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Abstract

Medical imagery is arguably one of the clearest use cases for Deep Neural Networks:
automatic detection of illnesses as an additional guidance tool could massively help
doctors in their everyday work. However, the nature of the field makes errors ex-
tremely costly. That means that understanding the reasons for the decisions made
by any Deep Learning model is absolutely crucial to its implementation and use.

Previous work has demonstrated the effectiveness of Deep Learning methods applied
to the detection of atherosclerotic plaques in carotid arteries. These are a known

factor in cardio-vascular diseases, and can be identified by measuring Intima Media
Thickness (IMT).

To the best of our knowledge, these effective models, such as CNNs, VGG and
Tiramisu (U-Net type), have not been studied under the lens of interpretability in
this context. Our goal is to study the classification and segmentation decisions from
the models in order to determine how they were taken, and if they make sense when
compared to medical knowledge.

For this purpose, we propose to use previously studied interpretability techniques,
mainly Grid Saliency and the well-documented SHAP values, both of which are
adapted to Deep Learning models. Indeed, both of these methods attempt to study
local decisions from the models, while having the advantage of being model agnostic
and visual in the representation. This makes them easy to understand in general
with minimal explanations, a clear advantage when one of the goals is to help medical
personnel, as well as data scientists, in making better and faster decisions.

This study is applied to a dataset of ultrasound images, REGICOR. This work is
framed within a larger research project within the UB, which has already spawned
various works. This makes the dataset well suited for the purpose of interpreting the
results from our models.
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1 Introduction

1.1 Problem Statement

Being able to humanly understand decision taken by Deep learning model ”black
boxes” is ever more important as these models become more powerful. Indeed, we
know the model took a correct decision, but did it look at the "right” parameters
to arrive at that decision? As such, can we trust that the model will take the right
decision again when applied to a new dataset? This conundrum is even more critical
in the context of medical imagery, when a correct decision from a model may mean
a life or death situation.

With that context in mind, we focus on the effectiveness and interpretability of
Deep Learning approaches for the detection of atherosclerosis. This specific disease
consists of plaque building up inside the arteries (figure 1) and is a known symptom
of cardio-vascular disease.

Narrowed  Plaque
artery

Figure Ashows a normal artery with normal blood flow. The inset image
shows a cross-section of a normal artery. Figure B shows an artery with
plagque buildup. The inset image shows a cross-section of an artery with
plague buildup.

Figure 1: Atherosclerosis, Source [19]: US department of Health & Human Services



In a classic case, a qualified doctor will identify the risk by measuring the Intima-
media thickness (IMT) on carotid artery ultrasound images, which will usually cor-
relate with atherosclerosis (figure 2). If the maximum IMT is over 1.5mm [7], then
the patient is considered to have plaque.

Figure 1. Intima-media thickness (IMT) definition - IMT is
measured as the distance between lumen-intima (yellow
line) and media-adventitia (pink line) interfaces.

Figure 2. Proper location for IMT measurement

Figure 2: Measuring IMT, Source [20]: European Society of Cardiology

The question then becomes: are we able to automate this detection using Deep
Learning methods? And if so, does the plaque detection actually rely on the right
"parts of the image”?

1.2 Dataset and Previous Work

We build upon the previous work of our Universitat de Barcelona colleagues [1],
who were able to generate segmentation labels using a Deep Learning (U-net) net-
work, and did considerable work on automation of both plaque classification and
segmentation. They also demonstrated the good performance of a CNN for plaque
classification, and suggested that specific grey pixels may play a strong role in the
classification. This opens up the possibility for interpretability of the work, which



we will explore with both SHAP values (further defined in section 2.4.5) and Grid
Saliency methods (see section 2.5).

We will use an extensive ultrasound image dataset from REGICOR [25], which in-
cludes:

e Ultrasound images of carotid arteries with IMT Ground Truth (GT), and their
associated labels (see below in figure 3).

e The result of a previous semantic segmentation, with either 2 labels (IMT
region and background), or 6 labels (Near Wall, Lumen-Bulb, Lumen-Center,
IMT-Bulb, IMT-Center, Far Wall).

Original image 2 labels 6 labels
IMT max = 0.594 mm Result of segmentation Result of segmentation

Figure 3: REGICOR Image dataset

Our goal is then to take this work into the field of interpretability, to understand
the decisions, good or bad, taken by the networks, and to further validate the Deep
Learning approach in the context of detecting atherosclerosis.



2 State of the art

2.1 Importance of interpretability

As the importance and human dependence on machine learning models and systems
increases, it also increases the need to understand the reasoning behind the decisions
taken by said systems. A large part of this field is summarized below, using as basis
the book ”Interpretable Machine Learning” [11].

The main reasons as to why interpretability is becoming so important are the fol-
lowing;:

e Human learning: In contrast to black box models, interpretable machine
learning models allow humans to understand why certain decisions are being
made, satisfy their curiosity, and even expand their knowledge of the subject.

e Safety and testing: It is specially important to know why certain classifica-
tions or decisions are being made when the model has a delicate or important
purpose. Knowing the reason behind its responses allows us to react and solve
problems when we detect them.

e Detecting bias: Since machine learning models display the biases existing in
the data used to train them, it is important to detect them and correct them to
avoid having, for example, a system that discriminates against certain ethnic
groups.

There are of course exceptional cases where interpretability is not so important or
even not recommended.

We do not need interpretability when the purpose of the model is simple or
well studied, like, as an example, a movie recommender system. Having a bad
prediction in this case, will not cause any major problems or harm to society or
individuals.

Another exception happens when we are working with well studied problems:
we can argue that if a model has been thoroughly explored, studied and used, there is
no need to add further interpretability methods: it should be already clear that they



work and how they do so. An example of this would be optical character recognition

(OCR systems).

Adding interpretability methods or explanations to a model, could cause users that
have this information to take advantage of such a privileged information to manip-
ulate the results. If we use proxies for causal features, users can ”cheat” on these
proxies in order to obtain a different outcome from the machine learning model. An
example of this could be a bank system that helps decide if a customer should be
granted a credit line or not based on the services he or she is using, such as credit
cards. The customer could simply change the number of credit cards he or she has
contracted, in order to obtain a different score.

2.2 Taxonomy of interpretability methods

We can arrange interpretability methods into four different classifications:

e According to the characteristics of the algorithm

— Intrinsic: Methods that restrict the complexity of the machine learning
model and that rely on its simplicity, such as decision trees and linear
models.

— Post hoc: Interpretability methods that are applied to the model after it
is trained. They can also be applied to intrinsically interpretable models.

e According to the results of the interpretation method

— Feature summary statistic and visualization: Methods that provide a value
for each feature, which represents its importance or interaction with other
features. The best way to convey their importance is via visualization of
these statistics, for example in partial dependence plots.

