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I Introduction

Consumption-based models have contributed to our understanding of financial markets, busi-

ness cycle dynamics, and household decision making. In these settings, assumptions about

consumption persistence and volatility have a profound impact on both the empirical per-

formance and policy implications of models. However, using consumption data alone, it is

hard to identify the underlying stochastic process.1 As a result, macro-finance researchers

tend to rely on assumptions that are difficult, if not impossible, to validate outside of the

frameworks under consideration: Chen, Dou, and Kogan (2015) refer to this source of model

fragility as ‘dark matter.’

This paper tries to fill the gap in the understanding and modeling of the consumption

process. Our identification strategy is rooted in the central insight of the intertemporal

Euler equation of models that have consumption as one of the state variables entering the

utility function: most shocks affecting the household force it to adjust both investment and

consumption plans. In fact, asset prices that reveal information about the state variables of

the economy are a feature of almost any consumption-based macro-finance model. Therefore,

one can use the cross-section of returns to extract the innovations that are reflected in both

consumption and financial assets. Our approach allows the joint consumption and return

data to ‘speak for itself,’ and helps us establish a new set of facts regarding the dynamics of

stocks, bonds, and consumption growth.

Our first result is summarized in Figure 1 that highlights the slow, economically and

statistically significant, empirical cumulative response of consumption growth to the com-

mon innovations spanned by stock and bond returns. We find that these shocks take about

two-three years to be fully reflected in consumption, hence producing substantial (but not

excessive) predictability. The economic magnitude of this channel is large: a one standard

deviation shock implies a cumulated response of consumption of about 1% over the next

2-4 years. Most importantly, they generate a clear business cycle pattern in the conditional

expectation of consumption growth that accounts for more than a quarter of total consump-

tion variance – more than twice what is normally assumed in leading macro-finance models.2

Furthermore, these very same shocks play a fundamental role in explaining the time series

of financial assets: they account for most of the variance of equities, and drive a significant

yet small share of bond returns fluctuations.

1See e.g. Beeler and Campbell (2012), Campbell (2017), Cochrane (2007), and also Ludvigson (2012) for
a review of the empirical challenges of consumption-based asset pricing.

2For instance, the contribution of the conditional mean to the variance of the consumption growth process
is: zero in the habit framework of Campbell and Cochrane (1999), in Lucas (1987) calculation of the cost
of business cycle fluctuation, and in the rare disasters model of Barro (2006), 4.5% in the long-run risk
calibration of Bansal and Yaron (2004) and 12% in that of Hansen, Heaton, Lee, and Roussanov (2007).
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Figure 1: Cumulative response function of consumption growth to one standard deviation
shock spanned by asset returns.

Posterior means (black line with circles) and centered posterior 90% (dashed red lines) and 68% (dot-
ted green lines) coverage regions. The blue line with triangles denote the first principal component of
cov(rexi,t ,∆ct,t+1+S). Quarterly data, 1961:Q3-2017:Q2.

Although our identification approach relies only on the joint time series dynamics of

consumption and asset returns, it also has powerful implications for cross-sectional asset

pricing. In particular, the loadings on the common shocks provide an immediate measure

of the consumption risk in stock and bond returns. We find that this measure can jointly

explain the average term structure of the interest rates and a broad cross-section of equity risk

premia (including industry portfolios). In other words, our identification strategy uncovers

the fundamental link between the consumption process and asset returns, allowing us not

only to accurately capture the former, but also to precisely measure its comovement with the

latter. In doing so, our paper also rationalizes the empirical success of cross-sectional asset

pricing models for stock returns that rely on consumption risk measured at low frequencies,3

and establishes a complementary new finding for bonds.

To uncover, identify, and test the stochastic process of consumption growth, we employ

three different empirical strategies.

First, we set up a flexible (state-space) model that extracts the common shocks to con-

3See, e.g. Brainard, Nelson, and Shapiro (1991), Parker and Julliard (2005), Jagannathan and Wang
(2007), Malloy, Moskowitz, and Vissing-Jorgensen (2009).
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sumption and asset returns and estimates their propagation pattern within the time series of

consumption growth. The timing is crucial here. There is rich empirical evidence suggesting

that consumption could be slow to adjust to changing economic conditions, and multiple

theoretical frameworks consistent with it. Therefore, we allow consumption to react (poten-

tially) with lags to these common shocks. In particular, we model consumption growth as

the sum of two independent processes: a (potentially, since parameters are estimated) long

memory moving average that (potentially) co-moves with asset returns, and a transitory

component orthogonal to financial assets. Innovations to asset returns are in turn modeled

as depending (potentially) on the shocks to the persistent component of consumption plus

an orthogonal source. The joint system allows us to test and identify the presence of a slow

moving component in consumption, and verify whether the latter is spanned by the shocks

affecting financial markets. To draw the analogy with the Wold’s time series decomposition,

instead of ex ante postulating, say, an AR(1) process for consumption, we estimate the mov-

ing average representation and identify its innovations with the help of asset returns. The

key identifying restriction is that the innovations should be reflected by financial markets at

the same time as they occur. This assumption is not only theoretically sound, since equilib-

rium prices are forward-looking, but is also supported by a rich set of reduced form empirical

evidence that we provide.

Our findings have important implications not only for the conditional mean of consump-

tion growth, but for its volatility as well. We show that once the slow-moving component of

consumption is properly accounted for, there is no significant evidence of volatility clustering.

This implies that either aggregate consumption volatility shocks are only weakly supported

by the data,or consumption-based asset pricing models need to incorporate a strong con-

temporaneous leverage effect in consumption growth, i.e. a contemporaneous correlation

between mean and volatility shocks – a formulation almost never used in the literature.4

Furthermore, we show that misspecification of the mean process makes it likely to detect

time-varying volatility even in its absence.

Our second approach relies on directly assessing the main empirical prediction of our

framework: a particular term structure of the covariances between asset returns and multi-

period consumption growth. We therefore measure it directly in the data and test whether

it implies a similar consumption persistence as in the state-space setting. Figure 1 confirms

that the results of the two approaches are almost identical.

Finally, we confirm the asset pricing implications of our model through a cross-sectional

4In a typical model with stochastic volatility in consumption, the shocks to the conditional mean are not
correlated with those of volatility, and even a standard lead-lag leverage effect would not be consistent with
our findings. To the best of our knowledge, the only papers that consider contemporaneous leverage effects
are the theoretical contribution of Tinang (2018) and the latent factor VAR model of Zviadadze (2018).
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Empirical Likelihood–based estimation of a very broad class of consumption-based pricing

kernels without imposing restrictions on the time series properties of the data. Consistent

with our state-space framework, the future response of consumption growth to current asset

returns accurately captures the level and the spread of the consumption risk for both stocks

and bonds. Compared to standard approaches, this leads not only to sharper inference, but

also remarkably better cross-sectional fit.

To summarize, we find that: a) consumption reacts very slowly (i.e. over a period

of two to four years), but significantly, to the shocks spanned by asset returns, and this

slow-moving component accounts for about 26% of its time series variation; b) accounting

for this slow-moving dynamics, we find no significant evidence of volatility clustering in

consumption, implying that models with stochastic volatility in consumption should include

a contemporaneous leverage effect; c) stock returns significantly load on these common shocks

(that capture 36%–95% of their time series variation), and display a loadings pattern that

closely mimics the value and size pricing anomalies; d) US Treasury bond returns load

significantly on the same innovations, with loadings increasing with the time to maturity,

but these shocks drive no more than 3% of their time series variation; e) most of the time

series variation in bonds is captured by a single factor, independent from both consumption

and stock returns, that does not command a risk premium (i.e. it is unspanned); f) the

total exposure to consumption risk, captured by the latent factor model and its estimated

loadings, accounts for 59%-92% of the joint cross-section of stocks and bond returns;5 g) low

frequency consumption explains up to 92% of the cross-sectional variation in bond excess

returns. Furthermore, all of the above results are confirmed by the extensive preliminary

evidence that we provide.

The remainder of the paper is organized as follows. The next section reviews the related

literature, while Section III provides empirical support for the state-space formulation intro-

duced in Section IV. Our main empirical findings are presented in Section V, and Section VI

concludes. Data description as well as additional methodological details, robustness checks

and supplementary empirical evidence, are reported in the Appendix.

II Related literature

Our paper is related to several large strands of literature. At the core of our identification

strategy lies the notion that equilibrium prices of financial assets should be determined by

5In our baseline specification we consider a cross-section of 46 asset given by 12 industry portfolios,
25 size and book-to-market portfolios, and 9 bond portfolio, but the results appear robust to alternative
specifications.
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their risk to households’ marginal utilities and, in particular, current and future marginal

utilities of consumption: agents are expected to demand a premium for holding assets that

are more likely to yield low returns when the marginal utility of consumption is high, i.e.

when consumption (current and expected) is low. Therefore, by its very nature, our paper

is closely linked to consumption-based empirical asset pricing.6 Within this literature, the

underlying stochastic process of consumption growth has been the subject of a long-standing

debate.

While there is ample empirical evidence suggesting that either shocks to the consumption

mean or its volatility are priced in the cross-section of asset returns, there is much less

agreement on what are the relative contributions of these components, the frequency of the

shocks, and even the sign of their price of risk. Lettau and Ludvigson (2001a), Bansal,

Dittmar, and Lundblad (2005), Malloy, Moskowitz, and Vissing-Jorgensen (2009), Savov

(2011), and Kroencke (2017) focus on shocks to the first moment of consumption growth.

Bansal, Kiku, Shaliastovich, and Yaron (2014) and Campbell, Giglio, Polk, and Turley (2018)

argue that volatility shocks are priced, even conditional on those to the mean. Jacobs and

Wang (2004), and Balduzzi and Yao (2007) use survey data to estimate the variability of

idiosyncratic consumption risk across households, and find that it is priced in the cross-

section of portfolios sorted by size and value. Tedongap (2007) estimates the conditional

volatility of consumption through a GARCH model and finds that the value stocks are more

exposed to its innovations, leading to a corresponding risk premium. Bandi and Tamoni

(2015) and Boons and Tamoni (2015) go a step further and decompose the process for

consumption growth into different, frequency specific, components. They find that only the

shock with a half-life of about 4 years, i.e. the business cycle frequency, plays a significant role

in explaining the cross-section of returns, thus supporting the importance of business cycle

fluctuations in determining the risk premium. Dew-Becker and Giglio (2016) instead argue

that the shocks that are most important for explaining the joint dynamics of macroeconomic

fundamentals and asset returns are those of an extremely low frequency, and find no evidence

of time-varying consumption volatility. In contrast, Zviadadze (2018) argues that shocks to

the variance of consumption growth, and to the long-run mean of volatility, account for a

large part of the time series variation of the market discount rate.

