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Abstract— In this paper, a simulation model for frequency modulation atomic force microscopy (FM-AFM) 

operating in constant amplitude dynamic mode is presented. The model is based on the slow time varying function 

theory. The mathematical principles to derive the dynamical equations for the amplitude and phase of the FM-AFM 

cantilever-tip motion is explained and the stability and performance of its closed-loop controller to keep the amplitude 

at constant value and phase at 90o is analysed. Then, the performance of the theoretical model is supported by 

comparison of numerical simulations and experiments. Furthermore, the transient behaviour of amplitude, phase and 

frequency shift of FM-AFM is investigated and the effect of controller gains on the transient motion is analysed. Finally, 

the derived FM-AFM model is used to simulate the single molecule/nanoscale force spectroscopy and study the effect 

of sample viscosity, stiffness and Hamaker constant on the response of FM-AFM. 
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I. INTRODUCTION 

Since its invention [1], atomic force microscope (AFM) demonstrates outstanding opportunities for imaging, 

characterization and manipulation of a wide variety of surfaces such as DNA, proteins, semiconductors, metals, 

polymers and composites at nanoscale with high spatial and true atomic resolution in ambient environments [2]-

[10]. Between several configurations of AFM techniques, dynamic AFM remains the most widely used approach 

for imaging and characterization of nano materials [9]. The major advantages of dynamic AFM in comparison 

with contact mode are: (i) the presence of various parameters (amplitude, frequency, phase shift and cantilever 

deflection) sensitive to the interaction between tip and sample; (ii) decrease of lateral force during imaging; (iii) 

potential to image soft matter by inserting small force; (iv) low risk of damaging the samples and the tip and (v) 

obtaining images with atomic resolution of reactive surface at ultra-high vacuum (UHV) [11].   

Frequency modulation atomic force microscopy (FM-AFM) has a significant ability of imaging surface 

topography of samples on an atomic scale especially with the vast applications as non-contact atomic force 

microscopy in ultra-high vacuum [11]-[13]. Analysis of the FM-AFM shows complicated relationship between 

the parameters of probe dynamics and the interaction force [11], [14]-[18]. In FM-AFM, the detection of resonance 

frequency variations of oscillating cantilever due to the interaction with the sample is used in the feedback loop 

to ensure that the phase shift between cantilever tip signal and drive signal is 90o. It means that the cantilever 

always oscillated at its resonance frequency. In FM-AFM the Phase-Locked loop is used to provide the feedback 

signal. Besides that, the cantilever oscillation amplitude is kept constant by an automatic gain controller (AGC) 

[19]-[23]. To achieve high resolution images, accurate quantification of experimental data, remove artefacts from 

images, reduce the effect of noise and avoid damage to the tip or sample during scanning, proper adjustment of 

control feedback parameters is essential [24]-[28]. Generally, choosing low gains for the feedback loop may be 

led to parachuting effect. This means when the height changes significantly, the tip cannot follow the surface 

accurately and some features of the surface will be lost during scanning [25]. On other hand, if the gains are set 

at high values, the overshoot of set-point is happened which leads to the ringing of cantilever during scanning the 

sample which affect the quality and resolution of images. In [24], a methodology to determine stable feedback 

gains based on the cantilever parameters and environment of imaging for FM-AFM is presented. This analysis 

and implementation has been performed for the steady state operation of FM-AFM.  
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One of the main advantages of FM-AFM is the decoupling of conservative and non-conservative forces. The 

conservative forces are related to the shift of frequency while the drive amplitude of AGC is proportional to the 

dissipative interaction between tip and sample [16]-[17], [29]-[30]. Several theoretical models and analysis have 

been developed to describe the FM-AFM behaviour [19]-[21], [31]-[35]. All of the methods have been used for 

the simulation and modelling of FM-AFM are concentrated on the development of PLL system. A PLL is used to 

demodulate the interaction forces between tip and sample from motion of cantilever. The demodulated signal is 

used as the feedback signal and can be used to generate both topography and dissipation images. However, in the 

simulation of FM-AFM using PLL system, it is necessary to solve FM-AFM equations numerically and a proper 

design of PLL is vital for FM-AFM performance which makes the FM-AFM simulation complex [19], [31]-[32]. 