— Model internals: Model learned specifications that are sufficient to under-
stand decisions (i. e. intrinsic interpretability methods)

— Data point: This family of methods provides data points to make examples
that help understand the results of the model, for example, exceptions or
prototypes.



— Intrinsically interpretable model: An interesting way to find explanations
about black box models is to approximate them with an intrinsically in-
terpretable model, and use the parameters of said intrinsic model as ex-
planations for the black box one.

e According to the target of the method

— Model specific: Model specific methods are only applicable to certain model
classes (intrinsic methods fall into this category).

— Model agnostic: This category of explanations can be applied to any kind
of machine learning algorithm. It usually works by comparing input-
output sets.

e According to the scope of the method

— Local: Methods that explain individual predictions.

— Global: The opposite, methods that explain the entire model behaviour.

We can see the taxonomy along with the main methods described and used in the
following sections in figure 4.

10
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Figure 4: Taxonomy of interpretability methods, with some examples seen in the
subsequent pages

2.3 Desired properties of explanations

When we are using interpretability methods to obtain explanations of model deci-
sions, there are a set of properties we aim to obtain in order to have an interpretation
method that is humanly understandable. These properties are the following:

11



Contrastiveness: Contrastive explanations are those that explain decisions
in contrast to other decisions, i.e. how would the output have changed if the
input had been different. The key concept in contrastive explanations is that
they do not have to be complete: this way they are more simple to understand.

Selectiveness: Explanations that do not cover all the causes for a prediction:
only 1 to 3 reasons is better than to have all the features involved.

Social: It is important that explanations take into account their audience. So-
cial science experts can help adapt the message extracted from interpretability
methods.

Focus on the abnormal: Rare values for features that contribute to a certain
prediction, should by all means be included in the explanation, even if they
contribute the same as other features with normal values. The usual occurrence
is that the removal of an abnormal value would yield a completely different
outcome.

Truthfulness: Explanations are sustained in occurrences outside of the scope
of the training of the machine learning model. Truthfulness is also referred as
fidelity.

Consistence with prior knowledge: As humans tend to disregard informa-
tion that is not consistent with their prior beliefs, it is desirable that explana-
tions conform to such previous knowledge of the matter.

General and probable: Explanations that are able to give meaning to many
events. They complement the cases where there are no abnormal reasons for
the predictions, and avoid using probabilities of joint events, which are often
misjudged.

2.4 Interpretability methods applicable to image recognition

The focus of this project is interpreting the results of black box neural networks for
semantic segmentation and classification of images, so in this section we will have
a look at the state of the art of interpretability methods that are applicable to this
kind of task.

12



2.4.1 Adversarial Examples

Adversarial examples are instances with their features perturbed in a way that makes
the machine learning model make a false prediction. Their main aim is precisely to
deceive the model.

When working with images, adversarial examples are other images with intentionally
perturbed pixels with the aim of obtaining a completely different prediction. In order
to achieve this there are several methods. If we have access to the underlying model,
we can manipulate the image adding a small perturbation based on the sign of the
gradient in some of the pixels. These kind of "attacks” work with LSTMs, maxout
networks, ReLLU activated networks...

If we don’t have access to the internals of the model, we can train a surrogate model
to have the same outputs, find adversarial examples for the surrogate model and test
if they also work for the original one.

The goal of finding these adversarial examples is to see if our model is classifying
based on reasonable features or not, and also to re-introduce these instances into the
model training, to avoid misclassification, as shown in figure 5.

‘Duck’ X0.07

Figure 5: Introducing what looks like random noise, the result of the image classifier
is completely different.

13



2.4.2 Prototypes and criticisms

Prototypes and criticisms are an example-based family of explanation methods.
These methods aim to select, among all the data used by a black box system, some
data instances representative of the data (prototypes) and on the opposite side, data
points not represented by the set of prototypes (criticisms) .

They are selected among data instances to cover the center of the data distribution
(prototypes) and points in clusters without a prototype (criticism). The selection
can be performed manually or with the help of an algorithm such as Maximum Mean
Discrepancy or MMD [13].

When working with image data, algorithms like MMD provides us with a set of
images that represent the classes and a set of images that challenge the classification
task, as we can see in figure 6.

Prototyp ) Cnhmsms

mmlﬂﬁ'llm

2l

Cl™ s s
=-

Figure 6: Prototypes and criticisms in an OCR system. Prototypes are the points
that represent their classes while criticisms are far away from them.

2.4.3 Influential instances

Like prototypes and criticisms, influential instances are example based explanations.
In this case, the goal is to search for the instances that are the most influential
towards the black box system’s result.
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By influential instance, we mean a data sample whose removal from the training data
would cause a significant change in the outcome of the model.

2.4.4 Local Surrogate (LIME)

LIME stands for local, interpretable model-agnostic explanations. This method aims
to give explanations to a black box model based on individual predictions by means
of a surrogate model [11].

LIME assumes we have an unlimited number of attempts to try the output of the
model. In order to understand why certain predictions are made, a dataset of per-
mutations of a certain input is created, and all the outputs for the permutations are
obtained. Then, an intrinsically interpretable model is trained on this dataset. This
surrogate model is a local approximation of the predictions of the original one.

When dealing with image data, it makes little sense to randomly permutate indi-
vidual pixels. What is done instead is the following: the image gets segmented into
"superpixels” that are turned "on” or "off” in each permutation. Superpixels are
interconnected pixels with similar colors.

In figure 7 we can see an example of a LIME explanation: for a given image, groups
of superpixels are turned on or off to give an explanation for 3 possible classifications
of an image.

¥

7

(a) Original Image (b) Explaining Flectric guitar (¢) Explaining Acoustic guitar (d) Explaining Labrador

Figure 7: LIME explanations for 3 different categories for a same image.

A difficulty when using LIME is to find the right region for the superpixels, which
can only be inferred by testing and visualizing the explanations.

15



2.4.5 Shapley Values and SHAP

Shapley values have their origin in game theory. The idea behind them is to treat
each feature as a player that has a contribution to the model prediction.

Players (or features) cooperate and receive a profit from it. In this case the game
(profit) is "reaching a better prediction” and the gain is the difference between the
actual prediction for an instance and the average prediction for all instances.

The Shapley value is defined as the marginal contribution of each feature across all
possible coalitions of a feature. In order to compute the Shapley value for a feature,
we take a coalition of the other features and sample for different values of the target
feature. The difference between the predictions when changing the value of this
feature, averaged for several samplings, will be the Shapley value for this feature,
when taking into account all possible coalitions, as show below in figure 8.

l‘ -» €310,000
50m’ x
1st Floor

50m’
1st Floor

Figure 8: Contribution of Cat banned on the apartment price, by looking at one
combination of features (area 50, 1st floor and park-nearby)

Features are in some cases grouped together. For images this means that pixels get
grouped into superpixels, and Shapley values are estimated for those groups instead.

