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Abstract

Background: With the rise of metabolomics, the development of methods to address analytical challenges in the
analysis of metabolomics data is of great importance. Missing values (MVs) are pervasive, yet the treatment of MVs
can have a substantial impact on downstream statistical analyses. The MVs problem in metabolomics is quite
challenging and can arise because the metabolite is not biologically present in the sample, or is present in the
sample but at a concentration below the lower limit of detection (LOD), or is present in the sample but undetected
due to technical issues related to sample pre-processing steps. The former is considered missing not at random
(MNAR) while the latter is an example of missing at random (MAR). Typically, such MVs are substituted by a
minimum value, which may lead to severely biased results in downstream analyses.

Results: We develop a Bayesian model, called BayesMetab, that systematically accounts for missing values based on
a Markov chain Monte Carlo (MCMC) algorithm that incorporates data augmentation by allowing MVs to be due to
either truncation below the LOD or other technical reasons unrelated to its abundance. Based on a variety of
performance metrics (power for detecting differential abundance, area under the curve, bias and MSE for parameter
estimates), our simulation results indicate that BayesMetab outperformed other imputation algorithms when there
is a mixture of missingness due to MAR and MNAR. Further, our approach was competitive with other methods
tailored specifically to MNAR in situations where missing data were completely MNAR. Applying our approach to an
analysis of metabolomics data from a mouse myocardial infarction revealed several statistically significant
metabolites not previously identified that were of direct biological relevance to the study.

Conclusions: Our findings demonstrate that BayesMetab has improved performance in imputing the missing values
and performing statistical inference compared to other current methods when missing values are due to a mixture of
MNAR and MAR. Analysis of real metabolomics data strongly suggests this mixture is likely to occur in practice, and
thus, it is important to consider an imputation model that accounts for a mixture of missing data types.

Keywords: Metabolomics, Missing values, Bayesian, Truncated normal distribution, MAR, MNAR, Markov chain Monte
Carlo, Data augmentation
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Background
In many typical high throughput studies, a large number
of features (genes/proteins/transcriptomes /metabolites)
are measured quantitatively from biological samples,
from either humans or animals. Metabolomics is the
most downstream field in the omics cascade and pro-
vides vital information about metabolic pathways and
significant biomarkers related to a certain phenotype. As
the downstream products metabolites are very sensitive
to various biological states, and they can potentially be
used for earlier disease detection compared to other mo-
lecular information and further provide contemporan-
eous information for a variety of other studies [1]. In
most mass spectrometry (MS) studies, the number of
features is much larger than the number of samples. Be-
cause of this large p and small n, one of the issues is to
avoid over-fitting the data. Bayesian methods have be-
come immensely widespread in nearly all scientific fields
and this growth is partially attributable to the decrease
in the cost of computational costs that are needed to es-
timate more complex models [2, 3]. There have been
several Monte Carlo simulation studies and recent meth-
odologies that have illustrated the benefits of Bayesian
methods over frequentist maximum likelihood (ML)
methods in situations with small sample sizes [2, 4–6].
Bayesian statistics are used mainly when complex
models cannot be estimated using conventional statistics
[4], and many complex models use Bayesian methods to
avoid likelihood optimization [5]. Bayesian inference typ-
ically is not based on large sample asymptotics and can
produce more trustworthy results with moderate to
small samples, especially when strong prior information
is available. By incorporating the prior distributions in
model building, one can utilize the initial (un)certainty
about a parameter [4].
In addition to small sample sizes, an additional chal-

lenge in analyzing metabolomics data is the common oc-
currence of missing values. Missing values (MVs) in MS
can occur from various sources both technical and bio-
logical. Taylor, Leiserowitz et al. [7] argue that there are
three common sources of missingness in metabolomics
studies: i) a metabolite could be truly missing from a
sample due to biological reasons, ii) a metabolite can be
present in a sample but at a concentration below the de-
tection limit of the MS, and iii) a metabolite can be
present in a sample at a level above the detection limit
but fail to be detected due to technical issues related to
sample processing.
In the statistical literature, missing data can be classi-

fied into three categories based on the causality of the
missingness [8]: missing completely at random (MCAR)
when the missingness is independent of the response,
missing at random (MAR) when missingness only de-
pends on the observed responses, and missing not at