Naturally, our paper is also related to the literature on excess smoothing in consumption

(e.g. Deaton (1987), Campbell and Deaton (1989)). In particular, it rationalizes the findings

of Parker and Julliard (2005) that consumption risk, measured by the covariance of asset

returns and cumulated future consumption growth, can explain a large fraction of the size and

6E.g. Breeden, Gibbons, and Litzenberger (1989), Lettau and Ludvigson (2001b), Jagannathan and Wang
(2007), Piazzesi, Schneider, and Tuzel (2007), Hansen, Heaton, Lee, and Roussanov (2007), Bansal, Kiku,
and Yaron (2012), and see Ludvigson (2012) for an excellent review.
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value anomalies. Furthermore, our findings are consistent with the empirical evidence linking

slow movements in consumption to asset returns7 and the different economic mechanisms

that can explain it. For instance, models with: constraints on information flow and rational

inattention (e.g. Flavin (1993), Caballero (1995), Lynch (1996), Abel, Eberly, and Panageas

(2013)), adjustment costs and consumption commitments (e.g. Marshall and Parekh (2002),

Postlewaite, Samuelson, and Silverman (2008), Shore and Sinai (2010), Chetty and Szeidl

(2016)), complementarities in consumption/marginal utilities (e.g. Eichenbaum, Hansen,

and Singleton (1988), Startz (1989), Abel (1990), Piazzesi, Schneider, and Tuzel (2007),

Yogo (2006)).

Chen and Ludvigson (2009), in the consumption habit setting, and Schorfheide, Song,

and Yaron (2018), within the long-run risks framework, share our perspective of studying the

process for consumption through the lens of asset returns. The former treats the functional

form of the habit as unknown, and estimates it with the rest of the model’s parameters. The

latter proposes a bayesian strategy for identifying the deep parameters of the model using a

mixed frequency setting. Contrary to most empirical work, we do not take an ex ante stand

on the preferences, nor on the the speed or the pattern (e.g. an AR(1)) of the consumption

dynamic. Instead, we work with the MA representation of the consumption process. This

identifies directly the underlying shocks, and the consumption response to them, through

the joint behaviour of consumption and asset returns. Hence, we consistently recover the

horizon of the shocks spanned by asset returns and consumption growth, as well as the speed

and patterns of their propagation, for a broader class of possible stochastic processes.

Our approach, that leverages the information contained in a rich cross-section of financial

assets to provide insights about the underlying state variable, is also similar in spirit to a

recent work by Jagannathan and Marakani (2016). They show that the price-dividend ratios

of a cross-section of asset returns can be used to estimate the long-run risk process of Bansal

and Yaron (2004). Their paper, as our, acknowledges that since both consumption and the

real risk-free rate are measured with considerable error, it is hard to rely on market-wide

indicators to infer the degree of predictability in the data. Instead, relying on a broad cross-

section of asset returns provides a natural remedy to this problem. Indeed, Liew and Vassalou

(2000) show that the cross-sectional value and size factors are leading indicators of future

economic growth, and that the information content of these portfolios is largely independent

from that of the aggregate stock market. Similarly, Ang, Piazzesi, and Min (2006) confirm

that the yield curve is informative about future GDP growth.8 These findings lead us to

7E.g., Daniel and Marshall (1997), Bansal, Dittmar, and Lundblad (2005), Jagannathan and Wang (2007),
Hansen, Heaton, and Li (2008), Malloy, Moskowitz, and Vissing-Jorgensen (2009).

8Also Cochrane and Piazzesi (2005) find that a single factor (a tent-shaped linear combination of forward
rates), predicts excess returns on one- to five-year maturity bonds. This factor tends to be high in recessions,
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include, among other assets, size and value sorted portfolios of stocks and a cross section of

bond returns in our empirical analysis.

Although the main focus of our paper is on identifying the underlying process of con-

sumption growth, our paper is also naturally connected to the large literature on co-pricing

of stocks and bonds. Our findings on the relevance of macroeconomic risk are related to a

series of works that combine the affine asset pricing framework with a parsimonious mix of

macro variables and bond factors for the joint pricing of bonds and stocks. In particular:

Bekaert and Grenadier (1999) and Bekaert, Engstrom, and Grenadier (2010) present a linear

model for the simultaneous pricing of stock and bond returns; Lettau and Wachter (2011)

focus on matching an upward sloping bond yield term structure and a downward sloping

equity yield curve via an affine model that incorporates persistent shocks to the aggregate

dividend, inflation, risk-free rate, and price of risk processes; Koijen, Lustig, and Nieuwer-

burgh (2017) develop an affine model in which three factors –the level of interest rates, the

Cochrane and Piazzesi (2005) factor, and the dividend-price ratio– have explanatory power

for the cross-section of bonds and stock returns. Finally, our identification of an unspanned

latent factor in bond returns is consistent with a similar finding in Chernov and Mueller

(2012).

III Preliminary empirical evidence

To motivate the structure of the state-space model for consumption and asset returns, we

first establish a set of empirical facts via model-free reduced-form approaches. We document

that a) consumption growth is autocorrelated, b) not only asset returns predict future levels

of consumption growth, but do it better than the past values of consumption itself, and c)

consumption is slow to react to the innovations that it jointly spans with asset returns, while

the latter react to them immediately. A detailed description of the data used throughout

the paper is reported in Appendix A.1.

First, Figure 2 plots the autocorrelation function (left panel), and the p-values (right

panel) of the Ljung and Box (1978) and Box and Pierce (1970) tests of joint significance of

the autocorrellations, of the one quarter log consumption growth (∆ct,t+1). The figure clearly

shows that the autocorrelations are individually statistically significant up to the one year

horizon (left panel), and jointly statistically significant (right panel) at the 1% level even

after about 14 quarters (and significant at lower confidence levels at even longer horizons).

That is, there is substantial persistence in the time series of consumption growth.9

but forecasts future expansion, i.e. it seems to incorporate good news about future consumption.
9Note that, even in the seminal examination of the random walk hypothesis of Hall (1978), the presence
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Figure 2: Autocorrelation structure of consumption growth.

Left panel: autocorrelation function of consumption growth (∆ct,t+1) with 95% and 99% confidence bands.
Right panel: p−values of Ljung and Box (1978) (triangles) and Box and Pierce (1970) (circles) tests.

Second, we run multivariate linear predictive regressions of cumulated log consumption

growth ∆ct,t+1+S, for several values of S, on the first eight principal components of time

t asset returns.10 Figure 3 depicts summary statistics for these predictive regressions at

different horizons (S). In particular, the left panel plots the time series adjusted R2 of these

regressions, and the right panel the p-value of the F -test of joint significance of the regressors

for this and some additional specifications.

Several observations are in order. At S = 0 the time series adjusted R2 is quite large

being about 6.3%. Moreover, the regressors are jointly statistically significant (the p-value

of the F -test is less than 1%). For S > 0, since ∆ct,t+1+S ≡ ∆ct,t+1 + ∆ct+1,t+1+S, if asset

returns did not predict the autocorrelated component of future consumption growth, the

adjusted R2 should actually decrease monotonically in S, as depicted by the red dashed lines

with triangles in the left panel of Figure 3. Instead, for S > 0, the figure shows no such

decrease in the data (black line with circles) – in fact, predictability increases at intermediate

horizons. Moreover, the regressors are jointly statistically significant for any horizon up to

12 quarters following the returns.11

of predictability in consumption growth could not be rejected.
10We use the first eight principal components of the 25 size and book-to-market Fama-French portfolios,

12 industry portfolios, and 9 bond portfolios, because they explain about 95% of the asset returns variance.
Using fewer, or more, principal components, or even directly the asset returns series, we have obtained very
similar results to the ones reported.

11Liu and Matthies (2018) also document the existence of long-run predictability in consumption using a
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Figure 3: Predictive regressions of ∆ct,t+1+S on time t asset returns and consumption.

Predictive regressions of ∆ct,t+1+S on the first eight principal components of asset returns between time t−1
and t for different values of S. Left panel: adjusted R2 (black solid line with circles) and theoretical adjusted
R2 (red dashed line with triangles) if all the predictability was driven by the first period, and purple dashed
line with rhombi stands for the adjusted R2 when only t − 1 consumption growth is used as a predictor.
Dotted line with pluses corresponds to using asset returns to predict the unfiltered consumption growth of
Kroencke (2017). Right panel: p-value of the F -test of joint significance of the covariates, as well as the 10%
(dotted line), 5% (dashed line), and 1% (dot-dashed line) significance thresholds.

Could one achieve the same level of predictability by using just consumption data, ei-

ther due to a persistent component (independent of returns) propagating through the actual

consumption growth (as e.g. an AR(1)), or through accumulated non-classical measurement

errors that display a certain degree of persistence?12 This is unlikely. The purple lines in

Figure 3 depict the degree of predictability obtained using just lagged consumption growth,

∆ct−1,t. While highly significant at the horizon for up to six quarters, using lagged consump-

tion as a predictor is inferior to extracting information from asset returns: not only this

variable fails to capture the long range of true predictability, but even at the short horizon

it is almost always underperforming stock and bond returns.

Measurement errors in consumption are unlikely to yield such a persistent level of pre-

dictability either. While non-classical errors could possibly contribute to a wide range of

statistical artifacts, most of their impact should either disappear within a horizon of about

one year (should it be related to seasonal smoothing), or be much smaller in magnitude.

In order to test this conjecture, we repeat the same predictive exercise with the unfiltered

news-based measure of economic growth prospects.
12Seasonal smoothing of consumption levels often leads to countercyclical measurement errors in the growth

rates.
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consumption data of Kroencke (2017)13 (green dotted lines in Figure 3). Should the pre-

dictability result be an accidental by-product of a countercyclical measurement error due to

smoothing, it must go away when using the unfiltered data. If anything, the figure shows,

the power of asset returns to forecast consumption becomes even more apparent. Unfortu-

nately, since only yearly data is available for unfiltered consumption, the sample is naturally

shorter, which increases standard errors and leads to the feasible use of only three predictive

horizons within our time window. However, even taking these limitations into account, asset

returns still remain significant predictors of future consumption.

The above results highlight that not only there is substantial predictability in consump-

tion growth, but also it is best captured by asset returns.

Third, the state-space representation of the slow consumption adjustment process pre-

sented in the next section postulates the presence of (potentially) long-run shocks in the

consumption growth process to which asset returns react only contemporaneously. To verify

this conjecture, we recover the long-run impact of common innovations to financial market

returns and nondurable consumption using a simple bivariate structural vector autoregres-

sion (S-VAR) for a broad market excess return index and consumption growth.14 We achieve

identification via long-run restrictions á la Blanchard and Quah (1989). That is, we distin-

guish a fundamental long-run shock, that can have a long-run impact on both market return

and consumption, and a transitory shock that is restricted not to have a long-run impact on

the former.15.