The issue with Shapley values is that as new features get added, the number of
possible combinations increases exponentially. Indeed, in the vast majority of real
world problems, only the approximate solution is feasible. To solve this, Strumbelj et

16



al. [14] propose an approximation with Monte Carlo sampling gzgj =+ Z%zl (f(m’f])—
f (z™;)) at each feature j. The differences to the black box are then averaged and
result in ¢;(z) = % Efle ¢7'. This is then repeated for each feature to get Shapley
values.

Going further, SHAP (SHapley Additive exPlanations [6]), is a method
based on Shapley values, which will be key to the current thesis document.
In SHAP the values are represented via a linear model, whereas the weight in the

Shapley values is given by a coalition of features. This difference connects LIME and
SHAP values.

It keeps the main properties of Shapley values, with the ”value explanation” detailed
as g(z') = ¢o + Zj\il ¢;;, where g is the explanation model, 2’ € {0,1}* is the
coalition vector or simplified features, M the max coalition size and ¢; € R is the
feature attribution for a feature j. These "simplified features” are, in the context of
images, superpixels, groups of "similar” pixels that have the same ”explanation”.

This is done in 5 steps [11], as the model agnostic KernalSHAP:

e Sample the coalition 2z,

e Get the prediction for each zj by applying the model f, with f(h.(2") =
By [f ()]

M—-1
e Use the SHAP kernel 7,(2) =

(M choose |2'|)|2'[(M — |2|)

to compute the

weight of each z.

e Fit the linear model g using the data, targets and weights and optimizing a
sum of squared errors loss L(f, g, m,) = >, [f(ha(2)) — g(2) 7 ()

e The coefficients of this model, ¢;, are the Shapley values.

The main difference VS LIME is in the weights of 2’: in SHAP, small coalitions (few
1s) and large ones (many 1s) get the highest weights, as they are the most ”explain-
able” (as half 1s and half Os doesn’t help to explain the impact of an individual
feature).

As a more specific solution to Deep Learning models, the GradientExplainer from
SHAP (see figure 9), which we will use later, expands the SHAP theory explained

17



previously and is described as follows [5]: ”Expected gradients is an extension of
the integrated gradients method [15], a feature attribution method designed for dif-
ferentiable models based on an extension of Shapley values to infinite player games
(Aumann-Shapley values). As an adaptation to make them approximate SHAP val-
ues, expected gradients reformulate the integral as an expectation and combine that
expectation with sampling reference values from the background dataset. This leads to
a single combined expectation of gradients that converges to attributions that sum to
the difference between the expected model output and the current output”. The model
is approximated with a linear function between each background data sample and
the current input to be explained, and input features are assumed to be independent.

dowitcher red-backed_sandpiper
"
meerkat mongoose
[/ | ] | R
—-0.006 -0.004 -0,002 0.000 0.002 0,004 0.006

SHAP value

Figure 9: SHAP GradientExplainer example - How 7th intermediate layer of the
VGG16 ImageNet model impacts the output probabilities

For a given class, the positive SHAP values (red pixels) increase the probability of
that class, while negative SHAP values (blue pixels) reduce the probability of that

class.
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2.4.6 Deep Neural network (DNN) interpretation

When working with convolutional neural networks (CNN) and images, high level
features are learned from the initial pixels in an image. At the end of the network,
these high level features are passed through a highly connected layer to obtain a
classification or a prediction.

One possible method for understanding why a DNN is making a certain classification
is via feature visualization i.e. finding the input that maximizes the activation of
a unit. Since looking at each neuron would take too long, usually channels are used
for feature visualization.

Another approach is network dissection which quantifies the interpretability of a
unit in a CNN by linking it with a human concept: objects, textures, colors, etc.

An approach for these types of decompositions suggested by literature is the Deep
Taylor decomposition, as a means to explain non linear classifications [2]. It views
each neuron of a DNN as a function that can be expanded and decomposed on its
input variables, and are then aggregated and backpropagated: this results in a ” Deep
Taylor decomposition”. The goal is to assign to each pixel a "relevance” score in R*
to explain a classification decision, via a heatmap R, with the following properties:

e (Conservative, if the sum of assigned relevance to pixels corresponds to the total
model relevance
e All values of the heatmap are positive (0 being the absence of relevance)
e Both of these definitions combine to describe the heatmap as consistent
The Deep Taylor is inspired by ”Divide and Conquer”, as the function learned by

the DNN is decomposed into smaller subfunctions (either by connectivity or from
training).

We can define 3 separate propagation rules: the w? rule in unconstrained input space,
and the 2T and 2° rules in constrained input space.

19



. forward pass
input output

Figure 10: Computational flow of a Deep Taylor for the class ”Cat”

The technique can be applied in 2 different models:
o Min-Max relevance: Enables to fully decompose the relevance of each input
neuron, as a trainable relevance model (minimizing the mean square error).

e Training-free relevance: No need to train a relevance model for each neuron,
the results are backpropagated onto the lower layers by modelling certain model
parameters as constants. Suitable for very complex networks.

20



Image Sensitivity (CaffeNet) Deep Taylor {CaffeNet) Deep Taylor (GoogleNet)

&

Figure 11: Results of training-free Deep Taylor using pre-existing models

The technique outperforms single Taylor and sensitivity analysis, and is also (rela-
tively) model agnostic in producing relevant heatmaps. It helps interpretability of
image recognition models, but should be applicable to a wide variety of DNNs.

This can be further expanded with Layer-wise relevance propagation (LRP),
which focuses on post-hoc interpretability: understanding the results of a DNN rather
than the algorithmic level [3]). Here, features that contribute to the decision can also
be graded: in the case of pixels it can for example be a heatmap of pixels supporting
the classification decision.

These backpropagation techniques, such as LRP, outperform Gradient or Single Tay-
lor techniques as they rely on the structure of the network, progressively mapping
the prediction to the lower layers until the input is reached (figure 12).

21
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Figure 12: LRP procedure

LRP is deeply embedded in Deep Taylor decomposition, and has strong benchmark

performance. The equation follows Zle Ri=-=% Ri=%,R,=-= f(v),
where Rj, encodes the relevance of neuron k for the prediction f(x). The propagation
a’jVVj—z aj W]k

rule can be noted as R; = ), (« —)Ry. Setting o = 1,8 =0

+
Zj ajwjk Z AjW;p
allows it to be interpreted as a Deep Taylor. This set up is proven to work well with
images, and has strong benefits in terms of robustness.

Overall, to be explainable, a DNN is recommended to have the following character-
istics (here in the context of a DNN having convolution layers and ReLU neurons):
e Low number of fully connected layers, and using dropouts

e Global sum pooling layer at the top of a DNN, and generally use multiple sum
pooling layers

e Constrain biases to be 0 or negative

22



2.5 Grid Saliency

Grid saliency explanation methods aim to give explanations for image classification
and image segmentation black boxes.

They are tools to explain predictions of a trained model by highlighting parts of
the input that presumably have a high relevance for its predictions - in essence it
identifies the image pixels that contribute the most to the network prediction.