random (MNAR) when missingness may depend on the
unobserved responses. When metabolite abundance is
unobserved due to falling below the detection limit, this
is MNAR missingness. However, the majority of imput-
ation algorithms for high-throughput data instead ex-
ploit the MAR mechanism and use observed values from
other genes/proteins/metabolites to impute the MVs. As
noted by [9], using any imputation methods for micro-
array studies in MS omics studies that assume missing-
ness is MCAR or MAR could lead to biased results.
However, imputation for MNAR values is fraught with
difficulty [7, 10]. While there are a variety MNAR
methods in the literature [8, 11], all require assumptions
about the relationships between the unobserved values
and the probability of observing the value. As the analyst
can never see the unobserved values, these assumptions
necessarily cannot be confirmed against the observed
data. Consequently, it is critical that one use method-
ology appropriately tailored to account for the sources
of MVs in the context of metabolomic analysis.
In this work, we develop a Bayesian model called

BayesMetab for the analysis of metabolomics data that
systematically accounts for missing values. We allow
missingness to be due to either truncation or other tech-
nical reasons. Statistical inference is performed by rely-
ing on a Markov chain Monte Carlo (MCMC) algorithm
that incorporates data augmentation, a common estima-
tion technique in missing value problems [12]. In
addition to facilitating parameter estimation, our MCMC
algorithm also produces imputed data sets that can used
for a variety of purposes (clustering, etc.) beyond the
group comparison problem we focus on.

Methods
BayesMetab model specification
Here, we describe the full Bayesian specification of our
BayesMetab model that including the modeling of the
MVs. For sample 1 :N, we let Yi = {Yi1, Yi2,…, YiM}, be
the vector of M metabolite intensities. We assume that
this vector follows a multivariate normal distribution
(possibly after a suitable transformation such as logarith-
mic): Yi~N(Xiβ, Σ), where Xi is the q-dimensional design
vector for sample i, β is a q ×M matrix of the regression
coefficients. In most cases, the primary goal of inference
relates to components of this β matrix. For instance, in
the common two-group (treatment vs control) problem, we
would choose q= 2, let the first element of Xi be the inter-
cept and the second element a dummy variable for the treat-
ment group. Differential abundance for metabolite j would
be captured by the value of β2j. The M×M covariance
matrix Σ captures the dependences between metabolites.
As noted previously, an important component to

metabolomics data analysis is handling the MVs. Bayes-
Metab includes a robust approach which both considers
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MVs due to truncation below the limit of detection
(LOD) ξ or missing for reasons unrelated to the metab-
olite abundance (such as other technical failures). Mod-
eling the impact of missing data requires specification of
the missing data mechanism (MDM). The MDM is the
portion of the model that defines whether or not the
value Yij is observed and how that depends on the true
(sometimes, unobserved) value Yij. Letting the missing-
ness indicator Rij be equal to 0 if Yij is missing and 1 if
Yij is observed, our MDM has the form

Pr Rij ¼ 0 jY ij
� � ¼ α;Y ij > ξ

1;Y ij≤ξ

�

If the true value of Yij is less than the threshold, it will
always be missing as the MS platform is unable to detect
the magnitude. However, even if Yij > ξ, there is still a
chance that the value Yij may be missing, which we as-
sume occurs with common probability α across all me-
tabolites j. As this missingness is due to technical
reasons unrelated to the abundance of the metabolite,
such as poorly plating the sample, assuming a common
probability α across all metabolites is reasonable in this
case. This missing data mechanism falls into the class of
missing not at random (MNAR) since the distribution of
Rij depends on the value of Yij. With potentially a slight
abuse of terminology, we refer to the MDM as consist-
ing of two parts: missingness due to truncation (Yij ≤ ξ)
which we call the MNAR component, and missingness
for other technical reasons which we refer to MAR since
the probability of observing Yij does not depend on the
true abundance of the metabolite (except for being
above the LOD). As we believe that MVs due to trunca-
tion will be based on a LOD shared across all metabo-
lites, we use a common value of ξ for all j. In a context
where there is reason to believe that the truncation level
should vary by metabolite, it is trivial to extend our ap-
proach to allow metabolite-specific LODs.
As a brief detour, we note that a more common selec-