Figure 4 displays the cumulated impulse response functions to a one standard deviation

long-run S-VAR shock, and highlights fundamentally different responses of asset returns and

consumption growth to this shock. Asset returns (left panel) fully adjust to the shock con-

temporaneously, with no statistically significant additional response in the periods following

the initial shock. Instead, consumption growth (right panel) reacts gradually to the shock

over several quarters, with the cumulated effect reaching its peak only 5-7 quarters after the

initial shock. These patterns are consistent with the moving average process we postulate

in the next section. Moreover, we later show that the above reaction of consumption to the

long-run shocks is extremely similar to the one obtained in our state-space model.

13We are grateful to Tim Kroenke for making the data available on his website.
14We construct the excess return index as the first principal component of a cross-section that includes

excess returns (with respect to the three-month Treasury bill) of the 25 Fama-French size and book-to-market
portfolio, 12 industry portfolio, and Treasury securities with maturities of 6 months, 1, 2, 3, 4, 5, 6, 7, and
10 years.

15The details of the estimation procedure are presented in Appendix A.2
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Figure 4: Cumulated response functions to a long-run shock.

Left panel depicts the cumulated response function for the excess return index from the composite cross-
section of stock and bond returns, while the right panel plots the cumulated impulse response function of
consumption growth. The graphs include posterior mean (continuous blue line), mode (black circles), and
centered 90% coverage region (red dashed lines).

IV A Model of Consumption and Returns Dynamics

To model parametrically the reaction of consumption to the same shocks that are spanned

by asset returns, we postulate that the consumption growth process can be decomposed

in two terms: a white noise disturbance, wc with variance σ2
c , that is independent from

financial market shocks, plus an autocorrelated process – a slow adjusting component – that

(potentially) depends on the current and past stocks to asset returns. To avoid taking an ex

ante stand on the particular time series structure of the slow adjustment component (or its

absence), we work with its (potentially infinite) moving average representation. That is we

model the (log) consumption growth process as:

∆ct−1,t = µc +
S̄∑
j=0

ρjft−j + wct , (1)

where S̄ is a large positive integer (potentially equal to +∞), µc is the unconditional mean,

the ρj coefficients are square summable, and most importantly ft (a white noise process

normalised to have unit variance) is the fundamental innovation upon which all asset returns

load contemporaneously, i.e.

ret
N×1

= µr
N×1

+ ρr
N×1

ft + wr
t

N×1

, (2)
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where re denotes a vector of log excess returns, µτ is a vector of expected values, ρr contains

the asset specific loadings on the common risk factor, wr
t is a vector of white noise shocks

with diagonal16 covariance matrix Σr, that are meant to capture asset specific idiosyncratic

shocks.

The dynamic system in equations (1)-(2) can be reformulated as a state-space model, and

Bayesian posterior inference can be conducted to estimate both the unknown parameters

(µc, µr, {ρj}S̄j=0, ρr, σ2
c , Σr) and the time series of the unobservable common factor of

consumption and asset returns ({ft}Tt=1). This estimation procedure is described below and

additional details are presented in Appendix A.3.

A crucial point that allows us to achieve identification of the shocks, is the lead-lag

structure of the consumption process and its (potential) link to asset returns. Without

equation (1), the shocks would be underidentified, making it difficult to give any particular

rotation a structural interpretation. Another interpretation of this estimation approach is

that of uncovering the shocks that drive financial returns through the impulse response

function on consumption, in the spirit of Uhlig (2005) identification in Structural-VARs.

In fact, it is easy to see that the ρj coefficients identify the impulse response function of

multiperiod consumption growth to the shock ft as17

∂E [∆ct−1,t+S]

∂ft
=

S∑
j=0

ρj (3)

where ρj>S̄ := 0.

Note that equations (1)-(2) rely only on the time series properties of asset returns and

consumption. Therefore, nothing in the formulation of the joint system requires the shocks to

be priced in the cross-section of returns, or equivalently expected asset returns to align with

their exposure to consumption (albeit this is what we would expect in a consumption-based

asset pricing model). However, this becomes a testable implication, since the covariance be-

tween asset returns and consumption growth over one or several periods is fully characterised

by the loadings of the dynamic system on the factor ft:

Cov (∆ct−1,t+S; ret ) ≡
S∑
j=0

ρjρ
r. (4)

This implies that the time series estimates of the latent factor loadings (ρ̂j and ρ̂r) can be

16The diagonality assumption can be relaxed as explained in Appendix A.3
17This immediately follows from the observation that, since ∆ct−1,t+S ≡

∑S
j=0 ∆ct−1+j,t+j ≡

ln (Ct+S/Ct−1), we have [∆ct−1,t,∆ct−1,t+1, ...,∆ct−1,t+S ]
′ ≡ Γ [∆ct−1,t,∆ct,t+1, ...,∆ct−1+S,t+S ]

′
where Γ

is a lower triangular square matrix of ones (of dimension S).

12



used to assess whether the slow consumption adjustment component has explanatory power

for the cross-section of risk premia (via, for instance, simple cross-sectional regressions of

returns on these estimated covariances).

The particular one factor term structure in the exposures of asset returns to consump-

tion growth in equation (4) also provides an alternative method, that does not rely on the

parametric likelihood and directly stems from the empirically measured covariances, for re-

covering moving average component in consumption. We discuss this further in Section

V.2.

Finally, note that the formulation in equations (1)-(2) can be generalized to allow for a

bond-specific latent factor (gt), to which consumption potentially reacts slowly over time.

The dynamic system in this case becomes:

∆ct−1,t = µc +
S̄∑
j=0

ρjft−j +
S̄∑
j=0

θjgt−j + wct ; (5)

ret
N×1

= µr
N×1

+ ρr
N×1

ft +
[

θ′b
Nb×1

, 0′N−Nb

]′
gt + wr

t
N×1

; (6)

where Nb is the number of bonds and they are ordered first in the vector ret , θb ∈ RNb

contains the bond loadings on the factor gt – a white noise process with variance normalized

to one. In this case the implied covariance of consumption and returns becomes:

Cov (∆ct−1,t+S; ret ) ≡
S∑
j=0

ρjρ
r +

[
θ′b, 0′N−Nb

]′ S∑
j=0

θj. (7)

Two observations regarding our parametric framework deserve mentioning. First, both

the one-factor (equations (1)-(2)) and two-factor (equations (5)-(6)) models are strongly

overidentified. Second, estimation of the model would generally remain consistent even in

the presence of time varying volatility in the true processes (with the only exception of a

contemporaneous ‘leverage effect’), hence our formulation is robust along this dimension. We

address this issue formally in Section V.1.2.

IV.1 Estimation

We can rewrite the dynamic model in equations (1)-(2) in state-space form, assuming Gaus-

sian innovations, as

zt = Fzt−1 + vt, vt ∼ N (0S̄+1; Ψ) ; (8)

yt = µ + Hzt + wt, wt ∼ N (0N+1; Σ) . (9)
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where yt := [∆ct, r
e′
t ], zt := [ft, ..., ft−S̄]′, µ := [µc,µ

′
r]
′ , vt :=

[
ft,0

′
S̄

]′
, wt := [wct ,w

′r
t ]
′,

Ψ :=

[
1 0′

S̄

0S̄ 0S̄×S̄

]
︸ ︷︷ ︸

(S̄+1)×(S̄+1)

, F :=

[
0′
S̄

0

IS̄ 0S̄

]
︸ ︷︷ ︸
(S̄+1)×(S̄+1)

, Σ :=

[
σ2
c 0′N

0N Σr

]
︸ ︷︷ ︸
(N+1)×(N+1)

, H :=

[
ρ0 ρ1 ... ρS̄

ρr 0N ... 0N

]
︸ ︷︷ ︸

(N+1)×(S̄+1)

, (10)

and IS̄ and 0S̄×S̄ denote, respectively, an identity matrix and a matrix of zeros of dimension

S̄.

Similarly, the dynamic system in equations (5)-(6) can be represented in the state-space

form (8)-(9) with: zt := [ft, ..., ft−S̄, gt, ..., gt−S̄]′; vt :=
[
ft,0

′
S̄
, gt,0

′
S̄
,
]′ ∼ N (0S̄+1; Ψ); Ψ

and F being block diagonal with blocks repeated twice and given, respectively, by the first

two matrices in equation (10); and with space equation matrix of coefficients given by

H :=



ρ0 ... ... ρS̄ θ0 ... ... θS̄

ρr1 0 ... 0 θb1 0 ... 0

... ... ... ... ... ... ... ...

ρrNb
0 ... 0 θbNb

0 ... 0

... 0 ... 0 0 0 ... 0

ρrN 0 ... 0 ... 0 ... 0


︸ ︷︷ ︸

(N+1)×2(S̄+1)

. (11)

The above state-space system implies the following conditional likelihood for the data:

yt| It−1,µ,H,Ψ,Σ, zt ∼ N (µ + Hzt; Σ) (12)

where It−1 denotes the history of the state and space variables until time t−1. Hence, under

a diffuse (Jeffreys’) prior and conditional on the history of zt and yt, and given the diagonal

structure of Σ, we have the standard Normal-inverse-Gamma posterior distribution for the

parameters of the model (see e.g. Bauwens, Lubrano, and Richard (1999)). Moreover,

the posterior distribution of the unobservable factors zt conditional on the data and the

parameters, can be constructed using a standard Kalman filter and smoother approach (see,

e.g., Primiceri (2005)).

When combined with a log linearized consumption Euler equation for a very broad class

of asset pricing models,18 the above specification for the dynamics of consumption and asset

returns implies, in the presence of only one latent factor (ft) common to both assets and

18See equation (20) and discussion therein.

14



consumption

E [Re
t ] = α +

(
S∑
j=0

ρjρ
r

)
λf (13)

where Re
t ∈ RN denotes the vector of returns in excess of the risk-free rate, λf is a posi-

tive scalar variable that captures the price of risk associated with the exposure to the slow

consumption adjustment risk, and α ∈ RN is the vector of average mispricings. If consump-

tion fully captures the risk of asset returns, the above expression should hold with α = 0N ,

otherwise α should capture the covariance between the omitted risk factors and asset returns.

Similarly, if we allow for a bond specific latent factor (gt), as in equations (5)-(6), the

implied cross-sectional model of returns is

E [Re
t ] = α +

(
S∑
j=0

ρjρ
r

)
λf +

[
θ′b, 0′N−Nb

]′ S∑
j=0

θjλg (14)

with the additional testable restriction λf = λg.

Equation (13) (and similarly equation (14)), conditional on the data and the parameters

of the state-space model, defines a conventional cross-sectional regression, hence the param-

eters α, λf and λg can be estimated via the standard Fama and MacBeth (1973) procedure.

