropy inside the ob-
servable universe and they comply with the second law
of thermodynamics (thanks to a positive constant term
in our expression for ρΛ(H)), as we’ll see in this paper.

Our goal in this work will simply be to check all these
claims regarding our running vacuum model and also ob-
tain some constrains on their parameters through the
thermodynamical analysis. First we will solve Friedman’s
equations, findingH(a) both for the early and the current
universe. We will find expressions for the total entropy
of the universe (including the entropy associated to the
horizon) given by this model and we’ll give a brief discus-
sion of the Generalized Second Law of thermodynamics,
checking whether it holds for our model.

In what follows we use natural units c = ~ = kB = 1,
where kB is Boltzmann’s constant. A dot over a variable

(for example, Ḣ) denotes differentiation with respect to
the cosmic time t while H ′ refers to differentiation with
respect to the scale factor a. The scale factor a is taken to
be dimensionless and it is normalised to 1 for the current
universe, a(t0) = 1.

II. THE RUNNING VACUUM MODEL

Let us begin with a studying the running vacuum
model, both for the early and the current universe. Our
assumption is that the vacuum density ρΛ runs with H,
which we write in the following manner:

dρΛ(H)

d lnH2
=

1

(4π)2

∑
i

[
aiM

2
i H

2 + biH
4
]

(II.1)

The sum is over all the particles of mass Mi that con-
tribute to the vacuum energy density and ai, bi are di-
mensionless coefficients.

Justifying this assumption using modern physics is not
trivial (one can turn toward [2] and [5] for this) but allow-
ing the cosmological constant to evolve with the universe
can be considered more natural than having it be a fixed
value during its whole history. Note that we not allow
terms of H with odd powers such as H and H3; this is
preferred in order to be compatible with the global co-
variance of QFT (see [5]).

Let us solve equation II.1. Using the chain rule dρΛ

dH =
dρΛ

d lnH2
2
H , integrating with respect to H and defining κ2 ≡

8πG, c0 ≡ k0

3M2
Pl
, ν ≡

∑
i

aiM
2
i

48π2M2
Pl

and α ≡
∑
i

bi
96π2

H2
I

M2
Pl

where k0 is an integration constant, G is Newton’s grav-
itational constant and M2

Pl = 1
8πG is the reduced plank

mass in natural units we obtain:

ρΛ(H) =
3

κ2

(
c0 + νH2 + α

H4

H2
I

)
(II.2)

We also introduced the constant HI which we define to
be the Hubble ratio at the scale of inflation in order to
make ν and α into dimensionless coefficients. Looking
at the running vacuum model from the perspective of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Diposit Digital de la Universitat de Barcelona

https://core.ac.uk/display/340488656?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Nonsingular Decaying Vacuum Cosmology and Entropy Production... Roger Porta Grau

any sensible GUT yields |ν|, |α| � 1 (see [4]). Moreover,
observations seem to indicate ν ∼ 10−3 (see [8]).

Let us solve Friedmann’s equations for the current
matter-dominated universe, where we consider the ra-
diation energy density ρr to be 0. Also note that for
an expanding universe consistent with observations H(a)
decreases with a, so for our current universe the domi-
nating terms in ρΛ(H) will be the ones with low powers
of H. We will therefore set α = 0. Setting ν = α = 0
would just give us back the ΛCDM model so we will
refrain from doing so. If we renormalize ρΛ by setting
ρΛ(H0) = ρΛ0 we obtain a value for c0 which yields
ρΛ(H) = ρΛ0 + 3ν

κ2 (H2 − H2
0 ). Now we also want these

equations to satisfy the restriction

ρ′m(a) +
3

a
(1 + w)ρm(a) = −ρ′Λ (II.3)

where ρm is the energy matter energy density, and w = p
ρ

is the equation of state. The matter energy density ρm
includes a contribution for both CDM and baryons. As
usual, we set wm = 0 for matter, wr = 1

3 for radiation and
wΛ = −1 for vacuum, both running or static. Equation
II.3 is obtained from taking the covariant derivative of
the Einstein equations, which must be zero thanks to the
Bianchi identity which says ∇µGµν = 0 where Gµν is the
Einstein tensor.