tion model [8] allowing MNAR missingness would as-
sume that the logit of Rij is linearly associated with Yij:
logit{Pr(Rij = 0 | Yij)} = α0 + α1Yij . However, this does not
represent a reasonable assumption in our context. We
know that all observations less than ξ must be missing
with probability 1. For values larger than ξ, most believe
that the causes of failing to observe this value is unre-
lated the (unknown) value Yij, so a linear trend is not ap-
propriate. Due to the lack of biological plausibility of
this MDM, we do not consider this choice any further.
A key piece of building the model that can accommo-

date MV imputation is the choice of the structure of the
dependence/covariance. As the dimension of Σ is quite
large relative to the sample size n, it is important to con-
sider a flexible, lower-dimensional choice for this

covariance matrix. To that end, we use the sparse Bayes-
ian infinite factor model due to Bhattacharya and Dun-
son [13]. This model assume that the covariance matrix
can be decomposed using a factor structure Σ =ΛΛ ′ +
D where D is an M-dimension diagonal matrix. The Λ
matrix of factor loadings has M rows and infinitely many
columns (in practice, this is truncated to a large value K).
Model parsimony is achieved by using sparse shrink-
age priors for the factor loadings, as well as a con-
straint guaranteeing that the loadings are
stochastically decreasing to zero. There are a few key
benefits to using a factor model in our context. First,
the factor model represents a reasonable assumption
of the dependence between metabolites. As the ex-
pression of metabolites are impacted by the joint be-
havior of various biologic pathways, the latent factors
may represent these different pathways and the load-
ing determine which pathways impact which metabo-
lites. Additionally, conditional on the latent factor
values, all metabolites are independent, which leads to
improved computational performance in the MCMC
algorithm in the data imputation step. Finally, the au-
thors [13] provide some theory that guarantees the
assumed structure is flexible enough to consistently
model any arbitrary covariance structure.
To finalize the model, we use non-informative priors

for the remaining parameters. For the MAR missingness
probability α, we use a Unif (0, 1) prior. A conjugate
normal prior with large variance for the regression coef-
ficients β is used,βkj~N(0, 100

2), for all k = 1, …, q; j = 1,
…, M.

Model estimation and inference
To fit the BayesMetab model, we develop a computa-
tionally efficient Markov chain Monte Carlo algorithm
by using a Gibbs sampler that updates each parameter
given the current value of the others. This process is re-
peated for a large number of iterations until convergence
to the posterior distribution is achieved.
As mentioned previously, our MCMC algorithm in-

corporates data augmentation by sampling new
values for the missing data within each iteration. By
using a latent factor model for Σ, we can equiva-
lently write our model Yi~N(Xiβ, Σ), as Yi~N(Xiβ +
Ληi, D), where ηi is the K-vector of latent factor
values for sample i. Because D is diagonal, all Yij are
independent, conditionally on ηi, and we can update
each missing Yij separately. For each missing Yij

(those with Rij = 0), an indicator variable Zij is intro-
duced which determines whether Yij will be below
the LOD threshold ξ (Zij = 1) or above the thresh-
old (Zij = 0). Conditional on the latent factor values,
the indicator Zij is sampled according to
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where ~μij is the jth element of Xiβ + Ληi and ~σ2j is

the (j, j) element of D. This probability represents
how likely the metabolite’s MV is to be due to trun-
cation (MNAR component) versus other sources
(MAR component) based on the mean value of the
metabolites (from the regression structure) and the
information contained in the latent factor from the
related and observed metabolites. As the integrals re-
quired are all probabilities under the normal distri-
bution, these can be efficiently evaluated. Given Zij,
the value of the missing Yij is sampled by