Also, there is no direct access to the phase signal, and phase should be extracted by PLL from cantilever motion 

signal. So, for the analysis of the transient motion and simulation of FM-AFM behaviour, the alternative 

mathematical method for control system is preferred. In this paper, based on the slow time varying function theory 

[36]-[40], the dynamical equations for the amplitude and phase of AFM is derived and by adding control system 

to keep the phase at 90o and amplitude of cantilever oscillation at fixed value, the FM-AFM is modelled. The most 

advantages of the proposed dynamical model are not only independency of modelling and simulation to the PLL 

system but also the direct access to the amplitude and phase signals and capability of investigating the transient 

behaviour of phase and amplitude beside their steady state motion. The study of the amplitude, frequency and 

phase response in transient regime can be led to the increase of speed and precision of feedback control which has 

direct influence of the image precision [40]-[45]. This opens the possibility to capture the information conveyed 

by the sensing tip in a transient motion of cantilever, contrasted to the steady state used in current dynamic 

techniques [45]. The presented approach provides the opportunity to study the effect of feedback gains on the 

transient response of cantilever in FM-AFM. To validate the accuracy of the proposed model, the performance of 

the closed loop control system is analysed, and its stability is proved. The single molecule/nanoscale spectroscopy 

with FM-AFM is numerically simulated and compared with available experimental results [46]. Comparison 

shows very good agreement between simulated and experimental results which confirm the validity of the 

proposed model. Then, using the proposed model, the effect of sample viscosity, stiffness and Hamaker constant 

on the response of FM-AFM behaviour is investigated. 

II.  DYNAMICS EQUATION OF FM-AFM 

In dynamic AFM, the cantilever-tip motion is approximately described by [39]: 
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Where 𝜔0, 𝑘 and 𝑄are resonance frequency, spring constant and quality factor of cantilever, respectively. 𝐹𝑡𝑠 is 

the interaction force between tip and sample and the drive force is described by: 

)cos( tFF excd =                                                                                                                                                    (2) 

Where 𝐹𝑒𝑥𝑐 is the excitation signal which can be determined by the controller to keep the amplitude of the 

cantilever at fixed value.  

Assume that the solution of equation (1) is represented as: 
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Where the amplitude A and the phase   are slowly varying functions of time. Based on slow varying function 

theory and by defining  −= t and 2
0

2  −=  where 𝜔0 is the resonance frequency of cantilever when there 

is no interaction between tip and sample and 𝜔 is its resonance frequency when the interaction between tip and 

sample is occurred, the dynamic equations of amplitude and phase are derived as [40]: 

( ) ( ))2cos(1
2

)cos()sin(
2

)2sin( 0
2
0 












−−+−=

Q

A
tFF

k

A
A excts
                                                                                 (4)  

( ) )2sin(
2

)cos()cos(
)(cos 0

2
0

2















Q
tFF

kA
excts +++=                                                                                            (5) 

Based on equations (4)-(5), the dynamics equations of amplitude and phase are obtained. In the constant amplitude 

FM-AFM in addition of distance controller, there are two control schemes to keep the amplitude at fixed value 

and maintain the oscillation of cantilever at its resonance frequency (Fig.1). 



 

Figure 1. Schematic representation of FM-AFM.  

 

In the first control scheme, a frequency feedback loop is used to keep the phase shift between the motion signal 

of cantilever and drive signal 90o. It means that in this situation, the cantilever is oscillated at its resonance 

frequency independent of any tip-sample interaction [24]. In the second scheme, the amplitude of cantilever is 

maintained at constant value.  