Normally taking this derivative of the Einstein equa-
tions under the assumptions of the ΛCDM model is what
yields the fact that Λ is constant, but here we consider
Λ(H), which instead yields two different possible inter-
pretations: either the gravitational constant G is not con-
stant or there is creation/ annihilation of matter through
interaction with the vacuum energy density. In this pa-
per, we ignore the former and focus on the latter, so G
will be constant for us and we’ll have matter production
through the decaying of vacuum, as we’ll see later. The
case of a non-constant G is explored in [5].

We write Friedmann equations as follows:

3H2 = κ2(ρm + ρr + ρΛ) (II.4)

3H2 + 2Ḣ = −κ2
∑

i=m,r,Λ

pi = κ2(ρΛ −
1

3
ρr) (II.5)

We’ll use them in order to find an explicit expression
for ρΛ(a). For the current universe we can write equa-
tion II.4 as H2 = κ2(ρm + ρΛ). Differentiating this with

respect to a yields 1
κ2

dH2

da = ρ′m + ρ′Λ. Now differen-
tiating our expression for ρΛ with respect to a yields

ρ′Λ(a) = 3ν
κ2

d(H2(a))
da and from these two previous expres-

sions we obtain ρ′Λ(a) = ν
1−ν ρ

′
m.

Now inserting this in equation II.3 we obtain 0 =
3(1−ν)
a ρm + ρ′m which is a differential equation only in-

volving ρm. Its solution is

ρm(a) = ρm0a
−3(1−ν) (II.6)

Thanks to this last expression we can explicitly cal-
culate ρ′m(a) and insert it in equation II.3 to obtain

ρ′Λ(a) = 3ρm0νa
−4+3ν . Integrating with respect to to

a and imposing that for our current time ρΛ(1) = ρΛ0 we
obtain

ρΛ(a) = ρΛ0 +
νρm0

1− ν

(
a−3(1−ν) − 1

)
(II.7)

Now if we define the density parameter Ωm0 ≡ ρm0

ρc

where ρc0 =
3H2

0

κ2 is the critical energy density of the cur-
rent universe (which is equal to the current total energy
density ρm0 +ρΛ0 since we consider that our universe has
no spatial curvature) and inserting equations II.6 and II.7
into Eq. II.4 we obtain

H2(a) = H2
0

[
Ωm0

1− ν

(
a−3(1−ν) − 1

)
+ 1

]
(II.8)

Remarkably, setting ν = 0 gives us back the expression
for H(a) in the ΛCDM model.

Now let us look at the early universe, for which H is
large. We will therefore now consider the effects of the

term αH
4

H2
I

in our expression for ρΛ(H). However, we

will neglect the term c0 in favour of terms νH2, αH
4

H2
I

.

We could also set ν = 0 and most of the results and
conclusions we would obtain would be very similar, but
we’ll keep it in order to perform a more general analysis.
Also, for the early universe all our matter is relativistic,
so we set ρm = 0.

In summary, we write equations II.4 and II.5 (Fried-
mann’s equations) as

3H2 = κ2(ρr + ρΛ(H)) (II.9)

3H2 + 2Ḣ = κ2(ρΛ(H)− 1

3
ρr) (II.10)

Using that for the early universe we consider ρΛ(H) =
3
κ2

(
νH2 + αH

4

H2
I

)
we can solve these equations to ob-

tain H(a) for the early universe. The easiest way to
do this is to put our expression for ρΛ in equations II.9
and II.10, and then take a linear combination of equa-
tions II.9 and II.10 to eliminate the term ρr, obtaining

Ḣ = 2
(

(ν − 1)H2 + αH
4

H2
I

)
.

Now we would like to solve this equation to obtain
H(a) so we first need to transform Ḣ into H ′. Doing
this is simple, writing H = ȧ

a and using the chain law
d
dt = da

dt
d
da gives us Ḣ = H ′ȧ = H ′Ha.