Z ¼ 1 : Y ij � Truncated Normal ~μij; ~σ
2
j

� �
I −∞; ξð Þ

Z ¼ 0 : Y ij � Truncated Normal ~μij; ~σ
2
j

� �
I ξ;∞ð Þ

After running this data augmentation step for each
missing value, we have a complete dataset which may be
used to update the other parameters.
Conditionally on ηi factor values, we sample the

regression coefficients independently for each metabolite.
We let βm be the p vector of coefficients for metabolite m,
H be the K × N matrix of ηi, σ2m be the (m, m) element of
the D covariance matrix, and Λm be the K vector of factor
loadings for metabolite m. It follows that Y �

m ¼ Ym−ΛmH
� NðXβm; σ2mINÞ . We update βm by sampling from

Np

�
ðΩ−1 þ σ−2m X′XÞ −1

X′Y �
m; ðΩ−1 þ σ−2m X′XÞ −1

�
where

Ω is the p × p prior covariance matrix.
To sample the parameters of the covariance matrix,

we follow the required steps from Bhattacharya and
Dunson [13] as described in the Additional file 1: Sup-
plemental Material. Conditional on the full data set, the
MAR parameter α can be conjugately sampled from

α � Beta
X

ij
1−Rij
� �

I Y ij > ξ
� �� �þ 1;

X
ij
RijI Y ij > ξ

� �� �þ 1
� �

:

After a sufficient number of iterations, the MCMC
chain provides a useful summary of the posterior distri-
bution of the parameters. Convergence and mixing of
the MCMC sample is typically assessed by evaluating the
trace plots, autocorrelation, and/or Geweke statistics for
the regression coefficients (and other parameters). In the
examples run in the following sections, we have found

2500 iterations to be sufficient to provide adequate mix-
ing and convergence to the posterior distribution. In
addition to using the posterior samples of β for infer-
ence, we may also extract one or more of the imputed
datasets to analyze using standard methods for complete
data, such as a two-sample t-test.

Simulation study
The simulations were conducted with 100 replications and
are similar in spirit to those used in Tutz and Ramzan [14].
For each replication we generated data with different com-
binations of sample sizes n and number of metabolites M.
Each set of metabolites for a given sample were drawn
from a M dimensional multivariate normal distribution
with a mean vector μ and a blockwise correlation matrix Σ.
The means of the metabolites are assumed to be different
and are generated from a Uniform(−5, 5) distribution. The
differentially abundant metabolites (the first 100 out of the
total) have mean abundance one unit larger in one group.
For the smaller sample size (10 samples) we also incorpo-
rated an effect size of 1.6 for the first 100 metabolites. In
the correlation matrix, a block-tridiagonal structure was
used with blocks consisting of correlation ρ = 0.8 and 0.4;
the variance was 1 for all metabolites. For the proportion
of MVs, three levels were studied: 9% missing, 15% missing
and 30% missing. Missing data were created based on our
two kinds of missingness, MNAR and MAR. Within each
level of missing, a one-third and two-third combination
was used to create both MNAR and MAR. We looked at
the scenario where MNAR is greater than MAR, MNAR is
less than MAR, only MAR and only MNAR. For example
in 9% missing, we considered 6% of values to be missing
due to MNAR and 3% due to MAR. The LOD ξ was
chosen to be the sample percentile needed to produce the
specified MNAR percent, and the remaining MVs are
chosen at random from the response greater than ξ. After
inducing missingness, each dataset was passed through a
cleaning process where metabolites with more than 50%
missing observations within either group were eliminated.
We carried out a simulation study to compare the per-

formance of the methods by first evaluating the estimation
error. We compared the bias and the mean squared error
(MSE) for the β regression coefficients based on the Bayes-
ian method and other approaches such as zero, mean and
minimum imputation, KNN truncation and GSimp. Zero,

Pr Zij ¼ 1 jRij ¼ 0
� � ¼

R ξ
−∞ 2π~σ2

j

� �−1=2
exp

−1

2~σ2
j

y−~μij
� �2

( )
dy

R ξ
−∞ 2π~σ2j

� �−1=2
exp

−1

2~σ2
j

y−~μij
� �2

( )
dyþ α

R∞
ξ 2π~σ2

j

� �−1=2
exp

−1

2~σ2j
y−~μij

� �2
( )

dy

;
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mean and minimum are standard replacement approaches
where the MV is replaced with zero, the sample mean and
the sample minimum for the respective metabolite in each
group. GSimp was developed by Wei et al. [15] and is a
MV imputation method based on left-censored (MNAR)
using an iterative Gibbs sampler approach which allows
flexible choice of the threshold/truncation value. KNN
truncation was developed by Shah et al. [16] which was a
modified algorithm of the KNN method that uses the esti-
mates of a truncated normal distribution to impute MVs.
After single dataset imputation under these approaches, a

general linear regression was fit to the complete imputed
dataset to estimate the β, and hypothesis testing was per-
formed through the usual two-sample t-test on the imputed
data. We consider two implementations of BayesMetab
method. BayesInf considers inference using the posterior
sample of the parameters from the MCMC chain. Estimates
of β are taken as the mean of the posterior sample, and hy-
pothesis testing is carried out by comparing the ratio of the
posterior mean and the posterior standard deviation (a Z-
score like quantity) to the standard normal distribution.