In FM-AFM, as shown in Fig.1, the mentioned regulators operate independently from distance regulator. To 

model the controllers following equations are designed: 
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Where 𝐴𝑠𝑝 is the amplitude set-point, 2/ =sp and 
41 KK − are gain parameters. It is clear that the FM-AFM is 

modelled without direct modelling of PLL, which makes the proposed model very simple and user friendly.   

Equations (4)-(9) can be used to simulate the FM-AFM behaviour. 

To obtain fully transient dynamics equation of FM-AFM, equations (6)-(9) can be replaced in equations (4) and 

(5) and following expressions can be obtained: 
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Integrating equations (4) and (5) in a period of oscillation gives: 
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By considering the definition of energy dissipation and virial [47]-[48], the FM-AFM dynamics model is 

converted to: 
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where 
tse is the energy dissipated during the tip-sample interaction and 

tsv is the virial of the tip-sample interaction 

[47]-[48]. 

In the steady state we have: 

021 ==== WWA                                                                                                                                                   (22) 

So: 

spAA =                                                                                                                                                                  (23) 

2/ == sp
                                                                                                                                                        (24) 

ts
spsp

e
kk

WKAK

Q

A

2

2
0

2
01210

22

)(

2
0








−

+
−−=                                                                                                             (25) 

ts

sp

sp v
kA

WKK
2

2
0

243
2

)(
2

1
0







++−=                                                                                                                       (26) 

Hence: 

22

1

02
10

K

e
A

K

K

QK

Ak
W ts

sp
sp




−−−=                                                                                                                                (27) 

ts
sp

v
KkAK

K
W

4

2
0

4

3
20

2 


−=                                                                                                                                       (28) 

To analyse the closed loop response of the controller, both frequency and amplitude loops should be active, while 

one setpoint is modulated the other remains constant [24].  

In order to examine the stability of the amplitude controller in the steady state motion, small perturbations A , 

Δ𝑊1 are introduced: 

AAA sp +=                                                                                                                                                      (29) 

1101 WWW +=                                                                                                                                                       (30) 

Substituting equations (29)-(30) into expressions (16)-(21), the following equations are obtained (mathematical 

details are given in Appendix): 
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Hence, the sufficient conditions for the stability of the controller to keep the amplitude at constant value are: 
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It is in agreements with the fact that a controller for a minimum phase system cannot have negative PI gains. 

However, because choosing high values for the gains maybe led to the amplifying of the noise and vibration in 

the amplitude or phase signals, practically it is not possible to choose high positive values for the gains. Also, if 

the gain values are chosen very high, due to the imposed vibration in the amplitude and/or phase signals, the 

controller cannot be converged. It will be discussed more with the simulation results.   

Similarly, to examine the stability of the phase controller in the steady state motion, small perturbations  , Δ𝑊2 

are introduced: 
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Substituting equations (34)-(35) into expressions (16)-(21), the following equations are obtained (mathematical 

details are given in Appendix): 
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Again, the sufficient conditions for the stability are 
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Here also to have convergence in the control system and accurate simulation, the values of the gains cannot be 

chosen very high. 

 

III. RESULTS AND DISCUSSION 

 

In order to simulate the FM-AFM behaviour, it is necessary to model the interaction force between cantilever- 

tip system and sample. The interaction force can be described by conservative and non-conservative viscoelastic 

forces by the following models [40]: 
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Where H  is the Hamaker constant,   122 /)1(/)1(
−

−+−= ttsseff EvEvE is the effective Young Modulus of the 

interaction,
tE ,

sE ,
tv and 

sv are Young Moduli and Poisson’s ratios of tip and sample, respectively. R is the tip 

radius and   is the viscosity of the sample. In this paper, for simulations the tip was characterized by 𝐸𝑡𝑖𝑝 =

160 𝐺𝑃𝐴 and 𝑣𝑡 = 0.45.  