Grid saliency methods were build and defined first for image classification [9]
and on top of image classification, there have been implementations that extend
image based saliency models towards pixel-level dense prediction methods for
semantic segmentation networks [8].

In order to do so, these methods look for a mask that perturbs the images, blocking
information from them. While trying to keep it as small as possible, the classification
or segmentation score must be preserved for this new perturbed image.

AT | g 5"’
Semantic segment. Context explanations (in red) for different segments (outlined in blue)

Figure 13: Context explanations for street scenes [§]
Overall, grid saliency is able to provide sensible and coherent explanations for net-
work decision making, such as in the Cityscapes data, explaining bicycle mainly by

sidewalk, car mainly by road, and rider by bicycle (figure 13). It is effective at
detecting image bias, and identifying pre-labeled classes.
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3 SHAP explanations for a plaque / no-plaque im-
age classifier

Our goal will now be to use this research in the context of atherosclerosis: to val-
idate Deep Learning approaches, including models previously tested, by the use of
interpretability. Simply put, can a human understand the results, if we create the
right networks and use the right techniques to showcase them? For this purpose, we
first tackle the classification problem of our images.

Using SHAP, given we have a single binary class to explain (plaque / no plaque), the
representation output is simple: the positive SHAP values (red pixels) increase the
probability of plaque, while the negative ones (blue pixels) reduce it.

3.1 Methodology and data preparation

Goal: The goal of the experiment is to test the efficiency of a CNN classifier to obtain
the final prediction - does the image indeed have plaque or not? In addition to that,
we want to be sure that the classifier uses the information from the IMT region to
make that prediction. For that purpose we will use SHAP, given it combines robust
theory with simple to interpret visual results, which we can easily compare against
our expectations.

Dataset: We use 4,731 images from the REGICOR database, and the result of the
segmentation with 2 labels on those same images (see figure 3 for a reminder). These
are the results of the segmentation work of the Tiramisu 67 U-net.

Data augmentation and preparation: Given the low amount of plaque images
(exactly 60 of the 4,731 images), we need to run some data augmentation in order
to train the classifier more reliably. The objective is to have at least 50% of plaque
images out of the total.

For this, we combine 2 data augmentation strategies to which CNN networks are
invariant:

1. Cropping and re-positioning of the data, going from (224,224) images to (205,205),
with a randomized starting point

24



2. Vertical flips of the images, applied with a 50% chance in order to create noise

The cropping chosen is ”"small enough” to not affect the region where the IMT is
calculated, while also providing enough variety to create new independent images.
We apply the exact same transformations to the labels of the images to be able to
use both image and label as inputs.

We also apply the same transformations (cropping and a random vertical flip) to the
original images. If we didn’t do that, the model would learn to recognize different
image sizes and overfit, as shown in figure 14.

Modified Mode! checks i

image — the sides of R

ith g| the image to |
With plaque classify £

Original Model ,:'

i confirms the |

image — i .

size is not i -

No plaque modified

Figure 14: The classifier will check the image sides to determine their sizes as if it
were a parameter, clearly over-fitting

Finally, all the images are normalized to have pixel values between [0, 1].
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3.2 Network and training process

We conduct 2 experiments with different inputs:

e Experiment 1: Using as input the augmented and processed images

e Experiment 2: Using two images as input, the images and the label resulting
from the segmentation, augmented and processed.

We create the network in figure 15 for Experiment 1, using a Keras model with
Tensorflow backend. Experiment 2 uses exactly the same architecture: it runs the
images and labels independently through the 2D convolutional and max pooling
layers, then concatenates them, and finally runs the joint flattened image through
the dense layers, as shown in figure 16.

Conv2D(32) - RelLU
MaxPool2D
Conv2D(32) - RelLU
MaxPool2D

2D Convolutional layers with
Relu activation

Conv2D(32) - RelLU

MaxPool2D
Conv2D(32) - RelLU

MaxPool2D 2D Max Pooling for each
Conv2D(32) - ReLU convolutional layer

MaxPool2D
Dropout(0.25)

Fl B
atten « Dense layer with RelLu activation
Dense(128) - RelU
and dropout

Dropout(0.5)
Dense layer output with

Dense(1) — sigmoid

Sigmoid activation

Figure 15: Classifier used for Experiment 1 - All Conv2D layers have (3x3) kernels
with 32 filters, and the Max Pooling layers use a (2x2) stride
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Input 2

Conv2D(32) - RelLU
MaxPool2D
Conv2D(32) - RelLU
MaxPool2D
Conv2D(32) - RelLU
MaxPool2D
Conv2D(32) - RelLU
MaxPool2D
Conv2D(32) - RelLU
MaxPool2D
Dropout(0.25)

Conv2D(32) - ReLU
MaxPool2D
Conv2D(32) - ReLU
MaxPool2D
Conv2D(32) - ReLU
MaxPool2D
Conv2D(32) - ReLU
MaxPool2D
Conv2D(32) - ReLU
MaxPool2D
Dropout(0.25)

Concatenate

Flatten

Dense(128) - RelLU
Dropout(0.5)

Dense(1) — sigmoid

Figure 16: Classifier used for Experiment 2

Why did we make these choices for the model?

e We know that convolutional neural networks are particularly suited for Deep
Learning applied to images [12].

e We have also confirmed in literature that multiple pooling layers are beneficial
to interpretability: we use max pooling layers, both for ease of implementation
in Keras and for their propensity to recognize patterns (which is our objective).
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e Similarly, we use 2 fully connected layers (one of which being the output), and
combine them with dropouts (after the convolutions / pooling).

e We use ReLU activations on all layers (convolutional or fully connected), as
the most efficient function seen in literature for DNN applied to images [12].

e We are outputting the probability of a binary class, hence the use of a sigmoid
activation on the last layer.

With that in mind, we can now set out to train our model on the augmented image
dataset, with the following model training parameters:

e Accuracy to judge the model performance (given we are in a 0 - 1 prediction
case)

e Adam optimizer, another classic for DNN optimization [17]
e Binary cross-entropy loss (as we are dealing with a binary class prediction, the

probability of having 0 or 1): —(ylog(p) + (1 — y)log(1l — p))

We isolate 20% of the dataset for validation and test, and then 40% of this isolated
set for pure test. We will then train over 15 epochs with mini-batches of 128. The
training time is between 1 to 2 hours on a standard computer: the goal, again, is to
test an "accessible” approach.

3.3 Classification results

We expect very bad results, and that we should try with another method, typically
focusing on the segmentation.

