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Summary: Increasing implementations of renewable energy resources to migrate from 

fossil fuel based electric power to clean energies have been creating new technical 

challenges due to their integration into an existing electrical grid. In this research, a 

power electronic converter based on fuzzy logic controller is developed to govern the 

transfer and control of power in a grid-connected residential Photovoltaic (PV) system 

with battery storage. A bidirectional dc-dc converter is designed for power transfer 

between the loads and the battery. A bidirectional ac-dc converter is used as the 

interface between the PV array and the electricity grid. The fuzzy logic controller is 

designed to meet the user power requirement – with the PV array and the battery sized 

to meet the critical load requirement on-site. The results indicate that the fuzzy logic-

based power conversion helped the system to adjust to off-grid, low-battery, full-battery, 

and on-grid power conditions. The main merit of the design is simplicity in being able 

to manage the limited supplies from the grid and the renewable PV installation using 

carefully sized storage that serves critical loads within specific days of power autonomy.
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1. INTRODUCTION

Photovoltaic (PV) systems installed at residences are one of the alternative energy 

sources for clean energy generation. The power produced in a PV is in the direct current 

(dc) form. While certain instances may call for the direct use of the PV-generated dc 

power, 1,2 it is often required that the dc power be converted to an alternating current 

(ac) power for control and integration into conventional power systems – typically, 

integration into an electricity grid. At times, the power from an adjoining ac grid may 

be required to charge local storage devices; here, the ac power needs to be converted to 

a dc power. The dc-ac and ac-dc power conversions call for the use of an important 

electronic device – the converter. 

Demand-side renewable energy resources could provide access to electricity when 

deployed in stand-alone micro grid systems. Several millions of people still do not have 

access to electricity globally; 3 for example, people living in some rural areas often have 

uncertain access to stable power supply due to limited electricity infrastructure, causing 

wide adoption of polluting local generators. Distributed renewable energy resources 

could play a key role in increasing the access to electricity in the rural and certain urban 

locations of both developed and developing countries, offering major social and 

economic benefits to people and businesses. 3 Meanwhile, at the places where there are 

adequate infrastructure and stable electricity supply, a combined PV and energy storage 

resource could help in transitioning the grid to a low-carbon energy system. However, 

a grid-connected residential PV and storage system requires accurate power conversion, 

control, and management. 

The fuzzy logic control has been employed as a maximum power point tracking tool. 
4-7 A fuzzy controller was used as a tool for power management in the standalone PV 

power system. 5 In a residential water supply system, 8 a fuzzy logic controller has been 

implemented to achieve energy saving, increased reliability, cost effectiveness, and 

improved system efficiency. The State of Charge (SOC) of a battery could be controlled 

with fuzzy logic controller – the control may be required to ensure that the battery do 

not discharge below the level that would affect its lifespan. 9,10 Zenned et al., presented 

a work, 11 where fuzzy logic controller in a hybrid power system was designed with 

respect to a typical household energy requirement – achieving more renewable energy 

utilization, cost saving and energy efficiency. An if-then fuzzy logic algorithm has been 

developed to balance an external power requirement from load with a fuel-battery 
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hybrid generation system – achieving optimal operational efficiency of the hybrid 

system while maintaining the SOC of the battery at a desired level. 12 

Similarly, using a state flow toolbox and advanced fuzzy controller, an advanced 

supervisory control has been designed to manage the power flow in a cell-battery hybrid 

system on a distribution, achieving operation-efficiency while maintaining the SOC of 

the battery. 13 A fuzzy logic control has been used for energy management in a dc 

microgrid system – with the fuzzy logic helping to keep the SOC of the battery within 

a specified limit, for improved battery-cycle life. 14 The frequency control of an 

autonomous system has been described using a two-stage adaptive fuzzy logic 

controller. 15 A fuzzy logic-based controller has been developed as droop control in a 

wind farm, 16 maintaining a desired droop rate and providing a desired frequency 

support for a smart grid. Using the availability of pumping resources as key inputs to a 

fuzzy logic controller, the irrigation risk of a solar pumping system has been mitigated 

in a design that achieves safe irrigations durations in a solar-powered irrigation system. 
17 Also, a fuzzy logic interface has been designed to effectively manage the charge and 

discharge control of multiple grid-connected electric vehicles. 18 

Many of the works in the literature are either models for stand-alone setting or assumed 

a continuous power supply in designing power systems employing fuzzy logic control. 