Additionally, we perform the standard two-group t-test
using the final imputed data set, labeled BayesImp, to
match with the framework employed for the other imput-
ation methods. We then evaluate the power, type I error
and the area under the ROC curve (AUC) using the p
values from the tests to compare the approaches.

Real data study
To further compare methodology, we applied our ap-
proach to in vivo metabolomics data on myocardial in-
farction (MI) [17]. The data consisted of two groups, MI
vs control, 5 samples in each group and 288 metabolites.
Adult mice were subjected to permanent coronary oc-
clusion (myocardial infarction; MI) or Sham surgery.
The study was aimed to examine the metabolic changes
that occur in the heart in vivo during heart failure using
mouse models of permanent coronary ligation. The MI
group had 220 metabolites with complete values, 6 me-
tabolites with complete missing and 62 metabolites had
4.8% missing values whereas the controls had 241 me-
tabolites with complete values, 7 metabolites with

Fig. 1 Box plots for Power, Type 1 Error and AUC for Bayesian, GSimp, Zero, Min, Mean and KNNTN methods for 100 datasets, 30 samples by 225
metabolites. Total missing was considered at 9, 15, and 30% and within each missing MNAR is less than MAR.
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complete missing and 40 metabolites had 7.8% missing
values. The data was screened so that we only considered
metabolites with at least three out of five observed in each
group, leaving 263 metabolites under consideration. For
the Bayesian approach, the LOD for this dataset is consid-
ered as the minimum value of the dataset as commonly
used in untargeted metabolomics, and GSimp uses the de-
fault of per-metabolite minimum. Details of the experi-
ments are described in Sansbury et al. [17]. For easiest
comparison, we use our BayesImp approach, GSimp and
KNN-Truncation to create a single imputed dataset and
compare the groups using the two-sample t-test.

Results
Simulation study results
In this section, we present the results of the simulation
studies comparing the performance of BayesMetab with
the other approaches. The simulations were based on
three sample sizes: 10 samples by 200 metabolites, 30
samples by 225 metabolites and 50 samples by 400 me-
tabolites. Within each sample size, 4 different types of

missingness was considered: mixture where MAR <
MNAR, mixture where MAR >MNAR, MAR only, and
MNAR only. Figure 1 shows the power, type1 error and
the AUC for the competing methods in the 30 samples
by 225 metabolites data when 1/3 of the MVs are below
the LOD (MNAR) and 2/3 above (MAR). P-values were
computed based on the standard t-test and the power,
type 1 error and area under the curve were computed.
The AUC and power are both higher for BayesMetab
method (BayesInf and BayesImp) relative to GSimp. This
is expected in this scenario, as GSimp is restricted to im-
puting values to the left tail of the distributions. The
separation between the methods increases as the missing
rate increases, with BayesImp only having a slightly ele-
vated type-I error rate at 30% missing. We further con-
sidered the estimation accuracy for the intercept and the
treatment effect across both differentially abundant and
non-differentially abundant metabolites. While the bias
for estimating the beta coefficients is relatively similar
between the two approaches (Fig. 2), our BayesImp
method has a smaller MSE than GSimp particularly as