Therefore, not only can we compute posterior means and confidence bands for both the coef-

ficients of the state space model and for the unobservable factor’s time series, but we can also

compute means and confidence bands for the Fama and MacBeth (1973) estimates. That is,

we can jointly assess the ability of the slow consumption adjustment risk of explaining both

the time series and the cross-section of asset returns with a simple Gibbs sampling approach

described in detail in Appendix A.3.

Furthermore, we confirm the main empirical results obtained with the above state-space

framework, for both the impulse response function of consumption and the cross-sectional

pricing patterns, using a principal component based approach and an Empirical Likelihood

type estimation. The details of these nonparametric procedures are discussed in Sections

V.2 and V.3 respectively.

V Empirical Evidence

Our empirical analysis is based on both parametric and nonparametric inference, and both

Bayesian and frequentist inference, therefore ensuring that the results presented are robust

to the methodology employed. The main approach, in Section V.1, combines the state-space

system implied by equations (1)-(2) (as well as equations (5)-(6)) with standard Bayesian

filtering techniques to recover the unobservable latent consumption factor (ft) and the other
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model parameters. We analyze loading patterns, variance decompositions, and impulse re-

sponse functions. Furthermore, since our framework parametrises the time series dynamics

without imposing cross-sectional asset pricing restrictions a priori, we separately test the

latter using Fama and MacBeth (1973) cross-sectional regressions.

In Section V.2 we examine the term structure implications of asset exposure to consump-

tion growth at different horizons to recover the moving average parameters of the consump-

tion process. Finally, in Section V.3 we rely on a standard nonparametric technique, Empir-

ical Likelihood,19 to document that a) the slow-moving component of consumption growth is

priced in the cross-section of bond returns, b) this slow-moving component provides substan-

tially better identification of the assets’ exposure to consumption growth, revealing precise

estimates of both the level and the spread of the co-movement, and c) these patterns are

uniform across different cross-sections of the assets.

V.1 Evidence from the state-space model

While our model in equations (1)-(2) allows for a potentially infinite number of lags for the

consumption process, in order to proceed with the actual estimation one has to choose a

particular value of S̄. For the rest of the section we use S̄ = 14 for a number of reasons.

First, equation (1) implies a certain autocorrelation structure of the nondurable consump-

tion growth through the combination of the common factor lags and its loadings. Hence,

the value of S̄ should be high enough to capture most of the time series autocorrelation

in the consumption growth. Figures 2-4 of the previous sections suggest that most of the

dependence is captured by the first 14 lags, hence this value is a natural choice for the lag

truncation. Second, intuitively most of the pricing impact from the consumption adjustment

is probably taking place within the business cycle frequency, consistent with a number of

recent empirical studies (e.g. Bandi and Tamoni (2015)). Therefore, S̄ = 14 quarters is a

rather conservative choice, since it provides a 3.5 year window to capture most of the inter-

action between the consumption and returns. Finally, our results remain robust to including

additional lags.20

V.1.1 The consumption mean process

The consumption growth representation in equations (1) and (5) is similar to the moving

average decomposition, and allows us to model the dynamics of multi-period consumption

19For an excellent review and comparison with other moment-based estimation approaches, see Kitamura
(2006).

20For robustness, we have experimented with up to S̄ = 50, and the results, available upon request,
remained virtually identical.
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growth (∆ct,t+1+S) in response to a common and/or a bond-specific shock. Figure 5 depicts

the (cumulated) loadings of consumption on the latent factor f as a function of the horizon

S. At S = 0, the case of a standard consumption-based asset pricing model, the moving

average component of consumption virtually does not load on the common factor. Instead, as

S increases, the impact of the common factor becomes more and more pronounced, levelling

off at around S = 11. At this horizon, the effect is economically very large: the cumulative

response of consumption growth to a one standard deviation shock is about 1%.

Interestingly, the pattern of estimated loadings is similar (at least at the horizons we

consider) to the one implied by the moving average representation of the consumption process

in Bansal and Yaron (2004),21 and reveals a comparable degree of persistency at the 3-4 years

frequency. Note that allowing for a bond specific latent factor (as in equations (5)-(6)) leaves

the consumption loadings on the ft shocks virtually unchanged and consumption does not

load significantly on the bond specific factor gt (see, respectively, figures A1 and A2 in

Appendix A.6).

Figure 6 shows the (posterior mean of the) MA component of consumption, based on our

filtered ft innovations. The slow moving component within consumption aptly captures the

business cycle fluctuations and has a pronounced exposure to recession risk. Furthermore,

this component generates economically large swings in quarterly consumption growth, with

contractions and expansions of about 1% being not uncommon.

But how much of the total consumption volatility can this slow moving component ex-

plain? More than a quarter – which is very large (and sharply estimated) compared to the

leading asset pricing frameworks: e.g. this is 5-6 times larger than in long-run risk frame-

work of Bansal and Yaron (2004), while this quantity should actually be equal to zero in

the the rare disasters models (e.g. Barro (2006)) and in the habit setting of Campbell and

Cochrane (1999). Figure 7 demonstrates that the common factor is responsible for roughly

26% of the variation in the one-period nondurable consumption growth, 33% of the two-

period consumption growth, and so on, followed by a slow decline towards just above 5% for

the 15-period growth. Interestingly, the model retains significant predictive power (albeit,

much lower) even for the one-period consumption that will occur 3-4 year from now. As

shown in Figure A2 of the Appendix, adding a bond specific factor has a minimum impact

on the explanatory power of the model for future consumption growth.

21For more details on the construction of the MA representation for the Bansal and Yaron (2004) framework
see Appendix A.4.
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V.1.2 Clustering and predictability of consumption volatility

Note that the estimation of the conditional mean of consumption growth in equations (1)

and (5) is generally consistent even in the presence of time varying consumption volatil-

ity. Therefore, the presence of volatility clustering can be assessed by analyzing the serial

correlation of the squared one-step ahead forecast errors (see, e.g., Engle (1982)) of the con-

sumption growth process. That is, by examining the autocorrelation and predictability of

V̂ art (∆ct,t+1) :=
(

∆ct,t+1 − Êt [∆ct,t+1]
)2

, where the conditional mean is computed at each

t using the estimated ρj and θj coefficients and latent state variables fτ≤t and gτ≤t.
22

Figure 8 reports the autocorrelation function (left panel), as well as the p-values of the

Ljung and Box (1978) and Box and Pierce (1970) tests (right panel) of joint significance of

the autocorrelations of V̂ art (∆ct,t+1) and shows no evidence of volatility clustering in the

consumption growth process. Nevertheless, conditional consumption volatility might still,

in principle, be correlated with financial asset returns. We test this hypothesis by running

linear predictive regressions of V̂ art+h (∆ct+h,t+h+1), at several horizons h, on the time t first

eight principal components of stock and bond returns. Note that this is the same test used

to establish predictability of the first conditional moment of consumption growth in Section

III. The p-values of the F -tests for these predictability regressions are depicted by the dashed

red line with triangles in Figure 9. The p-values (that range from 0.2826 to 0.922) show that

asset returns are not significant predictors of future consumption volatility. For this feature

of the data to be revealed, it is key to properly account for the conditional mean of the

22 That is, Êt [∆ct,t+1] is the posterior mean of µc +
∑S̄
j=1 ρjft+1−j +

∑S̄
j=1 θjgt+1−j at each t.
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consumption process.

Indeed, given our finding of a common latent factor driving both asset returns and con-

sumption, if one were to erroneously model the conditional mean of consumption growth, one

would be likely to find spurious evidence of volatility clustering. For instance, erroneously

modeling the conditional mean of consumption as being constant, the autocorrelation of

V̂ art (∆ct,t+1) would be mechanically different from zero. For instance, the k-th autocorre-

lation of (∆ct,t+1 − µc)2, for k ≤ S̄, is proportional to

Cov

( S̄∑
j=k

ρjft−j + θjgt−j

)2

,

(
S̄∑
j=k

ρj−kft−j + θj−kgt−j

)2
 6= 0. (15)

To verify that a misspecification of the consumption mean process leads to spurious

evidence of time varying volatility we perform two exercises.

First, in Table 1 we estimate a GARCH(1,1) for consumption volatility under different

assumptions about the mean process. Panel A considers the common AR(1) specification for

consumption growth. In this this case there is statistically significant evidence of volatility

clustering (with a half-life of about 5-6 quarters). However, from Section III we know that

lagged consumption alone does not capture the full extent of consumption predictability.

Therefore, in Panel B we add to the AR(1), as drivers of the conditional mean, the same

principal components of asset returns that predict consumption in Section III. The resulting

change is striking: once we better control for consumption predictability, the evidence in
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Table 1: Estimates of GARCH (1,1) for the innovations of different models

∆ct+1 = µt + εt+1

σ2
t+1 = ω + αε2t + βσ2

t

ω α β
Panel A: µt = µ0 + µc1∆ct

Estimate 7.279× 10−6 0.141 0.719
t-stat [1.912] [1.664] [8.928]

Panel B: µt = µ0 + µc1∆ct +
∑8

i=1 µ
r
i r
ex
PCi,t

Estimate 4.019× 10−5 0.136 6.845× 10−3

t-stat [2.424] [1.297] [0.022]

Panel C: µt = µ0 +
∑S̄

i=1 ρift+1−i
Estimate 3.502× 10−5 7.678× 10−2 3.421× 10−2

t-stat [1.363] [0.957] [0.053]

The table presents GARCH estimates for consumption growth volatility with different models for of the
conditional mean. The model is estimated using QMLE and t-statistics are constructed using Newey and
West (1987) standard errors.

favor of time varying volatility vanishes. Finally, in Panel C we use the conditional mean

of our moving average specification (without the contemporaneous shock) evaluated at its

posterior mean. Two observations are in order. First, as in Panel B, there is neither statistical

nor economic evidence of volatility clustering (the implied half-life of the volatility shocks

is about one quarter i.e. the same as for an i.i.d. process). Second, the sharply different

results in Panels A and C suggest that the AR(1) approximation of the conditional mean is

not innocuous for the identification of the volatility process. Moreover, if the AR(1) were

the true process, our MA(S̄) specification should closely approximate it, and lead to very

similar implications for volatility – something clearly contradicted by the table.

Second, we run predictability regressions of V̂ art (∆ct,t+1) on the first eight principal

components of asset returns (the same predictive variables as in Section III). We construct

the consumption volatility proxy both under the null of our state-space framework and, as

a misspecification benchmark, under constant conditional mean for consumption growth.

Summary statistics for these regressions are depicted by the black continuous line with

circles in Figure 9. The figure shows that the misspecification of the mean process generates

spurious predictability of consumption volatility in 50% of the horizons considered.

That is, modeling the mean of consumption growth without exploiting the information

in asset returns and the flexibility of the MA representation, leads to spurious evidence of

time-varying volatility of consumption growth.
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Figure 9: Predictability of consumption squared forecast errors.