Some do not consider controlling and optimizing the available power supply in meeting 

critical energy requirements and others include polluting local generators, but instead 

of using the polluting generators, a carefully sized storage could be used as power 

backup. Moreover, as suggested by Yuan et al., the overall performance of a hybrid 

power system may be improved with fuzzy logic controller when the unique 

characteristics of the local energy requirements are taken into consideration in the 

design. 19 In this work, a fuzzy-logic-controller power management is set up in a design 

scenario in which power availability from the grid is limited – where suitable storage 

sizing for adequate power supply for certain days of power autonomy would be required. 

This includes the design of fuzzy-logic-controlled ac-dc and dc-dc bidirectional 

converters for the integration of renewable energy with the grid for an energy system 

that could meet critical load requirements and prioritize the use of power generation 

from the distributed energy resources – in this case, a residential PV array with a battery 

storage. Taking cognizance of the latest approach to solar  microgrid designs: where 

the dc supply from a PV source is fed directly to power dc loads without going through 
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a dc-ac power conversion phase, 14, 20 the dc supply from the PV array and the converted 

ac supply from the ac grid are set to power dc loads through dc buses – only dc loads 

are included in the storage equipped system.

Section two gives a description of the elemental designs of the system. Section three 

presents the results from the modeling with discussions. The main conclusions of the 

work are given in section four.  

2. ELEMENTS OF THE ENERGY SYSTEM

This research is based on a system that allows bidirectional power flow from either the 

grid or the home-sized PV array to a dc bus at the residence. The system includes a 

bidirectional ac-dc converter – to transfer power between the electricity grid and a dc 

bus, a boost converter – to balance the power from the PV array to the dc bus, and a 

bidirectional dc-dc converter – to transfer power between a storage device and the dc 

bus. The grid-connected PV system – having the storage device and the bidirectional 

converters – is depicted in Fig. 1.

2.1. PV Array and Boost Converter

2.1.1. PV Sizing for Critical Load

The critical loads to be served are specified to determine the suitable size of the PV 

array to be installed. The total energy required for meeting the critical loads could be 

of any value depending on the energy needs at the location: the hypothetical residential 

building used in this case has critical energy demand given in Table 1. It is assumed 

that the loads can either be powered by a dc supply or have adaptive chargers that are 

powered by the dc supply.

The total energy to be consumed by the load is estimated as:

                                  (1)𝐸𝑛𝑒𝑟𝑔𝑦 = 𝑄𝑢𝑎𝑛𝑡𝑖𝑡𝑦 × 𝑃𝑜𝑤𝑒𝑟 × 𝐻𝑜𝑢𝑟 (𝑊ℎ/𝑑𝑎𝑦)

The performance of any PV module depends on its internal characteristics; for example, 

the fill factor of a practical solar cell – points to how close to the ideal is the practical 

cell – gives a measure of how the maximum power of the cell matches that of the ideal. 

The higher the fill factor of the cell, the closer to the ideal is the cell. Whereas the 

characteristic impedance of a solar cell gives the output resistance of the cell at 

maximum power point. 

Page 4 of 37International Transactions on Electrical Energy Systems



5

The fill factor, the characteristic impedance, and other parameters of the PV module 

used, at Standard Test Conditions (STC) – at 1000 W/m2 and at 250C – have the values 

given in Table 2.

Using the PV module having the parameters given in the Table 2, the total number of 

modules required in the PV array is:

           (2)𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒𝑠 =
𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑤𝑒𝑟 𝑑𝑒𝑚𝑎𝑛𝑑

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑝𝑜𝑤𝑒𝑟 𝑟𝑎𝑡𝑖𝑛𝑔 𝑜𝑓 𝑚𝑜𝑑𝑢𝑙𝑒

The steps could be used in estimating the size of the PV required at any location, given 

the critical load specifications for the location.