Using this in our differential equation gives us H ′ =
2
a

(
(ν − 1)H + αH

3

H2
I

)
, which is a differential equation in-

volving only H(a). Its solution is

H(a) =

√
1− ν
α

HI√
1 +Da4(1−ν)

(II.11)

Where D is an arbitrary integration constant, although
we need it to be positive if we want H to increase with
a. Note that we also need α > 0 for this to make sense,
so this will now be a further assumption of our model.
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With this explicit expression and Friedmann’s equa-
tions for the early universe it is easy to derive explicit
expressions for the energy densities ρr(a) and ρΛ(a):

ρr(a) =
3H2

I (1− ν)2Da4(1−ν)

κ2α(1 +Da4(1−ν))2
(II.12)

ρΛ(a) =
3H2

I (1− ν)(1 + νDa4(1−ν))

κ2α(1 +Da4(1−ν))2
(II.13)

We shall simplify these expressions. First let us note
that there exists aeq such that ρr(aeq) = ρΛ(aeq). We call
this the equilibrium time and it signifies the time where
the early universe stops being dominated by dark energy
(and therefore, the rapid expansion period of inflation
stops) and begins to be dominated by relativistic matter.

Imposing ρr(aeq) = ρΛ(aeq) in their expressions yields

D = 1
1−2ν a

−4(1−ν)
eq . Defining a∗ ≡ (1− 2ν)

1/(4−4ν)
aeq

simplifies this to D = a
−4(1−ν)
∗ .

We also define H̃I ≡
√

1−ν
α HI and â ≡ a

a∗
so that

Da4(1−ν) = a
−4(1−ν)
∗ a4(1−ν) = â4(1−ν). This allows us to

write the equation II.11 as

H(â)2 =
H̃I

2

1 + â4(1−ν)
(II.14)

By defining ρ̃I ≡ 3
κ2 H̃

2
I we can also simplify equations

II.12 and II.13, writing them as

ρr(â) = ρ̃I
(1− ν)â4(1−ν)

[1 + â4(1−ν)]2
(II.15)

ρΛ(â) = ρ̃I
1 + νâ4(1−ν)[
1 + â4(1−ν)

]2 (II.16)

Let us have a closer look at these equations. For small
a, H = H̃I is approximately constant and very large, and
there is no radiation energy density but there is a big
contribution from vacuum energy density, which leads to
an accelerated expansion of the early universe; inflation.
As a increases so does ρr while ρΛ decreases, signify-
ing the decay of vacuum energy into relativistic parti-
cles. Then after an inflection point (at around aeq) ρr
decreases again with the expansion of the universe; par-
ticle creation has mostly stopped and we have entered
the radiation epoch. We call this smooth transition the
”graceful exit” from the inflation period. We’ll see later
that most entropy is created during inflation, becoming
almost constant afterwards.

III. ENTROPY GENERATION

Let us look at the entropy generation associated to the
running vacuum model. There are two different ways
to do this. We could take as our thermodynamical sys-
tem a set volume and let it evolve with the expansion of
the universe (we call such volume the comoving volume)

and calculate the entropy inside it. The other alterna-
tive is considering the entropy within the apparent hori-
zon which is a type of cosmic horizon that we’ll define
later. The latter seems to make more physical sense, but
it is not yet clear which one gives the correct thermo-
dynamical description of the universe, as it is not clear
whether the universe can be treated as a macroscopical
thermodynamical system.

The entropy of the comoving volume can be easily cal-
culated but we won’t do that here, one can find the cal-
culations in §5 and §6 of [1]. Instead we will focus on the
apparent horizon and the volume it encloses, and we will
calculate its entropy both for the early and late universes.

Let us talk about cosmological horizons. The particle
cosmological horizon is the maximal distance from which
light has had time to reach the observer since the begin-
ning of the universe. The event horizon is the maximal
distance from which light will ever reach the observer,
until the end of the universe. More suitable to our ther-
modynamical considerations and different from the pre-
vious two is the apparent horizon lh, whose definition
can be found in [10]. For us, the apparent horizon for a
universe with no spatial curvature will be lh = 1

H .
The Generalized Second Law of thermodynamics says

we need to take into consideration not only the entropy
caused by the particles inside the horizon but also the
entropy of the horizon itself which follows the equation
SA = A

4l2P
where A is the area of the horizon we are con-

sidering and lP =
√
G is Planck’s length. This formula,

initially intended to express the entropy of a black hole,
was derived by Bekenstein and Hawking in 1974 (see [9]).

We are considering a spherical volume of radius lh, the
horizon. So the area will be A = 4πl2h. Using the Planck

mass MP = 1
G we write SA = A

4G = πl2hM
2
P .

Now if we use lh = 1
H we obtain a simple expression

to calculate SA depending solely on H: SA(a) = π
M2

P

H(a)2 .