Fig. 2 Box plots for Bias for Bayesian, GSimp, Zero, Min, Mean and KNNTN methods for 100 datasets, 30 samples by 225 metabolites. Total
missing was considered at 9, 15, and 30% and within each missing MNAR is less than MAR.
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the percent missing increases (Fig. 3). Our previously de-
veloped KNN-TN method has comparable power to the
BayesImp and BayesInf methods, though the error rate
seems to exceed the nominal 5% threshold as the per-
cent missing hits 30%. As expected, the naïve simple im-
putation methods (zero, mean, and min) perform poorly
in all these scenarios. In the scenario where all missing-
ness is due to intensities below the LOD (MNAR only),
all the methods (except the naïve mean and zero ap-
proaches) demonstrate comparable power, type I error,
and AUC (Fig. 4), as well as similar bias (Fig. 5) and
MSE (Fig. 6) for estimating the beta coefficients. The sep-
aration between our method and GSimp becomes greatest
with 100% MAR (Additional file 2: Figures S1-S3) and is
slightly lower when MNAR > MAR (Additional file 2: Fig-
ures S4-S6), generally following a decreasing trend with
increasing percent MNAR. Similar results hold for the 50
samples by 400 metabolites simulations (Additional file 2:
Figures S7-S18). Due to the low power with 10 samples,
we increase the effect size to 1.6. In this scenario, the
AUC and power are both higher for BayesMetab method

(BayesInf and BayesImp) relative to GSimp and compar-
able to KNN-TN method. When MAR >MNAR, BayesMe-
tab outperforms KNN-TN with 9 and 15% missingness on
power and AUC. The type 1 error for BayesMetab is lower
than the KNN-TN and with 30% missingness the type 1
error for KNN-TN is also higher. Similar results hold when
missingness is completely MNAR and when MAR<MNAR
when comparing BayesMetab with KNN-TN (Additional
file 2: Figures S19-S30).

Real data study results
Using the imputed dataset from the various methods, we
conducted an unpaired t-test to identify the number of
significant metabolites based on a significance level of
0.05. Figure 7 gives a comparison of the number of signifi-
cant metabolites found by BayesMetab, GSimp and KNN
Truncation, and the number of commonalities. Note that
91 of the discoveries come from metabolites with fully ob-
served data in both groups, so these do not represent dif-
ferences in the methodologies. Further, all of the
metabolites flagged as differentially abundant by GSimp

Fig. 3 Box plots for MSE for Bayesian, GSimp, Zero, Min, Mean and KNNTN methods for 100 datasets, 30 samples by 225 metabolites. Total
missing was considered at 9, 15, and 30% and within each missing MNAR is less than MAR.
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are also detected by our BayesImp, but the Bayesian ap-
proach finds an addition 16 metabolites of interest when
compared with GSimp. In this data, we find the BayesMe-
tab and KNN-TN tend to perform similarly.
We further looked at the distributions of those 16 me-

tabolites that were significant with BayesMetab method
and not GSimp to see how the imputed values are
imputed based on the BayesMetab and GSimp method.
Figure 8 represents the distribution of, 1,2-dipalmitoyl-
glycerol 1-heptadecanoylglycerophosphocholine, hep-
tanoate and pentobarbital from the MI study data
respectively. The horizontal line represents the LOD, the
“G” represent the values imputed by the GSimp method
and the “B” represent the values imputed by the Bayes-
ian method. In metabolites A and B, GSimp tends to im-
pute MVs to be substantially lower and outside of the
range of the observed values, leading to inflated standard
deviations and lost power. Most of the metabolites from
the 16 unique significant metabolites from the Bayesian
method followed the similar distribution as shown in the
two examples above.

To further understand the role of imputation near the
LOD, we evaluated the distribution of two metabolites,
heptanoate (C) and pentobarbital (D). These metabolites
were not significant based on both methods and have
values close to the LOD. Here, BayesMetab suspects
these MVs are more likely to be due to truncation than
in panels (A) and (B) since the observed values are near
ξ, and the imputed values are below the LOD. For the
most part, BayesMetab approach does a similar job to
GSimp of imputing these MVs.
While comparing the results with Sansbury et al. [16],

Sansbury et al. performed a metabolomic analysis using
the half minimum imputation method and found 87 of
the 288 metabolites analyzed to be significantly different
based on an unpaired t-test. Of the 288 metabolites
measured, 41 and 24% of the metabolites were lipids and
amino acids. Table 1 shows the significant metabolites
uniquely identified by the BayesMetab and KNN-TN as
compared to the GSimp method. The majority of the
significant metabolites in Table 1 represent the lipid
super pathway and lysolipid sub pathway. As seen in the

Fig. 4 Box plots for Power, Type 1 Error and AUC for Bayesian, GSimp, Zero, Min, Mean and KNNTN methods for 100 datasets, 30 samples by 225
metabolites. Total missing was considered at 9, 15, and 30% and completely MNAR
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Supplemental Table II by Sansbury et al. 34 out of the
87 significant metabolites were within the lipid pathway.
Since the additional significant metabolites identified by
the Bayesian method also represent the lipid and lysoli-
pid pathways, this indicates that BayesMetab method
may be correctly imputing these values as the metabo-
lites within the lipid pathway are closely affiliated with
myocardial infarction.