2.1.2. Boost Converter

The boost converter performs Maximum Power Point Tracking (MPPT) to track the 

operation of the PV within the region of maximum power generation. Several MPPT 

methods could be used; for instance, the incremental conductance method, 21 the perturb 

& observe algorithm, 22 or the fuzzy based MPPT method. 7

The boost converter has the configuration depicted in Fig. 2. The selection of values for 

the components have been described. 23 The designs of the major components of the 

converter are outlined for emphasis as follows:

2.1.2.1. Duty Cycle of the Boost Converter

With respect to Fig. 2, the duty cycle of the boost converter is given as: 23

                                                                    (3)𝐷 =   1 ―  
𝑉𝑖𝑛𝜂
𝑉𝑜𝑢𝑡

D is the duty cycle, is the input voltage, is the output voltage,   𝑉𝑖𝑛  𝑉𝑜𝑢𝑡 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜂)
accounts for the energy dissipation within the boost converter, and could be taken as 

95%. 23

2.1.2.2. Selection of Inductor

A higher inductor value gives a higher maximum current in the output. The equation 

for the estimation of an appropriate inductor is given as: 23

                             (4)𝐿 =   
𝑉𝑖𝑛 ×   (𝑉𝑜𝑢𝑡 ―  𝑉𝑖𝑛)
∆𝐼𝐿  ×   𝑓𝑠  ×   𝑉𝑜𝑢𝑡

where L is the inductor value, is the input voltage, is the output voltage, fs is 𝑉𝑖𝑛  𝑉𝑜𝑢𝑡 
the switching frequency of the converter,  is the approximate inductor ripple current ∆𝐼𝐿

given as: 23
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                       (5)∆𝐼𝐿 = 0.2 ×  𝐼𝑜𝑢𝑡(max) ×  
𝑉𝑜𝑢𝑡

𝑉𝑖𝑛

where  Iout(max) is the maximum output current from the supply.

2.1.2.3. Selection of Capacitor

The output capacitor is chosen to effectively remove any output voltage ripples. 23,24 

The equation for the estimation of an appropriate capacitor is given as: 23

                                 (6)𝐶𝑜𝑢𝑡(𝑚𝑖𝑛) =  
𝐼𝑜𝑢𝑡(𝑚𝑎𝑥) × 𝐷
𝑓𝑠 ×  ∆𝑉𝑜𝑢𝑡

where is the approximate output capacitor value, Iout(max) is the maximum 𝐶𝑜𝑢𝑡(𝑚𝑖𝑛)

output current from the supply, D is the duty cycle, fs is the switching frequency, and ∆
 is the approximate output ripple voltage given as: 23𝑉𝑜𝑢𝑡

          (7)∆𝑉𝑜𝑢𝑡(𝐸𝑆𝑅) =   𝐸𝑆𝑅 𝑜𝑓 𝐶𝑜𝑢𝑡(𝑚𝑎𝑥) ×  (𝐼𝑜𝑢𝑡(𝑚𝑎𝑥)

1 ― 𝐷  +   
∆𝐼𝐿

2 )
where  is the approximate inductor ripple current, ESR is the Equivalent Series ∆𝐼𝐿

Resistance of the selected output capacitor.

2.2. DC Bus

For a grid-connected PV system, the voltage level chosen for the dc bus is dependent 

on two design considerations:

 The voltage level of the electricity grid

 The size of PV array

2.2.1. Voltage Level of Grid

The grid to which the dc bus is to be connected to is at 240V/50Hz. A variation in grid 

voltage of about  is considerable. A  variation of the grid voltage ± 10% ± 10%
translates to 217V < Vrms < 265V/50Hz and a peak equivalent value of 306V < Vpeak < 

375V/50Hz. A 380V bus meets the voltage level requirement. 

2.2.2. Size of PV Array

The bus voltage level is chosen to be just above the total output voltage level from the 

PV installation. For example, for the residential site in view, the modules are connected 

so that, the maximum output voltage expected from the 16-module PV array – when 

operating at STC (at irradiance level of 1000 W/m2 and at a temperature of 250C) – is 

346 V. The dc bus voltage is set at 380 V. The boost converter controls the output from 

the PV array so that a 380 V is supplied to the bus.

Page 6 of 37International Transactions on Electrical Energy Systems



7

2.3. Bidirectional AC-DC Converter

For any grid-connected hybrid system having a storage, power may flow in two ways 

– from the grid or vice versa. The bidirectional ac-dc converter is required to allow the 

two-way transfer of power. It could be designed – depending on the ac power supply – 

as a single-phase bidirectional ac-dc converter or a three-phase bidirectional ac-dc 

converter. The single-phase bidirectional ac-dc converter topology including a Dual 

Active Bridge (DAB) structure, the converter block, and its Phase Lock Loop (PLL) 

block are depicted in Fig. 3, Fig. 4, and Fig. 5, respectively. The single-phase 

bidirectional ac-dc converters are deployed around buildings of residential sites since 

the buildings are usually linked to a phase of the electricity grid.