The results are summarized in table 1:

Dataset Model Accuracy | Sensitivity | Specificity | Precision | F1 score

Augmented REGICOR 4000 Experiment 1 | 97.12% | 100.0% 94.15% | 94.65% | 97.25%
9551 Images

Augmented REGICOR 4000 with labels

. 0/ 0
9371 Tmages / 9371 Labels Experiment 2 | 98.13% 100.0% 96.26% 96.41% | 98.17%

Table 1: Results of the models used - Using 1 or 2 images as input
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Figure 17: Training and validation loss for the model in Experiment 2

As we can see, the accuracy of the network is very strong, even in Experiment 1
that doesn’t use the results of the segmentation. The results in Experiment 2 are
slightly better, and it can be assumed that they would be more robust if applied to
a different dataset.

Interestingly, the model will much more often misclassify an image as positive (i.e.
"has plaque”) than the opposite, as shown by the Sensitivity value. This is a good
sign in a medical context, where the penalty for a FN (interpreting as no sickness
when there is) is much higher than for a FP (sickness when there is none). In the
current context of this work, the accuracy obtained is more than enough to explore
the interpretability of results.

Indeed our main objective of this work is to determine if the network is using the
"correct” sections of the images to take decisions, more than simply correctly classi-

fying.

For this we display the SHAP values on the images to explain the classification
decisions, as detailed previously (beginning of section 3). Our objective is to further
validate our DNN approach for the interpretation of atherosclerosis detection in
carotid medical imagery:

e For this, we use the ” GradientEzplainer” function (explained in section 2.4.5)
from the Python SHAP library [5]: the results are then plotted, using a random
sample of 100 images as background.

e This enables us to visualize, on test set images, groups of pixels that push to a
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"positive decision” (there is plaque, in red) and those that push for a negative
decision (there is no plaque, in blue).

e To know which images are misclassified, the image titles in the following ex-
amples are in the format [Correct class].[Predicted class], with 0 meaning ”no
plaque” and 1 meaning ”plaque”.

e Note that since we applied a vertical flip randomly in the data augmentation
process, in some cases the IMT region will be in the top part of the image (i.e.
the image was flipped), and in other cases in the lower part.

We show both correct and incorrect classifications in figure 18 (Experiment 1) and
19 (Experiment 2).

30



01

flipped .

00

01

|

I | , | , |
0.0020 0.0015 0.0010 0.0005 0.0000 00005 00010 00015 0.0020
SHAP value

Figure 18: SHAP values in Experiment 1, including 2 misclassifications (images A
and E): the interpretation focuses mainly on the inner layer of the carotid

31



00 00

01

01 01

11

A1 | . | AT R

0 0006 0.0004 -0 0002 00000 00002 00004 00006 0.002 0.001 000 0001
SHAP vakie

Figure 19: SHAP values in Experiment 2, images B and C misclassified

As we can see, the model will generally check the ”correct” sections of the image. A
human interpretation is that:

e With the labels, the model focuses on the width, and the bumps, which con-
stitute a larger max IMT, the main criteria for plaque / no plaque.

e It checks the areas around the labels, which also influence the width.
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e With the images, it focuses mainly the sides of the arteries where the IMT
region is (it could be top or bottom), with some noise coming from the center.

This can be examined in further detail by focusing on single examples. In figure 20,
the model misclassifies, and we can easily see that the sparse SHAP values don’t
enable a clear decision. As a human we would not trust this decision either.

Figure 20: Detailed results of figure 18 Image A, a misclassification: we see that the
model is not capable of finding the IMT area

On the other hand, in figure 21, we see that the model will check both sides of the
artery for the IMT calculation (given some images are flipped, it can be on either
side), and will focus on the "bumps” parts of the label:
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Figure 21: Detailed results of figure 19 Image E, a correct prediction of plaque: the
classifier checks both sides of the image for IMT, and the "bump” in the label.

3.4 Expansion to regression

Given the good results, we also try expanding our approach to the regression problem
of estimating the IMT values, using a similar model.

We use the original set of images as we cannot run data augmentation (all the IMT
values would be the same in the augmented set, and it is unnecessary since we no
longer have an unbalanced dataset). We use a similar architecture, switching to a
mean squared error loss (MSE), a ReLU activation unit on the final dense layer (since
all the values we want are positive), and optimizing for Mean absolute error. The
preliminary results for the loss values are shown in figure 22:
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Figure 22: Experiment 2 loss values for the regression on IMT

As we can see, the validation MSE tends to stagnate overtime, meaning we could
improve our model further. Moreover, as we are in a context of plaque/no plaque
classification where we use IMT > 1.5 as the key metric, even slight variations could
generate misclassifications as a consequence. The results are detailed in table 2:

Dataset Model MSE | MAE
REGICOR 4000

4,731 Images

REGICOR 4000 with labels
4,731 Images / 4,731 Labels

Experiment 1 | 0.037 | 0.1034

Experiment 2 | 0.025 | 0.0971

Table 2: Results of the Regression - with 1 or 2 images as input

However, when running the images through the SHAP framework as previously,
we notice that the interpretability of our results is again strong (and similarly to
classification, higher sparsity of SHAP values gives a lower accuracy). This implies
that with some improvements to the model, the results could help automate further
the IMT calculation and identification process of plaque. The main difference that we
can see in figure 23 compared to the classification case is the higher concentration of
values in the IMT area. This is logical given the model is now attempting to calculate
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an IMT rather than classify an image, and for this, it needs a higher amount of data
in that specific area.

IMT predicted = 0.791 mm
IMT actual = 0.806 mm

Figure 23: Example SHAP values for regression Experiment 2 - the network correctly
focuses on the full label area to estimate the IMT value.

This conclusion holds even if we run the model with the Experiment 1 setup: even if
the regression underperforms compared to Experiment 2, as expected, the results are
still highly interpretable. The model results are shown in table 2. We can see that
in the case of a lower accuracy, as in figure 24, the SHAP values have high sparsity,
whereas in a more accurate one in figure 25, the SHAP values are more focused on
the IMT area.
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Noise created by “lighter” areas

IMT predicted = 0.790 mm
IMT actual = 1.067 mm

Figure 24: Example of a lower accuracy result for Experiment 1 - the model correctly
focuses on the IMT area, but with high sparsity.

IMT predicted = 0.606 mm
IMT actual = 0.655 mm

Figure 25: Example of a higher accuracy result for Experiment 1 - the model is well
focused on the IMT area.

This is a very good sign for the future. Labels are either manual or long to generate
via the models we currently have: being able to use only the images to estimate IMT
would be a huge time saver.

3.5 SHAP values test conclusion

As a conclusion, we see that our method, using a CNN and SHAP in-
terpretability shows a lot of promise. The network classifies well, and this
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classification decision has a strongly understandable basis for a human, as we de-
fined in our review of interpretability. In addition to that, it can run on a normal
computer.

We will now attempt to further these promising and interpretable results with work
on the segmentation output, namely the 6 labels. And here we will require more
computational power, and new models!
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4 Grid saliency methods implementation and ex-
perimentation

We will in the following steps implement explanations for the two types of Grid
Saliency methods based on the published works from section 2.5, with the final
goal of obtaining explanations for a semantic segmentation network of images of the
carotid artery.