Discussion
The purpose of this study was to develop a Bayesian
approach for imputing missing values in metabolo-
mics. When metabolites are below the detection limit
of the instrumentation, it is considered to missing not
at random. In contrast, missing values resulting from
technical errors unrelated to the metabolite abun-
dance are considered missing at random. To this end,
we introduce our BayesMetab model that incorporates
data augmentation and includes a parameter which al-
lows MVs to occur via either the MNAR (below the
limit of detection) or MAR mechanisms. Since MNAR

is due to the detection limit, we consider the detec-
tion limit as a truncation point and assume that the
observed metabolites follow a truncated normal distri-
bution. We evaluated BayesMetab method with other
recently developed imputation methods for truncated
metabolomics data (GSimp, KNN-TN) [15, 16] as well
as traditionally used naïve approaches which take a
simplistic approach to imputation (zero, mean, and
minimum imputation). Our simulation results re-
vealed superior performance of our methodology
compared to the other imputation approaches when
missingness was due to a mixture of MAR and
MNAR data or MAR alone, and competitive results
when missingness was completely MNAR. Our ana-
lysis of metabolomics data from a mouse myocardial
infarction study revealed that our approach identified
several additional metabolites relative to GSimp with
differential abundance between the control (sham sur-
gery) and experimental (permanent coronary occlu-
sion) groups that were categorized as lipids and
lysolipids and were of direct biological relevance.

Fig. 5 Box plots for Bias for Bayesian, GSimp, Zero, Min, Mean and KNNTN methods for 100 datasets, 30 samples by 225 metabolites. Total
missing was considered at 9, 15, and 30% and completely MNAR
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In our simulation study, we evaluated our algorithm in
the scenario of untargeted metabolomics datasets where
we assumed missingness could arise based on either
MAR and MNAR situations. We used the minimum
value as the lower truncation point and compared our
results with those from GSimp, KNN-TN and other sim-
ple imputation approaches. GSimp was originally devel-
oped in the context of targeted metabolomics where
each metabolite has its own truncation level, but their
code allows the user to select a left-censoring value
(such as overall minimum for LOD trunctation or -∞ for
MAR). Throughout, we have use the default of selecting
the minimum observed value for each metabolite. How-
ever, this may not be a reasonable choice for untargeted
metabolomics, as the design of the mass spectrometers
is such that the LOD is common across all metabolites.
However, if we select the left-censoring value to be the
LOD, then all MVs will be imputed below this LOD.
This will perform very poorly in situations like (A) and
(B) from Fig. 8. In practice, we strongly believe that most
untargeted metabolomics datasets consist a mixture of

missingness, and thus it is important to consider an im-
putation model that can capture both. When comparing
BayesMetab with KNN-TN, the KNN-TN method has
higher type 1 error rates and BayerMetab outperforms.
One of the key differences is that KNN-TN uses a non-
parametric method.
In our simulation study we investigated data from a

normal distribution, whereas in many cases metabolite
data may be non-normally distributed. In these cases we
suggest to first transform the data to normality (e.g.,
using a log or Box-Cox transform) and then apply Bayes-
Metab to impute the values. However, our current study
lacks a comprehensive evaluation of these imputation al-
gorithms using a diverse set of real experimental data to
determine the true impact on downstream statistical
analyses [18]. To that end, our future work will focus on
simulating data based on real studies (e.g., from the
Metabolomics Workbench [19]) using a simulation ap-
proach which mimics the underlying multivariate distri-
bution of the data [20]). Importantly, this approach
permits us to simulate missing values which accounts