The control elements included in Fig. 4 is designed to keep the dc bus at the end of the 

DAB at a constant voltage level, where a reference voltage is compared to the actual 

voltage to generate switching pulses moderated by a Proportional-Integral (PI) 

controller. The DAB structure is used because it could be easily controlled with many 

well-known control methods and permits the use of the control techniques that include 

duty cycle. 25 Moreover, while the structure uses more components, the transformer 

included in the structure helps to isolate one part of the system from the other, 

improving safety. 

Meanwhile, the overall “AC-to-DC” conversion process is divided into three stages: 

first AC-(PLL)-to-dc, followed by a dc-to-ac transformation, and ac-to-DC after 

transformation – using the left-to-right conversion operation as example. Whereas the 

PLL keeps track of the phase of the signal at the converter-grid interface. The control 

helps in achieving the required stability features while maintaining a constant phase 

between the voltage and the current within the system. A capacitor at the dc end of the 

converter helps to reduce the ripples in the output current and voltage. 23,24 A current 

controller determines the actual minimum dc link voltage required for the grid 

connection. The controller measures the current output of the terminal voltage and 

compares it with a reference current signal so that the output current is regulated to 

follow a reference signal.

The grid-connected bidirectional ac-dc converter is designed to prevent unacceptable 

Total Harmonic Distortions (THD). A filter processes out the signals with the desired 

frequency – signals below a cut-off frequency. This is important for maintaining a 

standard THD in the power supplied to the grid. The THD should be less than 5% as 
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stipulated in the IEEE 1547 guideline. 26 Meanwhile, the inductor at the ac end of the 

converter controls the current through the converter. 23

In supplying power from the 380V-dc bus to the grid, the bidirectional ac-dc converter 

acts as a constant current source, supplying a constant current to the grid.

2.4. Battery Storage and Bidirectional DC-DC Converter 

2.4.1. Battery Sizing

The modular nature of batteries makes them desirable for residential storage 

applications. The battery size must be large enough to meet the requirements of the 

residence, taking into cognizance the environmental factors that could affect the 

availability of electricity for recharging the battery. Social and economic factors could 

also be considered in sizing the battery. 

In the design case where the objective is to have an energy system that will maximise 

the use of the power generation from the PV array and allow the residence to have some 

days of power autonomy, the battery is sized to capture energy for local consumption.

Taking the nominal battery voltage (Nv) to be 48 V, the days of autonomy (Da) to be 

three days, the battery loss factor (Bl) to be 0.85 – an 85% efficient battery – for 

example, a lithium ion battery – and the depth of discharge of battery (Dd) to be 0.6; 

the total energy demand (Ed) at the residence from Table 1 is , the 3.224𝑘𝑊ℎ/𝑑𝑎𝑦
battery capacity required (Bc) is calculated:

                         (8)𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐵𝑐) ≥  
𝐸𝑑 ×   𝐷𝑎

𝐵𝑙 ×  𝐷𝑑 ×  𝑁𝑣
 

                  (9)𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (𝐵𝑐) ≥ 395 𝐴ℎ≅𝑇𝑜𝑡𝑎𝑙 𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝐴ℎ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑

2.4.2. Bidirectional DC-DC Converter

A means of changing voltage levels from a high voltage bus to a lower battery-charging 

voltage is required. The dc-dc converter transfers power between the 380V-dc bus and 

the low voltage (LV) dc bus. The battery and the dc loads are connected to the low 

voltage dc bus. Batteries are usually designed to be charged with specific voltages close 

to their nominal voltage. Here, the nominal charging voltage of battery storage has been 

set to the voltage at the lower voltage end of the dc-dc converter. 

As depicted in Fig. 6, the converter used should have the bidirectional capability, 

having dual operating modes that allow for the exchange of power in two directions – 

the boost direction – where current I1 at the low voltage side is greater than zero, and 
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the buck direction – where current I1 at the low voltage side is less than zero. The basic 

dc-dc converters lack the ability to transfer power in two directions. This is because of 

the use of diodes – preventing the flow of current in the reverse direction. The 

combinatorial modification to the unidirectional boost and the unidirectional buck 

converters in achieving a bidirectional power capability of the bidirectional converter 

– with a description of the signal flows, operation, and control – has been described. 
25,27 The basic topology of the bidirectional dc-dc converter is depicted in Fig. 7. 