The numerical simulation of equations (4)-(9) was calculated by a fourth-order Runge-Kutta algorithm in C++ 

software. Note that the simulations have been performed based on the normalized time (𝜏 = 𝜔0𝑡). 

 

First, to evaluate the validity of the proposed model, especially for the simulation of single molecule/nanoscale 

force spectroscopy, the experiment [46] which performed on the single PTCDA on the Si(111)-(7× 7) surface is 

reproduced by numerical simulation based on the proposed model for FM-AFM. The frequency shift curves 

measured over the center of PCTDA molecules, corner adatoms and corner holes are shown in Fig.5-b [46]. The 

parameters of cantilever of the experiment which is used in numerical simulation are 𝑘 = 29.6
𝑁

𝑚
, 𝑄 =

25000, 𝑓0 = 156.719 𝑘𝐻𝑧, 𝐴 = 20.1 𝑛𝑚 𝑎𝑛𝑑 𝑅 = 4.35nm. For the PTCDA, the simulation parameters are 𝐻 =

6.85 × 10−19 𝐽, 𝐸 = 4.36 𝐺𝑃𝑎, 𝑎0 = 0.73 𝑛𝑚. For Corner adatom, 𝐻 = 5.85 × 10−19 𝐽, 𝐸 = 1.5 𝐺𝑃𝑎, 𝑎0 =
0.64 𝑛𝑚 and corner hole 𝐻 = 5.85 × 10−19 𝐽. The controller gains are selected as 𝐾1 = 7 × 10−8, 𝐾2 =

10−5, 𝐾3 = 0.2 and 𝐾4 = 6.5.  

The Numerical simulations of PTCDA, corner adatom and corner hole are given in Fig.2-a. Comparison 

between Figs.2-a and b shows very good agreement between numerical simulation and experiment [46] with the 

error less than 5% which proves the validity and high accuracy of the proposed model of FM-AFM especially for 

the simulation of the single molecule/nanoscale force spectroscopy.  

 

 
Figure 2. Comparison between numerical simulation (a) and experiment [46] (b) of molecule spectroscopy using FM-AFM for PTCDA 

molecule on the Si(111)-(7× 7), Creative Commons CC BY License. 

 

In order to analyze the FM-AFM behavior, investigate the effect of feedback controller gains on the transient 

response of FM-AFM and effect of conservative and dissipative interaction between tip and sample, several 

numerical simulations have been carried out. In the simulations the cantilever parameters for FM-AFM are 

considered as 𝑘 = 4 
𝑁

𝑚
, 𝑄 = 240, 𝑓0 = 156.719 𝑘𝐻𝑧  and 𝑅 = 3 𝑛𝑚. The gains of controller keep the same in all 

of the simulations. 



 

 

In Fig.3-a, the frequency shift versus distance curve is shown. This curve is obtained by numerical calculation 

of equations (4)-(9) for various average distance. As it is demonstrated, in the attractive regime, the frequency 

shift has negative value which means the resonance frequency of cantilever decreases. In contrast, when there is 

a repulsive interaction between cantilever-tip and sample, the frequency shift has a positive value which describes 

increase in the resonance frequency. Figs.3-b,c,d show the amplitude, phase and frequency shift versus time, when 

the cantilever is far from the sample, in attractive regime and in repulsive regime, respectively. As it is shown, 

based on the presented simulation model, the transient behaviour of amplitude, phase and frequency shift can be 

obtained. In contrast of transient behaviour of AM-AFM [40], which the interaction regime between tip and 

sample significantly influence the transient motion of cantilever-tip signal, in FM-AFM the role of controllers to 

keep the amplitude and phase at constant values is significant. In other words, while as shown in Figs. 4-5 of [40] 

in AM-AFM there is a significant differences in the transient behaviour of amplitude and especially phase in 