4.1 Grid saliency methods for image classification

The grid saliency explanations for semantic segmentation that we are going to ex-
plore are based on black box explanations for image classification via meaningful
perturbation. These methods are based on the same ideas as LIME: perturbing
groups of super pixels as much as possible, and observing how the black box system
behaves under such modification of the input.

The idea lies in figuring out which pixels in an image are the most responsible for
obtaining a given result and highlighting them as the classification explanations, as
we can see in figure 26.

Figure 26: A flute image and an example heatmap of the parts of the image most
responsible for obtaining the " flute” classification, Source: GitHub [10]

In order to achieve this, we formulate a meta learning problem in which we will use
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the following elements:

e The original image (I): The original classified image, with its classification
and class probability.

e The black box classification score (f.(x)): The score for classifying the
image x as class c.

e An empty image (E): An image devoid of meaning, either random noise, a
solid color or a blurred version of the original image.

e A mask (M): A lower dimensional mask with values in [0,1].

e A perturbed image (P): The image resulting from the combination of the
original image with the empty image following the mask: P = M [ + (1 —
M) x E, where * denotes the element-wise multiplication. In the areas where
M approaches 1, we will keep the original image information, and in those that
approach 0, the image will be closer to the empty one.

The goal is to learn the smallest mask M (in terms of L.1 norm, so with the maximum
number of "turned off” pixels) such that P achieves at least the same classification
and score as the original image.

We can formulate this objective as an optimization problem:
M = argminy N[ M|y + [fe(I) = fe(P)]

Where the first term accounts for obtaining the smallest mask and the second one
serves as a penalization for misclassifying the perturbed image, and A controls the
sparsity of M.

4.1.1 Implementation details

We used Pytorch which allows for easy customized loss function writing. The image
classifier we used is VGG19, a convolutional neural network which is pretrained and
ready to use with torchvision.
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We used as a starting source the code available in the Github repository PyTorch
implementation of Interpretable Explanations of Black Boxes by Mean-
ingful Perturbation'.

We optimize the mask M over 500 iterations, following the process shown in figure 27:

Fc(I)

Compute

Resize

I —_—

I
Combine into
‘ Gaussian
Blur
| P |—»Fc(P)—»loss

Compute

E
@ Upsample H |— T
t

Figure 27: Diagram of the iterative process to obtain the grid saliency map for image
classification.

4.1.2 Experiments

We tested this approach on two images, a dog and a person, and the saliency mask
obtained for them is shown in figures 28 and 29:

Figure 28: Saliency heatmap obtained for a dog classification. Image source: [21]

Thttps://github.com /jacobgil /pytorch-explain-black-box
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Figure 29: Saliency heatmap obtained for a person classification. Image source: [21]

We see that for the dog, the main focus is on the face, legs and ears, and for the
person the main salient areas are located on the face, the hand and the shirt.

4.2  Grid saliency explanation methods for image classifica-
tion outside of a region of interest

In our journey to obtain saliency explanations for semantic segmentation, it is inter-
esting to modify our image classifier explainer, and make it focus on the outside of
a given area region.

In order to do so, we introduce a new parameter to the optimization problem stated

in grid saliency methods for image classification.

e A static mask (SM): A mask {0,1} that is not optimized, determined at the
very beginning, used in combination with M to obtain the perturbed image.

Now we must force our algorithm to always use the information of the original image
I inside the area defined by SM, so P will be now computed as:
IM=(1-SM)«M

P=IMxI+(1—IM)*E
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Where once again * stands for element-wise multiplication and IM is an intermediate
mask computed using M and SM. A schematic overview of the resulting architecture
can be seen in figure 30:

Fc(I)
Compute
I Resize I
‘ Gaussian Combine into v
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SH |—
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Figure 30: Iterative process to obtain a grid saliency map outside of a static region.

4.2.1 Experiments

We tested this new formulation on the same images we classified in the previous
section, with two different static masks: one focused on the faces, and one containing
the full figure. We obtained the results shown in figures 31 and 32:

Figure 31: Original image (I), static mask (SM) and saliency heatmap for obtaining
a person classification, freezing the face area.
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Figure 32: Original image (I), static mask (SM) and saliency heatmap for obtaining
a dog classification, freezing the full person area.

We see that in the person image from figure 31, when freezing the face area, the
classifier network only relies on the hand to maintain the classification score. When
we freeze the full area of the person in figure 32, almost no other pixels get highlighted
as explanations for the classification outside that area.

Figure 33: Original image (I), static mask (SM) and saliency heatmap for obtaining
a dog classification, freezing the face area.

Figure 34: Original image (I), static mask (SM) and saliency heatmap for obtaining
a dog classification, freezing the full dog area.
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In the case of the dog in figure 33, if we freeze the face area, it still heavily relies
on the ears and legs to maintain the classification score. Even when freezing the full
dog area in figure 34, we still see some pixels highlighted outside of it, mainly in the
shadows cast by the dog (with a dog-ish shape).

4.3 Grid saliency explanation methods for semantic segmen-
tation

Recall that our final goal is to implement grid saliency explanations for semantic
segmentation.

The main difference when working with semantic segmentation compared to image
classification, is that instead of obtaining a score for a category on the full image,
we will now obtain a score for each pixel. The segmentation class of each pixel will
be the class with a higher score.

We will introduce yet another parameter to our vocabulary:

e Region of interest (R): The segmented region for which we want to obtain
context explanations (the request object).

We will then reformulate the goal problem [8] as learning the smallest mask M outside
of the region of interest R (determined by the segmentation) such that we preserve
the same segmentation inside of that region of interest:

1B+ [(fe() = f(P)Ilx
et

M = argminy \|M||; +

4.3.1 Implementation details

Since we now integrate R into the loss function, we will use an implementation similar
to that of figure 27.
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Since we now need to test in a semantic segmentation network, we used DeepLabV3-
ResNet101, that similarly to VGG19, comes pretrained and able to segment for 21
classes in torchvision.

4.3.2 Experiments

Sadly, since we are changing the black box model we are obtaining explanations from,
and we need to focus on context, we had to drop our man and dog image examples.

Instead, we tested our grid saliency ”explainer” in the set of images shown in fig-
ures 35, 36, 37 and 38:

Figure 35: Original image (I), segmentation result with R in red, and context expla-
nations for a cat segmentation.

As we see in figure 35 we seek context explanations in an image with only one
element, we observe that barely any pixels get highlighted as explanations for the
cat segmentation.

0 50 100 150 200 0 50 100 150 200

Figure 36: Original image (I), segmentation result with R in red, and context expla-
nations for a cat and dog segmentation.
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If instead of having only a cat in the image, we put the cat besides a dog (figure 36),
our grid saliency explainer highlights some dog areas: mainly the paws and the ears,
meaning that being next to a dog is part of what contributes to the segmentation of
the cat as a cat.