2.4.1.1. Duty Cycles for DC-DC Converter

The buck-boost subscripts for the elements are to reflect the mode of operation in the 

given converter equations: 28

                                   (10)𝐷𝑏𝑢𝑐𝑘 =   
𝑉𝐵𝐴𝑇𝜂
𝑉𝑏𝑢𝑠

D is the duty cycle, is the battery output voltage, is the battery input voltage,  𝑉𝐵𝐴𝑇  𝑉𝑏𝑢𝑠 
and  accounts for the energy dissipation within the converter, may be 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (𝜂)
taken as 95%. 23

2.4.1.2. Inductor Selection for DC-DC Converter

The estimate for an appropriate inductor value is given as: 28

                          (11)𝐿𝑏𝑢𝑐𝑘(𝑚𝑖𝑛) =   
𝑉𝐵𝐴𝑇 × (𝑉𝑏𝑢𝑠 ―  𝑉𝐵𝐴𝑇)

0.2 × 𝐼𝐵𝐴𝑇 ×  𝑓𝑠 ×  𝑉𝑏𝑢𝑠

while L(min) is the minimum inductor value for the buck or the boost mode, is the 𝑉𝐵𝐴𝑇 
battery output voltage, is the battery input voltage, fs is the switching frequency, 𝑉𝑏𝑢𝑠 
and is the battery input current. Meanwhile, – the maximum battery current is: 𝐼𝑏𝑢𝑠 𝐼𝐵𝐴𝑇 
28

                         (12)𝐿𝑏𝑜𝑜𝑠𝑡(𝑚𝑖𝑛) =   
𝑉𝐵𝐴𝑇

2 × (𝑉𝑏𝑢𝑠 ―  𝑉𝐵𝐴𝑇)

0.2 × 𝐼𝑏𝑢𝑠 ×  𝑓𝑠 ×  𝑉𝑏𝑢𝑠
2

With a tolerance of 20% to compensate for aging and temperature degradations, 28

          (13a)𝐿(𝑚𝑖𝑛1) =   (20% × 𝐿𝑏𝑢𝑐𝑘(𝑚𝑖𝑛)) + 𝐿𝑏𝑢𝑐𝑘(𝑚𝑖𝑛)

         (13b)𝐿(𝑚𝑖𝑛2) =   (20% × 𝐿𝑏𝑜𝑜𝑠𝑡(𝑚𝑖𝑛)) + 𝐿𝑏𝑜𝑜𝑠𝑡(𝑚𝑖𝑛)

2.4.1.3. Capacitor Selection for DC-DC Converter

The equations for the estimation of the approximate capacitor size are: 28

                             (14a)𝐶𝑏𝑢𝑐𝑘(𝑚𝑖𝑛) =   
(1 ― 𝐷𝑏𝑢𝑐𝑘)

8 × 𝐿 ×  ∆𝑉0 × 𝑓𝑠
2

                             (14b)𝐶𝑏𝑜𝑜𝑠𝑡(𝑚𝑖𝑛) =   
𝐼𝐵𝐴𝑇 × 𝐷𝑏𝑢𝑐𝑘

∆𝑉0 × 𝑉𝑏𝑢𝑠 ×  𝑓𝑠
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fs is the switching frequency,  is the duty cycle at the buck mode, L(min) is the 𝐷𝑏𝑢𝑐𝑘

minimum inductor value, is the battery input voltage, and  is the approximate 𝑉𝑏𝑢𝑠  ∆𝑉𝑜𝑢𝑡

output ripple voltage. The higher capacitor value –  – is chosen.𝐶(𝑚𝑖𝑛)

As depicted in the fuzzy logic control block of Fig. 8, the two inputs of the fuzzy logic 

controller of the bidirectional dc-dc converter – the SOC of the battery and the voltage 

at the low voltage (LV) bus – are used in deciding the instantaneous direction of 

operation of the converter. The logic controller decides whether the converter is to 

operate in the buck or the boost mode. 

The rule of operation for the control of the converter is defined using the fuzzy logic 

designer algorithm described in subsection 2.5. 