attractive regime in comparison with repulsive regime, in FM-AFM there is not significant differences in transient 

response of amplitude and phase between attractive and repulsive regimes which is attributed to the role of 

controller in FM-AFM which keep the amplitude at fixed value and phase at 90° in steady state. It demonstrates 

in FM-AFM, as the figures 3-b and c show, the transient behaviour of amplitude and phase are dependent on the 

controller gains. However, the transient response of frequency shift before it reaches to its steady state value can 

be explained by the interaction regime. As it can be seen from amplitude signal (Fig. 3-b), before it reaches to its 

constant value (here is 10 (nm)), it has higher value than 10 (nm) which means depend on the average distance 

between cantilever and sample surface, it can be in repulsive or attractive regime of interaction. In the Fig. 3-d, 

when the cantilever is far from sample (~5 − 25 𝑛𝑚), in the transient part, it goes to the weak attractive regime, 

which means there is a negative frequency shift at transient part which can be seen from figure 3-d. In other hand, 

when the cantilever is in the intermittent contact with the sample, in the transient motion, there is a positive shift 

in the frequency of the cantilever which its peak is attributed to the maximum transient amplitude and by 

approaching the transient amplitude toward the steady state value, the transient frequency shift also decreases 

toward its steady state response. However, from transient response, it is clearly obvious that in the intermittent 

contact regime, there is a positive shift in the frequency of the cantilever.  

 
 

Figure 3. a) Frequency shift versus average distance, transient and steady state response of b) amplitude, c) phase and d) frequency shift of 

cantilever. The simulation parameters are: 𝑅 = 3 (𝑛𝑚), 𝑘 = 4
𝑁

𝑚
, 𝑄 = 240, 𝐻 = 5 × 10−20(𝐽), 𝐸𝑒𝑓𝑓 = 100 𝑀𝑃𝑎, 𝐸𝑠 = 85 𝑀𝑃𝑎, 𝑣𝑠 = 0.4,

𝐴 = 10 (𝑛𝑚), 𝑎0 = 0.164𝑛𝑚. 



 

In order to investigate the effect of controller gain values on the transient and steady state response of 

frequency shift and stability of cantilever, another simulation has been carried out. As the results of Fig. 4 

shows, there is a trade-off between gain values, transient time and stability. Based on the results, if the gains are 

too low, the transient time is longer and increasing the gains leads to the decrease of transient time. In other 

words, increasing the gains values generates more noise and vibration in the transient part of cantilever and if 

the values of gains will be too high, it leads to instability of cantilever and steady state behaviour will not be 

achieved.  

 
Figure 4. Transient and steady state behaviour of frequency shift for different controller gains. The simulation parameters are: 𝑅 =

3 (𝑛𝑚), 𝑘 = 4
𝑁

𝑚
, 𝑄 = 240, 𝐻 = 5 × 10−20(𝐽), 𝐸 = 100 𝑀𝑃𝑎, 𝐴 = 10 (𝑛𝑚) and 𝑧𝑐 = 9.5 (𝑛𝑚),   𝑓0 = 156.719 𝑘𝐻𝑧. 

 

  

Figure 5 shows the frequency shift of FM-AFM versus distance for different stiffness and Hamaker constant 

with same viscosity as 𝜂 = 100 𝑃𝑎. 𝑠. As the results show, for the case that the samples have similar stiffness but 

different Hamaker constant, increasing Hamaker constant leads to the increase of frequency shift in attractive 

regime (decrease of resonance frequency). This is becauseof the role of Hamaker constant in increase of the 

attractive force of the tip-sample interaction which reduces the resonance frequency of cantilever [49]. In other 

hand, in the case of the same Hamaker constant and different stiffness, for the same indentation, the higher stiff 

material makes higher shift in the frequency (increase the resonance frequency). Also, it is obvious that the AFM 

tip can indent more in the softer sample. 



 
Figure 5. Frequency response of FM-AFM for different samples with different stiffness and Hamaker constant. 