Figure 37: Original image (I), segmentation result with R in green, and context
explanations for a motorbike and rider segmentation.

Figure 38: Original image (I), segmentation result with R in green, and context
explanations for a motorbike and rider segmentation.

In figures 37 and 38 we ditch the white background and try to determine why the
motorbike is being classified as such. We see that the main pixels responsible for
this segmentation are located on the biker (helmet and hands), with the road having
some relevance as well, especially in figure 38.
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5 Grid saliency for semantic segmentation applied
to carotid artery images

In the following section we will use the grid saliency explanation methods we have de-
veloped to analyse the results of two semantic segmentation neural networks trained

on the REGICOR dataset.

5.1 DeepLabV3 ResNet101 fine tuned

ResNet101 is a residual neural network model characterized by its skip connections.
Skip connections allow fitting the input from a previous layer to the next with-
out needing to modify the input. Based on this architecture, Google constructed
DeepLabV3, one of the best image segmentation networks to date, with 85,7% IoU
(Intersection over Union) score on the PASCAL VOC 2012 dataset. There is a
Deeplabv3-ResNet101 pre-trained with a subset of COCO train2017 in pytorch.

In order to use this network to semantically segment our carotid artery images, we
fine tuned this model. The process of fine tuning consists of adapting an already
trained network to work with your target task.

Network A

DOman Source Source
‘ Feature extractor Segmentation ‘
A
Subnetwork Subnetwork

Network B

. Target Target
ZETELD » Feature extractor Segmentation .
E Subnetwork Subnetwork

Frozen Backpropagation

Figure 39: Transfer learning diagram (Source: Transfer learning for segmenta-
tion [22])
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A schema of how this fine tuning process works can bee seen in figure 39. We change
the target segmentation sub-network and adapt it to detect the IMT CCA area in
the carotid artery images that are our target problem, training with a lower learning
rate than in the normal training process.

5.1.1 Training the segmentation model

Using the code in the Github repository DeepLabv3FineTuning [22], we fine tuned
the pytorch implementation of Deeplabv3-ResNet101 targeting our carotid artery
images. The code changes the classifier module of the model for a new one with a
new number of output channels: two in this case, IMT area and background.

We split the images in the REGICOR dataset (157 used in this case) into a train set
with 90% of the images and a test set with 10% of them, and trained the network,
during 25 epochs and batches of 3 images. The training lasted about 8 hours. This
code was trained on a Universitat de Barcelona server, with an Intel Core i7-6800K

CPU (3.40GHz).

The semantic segmentation model reaches an average IoU for the images in the test
set of 0.791. We will now use the grid saliency method to obtain explanations of
this model’s performance.

In figure 40 we can see the qualitative result of our fine tuned network over the test
set:
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Ground Truth Segmentation Output
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Ground Truth Segmentation Output Ground Truth Segmentation Output
Ground Truth Segmentation Output Ground Truth Segmentation Qutput
Ground Truth Segmentation Output

Figure 40: Test set original images, ground truth of the IMT CCA area and segmen-
tation result using Deeplabv3-ResNet101 fine tuned.
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5.1.2 Grid saliency results

We can see below in figure 41 the results of the grid saliency for semantic segmenta-
tion explanations applied to our test set.

In general, the areas highlighted by the algorithm refer to:

e The IMT area: In some images like 4, 6 and 7, areas next to the IMT CCA
are barely highlighted, implying there is enough information inside the area
of interest to perform the semantic segmentation. The outside areas that get
slightly highlighted in these cases are mostly located on the far wall.

e The far wall: In other cases, like in images 11 and 13, some areas of the far
wall are strongly highlighted, with a smaller appearance of the lumen bulb.
This is one of the adjacent areas and as opposed to the lumen, it contains less
dark pixels overall, so it is a very reasonable part of the image to look at for
information.

e The far wall and the bulb areas: Another area that gets highlighted oc-
casionally is the one corresponding to the lumen bulb and the IMT bulb. We
can see it in images like 2, 5 8 and 9.

Overall we can argue that our fine tuned DeepLabV3 network, besides the area
corresponding to the IMT, uses information corresponding to the areas nearest to it
to perform the segmentation, specially the neighbouring areas.
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Figure 41: Grid saliency result over the test set.
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5.2 Tiramisu67

In the work by Escapa et al. [1] a Tiramisu67 network was used for semantic seg-
mentation of the carotid artery images.

| TIRAMISU 67 |
Input layer
3 x 3 convolutional 2D
DB (5 layers) + TD
5 layers) + TD
5 layers) + TD
5 layers) + TD
5 layers) + TD
DB (5 bottle neck layers)
TU + DB (5 layers)
TU + DB (5 layers)
TU + DB (5 layers)
TU + DB (5 layers)
TU + DB (5 layers)
1 x 1 convolutional 2D
softmax

DB (
DB (
DB (
DB (

Figure 42: Architecture of Tiramisu67 [1]

Tiramisu is an extension of Dense Net architecture to Fully Connected Networks.
This network can be constructed with different configurations and in this case 67
layers are used (hence the name of the network). In figure 42 we can see the network’s
architecture.

In this case, the aim of the semantic segmentation is to obtain a segmentation for
the six areas that can be seen in the carotid artery images: the near wall, the lumen
bulb, lumen CCA the IMT bulb, the IMT CCA and the far wall.
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5.2.1 Training the segmentation model

Using the code in the Github repository Carotid Artery? that implements Tiramisu67
in Keras, we trained this network with the REGICOR dataset, using a train set of
141 images (90%) and a test set of 16 images (10%).

In order to train this network, we set up a docker image on a server located in
Universitat de Barcelona. We used nvidia-docker to make the nvidia CUDA drivers
available in our code in order to be able to train with the GPU unit. The server had
a powerful GPU installed: the network was trained on a GeForce GTX 1080 (12GB).

This process was split into 2 phases:
e Phase 1: Training with a learning rate of 0.001, using data augmentation with

random cropping and adding 1% of Gaussian noise. Images are introduced in
batches of 3.

e Phase 2: Training with a learning rate of 0.0001 and without data augmen-

tation. Images are introduced in batches of 1.

The trained lasted for about 15 hours during a total of 263 epochs. The average IoU
for the images in the test set is 0.659.

Zhttps://github.com/DaniSalva/Carotid Artery-Domain Adaptation
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Figure 43: Test set original images, ground truth of the carotid artery, 6 class seg-
mentation result using Tiramisu67: Near wall (granate), IMT CCA (green), Far wall
(blue), Lumen bulb (orange), Lumen CCA (yellow), IMT Bulb (fluorescent yellow).
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In figure 43 we can see the qualitative result of the Tiramisu67 network over the test
set.

5.2.2 Grid saliency results

This model was created using Keras, and has the particularity of being constructed
using a fork of Keras and a wrapper. The wrapper deals with the way the images
are passed through the network and also with getting the final segmentation result.