Predictive regressions of V̂ art+h (∆ct+h,t+h+1) on the time t first eight principal components of asset returns
at several horizons h. p-value of the F -test of joint significance of the covariates as well as the 10%, 5%, and
1% significance thresholds (respectively, horizontal dotted, dashed and dot-dashed lines). The dashed red
line with triangles denotes statistics for the correctly specified conditional mean for the consumption growth
process, while the black continuous line with circles corresponds to the assumption of a constant conditional
mean.

V.1.3 Time series properties of stocks and bonds

We now turn to the time series properties of stocks and bonds implied by our model in

equations (1)–(2) (and (5)–(6)). The loadings of equity portfolios on the latent factor ft are

depicted in Figure 10.

The size and book-to-market sorted portfolios are ordered first (e.g. portfolio 2 is the

smallest decile of size and the second smallest decile of book-to-market ratio), followed by

the 12 industry portfolios (portfolios 26-39 in the graph). All the portfolios have significant

and positive exposures to the common factor. Furthermore, there is an easily recognizable

pattern in the factor loadings, in line with the size and value anomalies. This provides

some preliminary evidence that the ft shocks play an important role in explaining the cross-

sectional dispersion of stock returns. The findings remain unchanged when a bond-specific

factor is added to the model as in equations (5)–(6) (see Figure A3 in the Appendix).

These loadings are not only statistically, but also economically significant as shown in

Figure 11: the common factor f explains on average 79% of the time series variation of stock

returns, ranging from 36% to nearly 95% for individual portfolios. Moreover, this explanatory

power in our model is produced by a single consumption-based factor, as opposed to some of

the alternative successful specifications that typically rely on 3 or more explanatory variables.

As shown in Figure A4 in the Appendix, adding a bond specific factor leaves the variance

decomposition of stock returns virtually unaffected.

The loadings of the bond portfolios on the common consumption factor ft are reported in
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Figure 10: Common factor loadings (ρr) of the stock portfolios in the one-factor model.

Posterior means of the stocks factor loadings on ft (black continuous line with circles) and centred posterior
90% (red dashed line) and 68% (green dotted line) coverage regions in the one latent factor model. Ordering of
portfolios: 25 Fama and French (1992) size and book-to-market sorted portfolios and 12 industry portfolios.
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Figure 11: Share of stock portfolios’ return variance explained by the f component.

Box-plots (posterior 95% coverage area) of the percentage of time series variances of individual stock portfolio
returns explained by the f component in the one factor model. Ordering of portfolios: 25 Fama and French
(1992) size and book-to-market sorted portfolios and 12 industry portfolios.
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Figure 12: Bond loadings on common factor ft.

Posterior means of the bonds factor loadings on ft (black continuous line with circles) and centred posterior
90% (red dashed line) and 68% (green dotted line) coverage regions in the one latent factor model.
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Figure 13: Bond loadings (θb) on the bond-specific factor (gt).

Posterior means (black continuous line with circles) and centred posterior 90% (red dashed line) and 68%
(green dotted line) coverage regions, of bond loadings on the bond specific factor gt.
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Figure 14: Variance decomposition box-plots of bond returns.

Box-plots (posterior 95% coverage area) of the percentage of time series variances of bond returns explained
by the ft (left panel), and ft and gt (right panel) shocks.
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Figures 12a and 12b for, respectively, the one and two latent factor specifications. Both sets

of estimates show an upward sloping term structure of the loadings, and the point estimates

are very similar in the two specifications, with the main difference being that, allowing for

a bond specific factor (gt) delivers much sharper estimates of the loadings on the common

factor ft. The magnitude of these loadings is considerably smaller than that of stocks – a

feature that, as shown later, will allow us to price jointly the cross-sections of stocks and

bonds. While these numbers may not seem as impressive as those for the cross-section of

stocks, the pattern is highly persistent and significant, confirming a common factor structure

between nondurable consumption growth and asset returns.

The loadings on the bond specific factor gt are reported in Figure 13. These loadings

are highly statistically significant, and increase steeply and monotonically with maturity,

revealing a very pronounced term structure pattern.

Finally, Figure 14 reports the share of time series variation of bond returns explained

by the ft shocks (left panel), and the ft and gt shocks (right panel), and highlights the

importance of allowing for a bond specific factor to characterize the time series of bond

returns. The common factor ft accounts for a small (about 1.5%), but statistically significant,

proportion of the time series variation in bond returns. The bond-specific factor, in turn,

manages to capture most of the residual time series variation in returns. While the model

captures just about 55% of the variation in the 6-month bond returns, its performance rapidly

improves with maturity and results in a nearly perfect fit for the time horizon of about five

years.

V.1.4 What drives the consumption mean process?

Figure 6 revealed a clear business cycle fluctuation within the moving average component of

consumption growth, but what exactly is being captured by those shocks? Figure 15 looks

at the (posterior) correlation of the consumption mean process (i.e. the MA of ft) with

traditional asset pricing factors and principal components of bond returns. Interestingly,

consumption growth is characterized by a complicated mix of exposures to several popular

proxies for risk.

Focusing on equity risk factors, the conditional mean of consumption shows a strong

correlation with both the HML factor (a proxy for the value premium) and the overall

market excess return, while the the correlation with SMB (a proxy for the size premium), is

small (albeit significant), while there is virtually no comovement with the momentum factor.

The negative comovement with the market is consistent with a reduction of the overall

risk premium in good consumption states (as e.g. in habit, and many other, macro-finance

models). The positive correlation with the value factor is both in line with the finding of
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Figure 15: Common innovations, popular risk factor, and principal components of bond
returns.

Posterior distributions of the correlation coefficients between the MA innovations ft and: the HML and SMB
factors (first row); market excess returns and momentum factor (second row); a linear combination of HML,
SMB, market, and momentum factors (left panel on third row); the first five principal components (PC1 to
PC5) of bond excess returns (remaining panels). Dashed red lines indicate centered 90% posterior coverage
areas. Posterior means and standard deviations of the correlation are reported at top of each sub-graph.
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Liew and Vassalou (2000) that HML forecasts good economic states and with equilibrium

models with capital irreversibility (as e.g. Seru, Papanikolaou, Kogan, and Stoffman (2017)).

Focusing on the bond risk factors, we find that the conditional consumption mean is

positively, and strongly, correlated with the first principal component (PC) of bond excess

returns, and weakly correlated the the second and third PCs. Since the first PC of bond

excess returns corresponds to the second PC of bond returns – i.e. the so called factor –

our finding supports the large empirical evidence connecting the slope of the term structure

of interest rates to both the consumption process (e.g. Harvey (1988)) and future economic

activity (e.g. Stock and Watson (1989), Hamilton and Kim (2002)).23

Next, we investigate whether this risk is actually priced in the cross-section of assets.

V.1.5 The price of consumption risk

The latent factor model in equations (5)–(6) naturally measures the covariance between

asset returns and consumption growth at different horizons. We use this implication to test

whether consumption risk, as captured by our framework, is priced in the cross-section of

asset returns.

Following the critique of Lewellen, Nagel, and Shanken (2010), we use a mixed cross-

section of assets to ensure that there is no dominating implied factor structure in the returns.

Indeed, if that was the case, it could lead to spuriously high significance levels, quality

of fit, and significantly complicate the overall model assessment. However, as Figure 15

indicated, the MA(ft) component in consumption growth does not heavily load on any of

the main principal components of returns. Furthermore, our state-space frameworks allows

us to create simultaneous posterior confidence bands for any cross-sectional asset pricing

statistics, including the factor risk premia, pricing errors, and measures of fit. Note also

that since both stocks and bonds have significant loadings on the common factor (and in

the case of bonds, also on the bond-specific one), we do not face the problem of irrelevant,

or spurious factors (Kan and Zhang (1999)), that could also lead to the unjustifiably high

significance levels.

Table 2 summarizes the cross-sectional pricing performance of our parametric model of

consumption on a mixed cross-section of 9 bond portfolios, 25 Fama-French portfolios sorted

by size and book-to-market, and 12 industry portfolios. For each of the specifications, we

recover the full posterior distribution of the factor loadings, and estimate the associated risk

premia using Fama-MacBeth (1973) cross-sectional regressions. Regardless of the specifica-

23Also, the significant loading on the third PC of excess returns supports the finding of Adrian, Crump,
and Moench (2013) that the fourth PC of yields is one of the significant determinant for the cross-section of
bond returns.
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Table 2: Cross-Sectional Regressions with State-Space Loadings

Row: α λf λg λf = λg R̄2

One latent factor specification
(1) .0058

[0.0053, .0063]
16.00

[9.54, 28.78]
.59

[.56, .62]

(2) 22.00
[13.12, 39.67]

.91
[.90, .92]

Two latent factor specification
(3) .0059

[.0051, .0065]
15.79

[9.10, 29.71]
.59

[.56, .62]

(4) 21.75
[12.52, 40.89]

0.91
[0.90, 0.92]

(5) .0065
[−243.4, 235.1]

15.11
[8.64, 28.46]

37.89
[−243.3, 235.1]

.59
[0.56, 0.61]

(6) 21.73
[12.51, 40.85]

−37.01
[−1152, 1198]

.92
[.91, .92]

(7) .0057
[.0040, .0071]

15.95
[9.12, 30.57]

.59
[.56, .62]

(8) 21.69
[12.52, 40.79]

.91
[.89, .92]

The table presents posterior means and centred 95% posterior coverage (in square brackets) of the Fama

and MacBeth (1973) cross-sectional regression of excess returns on
∑S
j=0 ρjρ

r (with associated coefficient

λf ) and
[
θ′b, 0′N−Nb

]′∑S
j=0 θj (with associated coefficient λg). The column labeled λf = λg reports

restricted estimates. Cross-section of assets: 25 Fama and French (1992) size and book-to-market portfolio;
12 industry sorted portfolios; 9 bond portfolios.

tion, there is strong support in favor of the persistent shocks to consumption being a priced

risk in the cross-section of stocks and bonds: the associated cross-sectional slope is always

positive and highly statistically significant, and the R̄2 varies from 59% to 92%, depending

on whether the intercept is included in the model. While allowing for a common intercept in

the estimation substantially lowers cross-sectional fit, 95% posterior coverage remains very

tight, providing a reliable indication about the model performance.

The average pricing error is small, about 60 b.p. per quarter, but statistically significant

in most specifications. Figure 16 summarises the posterior for the individual pricing errors

for the specification in row (1) of Table 2: they are all individually statistically insignificant

even at 10% level. The figure further suggests that the cross-sectional pricing could benefit

from a bond-specific intercept.

While the common factor f plays an important role in explaining the cross-section of

both stock and bond returns, the bond factor g is not priced. The bond-specific factor is

unspanned, because consumption does not significantly load on it. This factor is nevertheless

essential for explaining most of the time series variation in bond returns.
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Figure 16: Posterior distributions of cross-sectional pricing errors.