2.5. Power Management System

The power management system is to permit power transfer between the grid and the dc 

buses. Loads are fed with the power supply from the PV array when available and from 

the grid or the battery when the PV supply is not available. After meeting the storage 

and load demands, the excess power generated from the PV array is to be sent to the 

grid through the 380V-dc bus. 

A fuzzy logic designer is used in defining the power management rules, Table 3. The 

membership functions are defined to include the SOC of the battery, the voltage level 

at the LV bus – battery node denoted by LVLoad, and the switching direction – Decision; 

the membership functions are depicted in Fig. 9(a), 9(b), and 9(c). 

The battery is to be charged or discharged following three major SOC boundaries: when 

the SOC of the battery is below 21%, when the SOC of the battery is between 20% and 

99%, and when the SOC of the battery is above 98% – these are represented by the 

three membership functions mSOC20, mSOC21to98, and mSOC100 respectively. On 

Fig. 9(b): when no load is connected to the LV bus, this is denoted by the m1Vbus 

membership function; when a load is powered from the LV bus, the voltage at the bus 

is above-zero-and-below 250 V – denoted by the m250Vbus membership function; 

when a high voltage load connects to the bus, the voltage could be above 240 V – 

denoted by the mHVbus membership function. 

The triangular membership type provides suitable logical boundaries between the likely 

operation conditions: the type enables the decision for the charging and the discharging 

of the battery to be made with clear charge-discharge boundaries, and also specifies 
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boundaries that help to identify load and no-load bus conditions. The overlaps in the 

membership function happen because two membership functions could be true at some 

points; for example, for the SOC functions (mSOC20 and mSOC21to98): this happens 

because the two membership functions are true at any SOC between 20% and 21%, 

mSOC20 is a function that could be set true to ensure that the battery is not discharged 

below 20% while mSOC21to98 is a function that could be true to permit the battery to 

be discharged when the SOC is above 20% – one of the membership functions 

ultimately wins based on the state of any other deciding functions.

When the SOC of the battery is below 21%, the bidirectional dc-dc converter is to 

transfer any available power at the 380V-dc bus to charge the battery. When the SOC 

reaches about 98%, the battery is to be kept charged while there is power supply at the 

380V-dc bus. The rule specifies that the battery should be discharged only at that 

condition when two conditions are met: one, there is no power at the 380V-dc bus and 

two, when the battery SOC is above 20% – this will permit critical loads to be served 

from the battery when the grid and the PV array are not supplying power. Other user 

preferences are included in the rule set; for example, the user does not want the battery 

to be discharged below 20%. 

The surface view for the membership functions of the fuzzy logic is depicted in Fig. 10. 

The result of each instantaneous computation of the algorithm determines the Decision 

switching function which in turn dictates the instantaneous operating mode of the dc-

dc converter. 

To verify the behaviour of the system, the possible input from practical conditions are 

used as test cases for performance analysis.

3. RESULTS AND DISCUSSION

The system is examined under four scenarios: First, the performance is observed when 

there are power inputs from both the electricity grid and the installed PV array. The 

second scenario is analysed using the PV array as the only power supply, this includes 

studying the behaviour of the system under variations in environmental conditions of 

temperature and irradiance. Additionally, the system is evaluated using the electrical 

grid as the power source; hence, no power is obtained from the PV array – typical 

conditions at night. The performance of the design is finally observed when there is 
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neither power supply from the grid nor from the PV array – when the system runs with 

a backup power from the battery

Meanwhile, Fig. 11 presents the summary of the designed parts of the bidirectional 

converter and Fig. 12(a) depicts the battery sized for meeting the critical loads on site 

in a use-case example of the grid-connected residential PV system. The battery is rated 

48 V with 400 Ah capacity for the three days of power autonomy. To meet the same 

battery requirements, two numbers of 48 V 200 Ah batteries could be connected in 

parallel as shown in Fig. 12(b), or two numbers of four serially connected 12 V 200 Ah 

battery set could be connected in parallel as depicted in Fig. 12(c). 

The battery recommendation for self-consumption of energy in PV applications is the 

deep cycle battery which permits several cycles of battery discharging. The portable, 

low-current charging, high efficiency, and longer-duration discharging features of the 

lithium ion battery make it a preferable choice to many other battery technologies. 28,29

3.1. System with PV and Grid Power Supplies

The voltage and the current have constant phase difference, Fig. 13. This is expected to 

be so, the PLL has been included in the design to achieve this objective. The 

bidirectional ac-dc converter acts as a constant current source, supplying a constant 

current of about 30 A to the grid. The current level is controlled by the input inductor. 