Using equations II.14 and II.8 we obtain

SA(â) =
πM2

P [1 + â4(1−ν)]

H̃2
I

(III.1)

SA(a) =
πM2

P

H2
0

[
1 + Ωm0

1−ν (a−3(1−ν) − 1)
] (III.2)

for the horizon entropy of the early and current universe,
respectively.

For the current universe the entropy of the volume in-
side the horizon will just be the entropy associated to the
particles, as there is no radiation. Since we consider these
particles to be dust, their only entropy is the one associ-
ated to its existence. Let σ be the entropy per particle.
We consider it to be constant, which just means that we
consider that particles are created in thermodynamical
equilibrium with surrounding particles. The entropy of
the volume will be σ times the number of particles N . We
write N = nV where V is the volume we are considering
(a sphere of radius lh, so V = 4

3πl
3
h) and n is the particle
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density. Writing again lh = 1
H and setting σ = kB = 1

(we set σ to be of the order of a unit of entropy kB) we
obtain SV(a) = n(a) 4π

3H(a)3 , where n depends on a since

we are considering the creation of particles through the
decaying vacuum energy.

Let us now find an expression for n(a). The energy of
a dust particle is just its rest mass mc2 = m in natural
units. The energy density is then the energy of a particle
times the density of particles, nm = ρm = ρm0a

−3(1−ν).
Defining n0 = ρ0

m0
we obtain n(a) = n0a

−3(1−ν). Note
that we could also have chosen to work with a constant
number of particles but considering m(a), but we will not
do this on this paper. Using this expression we obtain

SV(a) =
4πn0a

−3(1−ν)(1− ν)
3
2

3H3
0

(
1− ν + Ωm0(a−3(1−ν) − 1)

) 3
2

(III.3)

for the current universe, where we used equation II.8.
For the early universe, the entropy inside the horizon is
the one corresponding to radiation, since we only have
relativistic particles in our enclosed volume.

For this and since we have thermal equilibrium we’ll

use the well known entropy formula S = V (p+ρ)
T (see the

first appendix of [1]). Since for radiation wr = 1
3 this

becomes SV = 4
3V

ρr
Tr

, where Tr is the radiation temper-
ature, shared by all particles since we suppose thermo-
dynamical equilibrium in the volume inside the horizon,
which is causally connected. Now we’ll use the also well

known relationship ρr = π2

30 g∗T
4
r where g∗ counts the

massless degrees of freedom (see [3]). We use this last
expression to eliminate Tr from our expression for SV ,

which becomes SV(a) = 4
3

(
π2g∗
30

)1/4
4π
3
ρr(a)3/4

H(a)3 .

If we include our expressions for H(a) and ρr(a) for
the early universe (equations II.14 and II.15) and de-
fine a characteristic temperature for the inflation period
through the relation between temperature and radiation

energy density ρ̃
3/4
I ≡

(
π2g∗
30

)3/4

T̃ 3
I we obtain

SV(â) =
8π3

135
g∗

(
T̃I

H̃I

)3

(1− ν)
3
4 â3(1−ν) (III.4)

The Generalized Second Law of thermodynamics says
that the total entropy will simply be Stotal = SA + SV .
We have explicit expressions for both terms depending
on or a for the early universe (equations III.1 and III.4)
and for the current universe (equations III.2 and III.3).

A quick look at these expressions shows that in both
the early and the late universe the dominating term is
SA while SV plays no major role in entropy. We note
that for the early universe the entropy rapidly increases
at the beginning (∼ â4), but then arrives at a plateau of
stability in the current universe where it asymptotically
approaches a constant value while slowly rising (see fig-
ure 1). This behaviour actually solves the entropy hori-
zon problem as most entropy is generated during inflation
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FIG. 1: Evolution of the horizon entropy and the entropy
inside it with respect to â in the early universe (left) and
evolution of the horizon entropy with respect to a in the cur-
rent universe (right), both at different values of ν, normalized
with respect to its value at â = 1 and a = 1 respectively.
In the early universe, note the fast increase and dominance
of the horizon entropy, especially for small ν. In the current
universe, note that the total entropy (the contribution of the
entropy inside the horizon is negligible) eventually stabilizes.

where we have no particle horizon (since we have accel-
erated expansion) and therefore the universe is causally
connected. Moreover, this yields an explanation of the
high value of entropy observed in our universe, and the
theoretical value we obtain is compatible with observa-
tions (see [1]).