Box-plots of the posterior distributions of pricing errors for the cross-sectional specification in row (1) of
Table 2. Portfolios are ordered with bonds first (1 to 9), Fama-French 25 size and book-to-market second
(10 to 34), and industry portfolios last. Blue dash-dot lines denote centered 90% posterior coverage areas.

V.2 The term structure of consumption exposure

The relatively tight restrictions on the parametric model in equations (1)-(2) allow us to pin

down the parameters of the joint consumption-returns process with a high degree of precision.

However, this comes at a price of imposing constraints on the data generating process, some

of which may in principle not hold in the data. In this section we aim to test the strongest

prediction of our parametric setting – the term structure of asset exposure to consumption

risk – while relaxing the ancillary assumptions needed to estimate our state-space model.

Equations (1)–(2) imply a very particular pattern in the covariances of asset returns with

multiperiod consumption growth, i.e. for any asset i

cov(rexi,t+1,∆ct,t+1) = ρriρ0

cov(rexi,t+1,∆ct,t+2) = ρri (ρ0 + ρ1)

. . .

cov(rexi,t+1,∆ct,t+k) = ρri

(
k∑
j=1

ρk−1

) (16)

Therefore, the term structure of asset exposures to consumption risk is driven by a single
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common component: (ρ0, ρ0 + ρ1, . . . ,
∑k

j=1 ρk−1)′ – i.e. the cumulative response function

of consumption to an ft shock. This property is not affected by the potential presence of

cross-sectional correlations between stocks and bonds, or additional factors driving stocks

and bonds that are orthogonal to consumption. Therefore, if the time-varying dynamics of

consumption growth in equation (1) describes well the data generating process, we should

be able to recover the same pattern of loadings by simply extracting the first uncentered

principal component of cov(rexi,t+1,∆ct,t+k) at different horizons k.

Figure 1 in the Introduction illustrates our findings. Remarkably, the loadings on the

first PC almost perfectly match the cumulated response function from the state-space model,

therefore identifying the same persistent time-varying mean for consumption growth.24

Figure 17: Cross-sectional spread of exposure to slow consumption adjustment risk
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Panels present the spread of consumption betas measured as Cov(∆ct,t+1+S , r
e
j,t+1) for different horizon S

(0-15) and asset j: 9 bonds (circle), 6 Fama-French size and book-to-market (triangle), and 12 Industry
(cross) portfolios.

A second testable implication of equation (16) is that, given our state space results, the

covariance between asset returns and multi-period consumption growth should display an

increase in both its level and cross-sectional dispersion. This conjecture is supported by

figure 17 that depicts Cov(∆ct,t+1+S, r
e
j,t+1) for various assets j and horizons S. As we move

away from the standard case of S = 0, two observations immediately arise. First, there is a

substantial increase in the average exposure of asset returns to consumption growth. Second,

24In the figure the level of the first PC is normalized to have the same origin as the ρ0 estimated from the
state-space formulation.
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there is a strong ‘fanning out’ effect, observed for the higher values of the consumption

horizon S. This spread in covariances rationalizes the finding of Parker and Julliard (2005)

that uses ∆ct,t+1+S to price time t asset returns.

V.3 Semi-parametric inference

Representative agent based consumption asset pricing models with either CRRA, Epstein

and Zin (1989), or habit based preferences, as well as several models of complementarity

in the utility function, consumption commitment, and models with either departures from

rational expectations, or robust control, or ambiguity aversion, and even some models with

solvency constraints,25 all imply a consumption Euler equation of the form

C−φt = Et
[
C−φt+1ψ̃t+1Rj,t+1

]
(17)

for any gross asset return j including the risk-free rate Rf
t+1, and where Et is the rational

expectation operator conditional on information up to time t, Ct denotes flow consumption,

ψ̃t+1 depends on the particular form of preferences (and expectation formation mechanism)

considered, and the φ parameter is a function of the underlying preference parameters.26

Note that equation (17) above also implies that C−φt = Et
[
C−φt+1+Sψt+1+S

]
where ψt+1+S :=

Rf
t+1,t+1+S

∏S
j=0 ψ̃t+1+j is a multiplicative component of a multiperiod forward-looking SDF.

Hence, the Euler equation can be equivalently rewritten as

0N = E

[(
Ct+1+S

Ct

)−φ
ψt+1+SRe

t+1

]
= E

[
MS

t+1R
e
t+1

]
(18)

where Re ∈ RN is a vector of excess returns, and MS
t+1 := (Ct+1+S/Ct)

−φ ψt+1+S. Using the

definition of covariance, we can rewrite the above equation as a model of expected returns

E
[
Re
t+1

]
= −

Cov
(
MS

t+1; Re
t+1

)
E
[
MS

t+1

] . (19)

where MS
t+1 := (Ct+1+S/Ct)

−φ ψt+1+S. That is, under the null of the model being correctly

specified, there is an entire family of SDFs that can be equivalently used for asset pricing:

25See, e.g.: Bansal and Yaron (2004); Abel (1990), Campbell and Cochrane (1999), Constantinides (1990),
Menzly, Santos, and Veronesi (2004); Piazzesi, Schneider, and Tuzel (2007), Yogo (2006); Basak and Yan
(2010), Hansen and Sargent (2010); Chetty and Szeidl (2016); Ulrich (2010); Lustig and Nieuwerburgh
(2005).

26E.g., φ would denote relative risk aversion in the CRRA framework, while it would be a function of both
risk aversion and elasticity of intertemporal substitution with Epstein and Zin (1989) recursive utility.
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MS
t+1 for every S ≥ 0. Log-linearizing the above expression, we have the linear factor model

E
[
ret+1

]
=
[
φCov

(
∆ct,t+1+S; ret+1

)
− Cov

(
logψt+1+S; ret+1

)]
λS (20)

where λS is a positive scalar. The above pricing restriction, ignoring the ψ factor, is exactly

the one that we have tested in section V.1.5 under the null of our state-space model. We now

instead want to avoid 1) using linearized relationships, 2) imposing our parametric model

for consumption and asset returns and 3) ignoring the ψ component of the SDF. That is, we

want to tackle directly the pricing restriction in Euler equation (18).

Since the stochastic discount factorMS
t+1 can be decomposed into the product of consump-

tion growth over several periods (Ct+1+S/Ct) and an additional, potentially unobservable,

component, we can use an Empirical Likelihood–based approach to assess the ability of low

frequency consumption to price returns without taking a stand on the actual model (i.e. on

the ψt component). The EL-based inference allows to separate the unobservable part of the

SDF from that related to consumption growth, treating ψt like a nuisance parameter that is

concentrated out (see Ghosh, Julliard, and Taylor (2016)).27

Since the relevance of the multiple period consumption for the cross-section of stocks has

already been highlighted by Parker and Julliard (2005), we first focus on the cross-section

of bonds only. Table 3 summarizes the ability of the consumption component of MS
t+1 to

explain the cross-section of bond returns for various values of S. When S = 0 we have the

standard CRRA consumption-CAPM, where the expected returns are driven only by their

contemporaneous correlation with consumption growth. The output reflects the well-known

failure of the classical model to capture the cross-section of bond returns: according to the

LR-test, the model is rejected in the data, and the cross-sectional adjusted R-squared is

negative and large, and the curvature parameter is very large and imprecisely estimated.

Increasing the span of consumption growth, S, to 2 or more quarters drastically changes

the picture: the level of cross-sectional fit increases dramatically, up to 92% for S = 14, the

point estimates of φ, which in the case of additively separable CRRA utility corresponds to

the Arrow-Pratt relative risk-aversion coefficient) are drastically reduced (hence more in line

with economic theory).28

27Consider the following transformation of the Euler equation:

0 = E
[
MS
t R

e
t

]
≡
∫ (

Ct+S
Ct−1

)−φ
ψt+SR

e
tdP =

∫ (
Ct+S
Ct−1

)−φ
Re
tdΨ = EΨ

[(
Ct+S
Ct−1

)−φ
Re
t

]
(21)

where P is the unconditional physical probability measure, Ψ is an (absolutely continuous) probability

measure such that dΨ
dP = ψt+S

ψ̄
where ψ̄ = E [ψt+S ]. Both φ and Ψ can then be recovered via Empirical

Likelihood approach. Section A.5 describes the estimation procedure in detail.
28Note that the LR-test indicates for all S, as one would expect, that there is a statistically significant
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Table 3: Cross-section of bond returns and consumption risk

Horizon S R2
adj(%) α φ LR-test

(Quarters) (1) (2) (3) (4)

0 -668 0.0007 105 12.4191
(0.0003) (27.8) [0.0004]

1 -138 0.0010 88 33.3935
(0.0004). (24.5) [0.0000]

2 62 0.0024 98 101.9077
(0.0006) (24.7) [0.0000]

3 81 0.0013 61 47.5635
(0.0004) (17.2) [0.0000]

4 51 0.0007 50 29.2312
(0.0003) (13.9) [0.0000]

5 4 0.0009 46 32.8188
(0.0003) (10.6) [0.0000]

6 10 0.0009 45 29.8647
(0.0003) (10.0) [0.0000]

7 58 0.0006 38 21.6852
(0.0003) (9.7) [0.0000]

8 65 0.0008 40 26.2551
(0.0002) (9.9) [0.0000]

9 62 0.0008 54 25.6001
(0.0002) (10.4) [0.0000]

10 74 0.0008 40 20.9373
(0.0002) (12.1) [0.1911]

11 74 0.0009 45 25.6532
(0.0002) (14.1) [0.0000]

12 90 0.0008 77 27.8346
(0.0002) (16.3) [0.0000]

13 82 0.0007 85 26.9717
(0.0002) (17.4) [0.0000]

14 92 0.0007 74 25.8651
(0.0002) (19.7) [0.0000]

The table reports the pricing of 9 excess bond holding returns for various values of the hori-
zon S, and allowing for an intercept. Standard errors are reported in parentheses and p-values
in brackets. Estimation is performed using Empirical Likelihood and allowing for a common
pricing error, α, such that 0 = E

[
MS
t+1

(
Re
t+1 − α

)]
. The fit measured as: R2

adj = 1 −

n−2
n−1 V̂ arc

(
1
TRi,t+1 − α̂−

Ĉov
(

(Ct+1+S/Ct)
−φ̂,Re

t+1

)
Ê
[
(Ct+1+S/Ct)

−φ̂
] )/

V̂ arc
(

1
TRi,t+1

)
where V̂ arc(·) denotes the sample

cross-sectional variance.
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(a) S=0 (b) S=12

Figure 18: Slow consumption adjustment factor and the cross-section of bond returns

The figures show average and fitted returns on the cross-section of 9 bond portfolios, sorted by maturity. The
model is estimated by Empirical Likelihood for various values of consumption horizon S. S = 0 corresponds to
the standard consumption-based asset pricing model; S = 12 corresponds to the use of ultimate consumption
risk, where the cross-section of returns is driven by the their correlation with the consumption growth over
13 quarters, starting from the contemporaneous one.