For the current level depicted in Fig. 13, the inductor value is set at 50 mH. 

When transferring power from the 380V-dc bus to the grid, to keep the THD in the 

power supplied to the grid below 5% – as discussed for a grid-connected system, with 

the L value of the filter being 50 mH and the C value being 0.8 mF – the THD of the 

system is observed at 1.93%, thus meeting the standard THD requirement.

The power supply from the PV array feeds the load and supplies the battery to full 

charge state. When the battery SOC is below 20.9%, the bidirectional dc-dc converter 

operates in the buck mode transferring power from the HV bus to the LV bus to charge 

the battery. The battery SOC increases as suggested from the result of Fig. 14(c). The 

power charges the battery until the SOC is close to 100%. Meanwhile, Fig. 14(a) and 

14(b) depict the dc nature of the signal at the dc buses. 

There is power supply to the battery and the dc loads at buses. For example, the power 

consumed by the HV-bus load is about 1.4 kW – Fig. 15(a), while the power at the LV-
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bus load is about 65 W – Fig. 15(b). A net-metering device at the grid-system interface 

could track the net flow of current within the system.

3.2. System with Power Supply from PV Only

3.2.1. Variation in Irradiance and Temperature at Constant Load

The performance of the system is observed at irradiance level of 1000 W/m2 and at a 

temperature of 250C. The irradiance level is changed to 200 W/m2 and the temperature 

is adjusted to 100C to see the output of the PV array at night or near-night conditions. 

The output power and the output voltage of the PV array reduces with reduced 

irradiance, suggesting that the system must have another power source to remain 

powered at the night or near-night conditions, when the irradiance level is low. 

3.2.2. Variation in Load at Constant Irradiance and Temperature

The irradiance level and the temperature of the PV array are maintained at 1000 W/m2 

and 250C respectively. The load at the HV-bus is varied from 10 Ω to 100 Ω while the 

load at the LV-bus is varied from 5 Ω to 50 Ω. The changes in the load values mimic 

situations of load variations in a real system. The battery is set at a 20% initial charging 

state. 

The system responds to the load variations while the battery is continuously charged 

until when it reaches full-charging state point as specified in the power management 

control algorithm, Fig. 16. The bidirectional dc-dc converter correctly decides that it 

should buck power to charge the battery – while the SOC of the battery is below 20%. 

3.3. System with Power Supply from the Grid Only

The condition of having an only-grid-power-supply will subsist at nights, or during 

times of extreme weather, or when the PV is temporarily unavailable for maintenance.  

The constant power supply from the grid is fed into the system while the HV-bus load 

and LV-bus load are maintained at 100 Ω and 40 Ω respectively. The battery is 

maintained at a 20% initial charging state. 

A near 1.4 kW power is observed around the load at the HV-bus, Fig. 17(a). The power 

around the LV-bus load is seen around 65 W, Fig. 17(b). Meanwhile, Fig. 17(c) shows 

the battery charging – evident from the increasing SOC.

3.4. System with No External Power Supply
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Under the scenario of no external power supplies, there is neither power supply from 

the grid nor from the PV array. The battery has been sized to permit a continuous power 

supply for three days for critical loads. The critical loads specified for the residence are 

connected to the LV-bus. The battery capacity has been designed 48V, 400Ah. The 

sizing only gave consideration for backup power for critical loads at the residence for 

three days. The battery has not been sized to include power supply to the grid. For this 

test case, the battery is set to be at an initial SOC of 100% – fully charged state.

There is a power supply to the load at the LV-bus, Fig. 18(b); from a continuous battery 

current supply to the bus – Fig. 18(a). As depicted in Fig. 18(c), the continuous current 

supply leads to a continuous drop in the SOC of the battery as the logic controller 

prompts it to supply power to the loads at the bus, suggesting that in the absence of 

external power, the backup power from the battery helps to serve the critical loads.

The power supply from the battery could exceed the three days of power autonomy 

when the loads are served for shorter time than specified, or when less loads are served 

than specified in the battery sizing. However, when the loads are served for longer time 

than specified, or when more loads are served than specified, the power supply from 

the battery will usually not last for the three days. The degradation of the battery could 

also reduce its performance with time – this could be delayed by following the battery 

usage recommendations.