 

In order to evaluate the effect of dissipation on the excitation force, by adding different viscosities to the 

interaction force, the FM-AFM behaviour is simulated. The results are given in Fig.6. As it can be seen, for the 

case of same viscosity and different stiffness and Hamaker constant (Figs. 6-a, c, and e and Figs. 6-b, d and f), 

while the values of Young-modulus and Hamaker constants are different, because there is not any change in 

viscosity, the excitation force for the same indentation length is the same. On the other hand, comparison between 

Figs.6-a and b, Figs.6-c and d and Figs.6-e and f, demonstrate that although the stiffness and Hamaker constant 

are same, due to changes of viscosity, the excitation force is changed. It means in FM-AFM variations of excitation 

force is directly related to the change of dissipation without any effect from conservative forces. The results show 

decoupling between conservative and dissipative forces in FM-AFM. Also it is depicted, when the viscosity of 

sample is increased, the excitation force will be increased.    

 
Figure 6. Normalized excitation force of FM-AFM for different samples with different stiffness, Hamaker constant and viscosity. 

 

In order to analyze the imaging behavior, other simulations have been performed. In this case, the effect of 

topography variations, change of stiffness and Hamaker constant on the frequency shift of FM-AFM while 

scanning the surface of the sample is studied.  It is depicted from the results of Fig.7 that in the case of the change 

in topography, if there is a contact between tip and sample, decreasing the average distance between tip and sample 



leads to the increase of indentation (can be obtained from 𝑍𝑐 − 𝐴) and the resonance frequency is increased. 

Increasing the sample stiffness or decreasing the Hamaker constant also leads to the increase of resonance 

frequency. On the other hand, for the same topography and Hamaker constant, decreasing the stiffness leads to 

the decrease of resonance frequency.  

 
Figure 7. Normalized excitation force of FM-AFM for different samples with different stiffness and Hamaker constant. The viscosity of this 

simulation is 𝜂 = 100 𝑃𝑎. 𝑠. 

 

IV. CONCLUSION 

In this paper, based on the slow time varying function theory, a mathematical model for the frequency 

modulated atomic force microscopy (FM-AFM) is derived. According to the proposed methodology, the dynamics 

equation of amplitude and phase of the AFM cantilever is extracted. Then, by adding control system to keep the 

phase at 90o and amplitude of cantilever oscillation at fixed value, the FM-AFM is modelled. The stability of the 

closed-loop controller to keep the amplitude at constant value and phase at 90o is analysed. Comparison between 

numerical simulation and experiments show very good agreement between simulated and experimental results 

and supports the performance of the theoretical model. For numerical simulation, the Runge-Kutta algorithm is 

used to solve the derived equations of FM-AFM. Based on the numerical simulations the effects of sample 

viscosity, stiffness and Hamaker constant on the response of FM-AFM are investigated.  
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APPENDIX 

Following equations are the dynamics equations governing the FM-AFM behaviour: 
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In the steady state: 

021 ==== WWA                                                                                                                                                  (A7) 

spAA =                                                                                                                                                                 (A8) 

2/ == sp
                                                                                                                                                       (A9) 

Which leads to the following steady state equations: 
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When small perturbations are introduced to the amplitude control loop, substituting equations (29)-(30) in (A1)-

(A3) gives: 
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Δ𝑊1
̇ = Δ𝐴                                                                                                                                                         (A13)                                      

Considering the contribution of steady state equations (A10) in (A12) leads to the following expressions: 
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When small perturbations are introduced to the frequency control loop, substituting equations (34)-(35) in (A4)-

(A6) gives: 
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Δ𝑊2
̇ = Δ𝜙                                                                                                                                                         (A16) 

Considering the contribution of steady state equations (A11) in (A15) leads to the following expressions: 
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Substituting 𝑊10 from (23) in (A17) gives: 
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