These particularities did not allow us to run our grid saliency algorithm in order
to obtain explanations. Instead, we created an approximation of it, based on pre-
constructed masks.

For each image segmentation we created several masks, and then computed the value
of the loss stated in the grid saliency method for each one of them, in order to see
which one was optimal.

The 10 pre-constructed masks were the following:

e IMT CCA Only: Only the region of interest, the IMT CCA.

e IMT CCA and Near Wall: The IMT CCA and the Near Wall area, which
are opposite areas of the image.

e IMT CCA and Far Wall: The IMT CCA and the Near Wall area, which

are connected areas (the Far wall lies below the IMT).
e IMT CCA and Lumen Bulb: The IMT CCA and the Lumen Bulb area.

e IMT CCA and IMT Bulb: The IMT CCA and the IMT Bulb area (once
again, connected areas, the IMT Bulb lies left of the IMT CCA).

e IMT CCA and Lumen CCA: The IMT CCA and the Lumen CCA area
(connected elements, with the Lumen CCA above the IMT).

e IMT CCA Expanded 5 The IMT CCA area, expanded using a Gaussian
blur of sigma 5.

e IMT CCA Expanded 10 The IMT CCA area expanded using a Gaussian
blur of sigma 10.
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e IMT CCA Expanded 15 The IMT CCA area expanded using a Gaussian
blur of sigma 15.

e IMT CCA Expanded 20 The IMT CCA area expanded using a Gaussian
blur of sigma 20.

— q

Figure 44: Example of the set of 10 masks tested for a given semantic segmentation
result (bottom right).

In figure 44 we can see an example of the set of 10 masks we will test for a given
segmentation.

In all cases, the mask that achieved the lower loss value was the one that contained
only the IMT CCA area. In figure 45 we can see some of the results.
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Image 2

Segmentation IMT Only mask

Image 3

Segmentation IMT Only mask
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Image 10

IMT Only mask
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Figure 45: Segmentation result, mask with minimum loss value and loss for all the
pre-constructed masks (mask loss accounts for the sparsity of the matrix and seg loss
for the ”correctness” of the segmentation. Loss is the sum of both).

We can say that among all these pre-constructed masks, the one that better explains
the segmentation is the one that contains the IMT CCA area only. Looking at
the loss values, the component that accounts for the loss of segmentation (how the
segmentation worsens by perturbating the outside area) remains more or less stable.
So, the lower loss attributed to the IMT CCA means that the IMT CCA is the
smallest area that gets a decent score. This approximation tells us that this model
is using the information inside this area the most when determining which region is
the IMT CCA. That could be the reason why we obtain wrong segmentation in some
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cases, (like image 3, where there’s IMT CCA segmented at the top of the lumen)

because instead of looking in the neighbouring areas, the network is focusing on the
pixels inside the IMT CCA mask.

We must take into account that these properties are not as complete as with the
mask we would obtain by applying the grid saliency method, but only a mere ap-
proximation.
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6 Conclusions

The purpose of this work was to study the viability of Deep Learning methods in
the context of atherosclerosis detection, by examining the model ”decisions” through
the lens of interpretability.

We successfully demonstrated, through the use of SHAP values, that our CNN models
were strong candidates for the automation of plaque detection, and were also good
candidates for measuring the IMT values on an image. The main fact that makes
them well suited to the tasks is that the classification and regression decisions seem to
focus on the correct image locations. This means they would ”reasonably” classify
the ultrasound images in the eyes of a professional, and could be expanded more
datasets.

We also explored grid saliency methods for image segmentation explanations. We
found out where a pair of neural networks get the main information in order to
perform a prediction. These explanations can be used in the future to improve the
performance of the black box models explained, and, since we are working in the
medical field, help humans make sure that the predictions are not being made based
on arbitrary image features, but on the same features a human would use to take a
decision.

Generally speaking, we confirmed the interest of Deep Learning models for plaque
detection, and would strongly encourage others to continue this research. If these
approaches can be run at scale, in a "real” environment, they could be a massive
help to medical professionals.
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7 Future work

We strongly believe that the interpretability of DNN in the context of plaque detec-
tion, classification and segmentation makes them candidates for further use: having
a trained network analyse and display results faster than a human, but always with
understandable underlying decisions.

Further expansion of this work would be in refining the precision and interpretability
on both classification and segmentation. We saw that the model will generally focus
on the correct locations in the context of plaque detection, and that the differences
obtained by adding the labels are small. This means that by refining the training on
the original images, we could apply the CNN to more ultrasound images for plaque
detection. In addition to that, we noticed that the CNN could in itself be a good
candidate for calculating IMT directly through regression, but would need a larger
refinement. We could use the explanations obtained with SHAP to improve the IMT
detection.

Concerning the grid saliency, it would be interesting to confirm our findings with
human experts in the field and apply what has been discovered to make neural net-
works perform better in their prediction tasks. More precisely, it would be interesting
to get grid saliency explanations for the Tiramisu67 network (in contrast to the ap-
proximation proposed) and see if the explanations for a 6 label segmentation network
coincide with the 2 label one.

Another idea to train the classification network (from section 3) further, without the
costly process of obtaining and cleaning new images in our unbalanced data set, would
be to generate images through a Generative Adversarial Network (GAN [24]). As a
reminder, a GAN consists basically of 2 models, the generator, and the discriminator,
that try to "outdo” one another based on an original set of images. The generator
tries to create a fake, while the discriminator tries to identify the created image as
real or fake. Over time, the generated images should increasingly resemble those of
the original set.
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Model start After 50 epochs After 300 epochs

Figure 46: Results of GAN training per epoch

We tried to train a GAN network (Tensorflow docs [18]), feeding the 4,731 REGICOR
original images as the source, over as many epochs as possible for the computer. The
results aren’t good yet, but with a longer training process it is possible that we would
be able to create much better fakes, in order to continuously train the model.

As always, we let those with the right computational power generate the new batch of
training images! We know that it can only improve the accuracy of our interpretable
Deep Learning models, as we provide new examples to train from, including from
patients generated by the computer that have not been found yet by local doctors.
The only issue will be the need to calculate the IMT for these generated images, but
we consider the idea worth exploring nonetheless.
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8 Source code

All the source code used to develop this project is available on GitHub: Link
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https://github.com/SusanaCastela/TFM2020

Members contribution

It should be noted that the thesis was done as a group work, and no task was done
in isolation. The distribution of tasks has been as follows:

e Susana Castela: Started with a review of the state of the art, in particular the
theory of interpretability methods. After that, worked on the training of the
networks for semantic segmentation and focused on the implementation of grid
saliency methods.

e Christopher Fady: Started with a review of the state of the art, in particular
the articles on the application of interpretability. After that, working on the
application of SHAP values to the REGICOR images and labels.

Both members contributed equally to the project. Christopher contributed more to
the writing of this document and Susana dedicated more time to server configuration,
docker set up and large model training.
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