4. CONCLUSIONS

Fuzzy-logic-controlled converters could be used as power conversion and power 

management tool in a grid-connected residential PV system with storage, where the PV 

array and battery – used as the storage device – are sized to meet a specified on-site 

critical load requirements. The fuzzy logic rule has been used in modelling a renewable 

energy system that manages power between local energy system and the grid. The logic 

rules are defined such that power is derived from the PV source while the battery stores 

enough energy to serve the specified local loads within a given period. With the battery 

storage, a bidirectional dc-dc converter transfers power between the high voltage dc bus 

and the low voltage dc bus; a boost converter balances the power from the PV array to 

the high voltage end of the bidirectional dc-dc converter; and a bidirectional ac-dc 

converter transfers power between the grid and the rest of the system. The work serves 

as addition to the several use cases of fuzzy logic in the literature and is a special design 

case that uses fuzzy logic for converter controls: managing a grid-connected residential 
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PV supply and storage for autonomous supply in locations of limited or unreliable 

electricity supply. The residential energy systems could provide more access to clean 

electricity and contribute to social, economic, and environmental developments in the 

places of limited electricity supply.

Data Availability: The data that support the findings of this study are available on 

request from the corresponding author. The data are not publicly available due to 

privacy or ethical restrictions.
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Table 1: Energy Requirement of Critical Loads

S/N Load Quantity Power (W) Hour (hr)

1. Light bulb 4 20 11

2. Dishwasher 1 65 8

3. LED TV 1 60 7

4 Laptops 2 60 6

5. Gadgets 4 19 9

Table 2: Parameters of PV Module at STC

Parameter Value

Maximum Power 249.5 W

Open Circuit Voltage (VOC) 23.11 V

Maximum Power Point Voltage (Vmax) 21.63 V

Short Circuit Current (ISC) 12.0 A

Maximum Power Point Current (Imax) 11.53 A

Module Efficiency 15.26%

Characteristic Impedance (RCH) 1.876 Ω

Fill Factor 0.8997

Table 3: Fuzzy Logic Rule

1. If SOC is below 20% then dc/dc converter is at 1

2. If SOC is below 20% OR Load is at the LV-bus then dc/dc converter is at 1
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3. If SOC is below 20% AND Load is at the LV-bus then dc/dc converter is at 1

4. If SOC is between 20% and 99% AND Load is at the LV-bus then dc/dc converter is at 1

5. If SOC is between 20% and 99% OR Load is at the HV-bus then dc/dc converter is at 1

6. If SOC is between 20% and 99% AND Load at bus AND off-grid, dc/dc converter is at 0

† At Decisions: “1” = Battery charges; “0” = Battery discharges. Rule 1 and Rule 6 are default.
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Fig. 1: Block Diagram of System Design 
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Fig. 2: Configuration of the Boost Converter 
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Fig. 3: Topology of AC-DC Converter with DAB 
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Fig. 4: Single-phase Bidirectional AC-DC Converter Block 
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Fig. 5: Frequency Control – Phase Lock Loop (PLL) Block 
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Fig. 6: Operation of Bidirectional DC-DC Converter 
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Fig. 7: Basic Bidirectional DC-DC Converter 
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Fig. 8: Fuzzy Logic Control Block of Bidirectional DC-DC Converter 
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Fig. 9: SOC, LVLoad, and Decision Membership Functions 
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Fig. 10: Logic Surface Viewer 
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Fig. 11: Designed Bidirectional DC-DC Converter 
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Fig. 12: (a) Single 48V 400Ah Rated Battery (b) Two 48V 200Ah Battery Units in Parallel (c) Eight 12V 
200Ah Battery Units 
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Fig. 13: Grid Voltage and Current 
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Fig. 14: (a) HV-bus Voltage (b) LV-bus Voltage (c) Battery SOC at STC 
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Fig. 15: (a) HV-bus Load Power (b)LV-bus Load Power 
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Fig. 16: (a) HV-bus Load Power (b) LV-bus Load Power (c) Battery SOC 
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Fig. 17: (a) HV-bus Load Power (b) LV-bus Load Power (c) Battery SOC 
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Fig. 18: (a) Battery Current (b) LV-bus Load Power (c) Battery SOC 
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