Most importantly, fo S >> 0, φ is much more precisely estimated. The large standard

error associated with this parameter for the standard consumption-based model (S = 0)

is due to the fact that the level and spread of the contemporaneous correlation between

asset returns and consumption growth is rather low (see Figure 17). This in turn leads to

substantial uncertainty in parameter estimation. As the number of quarters used to measure

consumption risk increases, the link between returns and the slow moving component of the

consumption becomes more pronounced (as in Figure 17), resulting in lower standard errors

and a better quality of fit. In fact for large S, as shown in Figure 18, the model-implied

average excess returns are very close to the actual ones, in drastic contrast to the S = 0 case.

The contemporaneous correlation between bond returns and consumption growth (Panel (a),

S = 0) is so low that not only it delivers a very poor fit, but actually reverses the order of

the portfolios: i.e. the fitted average return from holding long-term bonds is smaller than

that of the short term ones. Instead, when the horizon used to measure consumption risk

is increased, the quality of fit substantially improves, leading to an R-squared of 85% for

S = 12 in Panel (b). Note that, in light of our parametric evidence, this improvement in

fit is driven by the fact that the cumulated response of consumption over many quarters

following the returns captures the slow consumption response to time t wealth shocks (to

which asset returns react immediately).

The ability of slow consumption adjustment risk to capture a large proportion of the

component ψt in the pricing kernel.
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Table 4: Expected excess returns and consumption risk

Cross-sectional estimates

Horizon S R2
adj(%) α φ LR-test R2

adj(%) α φ LR-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: 9 Bonds and Panel B: 9 Bonds, Fama-French 6,
Fama-French 6 portfolios and Industry 12 portfolios

0 33 -0.0002 113 6.7888 38 -0.0002 91 9.0198
(0.0003) (27.3) [0.0092] (0.0002) (22.8) [0.0027]

10 76 0.0000 38 28.8862 55 0.0006 16 23.6425
(0.0004) (8.4) [0.0000] (0.0002) (4.1) [0.0000]

11 75 0.0001 53 32.1007 48 0.0005 12 18.9782
(0.0002) (10.8) [0.0000] (0.0002) (3.3) [0.0000]

12 91 0.0005 45 29.4202 50 0.0005 12 17.7822
(0.0003) (13.4) [0.0000] (0.0002) (3.2) [0.0000]

Panel C: 9 Bonds and Panel D: 9 Bonds, Fama-French 25,
Fama-French 25 portfolios and Industry 12 portfolios

0 66 -0.0002 88 6.3405 39 0.0000 32 4.5356
(0.0002) (19.7) [0.0118] (0.0002) (16.6) [0.0332]

10 79 0.0002 23 11.0360 45 0.0002 10 11.3431
(0.0002) (3.9) [0.0009] (0.0002) (2.6) [0.0007]

11 80 0.0002 22 9.8914 42 0.0002 9 9.5157
(0.0002) (3.7) [0.0017] (0.0002) (2.3) [0.0020]

12 69 0.0002 17 6.7009 38 0.0002 8 8.9695
(0.0002) (3.1) [0.0096] (0.0002) (2.1) [0.0027]

The table reports the pricing of excess returns of stocks and bonds, allowing for no intercept. Standard

errors are reported in parentheses and p-values in brackets. Estimation is done using empirical likelihood.

cross-sectional variation in returns is not a feature of the bond market alone: it works equally

well on the joint cross-section of stocks and bonds, providing a simple and parsimonious one

factor model for co-pricing securities in both asset classes. Table 4 presents cross-sectional

estimates for various portfolios of stocks and bonds as S varies. Three patterns, common to

also table 3, are evident. First, cross-sectional fit is generally higher for S >> 0. Second,

the point estimates of φ are much smaller as S increase. Finally, cumulated consumption

growth delivers much sharper estimates of the curvature parameter (with standard errors

often an order of magnitude smaller). Again, this is in line with the evidence in Figure

17: as S increases, both the level and the spread of asset loadings on consumption growth

become larger and better identified. This, in turn, delivers better fit, a lower curvature for

the consumption growth, and a tighter identification of the latter. For robustness, Appendix

A.7 provides similar empirical evidence for the alternative model specifications that include

asset class-specific intercepts.
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VI Conclusions

We identify the stochastic process of consumption growth using the information contained

in financial returns. Our strategy relies on the central insight of the intertemporal Euler

equation of models that have consumption as one of the state variables entering the util-

ity function: most shocks affecting the household force it to adjust both investment and

consumption plans.

We show that a flexible parametric model with common factors driving asset dynamics

and consumption identifies the slow varying conditional mean of the consumption growth.

This component is persistent at the business cycle frequency, and is economically large,

capturing more than a quarter of the time series variation of consumption growth. This

indicates that the shocks spanned by financial markets are first order drivers of consumption

risk. Controlling for the time variation in the conditional mean of consumption growth,

we do not find evidence of volatility clustering in consumption. One implication of this

is that models with stochastic volatility in consumption should probably include a strong

contemporaneous leverage effect.

Turning to the asset pricing implications, we find that both stocks and bonds load sig-

nificantly on the innovations spanned by consumption growth. This generates sizeable risk

premia and dispersion in returns, consistent with the size and value anomalies, as well as

with the positive slope of the term structure of bond excess returns. As a result, our model

explains between 36% and 95% of the time series variation in returns and between 57% and

90% of the joint cross-sectional variation in stocks and bonds.

We also provide a large set of complementary evidence that, despite not relying on

our parametric formulation, strongly supports all the main time series and cross-sectional

findings.
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A Appendix

A.1 Data Description

Bond holding returns are calculated on a quarterly basis using the zero coupon yield data con-

structed by Gurkaynak and Wright (2007)29 from fitting the Nelson-Siegel-Svensson curves

daily since June 1961, and excess returns are computed subtracting the return on a three-

month Treasury bill. We consider the set of the following maturities: 6 months, 1, 2, 3, 4,

5, 6, 7, and 10 years, which gives us a set of 9 bond portfolios.

We consider several portfolios of stock returns. The baseline specification relies, in ad-

dition to the bond portfolios, on the 25 size and book-to-market Fama-French portfolios

(Fama and French (1992)), and 12 industry portfolios, available from Kenneth French data

library. We consider monthly returns from July, 1961 to July, 2017, and accumulate them

to form quarterly returns, matching the frequency of consumption data. Excess returns are

then formed by subtracting the corresponding return on the three-month Treasury bill.

Consumption flow is measured as real (chain-weighted) consumption expenditure on non-

durable goods per capita available from the National Income and Product Accounts (NIPA).

We use the end-of-period timing convention and assume that all of the expenditure occurs

at the end of the period between t and t+ 1. We make this (common) choice because under

this convention the entire period covered by time t consumption is part of the information

set of the representative agent before time t + 1 returns are realised. All the returns are

made real using the corresponding consumption deflator.

Overall, this gives us consumption growth and matching real excess quarterly holding

returns on 46 portfolios, from the third quarter of 1961 to the second quarter of 2017.

A.2 S-VAR Identification via Long-Run Restrictions

Consider the structural vector autoregression of order p for the vector of variables Xt (given

by the quarterly consumption growth and market returns):

Γ0Xt + Γ (L)Xt−1 = c+ εt, εt ∼ iidN (0, I) ,

where c is a vector of constants, L denotes the lag operator, Γ (L) ≡ Γ1 + Γ2L+ ...+ ΓpL
p−1,

and each Γj is a two by two matrix. In order to identify the S-VAR using long-run restrictions

29The data is regularly updated and available at:
http://www.federalreserve.gov/pubs/feds/2006/200628/200628abs.html
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we follow Blanchard and Quah (1989) and work with the moving average representation

Xt = κ+ A (L)

[
εsrt

εlrt

]
(22)

where κ is a vector of constants, A (L) ≡ A0 + A1L + A2L
2 + ...A∞L

∞ ≡ [Γ0 + LΓ (L)]−1,

εsrt and εlrt denote, respectively, short- and long-run Gaussian shocks with covariance matrix

normalized to be equal to the identity matrix.

The two types of shocks are identified imposing the restriction
∑∞

j=0 {Aj}1,2 = 0 where

{.}1,2 returns the (1, 2) element of the matrix. That is, the short-run shock has no long-

run effect on at least one of the elements of the vector Y. This restriction also implies that

A(1) ≡
∑∞

j=0Aj should be a lower triangular matrix.

The S-VAR coefficient can be easily recovered from the reduced form VAR

Xt = γ +B (L)Xt−1 + vt, vt ∼ N (0,Ω)

where B (L) = B0 +B1L+ ...+BpL
p and Ω = Γ−1

0

(
Γ−1

0

)′
can be estimated via OLS.

Given the restrictions
∑∞

j=0 {Aj}1,2 = 0, it follows that D := [I −B (1)]−1 Γ−1
0 should be

a lower triangular matrix. Note also that DD′ = [I −B (1)]−1 Ω [I −B (1)]−1′. Hence, an

estimate of the DD′ matrix, D̂D′, can be constructed from the reduced form OLS estimates

B̂ (L) and Ω̂, and imposing the lower triangular structure on D, we can estimate D̂ from

the Choleski decomposition of D̂D′. Finally, we can recover the S-VAR parameters from

Γ̂−1
0 =

[
I − B̂ (1)

]
D̂, Γ̂ (L) = −Γ̂0B̂ (L) and ĉ = Γ̂0γ̂. Impulse response functions and their

confidence regions can then be constructed following Sims and Zha (1999).

The reduced form version of the VAR is estimated with 5 lags in order to allow for

possible seasonality issues and a potentially rich dynamic. Nevertheless, the shape of the

estimated impulse response functions remains very stable across lag length specifications.