Fig. 6 Box plots for MSE for Bayesian, GSimp, Zero, Min, Mean and KNNTN methods for 100 datasets, 30 samples by 225 metabolites. Total
missing was considered at 9, 15, and 30% and completely MNAR
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for the LOD in real data sets and thus can easily incorp-
orate both MNAR and MAR values. In a recently com-
pleted study evaluating a number of MV imputation
algorithms designed for either MAR or MNAR data on a
variety of data sets, results revealed that random forest
imputation performed best for MAR data while GSimp
was optimal for MNAR data [21]. However, the real
issue is that data from metabolomics (and other) studies
are likely to be a mixture of both MAR and MNAR data,
and practitioners will have a difficult time deciding a
priori which imputation algorithm to use when faced
with this choice. Our methodology naturally adapts to
estimate the percentage of MAR vs. MNAR data and in-
corporates this information into the imputation esti-
mates. While having a clear advantage over other
imputation algorithms for imputing simulated data with
a mixture of missing due to MAR and MNAR, we have
also shown evidence in real metabolomics data that this
mixture exists and is an important consideration for
finding relevant results from a metabolomics study.

Conclusions
In conclusion, BayesMetab is a comprehensive ap-
proach for imputing high dimensional data where

there is missingness partially due to a truncation (de-
tection) threshold. Results based on simulated data
show that BayesMetab method generally has higher
power for detecting differentially abundant metabo-
lites compared to the other imputation algorithms
when there is both missing at random and missing
due to a threshold value. This is accompanied by a
concomitant reduction in MSE for the parameter esti-
mates from the linear model. Due to our model’s
adaptive nature, when data are missing completely
due to MNAR our results remain competitive with
specialized MNAR-only algorithms. Inspection of
missing and imputed values in metabolomics data
from a mouse myocardial infarction study indicate
that a mixture of MAR and MNAR values is highly
plausible, and reanalysis of this data using our ap-
proach revealed several statistical significant metabo-
lites not previously identified that were of direct
biological relevance to the study. Our approach can
further be applied to other high-dimensional data sets
that contain a mixture of missing values due to
MNAR (below a threshold value) and MAR, for in-
stance delta-CT values from qRT-PCR array cards
[22] and proteomics data.

Fig. 7 Venn diagram to show the differences between the significant metabolites detected by BayesMetab, GSimp and KNN-Truncation. Note
that 91 of 102 shared discoveries are from metabolites with complete data
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Fig. 8 Comparison of imputed missing values imputed from the Bayesian and GSimp method for 4 metabolites. The x-axis represents the cases and controls
of the each of the metabolites, and the y-axis represents the log intensity values. The dark black circle represent the observed values and the “B” and “G”
represent missing values imputed by the Bayesian and GSimp method respectively. The horizontal line represents the LOD of the data

Table 1 Significant metabolites uniquely identified by the BayesMetab and KNN-TN and its super pathway and sub pathway
metabolism. Note ** were metabolites identified by the KNN-TN method

Metabolite SUPER_PATHWAY SUB_PATHWAY

1,2-dipalmitoylglycerol Lipid Diacylglycerol

1-heptadecanoylglycerophosphocholine Lipid Lysolipid

1-linoleoylglycerophosphocholine Lipid Lysolipid

1-palmitoleoylglycerophosphocholine* Lipid Lysolipid

1-palmitoylglycerophosphoethanolamine Lipid Lysolipid

1-palmitoylglycerophosphoinositol* Lipid Lysolipid

1-pentadecanoylglycerophosphocholine* Lipid Lysolipid

2-arachidonoylglycerophosphocholine* Lipid Lysolipid

2-linoleoylglycerophosphocholine* Lipid Lysolipid

2-linoleoylglycerophosphoethanolamine* Lipid Lysolipid

2-oleoylglycerophosphocholine* Lipid Lysolipid

4-hydroxybutyrate (GHB) Lipid Fatty acid, monohydroxy

7-alpha-hydroxycholesterol Lipid Sterol/Steroid

phosphopantetheine Cofactors /vitamins Pantothenate and CoA metabolism

prostaglandin I2 Lipid Eicosanoid

sarcosine (N-Methylglycine) Amino acid Glycine, serine and threonine metabolism

Squalene** Lipid Sterol / Steroid

2-palmitoylglycerol** Lipid Monoacylglycerol

2-palmitoleoylglycerophosphocholine** Lipid Lysolipid
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