Let us now check whether the second law of thermo-
dynamics is satisfied. Normally one would write this as
Ṡ ≥ 0 but that is not the full description of the second
law: it is not enough that entropy increases; we also must
ask that entropy eventually stops increasing in order to
reach thermodynamical equilibrium in a system. There-
fore, one also needs that eventually S̈ < 0. For a perfect
fluid of four-velocity uα and entropy is sα = nσuα this
law is expressed as ∇αsα ≥ 0.

Now we have that∇αsα = uα∂αs+s∇αuα = ṡ+3Hs =
1
a3

d(sa3)
dt = 1

a3
dS
dt since we are in the frame of our fluid

where uα = (1,~0) and since ∇αuα = 3H. Since a and
ȧ are always positive, ∇αsα ≥ 0 is equivalent to S′ ≥ 0.
The second condition then reads S′′ < 0. Doing this
for the comoving volume one checks that both conditions
are satisfied if ν > 0 so thermodynamically a positive ν
is preferred, which agrees with observations (see [8]).

Since Stotal = SV + SA and we have expressions for
both terms in both the early and the current universe,
we can easily differentiate them. We won’t write these
unhelpful long expressions for S′total and S′′total here (one
can find them in §7 of [1]) but one can check that for
the current universe S′total > 0 and for a big enough a,
S′′total < 0 (see figure 2). In fact we only have this sec-
ond condition as the universe transitions into its final de
Sitter phase dominated by dark energy, so we can only
obtain S′′total < 0 if we have a positive cosmological con-
stant, c0 > 0.

For the early universe we differentiate with respect to â
(since it is more convenient and it is equivalent since dâ

da >
0) and we obtain S′total > 0 as expected, but also S′′total >
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FIG. 2: Evolution of the first (left) and second (right) deriva-
tives of the horizon entropy in the current universe with re-
spect to a, normalized with respect to its value S(a = 1) and
taken at different values for ν. Note that the first derivative

is positive while the second is negative, as expected.

0. This doesn’t contradict the Generalized Second Law
which only says that S′′total must eventually be positive
instead of always positive, and as we’ve seen it eventually
becomes positive in the current universe. For a discussion
of this see §7 of [1].

IV. CONCLUSIONS

• We obtained equations describing the Hubble pa-
rameter H(a) (Eq. II.8), the matter energy density
ρm(a) (Eq. II.6) and the vacuum energy density
ρΛ(a) (Eq. II.7) within the running vacuum model
ρΛ(H) = 3

κ2

(
c0 + νH2 + αH4/H2

I

)
and we showed

that we get back the equations of ΛCDM by setting
α = ν = 0.

• Moreover, we found expressions for H(a) (Eq.
II.14), ρΛ(a) (Eq. II.16) and for the radiation en-
ergy density ρr(a) (Eq. II.15) for the early universe
for this model and we’ve seen that thanks to the
term H4 on ρΛ(H) we obtain an early inflation pe-
riod (and a graceful exit from it) which solves the
horizon problem of the ΛCDM model.

• The Generalized Second Law of thermodynamics
says we need to take into account the entropy of
horizon, and therefore we found an expression for
entropy, both for the apparent horizon and for the
volume inside it in the current and early universe
(see equations III.1, III.2 III.4 and III.3) and we
studied them (see figure 1).In both cases the total
entropy was dominated by the horizon term.

• We showed that this inflation period we obtained
causes a rapid increase in entropy for the early uni-
verse ∼ â4 (see Eq. III.2) that explains the cur-
rently observed elevated value and solves the en-
tropy horizon problem.

• Finally we discussed the behaviour of S′total and
S′′total (see figure 2). They were both positive in the
early universe and we had S′total > 0 and S′′total < 0
for the current universe. This doesn’t contradict
the second law of thermodynamics, since we don’t
ask that S′′ < 0 at every point in the evolution of a
system; we only need that S′′ eventually becomes
negative, as it does for the current universe. Since
S′′total would not tend to a negative value as the
scale factor a tends to infinity if there weren’t a
positive cosmological constant (that is, if c0 = 0)
we conclude that this is a necessity for the universe
to comply with the laws of thermodynamics, both
within the running vacuum model and the ΛCDM
model since the former is just an extension of the
latter.
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