A.3 State Space Estimation and Generalizations

Let Π′ := [µ,H] , x′t := [1, z′t]. Under a (diffuse) Jeffreys’ prior the likelihood of the data in

equation (12) implies the posterior distribution

Π′|Σ, {zt}Tt=1 , {yt}
T
t=1 ∼ N

(
Π̂′OLS; Σ⊗ (x′x)

−1
)
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where x contains the stacked regressors, and the posterior distribution of each element on

the main diagonal of Σ is given by30

σ2
j

∣∣ {zt}Tt=1 , {yt}
T
t=1 ∼ Inv-Γ

(
(T −mj − 1) /2, T σ̂2

j,OLS/2
)

where mj is the number of estimated coefficients in the j-th equation. That is, the conditional

posterior has a Normal-inverse-Γ structure. Moreover, F and Ψ have a Dirac posterior

distribution at the points defined in equation (10). Therefore, the missing part necessary for

taking draws via MCMC using a Gibbs sampler, is the conditional distributions of zt. Since

yt

zt

∣∣∣∣∣ It−1,H,Ψ,Σ ∼ N

([
µ

Fzt−1

]
;

[
Ω H

H′ Ψ

])
,

where Ω := V art−1 (yt) = HΨH′ + Σ, this can be constructed, and values can be drawn,

using a standard Kalman filter and smoother approach. Let

zt|τ := E [zt|yτ ,H,Ψ,Σ] ; Vt|τ := V ar (zt|yτ ,H,Ψ,Σ) .

where yτ denotes the history of yt until τ. Then, given z0|0 and V0|0, the Kalman filer

delivers:

zt|t−1 = Fz′t−1|t−1; Vt|t−1 = FVt−1|t−1F
′ + Ψ; Kt = Vt|t−1H

′ (HVt|t−1H
′ + Σ

)−1

zt|t = zt|t−1 + Kt

(
yt − µ−Hzt|t−1

)
; Vt|t = Vt|t−1 −KtHVt|t−1.

The last elements of the recursion, zT |T and VT |T , are the mean and variance of the normal

distribution used to draw zT . The draw of zT and the output of the filter can then be used

for the first step of the backward recursion, which delivers the zT−1|T and VT−1|T values

necessary to make a draw for zT−1 from a gaussian distribution. The backward recursion

can be continued until time zero, drawing each value of zt in the process, with the following

updating formulae for a generic time t recursion:

zt|t+1 = zt|t + Vt|tF
′V−1

t+1|t
(
zt+1 − Fzt|t

)
; Vt|t+1 = Vt|t −Vt|tF

′V−1
t+1|tFVt|t.

Hence parameters and states can be drawn via the Gibbs sampler using the following

algorithm:

1. Start with a guess Π̃′ and Σ̃−1 (e.g. the frequentist maximum likelihood estimates),

30Relaxing the diagonality assumption the posterior distribution of Σ−1 is a Wishart centered at the OLS
estimates.
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and use it to construct initial draws for µ and H. Using also F and Ψ, draw the zt

history using the Kalman recursion above with (Kalman step)

zt ∼ N
(
zt|t+1; Vt|t+1

)
.

2. Conditioning on {zt}Tt=1 (drawn at the previous step) and {yt}Tt=1 run OLS imposing

the zero restrictions and get Π̂′OLS and Σ̂OLS, and draw Π̃′ and Σ̃−1 from the Normal-

inverse-Γ (N-i-Γ step). Use these draws as the initial guess for the previous point of

the algorithm, and repeat.

Computing posterior confidence intervals for the cross-sectional performance of the model,

conditional on the data, is relatively simple since, conditional on a draw of the time series

parameters, estimates of the risk premia (λ’s in equations (13) and (14)) are just a mapping

obtainable via the linear projection of average returns on the asset loadings in H. Hence, to

compute posterior confidence intervals for the cross-sectional analysis, we repeat the cross-

sectional estimation for each posterior draw of the time series parameters, and report the

posterior distribution of the cross-sectional statistics across these draws..

A.4 The Moving Average Representation of The Long Run Risk

Process

We assume the same data generating process as in Bansal and Yaron (2004), with the only

exception that we introduce a square-root process for the variance, as in Hansen, Heaton,

Lee, and Roussanov (2007), that is:

∆ct,t+1 = µ+ xt + σtηt+1; xt+1 = ρxt + φeσtet+1; σ2
t+1 = σ2(1− ν1) + ν1σ

2
t + σwσtwt+1,

where ηt, et, wt, ∼ iidN (0, 1). The calibrated monthly parameter values are: µ = 0.0015,

ρ = 0.979, φe = 0.044, σ = 0.0078, ν1 = 0.987, σw = 0.00029487. To extract the quarterly

frequency moving average representation of the process, we proceed in two steps. First,

we simulate a long sample (five million observations) from the above system treating the

given parameter values as the truth. Second, we aggregate the simulated data into quarterly

observation and we use them to estimate, via MLE, the moving average representation of

consumption growth in equation (1).
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A.5 Empirical Likelihood Estimation

Empirical Likelihood provides a natural framework for recovering parameter estimates and

probability measure Ψ defined by equation (21), by minimising Kullback-Leibler Information

Criterion (KLIC):

(Ψ̂, φ̂) = arg min
Ψ,φ

D(P ||Ψ) ≡ arg min
Ψ

∫
ln
dP

dΨ
dP s.t. 0 = EΨ

[(
Ct+S
Ct−1

)−φ
Re
t

]
(23)

From Csiszar (1975) duality result we have:

ψ̂t =
1

T

(
1 + λ̂(θ)′

(
Ct+S

Ct−1

)−φ̂
Re
t

) ∀t = 1..T, (24)

where φ̂ and λ̂ ≡ λ̂(φ̂) ∈ Rn are the solution to the dual optimisation problem:

φ̂ = arg min
φ∈R

−
T∑
t=1

ln

(
1 + λ̂(φ)′

(
Ct+S
Ct−1

)−φ
Re
t

)
(25)

λ̂(φ) = arg min
λ∈Rn

−
T∑
t=1

ln

(
1 + λ(φ)′

(
Ct+S
Ct−1

)−φ
Re
t

)
(26)

The dual problem is usually solved via the combination of internal and external loops:

(Kitamura (2006)): first, for each φ find the optimal values of the Lagrange multipliers λ, as

in equation (26); then minimize the value of the dual objective function w.r.t. φ(λ̂), following

equation (25).

Empirical likelihood estimator is known not only for its nonparametric likelihood inter-

pretation, but also for its convenient asymptotic representation and properties (Newey and

Smith (2004)).
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A.6 Additional Figures
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Figure A1: Slow consumption adjustment response to the latent factors ft and gt shocks.

Posterior means (continuous line with circles) and centred posterior 90% (dashed line) and 68% (dotted line)
coverage regions. Estimation based on the two-factor model in equations (5) and (6). Left panel: cumulated
consumption response to common factor, ft, shocks. Right panel: cumulated consumption response to e to
bond factor, gt, shocks. Triangles denote Bansal and Yaron (2004) implied values.
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Figure A2: Variance of consumption growth explained by the MA components f and g.

Box-plots (posterior 95% coverage area) of the percentage of time series variances of consumption growth
explained by the MA components f and g. Left panel: cumulated consumption growth ∆ct,t+1+S . Right
panel: one period consumption growth ∆ct+j,t+1+j .
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Figure A3: Common factor loadings (ρr) of the stock portfolios in the two-factor model.

The graph presents posterior means of the stocks factor loadings on ft (continuous line with circles) and
centred posterior 90% (dashed line) and 68% (dotted line) coverage regions in the two latent factors model.
Ordering of portfolios: 25 Fama and French (1992) size and book-to-market sorted portfolios (e.g. portfolio
2 is the smallest decile of size and the second smaller decile of book-to-market ratio), and 12 industry
portfolios.
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Figure A4: Share of stock portfolios’ return variance explained by the f component in the
two-factor model.

Box-plots (posterior 95% coverage area) of the percentage of time series variances of individual stock portfolio
returns explained by the f component in the two-factor model. Ordering of portfolios: 25 Fama and French
(1992) size and book-to-market sorted portfolios (e.g. portfolio 2 is the smallest decile of size and the second
smaller decile of book-to-market ratio), and 12 industry portfolios.

A.7 Additional Tables
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Table A1: Expected Excess Returns and Consumption Risk, 1967:Q3-2017:Q2

No intercept Stocks/bonds-specific intercept

Horizon S R2
adj(%) φ LR-test R2

adj(%) αb αs φ LR-test

(Quarters) (1) (2) (3) (4) (5) (6) (7) (8)

Panel A: 9 Bonds and Fama-French 6 portfolios

0 -30 114 6.3875 -2 -0.0004 0.0152 80 3.7466
(27.2) [0.0115] (0.0003) (0.0069) (33.6) [0.0529]

10 76 38 29.1022 65 -0.0001 0.0089 29 19.8292
(8.3) [0.0000] (0.0003) (0.0052) (7.4) [0.0000]

11 75 53 32.1557 64 0.0001 0.0036 51 21.6484
(10.7) [0.0000] (0.0002) (0.0047) (11.8) [0.0000]

12 87 55 28.7694 83 0.0005 0.0061 43 19.4720
(12.5) [0.0000] (0.0003) (0.0058) (13.4) [0.0000]

Panel B: 9 Bonds and Fama-French 25 portfolios

0 5 92 5.6714 58 0.0000 0.0220 -40 1.2112
(17.7) [0.0172] (0.0002) (0.0040) (16.0) [0.2711]

10 78 21 10.6559 61 -0.0001 0.0146 21 6.7906
(3.7) [0.00112] (0.0002) (0.0039) (4.1) [0.0092]

11 79 21 9.3890 73 -0.0001 0.0146 17 4.2215
(3.6) [0.0022] (0.0002) (0.0040) (3.6) [0.0399]

12 66 16 6.4810 72 -0.0001 0.0163 10 3.9525
(3.0) [0.0109] (0.0002) (0.0040) (2.9) [0.0468]

Panel C: 9 Bonds, Fama-French 6, and Industry 12 portfolios

0 43 88 5.1343 -4 -0.0001 0.0141 69 12.2465
(22.6) [0.0235] (0.0002) (0.0046) (25.33) [0.0005]

10 55 16 18.8887 33 0.0003 0.0174 16 23.1406
(3.9) [0.0000] (0.0002) (0.0039) (4.4) [0.0000]

11 50 13 14.5781 40 0.0004 0.0179 14 20.1932
(3.4) [0.0000] (0.0002) (0.0039) (4.1) [0.0000]

12 49 12 13.4594 46 0.0004 0.0174 13 18.0017
(3.2) [0.0000] (0.0002) (0.0040) (3.9) [0.0000]

Panel D: 9 Bonds, Fama-French 25, and Industry 12 portfolios

0 32 19 3.9034 56 -0.0002 0.0170 20 1.0981
(16.6) [0.0482] (0.0002) (0.0036) (18.2) [0.2947]

10 45 8 10.9676 65 -0.0001 0.0166 7 6.4872
(2.6) [0.0009] (0.0002) (0.0033) (2.6) [0.0109]

11 37 8 9.0100 64 -0.0002 0.0166 6 5.2788
(2.3) [0.0026] (0.0002) (0.0033) (2.3) [0.0216]

12 37 8 8.3904 62 -0.0001 0.0167 5 4.3966
(2.2) [0.0037] (0.0002) (0.0033) (2.1) [0.0361]

The table reports the pricing of excess returns of stocks and bonds, allowing for separate asset class-specific

intercepts. Standard errors are reported in parentheses and p-values in brackets. Estimation is done using

Empirical Likelihood.
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